method_verifier.cc revision 073ed9ba97df41862403f64d7a2e824d09ab50ed
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "handle_scope-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  const DexFile& dex_file = klass->GetDexFile();
97  const DexFile::ClassDef* class_def = klass->GetClassDef();
98  mirror::Class* super = klass->GetSuperClass();
99  if (super == NULL && "Ljava/lang/Object;" != klass->GetDescriptor()) {
100    early_failure = true;
101    failure_message = " that has no super class";
102  } else if (super != NULL && super->IsFinal()) {
103    early_failure = true;
104    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
105  } else if (class_def == NULL) {
106    early_failure = true;
107    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
108  }
109  if (early_failure) {
110    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
111    if (Runtime::Current()->IsCompiler()) {
112      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
113      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
114    }
115    return kHardFailure;
116  }
117  StackHandleScope<2> hs(Thread::Current());
118  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
119  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
120  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
121}
122
123MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
124                                                        Handle<mirror::DexCache> dex_cache,
125                                                        Handle<mirror::ClassLoader> class_loader,
126                                                        const DexFile::ClassDef* class_def,
127                                                        bool allow_soft_failures,
128                                                        std::string* error) {
129  DCHECK(class_def != nullptr);
130  const byte* class_data = dex_file->GetClassData(*class_def);
131  if (class_data == NULL) {
132    // empty class, probably a marker interface
133    return kNoFailure;
134  }
135  ClassDataItemIterator it(*dex_file, class_data);
136  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
137    it.Next();
138  }
139  size_t error_count = 0;
140  bool hard_fail = false;
141  ClassLinker* linker = Runtime::Current()->GetClassLinker();
142  int64_t previous_direct_method_idx = -1;
143  while (it.HasNextDirectMethod()) {
144    uint32_t method_idx = it.GetMemberIndex();
145    if (method_idx == previous_direct_method_idx) {
146      // smali can create dex files with two encoded_methods sharing the same method_idx
147      // http://code.google.com/p/smali/issues/detail?id=119
148      it.Next();
149      continue;
150    }
151    previous_direct_method_idx = method_idx;
152    InvokeType type = it.GetMethodInvokeType(*class_def);
153    mirror::ArtMethod* method =
154        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
155                              NullHandle<mirror::ArtMethod>(), type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures,
170                                                      false);
171    if (result != kNoFailure) {
172      if (result == kHardFailure) {
173        hard_fail = true;
174        if (error_count > 0) {
175          *error += "\n";
176        }
177        *error = "Verifier rejected class ";
178        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
179        *error += " due to bad method ";
180        *error += PrettyMethod(method_idx, *dex_file);
181      }
182      ++error_count;
183    }
184    it.Next();
185  }
186  int64_t previous_virtual_method_idx = -1;
187  while (it.HasNextVirtualMethod()) {
188    uint32_t method_idx = it.GetMemberIndex();
189    if (method_idx == previous_virtual_method_idx) {
190      // smali can create dex files with two encoded_methods sharing the same method_idx
191      // http://code.google.com/p/smali/issues/detail?id=119
192      it.Next();
193      continue;
194    }
195    previous_virtual_method_idx = method_idx;
196    InvokeType type = it.GetMethodInvokeType(*class_def);
197    mirror::ArtMethod* method =
198        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
199                              NullHandle<mirror::ArtMethod>(), type);
200    if (method == NULL) {
201      DCHECK(Thread::Current()->IsExceptionPending());
202      // We couldn't resolve the method, but continue regardless.
203      Thread::Current()->ClearException();
204    }
205    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
206                                                      dex_file,
207                                                      dex_cache,
208                                                      class_loader,
209                                                      class_def,
210                                                      it.GetMethodCodeItem(),
211                                                      method,
212                                                      it.GetMemberAccessFlags(),
213                                                      allow_soft_failures,
214                                                      false);
215    if (result != kNoFailure) {
216      if (result == kHardFailure) {
217        hard_fail = true;
218        if (error_count > 0) {
219          *error += "\n";
220        }
221        *error = "Verifier rejected class ";
222        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
223        *error += " due to bad method ";
224        *error += PrettyMethod(method_idx, *dex_file);
225      }
226      ++error_count;
227    }
228    it.Next();
229  }
230  if (error_count == 0) {
231    return kNoFailure;
232  } else {
233    return hard_fail ? kHardFailure : kSoftFailure;
234  }
235}
236
237MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
238                                                         const DexFile* dex_file,
239                                                         Handle<mirror::DexCache> dex_cache,
240                                                         Handle<mirror::ClassLoader> class_loader,
241                                                         const DexFile::ClassDef* class_def,
242                                                         const DexFile::CodeItem* code_item,
243                                                         mirror::ArtMethod* method,
244                                                         uint32_t method_access_flags,
245                                                         bool allow_soft_failures,
246                                                         bool need_precise_constants) {
247  MethodVerifier::FailureKind result = kNoFailure;
248  uint64_t start_ns = NanoTime();
249
250  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
251                           method_idx, method, method_access_flags, true, allow_soft_failures,
252                           need_precise_constants);
253  if (verifier.Verify()) {
254    // Verification completed, however failures may be pending that didn't cause the verification
255    // to hard fail.
256    CHECK(!verifier.have_pending_hard_failure_);
257    if (verifier.failures_.size() != 0) {
258      if (VLOG_IS_ON(verifier)) {
259          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
260                                << PrettyMethod(method_idx, *dex_file) << "\n");
261      }
262      result = kSoftFailure;
263    }
264  } else {
265    // Bad method data.
266    CHECK_NE(verifier.failures_.size(), 0U);
267    CHECK(verifier.have_pending_hard_failure_);
268    verifier.DumpFailures(LOG(INFO) << "Verification error in "
269                                    << PrettyMethod(method_idx, *dex_file) << "\n");
270    if (gDebugVerify) {
271      std::cout << "\n" << verifier.info_messages_.str();
272      verifier.Dump(std::cout);
273    }
274    result = kHardFailure;
275  }
276  uint64_t duration_ns = NanoTime() - start_ns;
277  if (duration_ns > MsToNs(100) && !kIsDebugBuild) {
278    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
279                 << " took " << PrettyDuration(duration_ns);
280  }
281  return result;
282}
283
284void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
285                                         const DexFile* dex_file,
286                                         Handle<mirror::DexCache> dex_cache,
287                                         Handle<mirror::ClassLoader> class_loader,
288                                         const DexFile::ClassDef* class_def,
289                                         const DexFile::CodeItem* code_item,
290                                         mirror::ArtMethod* method,
291                                         uint32_t method_access_flags) {
292  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
293                          dex_method_idx, method, method_access_flags, true, true, true);
294  verifier.Verify();
295  verifier.DumpFailures(os);
296  os << verifier.info_messages_.str();
297  verifier.Dump(os);
298}
299
300MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
301                               Handle<mirror::ClassLoader>* class_loader,
302                               const DexFile::ClassDef* class_def,
303                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
304                               mirror::ArtMethod* method, uint32_t method_access_flags,
305                               bool can_load_classes, bool allow_soft_failures,
306                               bool need_precise_constants)
307    : reg_types_(can_load_classes),
308      work_insn_idx_(-1),
309      dex_method_idx_(dex_method_idx),
310      mirror_method_(method),
311      method_access_flags_(method_access_flags),
312      return_type_(nullptr),
313      dex_file_(dex_file),
314      dex_cache_(dex_cache),
315      class_loader_(class_loader),
316      class_def_(class_def),
317      code_item_(code_item),
318      declaring_class_(NULL),
319      interesting_dex_pc_(-1),
320      monitor_enter_dex_pcs_(nullptr),
321      have_pending_hard_failure_(false),
322      have_pending_runtime_throw_failure_(false),
323      new_instance_count_(0),
324      monitor_enter_count_(0),
325      can_load_classes_(can_load_classes),
326      allow_soft_failures_(allow_soft_failures),
327      need_precise_constants_(need_precise_constants),
328      has_check_casts_(false),
329      has_virtual_or_interface_invokes_(false) {
330  Runtime::Current()->AddMethodVerifier(this);
331  DCHECK(class_def != nullptr);
332}
333
334MethodVerifier::~MethodVerifier() {
335  Runtime::Current()->RemoveMethodVerifier(this);
336  STLDeleteElements(&failure_messages_);
337}
338
339void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
340                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
341  StackHandleScope<2> hs(Thread::Current());
342  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
343  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
344  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
345                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
346                          true, false);
347  verifier.interesting_dex_pc_ = dex_pc;
348  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
349  verifier.FindLocksAtDexPc();
350}
351
352void MethodVerifier::FindLocksAtDexPc() {
353  CHECK(monitor_enter_dex_pcs_ != NULL);
354  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
355
356  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
357  // verification. In practice, the phase we want relies on data structures set up by all the
358  // earlier passes, so we just run the full method verification and bail out early when we've
359  // got what we wanted.
360  Verify();
361}
362
363mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
364                                                           uint32_t dex_pc) {
365  StackHandleScope<2> hs(Thread::Current());
366  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
367  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
368  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
369                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
370                          true, false);
371  return verifier.FindAccessedFieldAtDexPc(dex_pc);
372}
373
374mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
375  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
376
377  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
378  // verification. In practice, the phase we want relies on data structures set up by all the
379  // earlier passes, so we just run the full method verification and bail out early when we've
380  // got what we wanted.
381  bool success = Verify();
382  if (!success) {
383    return nullptr;
384  }
385  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
386  if (register_line == NULL) {
387    return nullptr;
388  }
389  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
390  return GetQuickFieldAccess(inst, register_line);
391}
392
393mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
394                                                            uint32_t dex_pc) {
395  StackHandleScope<2> hs(Thread::Current());
396  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
397  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
398  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
399                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
400                          true, false);
401  return verifier.FindInvokedMethodAtDexPc(dex_pc);
402}
403
404mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
405  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
406
407  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
408  // verification. In practice, the phase we want relies on data structures set up by all the
409  // earlier passes, so we just run the full method verification and bail out early when we've
410  // got what we wanted.
411  bool success = Verify();
412  if (!success) {
413    return NULL;
414  }
415  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
416  if (register_line == NULL) {
417    return NULL;
418  }
419  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
420  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
421  return GetQuickInvokedMethod(inst, register_line, is_range);
422}
423
424bool MethodVerifier::Verify() {
425  // If there aren't any instructions, make sure that's expected, then exit successfully.
426  if (code_item_ == NULL) {
427    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
428      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
429      return false;
430    } else {
431      return true;
432    }
433  }
434  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
435  if (code_item_->ins_size_ > code_item_->registers_size_) {
436    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
437                                      << " regs=" << code_item_->registers_size_;
438    return false;
439  }
440  // Allocate and initialize an array to hold instruction data.
441  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
442  // Run through the instructions and see if the width checks out.
443  bool result = ComputeWidthsAndCountOps();
444  // Flag instructions guarded by a "try" block and check exception handlers.
445  result = result && ScanTryCatchBlocks();
446  // Perform static instruction verification.
447  result = result && VerifyInstructions();
448  // Perform code-flow analysis and return.
449  result = result && VerifyCodeFlow();
450  // Compute information for compiler.
451  if (result && Runtime::Current()->IsCompiler()) {
452    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
453  }
454  return result;
455}
456
457std::ostream& MethodVerifier::Fail(VerifyError error) {
458  switch (error) {
459    case VERIFY_ERROR_NO_CLASS:
460    case VERIFY_ERROR_NO_FIELD:
461    case VERIFY_ERROR_NO_METHOD:
462    case VERIFY_ERROR_ACCESS_CLASS:
463    case VERIFY_ERROR_ACCESS_FIELD:
464    case VERIFY_ERROR_ACCESS_METHOD:
465    case VERIFY_ERROR_INSTANTIATION:
466    case VERIFY_ERROR_CLASS_CHANGE:
467      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
468        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
469        // class change and instantiation errors into soft verification errors so that we re-verify
470        // at runtime. We may fail to find or to agree on access because of not yet available class
471        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
472        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
473        // paths" that dynamically perform the verification and cause the behavior to be that akin
474        // to an interpreter.
475        error = VERIFY_ERROR_BAD_CLASS_SOFT;
476      } else {
477        // If we fail again at runtime, mark that this instruction would throw and force this
478        // method to be executed using the interpreter with checks.
479        have_pending_runtime_throw_failure_ = true;
480      }
481      break;
482      // Indication that verification should be retried at runtime.
483    case VERIFY_ERROR_BAD_CLASS_SOFT:
484      if (!allow_soft_failures_) {
485        have_pending_hard_failure_ = true;
486      }
487      break;
488      // Hard verification failures at compile time will still fail at runtime, so the class is
489      // marked as rejected to prevent it from being compiled.
490    case VERIFY_ERROR_BAD_CLASS_HARD: {
491      if (Runtime::Current()->IsCompiler()) {
492        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
493        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
494      }
495      have_pending_hard_failure_ = true;
496      break;
497    }
498  }
499  failures_.push_back(error);
500  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
501                                    work_insn_idx_));
502  std::ostringstream* failure_message = new std::ostringstream(location);
503  failure_messages_.push_back(failure_message);
504  return *failure_message;
505}
506
507std::ostream& MethodVerifier::LogVerifyInfo() {
508  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
509                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
510}
511
512void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
513  size_t failure_num = failure_messages_.size();
514  DCHECK_NE(failure_num, 0U);
515  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
516  prepend += last_fail_message->str();
517  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
518  delete last_fail_message;
519}
520
521void MethodVerifier::AppendToLastFailMessage(std::string append) {
522  size_t failure_num = failure_messages_.size();
523  DCHECK_NE(failure_num, 0U);
524  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
525  (*last_fail_message) << append;
526}
527
528bool MethodVerifier::ComputeWidthsAndCountOps() {
529  const uint16_t* insns = code_item_->insns_;
530  size_t insns_size = code_item_->insns_size_in_code_units_;
531  const Instruction* inst = Instruction::At(insns);
532  size_t new_instance_count = 0;
533  size_t monitor_enter_count = 0;
534  size_t dex_pc = 0;
535
536  while (dex_pc < insns_size) {
537    Instruction::Code opcode = inst->Opcode();
538    switch (opcode) {
539      case Instruction::APUT_OBJECT:
540      case Instruction::CHECK_CAST:
541        has_check_casts_ = true;
542        break;
543      case Instruction::INVOKE_VIRTUAL:
544      case Instruction::INVOKE_VIRTUAL_RANGE:
545      case Instruction::INVOKE_INTERFACE:
546      case Instruction::INVOKE_INTERFACE_RANGE:
547        has_virtual_or_interface_invokes_ = true;
548        break;
549      case Instruction::MONITOR_ENTER:
550        monitor_enter_count++;
551        break;
552      case Instruction::NEW_INSTANCE:
553        new_instance_count++;
554        break;
555      default:
556        break;
557    }
558    size_t inst_size = inst->SizeInCodeUnits();
559    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
560    dex_pc += inst_size;
561    inst = inst->Next();
562  }
563
564  if (dex_pc != insns_size) {
565    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
566                                      << dex_pc << " vs. " << insns_size << ")";
567    return false;
568  }
569
570  new_instance_count_ = new_instance_count;
571  monitor_enter_count_ = monitor_enter_count;
572  return true;
573}
574
575bool MethodVerifier::ScanTryCatchBlocks() {
576  uint32_t tries_size = code_item_->tries_size_;
577  if (tries_size == 0) {
578    return true;
579  }
580  uint32_t insns_size = code_item_->insns_size_in_code_units_;
581  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
582
583  for (uint32_t idx = 0; idx < tries_size; idx++) {
584    const DexFile::TryItem* try_item = &tries[idx];
585    uint32_t start = try_item->start_addr_;
586    uint32_t end = start + try_item->insn_count_;
587    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
588      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
589                                        << " endAddr=" << end << " (size=" << insns_size << ")";
590      return false;
591    }
592    if (!insn_flags_[start].IsOpcode()) {
593      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
594          << "'try' block starts inside an instruction (" << start << ")";
595      return false;
596    }
597    for (uint32_t dex_pc = start; dex_pc < end;
598        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
599      insn_flags_[dex_pc].SetInTry();
600    }
601  }
602  // Iterate over each of the handlers to verify target addresses.
603  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
604  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
605  ClassLinker* linker = Runtime::Current()->GetClassLinker();
606  for (uint32_t idx = 0; idx < handlers_size; idx++) {
607    CatchHandlerIterator iterator(handlers_ptr);
608    for (; iterator.HasNext(); iterator.Next()) {
609      uint32_t dex_pc= iterator.GetHandlerAddress();
610      if (!insn_flags_[dex_pc].IsOpcode()) {
611        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
612            << "exception handler starts at bad address (" << dex_pc << ")";
613        return false;
614      }
615      insn_flags_[dex_pc].SetBranchTarget();
616      // Ensure exception types are resolved so that they don't need resolution to be delivered,
617      // unresolved exception types will be ignored by exception delivery
618      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
619        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
620                                                            iterator.GetHandlerTypeIndex(),
621                                                            *dex_cache_, *class_loader_);
622        if (exception_type == NULL) {
623          DCHECK(Thread::Current()->IsExceptionPending());
624          Thread::Current()->ClearException();
625        }
626      }
627    }
628    handlers_ptr = iterator.EndDataPointer();
629  }
630  return true;
631}
632
633bool MethodVerifier::VerifyInstructions() {
634  const Instruction* inst = Instruction::At(code_item_->insns_);
635
636  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
637  insn_flags_[0].SetBranchTarget();
638  insn_flags_[0].SetCompileTimeInfoPoint();
639
640  uint32_t insns_size = code_item_->insns_size_in_code_units_;
641  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
642    if (!VerifyInstruction(inst, dex_pc)) {
643      DCHECK_NE(failures_.size(), 0U);
644      return false;
645    }
646    /* Flag instructions that are garbage collection points */
647    // All invoke points are marked as "Throw" points already.
648    // We are relying on this to also count all the invokes as interesting.
649    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
650      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
651    } else if (inst->IsReturn()) {
652      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
653    }
654    dex_pc += inst->SizeInCodeUnits();
655    inst = inst->Next();
656  }
657  return true;
658}
659
660bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
661  bool result = true;
662  switch (inst->GetVerifyTypeArgumentA()) {
663    case Instruction::kVerifyRegA:
664      result = result && CheckRegisterIndex(inst->VRegA());
665      break;
666    case Instruction::kVerifyRegAWide:
667      result = result && CheckWideRegisterIndex(inst->VRegA());
668      break;
669  }
670  switch (inst->GetVerifyTypeArgumentB()) {
671    case Instruction::kVerifyRegB:
672      result = result && CheckRegisterIndex(inst->VRegB());
673      break;
674    case Instruction::kVerifyRegBField:
675      result = result && CheckFieldIndex(inst->VRegB());
676      break;
677    case Instruction::kVerifyRegBMethod:
678      result = result && CheckMethodIndex(inst->VRegB());
679      break;
680    case Instruction::kVerifyRegBNewInstance:
681      result = result && CheckNewInstance(inst->VRegB());
682      break;
683    case Instruction::kVerifyRegBString:
684      result = result && CheckStringIndex(inst->VRegB());
685      break;
686    case Instruction::kVerifyRegBType:
687      result = result && CheckTypeIndex(inst->VRegB());
688      break;
689    case Instruction::kVerifyRegBWide:
690      result = result && CheckWideRegisterIndex(inst->VRegB());
691      break;
692  }
693  switch (inst->GetVerifyTypeArgumentC()) {
694    case Instruction::kVerifyRegC:
695      result = result && CheckRegisterIndex(inst->VRegC());
696      break;
697    case Instruction::kVerifyRegCField:
698      result = result && CheckFieldIndex(inst->VRegC());
699      break;
700    case Instruction::kVerifyRegCNewArray:
701      result = result && CheckNewArray(inst->VRegC());
702      break;
703    case Instruction::kVerifyRegCType:
704      result = result && CheckTypeIndex(inst->VRegC());
705      break;
706    case Instruction::kVerifyRegCWide:
707      result = result && CheckWideRegisterIndex(inst->VRegC());
708      break;
709  }
710  switch (inst->GetVerifyExtraFlags()) {
711    case Instruction::kVerifyArrayData:
712      result = result && CheckArrayData(code_offset);
713      break;
714    case Instruction::kVerifyBranchTarget:
715      result = result && CheckBranchTarget(code_offset);
716      break;
717    case Instruction::kVerifySwitchTargets:
718      result = result && CheckSwitchTargets(code_offset);
719      break;
720    case Instruction::kVerifyVarArg: {
721      uint32_t args[Instruction::kMaxVarArgRegs];
722      inst->GetVarArgs(args);
723      result = result && CheckVarArgRegs(inst->VRegA(), args);
724      break;
725    }
726    case Instruction::kVerifyVarArgRange:
727      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
728      break;
729    case Instruction::kVerifyError:
730      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
731      result = false;
732      break;
733  }
734  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler()) {
735    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
736    result = false;
737  }
738  return result;
739}
740
741bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
742  if (idx >= code_item_->registers_size_) {
743    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
744                                      << code_item_->registers_size_ << ")";
745    return false;
746  }
747  return true;
748}
749
750bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
751  if (idx + 1 >= code_item_->registers_size_) {
752    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
753                                      << "+1 >= " << code_item_->registers_size_ << ")";
754    return false;
755  }
756  return true;
757}
758
759bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
760  if (idx >= dex_file_->GetHeader().field_ids_size_) {
761    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
762                                      << dex_file_->GetHeader().field_ids_size_ << ")";
763    return false;
764  }
765  return true;
766}
767
768bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
769  if (idx >= dex_file_->GetHeader().method_ids_size_) {
770    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
771                                      << dex_file_->GetHeader().method_ids_size_ << ")";
772    return false;
773  }
774  return true;
775}
776
777bool MethodVerifier::CheckNewInstance(uint32_t idx) {
778  if (idx >= dex_file_->GetHeader().type_ids_size_) {
779    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
780                                      << dex_file_->GetHeader().type_ids_size_ << ")";
781    return false;
782  }
783  // We don't need the actual class, just a pointer to the class name.
784  const char* descriptor = dex_file_->StringByTypeIdx(idx);
785  if (descriptor[0] != 'L') {
786    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
787    return false;
788  }
789  return true;
790}
791
792bool MethodVerifier::CheckStringIndex(uint32_t idx) {
793  if (idx >= dex_file_->GetHeader().string_ids_size_) {
794    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
795                                      << dex_file_->GetHeader().string_ids_size_ << ")";
796    return false;
797  }
798  return true;
799}
800
801bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
802  if (idx >= dex_file_->GetHeader().type_ids_size_) {
803    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
804                                      << dex_file_->GetHeader().type_ids_size_ << ")";
805    return false;
806  }
807  return true;
808}
809
810bool MethodVerifier::CheckNewArray(uint32_t idx) {
811  if (idx >= dex_file_->GetHeader().type_ids_size_) {
812    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
813                                      << dex_file_->GetHeader().type_ids_size_ << ")";
814    return false;
815  }
816  int bracket_count = 0;
817  const char* descriptor = dex_file_->StringByTypeIdx(idx);
818  const char* cp = descriptor;
819  while (*cp++ == '[') {
820    bracket_count++;
821  }
822  if (bracket_count == 0) {
823    /* The given class must be an array type. */
824    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
825        << "can't new-array class '" << descriptor << "' (not an array)";
826    return false;
827  } else if (bracket_count > 255) {
828    /* It is illegal to create an array of more than 255 dimensions. */
829    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
830        << "can't new-array class '" << descriptor << "' (exceeds limit)";
831    return false;
832  }
833  return true;
834}
835
836bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
837  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
838  const uint16_t* insns = code_item_->insns_ + cur_offset;
839  const uint16_t* array_data;
840  int32_t array_data_offset;
841
842  DCHECK_LT(cur_offset, insn_count);
843  /* make sure the start of the array data table is in range */
844  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
845  if ((int32_t) cur_offset + array_data_offset < 0 ||
846      cur_offset + array_data_offset + 2 >= insn_count) {
847    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
848                                      << ", data offset " << array_data_offset
849                                      << ", count " << insn_count;
850    return false;
851  }
852  /* offset to array data table is a relative branch-style offset */
853  array_data = insns + array_data_offset;
854  /* make sure the table is 32-bit aligned */
855  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
856    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
857                                      << ", data offset " << array_data_offset;
858    return false;
859  }
860  uint32_t value_width = array_data[1];
861  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
862  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
863  /* make sure the end of the switch is in range */
864  if (cur_offset + array_data_offset + table_size > insn_count) {
865    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
866                                      << ", data offset " << array_data_offset << ", end "
867                                      << cur_offset + array_data_offset + table_size
868                                      << ", count " << insn_count;
869    return false;
870  }
871  return true;
872}
873
874bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
875  int32_t offset;
876  bool isConditional, selfOkay;
877  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
878    return false;
879  }
880  if (!selfOkay && offset == 0) {
881    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
882                                      << reinterpret_cast<void*>(cur_offset);
883    return false;
884  }
885  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
886  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
887  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
888    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
889                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
890    return false;
891  }
892  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
893  int32_t abs_offset = cur_offset + offset;
894  if (abs_offset < 0 ||
895      (uint32_t) abs_offset >= insn_count ||
896      !insn_flags_[abs_offset].IsOpcode()) {
897    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
898                                      << reinterpret_cast<void*>(abs_offset) << ") at "
899                                      << reinterpret_cast<void*>(cur_offset);
900    return false;
901  }
902  insn_flags_[abs_offset].SetBranchTarget();
903  return true;
904}
905
906bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
907                                  bool* selfOkay) {
908  const uint16_t* insns = code_item_->insns_ + cur_offset;
909  *pConditional = false;
910  *selfOkay = false;
911  switch (*insns & 0xff) {
912    case Instruction::GOTO:
913      *pOffset = ((int16_t) *insns) >> 8;
914      break;
915    case Instruction::GOTO_32:
916      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
917      *selfOkay = true;
918      break;
919    case Instruction::GOTO_16:
920      *pOffset = (int16_t) insns[1];
921      break;
922    case Instruction::IF_EQ:
923    case Instruction::IF_NE:
924    case Instruction::IF_LT:
925    case Instruction::IF_GE:
926    case Instruction::IF_GT:
927    case Instruction::IF_LE:
928    case Instruction::IF_EQZ:
929    case Instruction::IF_NEZ:
930    case Instruction::IF_LTZ:
931    case Instruction::IF_GEZ:
932    case Instruction::IF_GTZ:
933    case Instruction::IF_LEZ:
934      *pOffset = (int16_t) insns[1];
935      *pConditional = true;
936      break;
937    default:
938      return false;
939      break;
940  }
941  return true;
942}
943
944bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
945  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
946  DCHECK_LT(cur_offset, insn_count);
947  const uint16_t* insns = code_item_->insns_ + cur_offset;
948  /* make sure the start of the switch is in range */
949  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
950  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
952                                      << ", switch offset " << switch_offset
953                                      << ", count " << insn_count;
954    return false;
955  }
956  /* offset to switch table is a relative branch-style offset */
957  const uint16_t* switch_insns = insns + switch_offset;
958  /* make sure the table is 32-bit aligned */
959  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
960    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
961                                      << ", switch offset " << switch_offset;
962    return false;
963  }
964  uint32_t switch_count = switch_insns[1];
965  int32_t keys_offset, targets_offset;
966  uint16_t expected_signature;
967  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
968    /* 0=sig, 1=count, 2/3=firstKey */
969    targets_offset = 4;
970    keys_offset = -1;
971    expected_signature = Instruction::kPackedSwitchSignature;
972  } else {
973    /* 0=sig, 1=count, 2..count*2 = keys */
974    keys_offset = 2;
975    targets_offset = 2 + 2 * switch_count;
976    expected_signature = Instruction::kSparseSwitchSignature;
977  }
978  uint32_t table_size = targets_offset + switch_count * 2;
979  if (switch_insns[0] != expected_signature) {
980    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
981        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
982                        switch_insns[0], expected_signature);
983    return false;
984  }
985  /* make sure the end of the switch is in range */
986  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
987    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
988                                      << ", switch offset " << switch_offset
989                                      << ", end " << (cur_offset + switch_offset + table_size)
990                                      << ", count " << insn_count;
991    return false;
992  }
993  /* for a sparse switch, verify the keys are in ascending order */
994  if (keys_offset > 0 && switch_count > 1) {
995    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
996    for (uint32_t targ = 1; targ < switch_count; targ++) {
997      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
998                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
999      if (key <= last_key) {
1000        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1001                                          << ", this=" << key;
1002        return false;
1003      }
1004      last_key = key;
1005    }
1006  }
1007  /* verify each switch target */
1008  for (uint32_t targ = 0; targ < switch_count; targ++) {
1009    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1010                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1011    int32_t abs_offset = cur_offset + offset;
1012    if (abs_offset < 0 ||
1013        abs_offset >= (int32_t) insn_count ||
1014        !insn_flags_[abs_offset].IsOpcode()) {
1015      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1016                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1017                                        << reinterpret_cast<void*>(cur_offset)
1018                                        << "[" << targ << "]";
1019      return false;
1020    }
1021    insn_flags_[abs_offset].SetBranchTarget();
1022  }
1023  return true;
1024}
1025
1026bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1027  if (vA > Instruction::kMaxVarArgRegs) {
1028    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1029    return false;
1030  }
1031  uint16_t registers_size = code_item_->registers_size_;
1032  for (uint32_t idx = 0; idx < vA; idx++) {
1033    if (arg[idx] >= registers_size) {
1034      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1035                                        << ") in non-range invoke (>= " << registers_size << ")";
1036      return false;
1037    }
1038  }
1039
1040  return true;
1041}
1042
1043bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1044  uint16_t registers_size = code_item_->registers_size_;
1045  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1046  // integer overflow when adding them here.
1047  if (vA + vC > registers_size) {
1048    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1049                                      << " in range invoke (> " << registers_size << ")";
1050    return false;
1051  }
1052  return true;
1053}
1054
1055bool MethodVerifier::VerifyCodeFlow() {
1056  uint16_t registers_size = code_item_->registers_size_;
1057  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1058
1059  if (registers_size * insns_size > 4*1024*1024) {
1060    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1061                 << " insns_size=" << insns_size << ")";
1062  }
1063  /* Create and initialize table holding register status */
1064  reg_table_.Init(kTrackCompilerInterestPoints,
1065                  insn_flags_.get(),
1066                  insns_size,
1067                  registers_size,
1068                  this);
1069
1070
1071  work_line_.reset(RegisterLine::Create(registers_size, this));
1072  saved_line_.reset(RegisterLine::Create(registers_size, this));
1073
1074  /* Initialize register types of method arguments. */
1075  if (!SetTypesFromSignature()) {
1076    DCHECK_NE(failures_.size(), 0U);
1077    std::string prepend("Bad signature in ");
1078    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1079    PrependToLastFailMessage(prepend);
1080    return false;
1081  }
1082  /* Perform code flow verification. */
1083  if (!CodeFlowVerifyMethod()) {
1084    DCHECK_NE(failures_.size(), 0U);
1085    return false;
1086  }
1087  return true;
1088}
1089
1090std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1091  DCHECK_EQ(failures_.size(), failure_messages_.size());
1092  for (size_t i = 0; i < failures_.size(); ++i) {
1093      os << failure_messages_[i]->str() << "\n";
1094  }
1095  return os;
1096}
1097
1098extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1099    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1100  v->Dump(std::cerr);
1101}
1102
1103void MethodVerifier::Dump(std::ostream& os) {
1104  if (code_item_ == NULL) {
1105    os << "Native method\n";
1106    return;
1107  }
1108  {
1109    os << "Register Types:\n";
1110    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1111    std::ostream indent_os(&indent_filter);
1112    reg_types_.Dump(indent_os);
1113  }
1114  os << "Dumping instructions and register lines:\n";
1115  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1116  std::ostream indent_os(&indent_filter);
1117  const Instruction* inst = Instruction::At(code_item_->insns_);
1118  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1119      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1120    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1121    if (reg_line != NULL) {
1122      indent_os << reg_line->Dump() << "\n";
1123    }
1124    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1125    const bool kDumpHexOfInstruction = false;
1126    if (kDumpHexOfInstruction) {
1127      indent_os << inst->DumpHex(5) << " ";
1128    }
1129    indent_os << inst->DumpString(dex_file_) << "\n";
1130    inst = inst->Next();
1131  }
1132}
1133
1134static bool IsPrimitiveDescriptor(char descriptor) {
1135  switch (descriptor) {
1136    case 'I':
1137    case 'C':
1138    case 'S':
1139    case 'B':
1140    case 'Z':
1141    case 'F':
1142    case 'D':
1143    case 'J':
1144      return true;
1145    default:
1146      return false;
1147  }
1148}
1149
1150bool MethodVerifier::SetTypesFromSignature() {
1151  RegisterLine* reg_line = reg_table_.GetLine(0);
1152  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1153  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1154
1155  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1156  // Include the "this" pointer.
1157  size_t cur_arg = 0;
1158  if (!IsStatic()) {
1159    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1160    // argument as uninitialized. This restricts field access until the superclass constructor is
1161    // called.
1162    const RegType& declaring_class = GetDeclaringClass();
1163    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1164      reg_line->SetRegisterType(arg_start + cur_arg,
1165                                reg_types_.UninitializedThisArgument(declaring_class));
1166    } else {
1167      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1168    }
1169    cur_arg++;
1170  }
1171
1172  const DexFile::ProtoId& proto_id =
1173      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1174  DexFileParameterIterator iterator(*dex_file_, proto_id);
1175
1176  for (; iterator.HasNext(); iterator.Next()) {
1177    const char* descriptor = iterator.GetDescriptor();
1178    if (descriptor == NULL) {
1179      LOG(FATAL) << "Null descriptor";
1180    }
1181    if (cur_arg >= expected_args) {
1182      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1183                                        << " args, found more (" << descriptor << ")";
1184      return false;
1185    }
1186    switch (descriptor[0]) {
1187      case 'L':
1188      case '[':
1189        // We assume that reference arguments are initialized. The only way it could be otherwise
1190        // (assuming the caller was verified) is if the current method is <init>, but in that case
1191        // it's effectively considered initialized the instant we reach here (in the sense that we
1192        // can return without doing anything or call virtual methods).
1193        {
1194          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1195          if (!reg_type.IsNonZeroReferenceTypes()) {
1196            DCHECK(HasFailures());
1197            return false;
1198          }
1199          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1200        }
1201        break;
1202      case 'Z':
1203        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1204        break;
1205      case 'C':
1206        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1207        break;
1208      case 'B':
1209        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1210        break;
1211      case 'I':
1212        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1213        break;
1214      case 'S':
1215        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1216        break;
1217      case 'F':
1218        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1219        break;
1220      case 'J':
1221      case 'D': {
1222        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1223        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1224        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1225        cur_arg++;
1226        break;
1227      }
1228      default:
1229        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1230                                          << descriptor << "'";
1231        return false;
1232    }
1233    cur_arg++;
1234  }
1235  if (cur_arg != expected_args) {
1236    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1237                                      << " arguments, found " << cur_arg;
1238    return false;
1239  }
1240  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1241  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1242  // format. Only major difference from the method argument format is that 'V' is supported.
1243  bool result;
1244  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1245    result = descriptor[1] == '\0';
1246  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1247    size_t i = 0;
1248    do {
1249      i++;
1250    } while (descriptor[i] == '[');  // process leading [
1251    if (descriptor[i] == 'L') {  // object array
1252      do {
1253        i++;  // find closing ;
1254      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1255      result = descriptor[i] == ';';
1256    } else {  // primitive array
1257      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1258    }
1259  } else if (descriptor[0] == 'L') {
1260    // could be more thorough here, but shouldn't be required
1261    size_t i = 0;
1262    do {
1263      i++;
1264    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1265    result = descriptor[i] == ';';
1266  } else {
1267    result = false;
1268  }
1269  if (!result) {
1270    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1271                                      << descriptor << "'";
1272  }
1273  return result;
1274}
1275
1276bool MethodVerifier::CodeFlowVerifyMethod() {
1277  const uint16_t* insns = code_item_->insns_;
1278  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1279
1280  /* Begin by marking the first instruction as "changed". */
1281  insn_flags_[0].SetChanged();
1282  uint32_t start_guess = 0;
1283
1284  /* Continue until no instructions are marked "changed". */
1285  while (true) {
1286    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1287    uint32_t insn_idx = start_guess;
1288    for (; insn_idx < insns_size; insn_idx++) {
1289      if (insn_flags_[insn_idx].IsChanged())
1290        break;
1291    }
1292    if (insn_idx == insns_size) {
1293      if (start_guess != 0) {
1294        /* try again, starting from the top */
1295        start_guess = 0;
1296        continue;
1297      } else {
1298        /* all flags are clear */
1299        break;
1300      }
1301    }
1302    // We carry the working set of registers from instruction to instruction. If this address can
1303    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1304    // "changed" flags, we need to load the set of registers from the table.
1305    // Because we always prefer to continue on to the next instruction, we should never have a
1306    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1307    // target.
1308    work_insn_idx_ = insn_idx;
1309    if (insn_flags_[insn_idx].IsBranchTarget()) {
1310      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1311    } else {
1312#ifndef NDEBUG
1313      /*
1314       * Sanity check: retrieve the stored register line (assuming
1315       * a full table) and make sure it actually matches.
1316       */
1317      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1318      if (register_line != NULL) {
1319        if (work_line_->CompareLine(register_line) != 0) {
1320          Dump(std::cout);
1321          std::cout << info_messages_.str();
1322          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1323                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1324                     << " work_line=" << *work_line_ << "\n"
1325                     << "  expected=" << *register_line;
1326        }
1327      }
1328#endif
1329    }
1330    if (!CodeFlowVerifyInstruction(&start_guess)) {
1331      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1332      prepend += " failed to verify: ";
1333      PrependToLastFailMessage(prepend);
1334      return false;
1335    }
1336    /* Clear "changed" and mark as visited. */
1337    insn_flags_[insn_idx].SetVisited();
1338    insn_flags_[insn_idx].ClearChanged();
1339  }
1340
1341  if (gDebugVerify) {
1342    /*
1343     * Scan for dead code. There's nothing "evil" about dead code
1344     * (besides the wasted space), but it indicates a flaw somewhere
1345     * down the line, possibly in the verifier.
1346     *
1347     * If we've substituted "always throw" instructions into the stream,
1348     * we are almost certainly going to have some dead code.
1349     */
1350    int dead_start = -1;
1351    uint32_t insn_idx = 0;
1352    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1353      /*
1354       * Switch-statement data doesn't get "visited" by scanner. It
1355       * may or may not be preceded by a padding NOP (for alignment).
1356       */
1357      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1358          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1359          insns[insn_idx] == Instruction::kArrayDataSignature ||
1360          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1361           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1362            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1363            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1364        insn_flags_[insn_idx].SetVisited();
1365      }
1366
1367      if (!insn_flags_[insn_idx].IsVisited()) {
1368        if (dead_start < 0)
1369          dead_start = insn_idx;
1370      } else if (dead_start >= 0) {
1371        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1372                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1373        dead_start = -1;
1374      }
1375    }
1376    if (dead_start >= 0) {
1377      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1378                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1379    }
1380    // To dump the state of the verify after a method, do something like:
1381    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1382    //     "boolean java.lang.String.equals(java.lang.Object)") {
1383    //   LOG(INFO) << info_messages_.str();
1384    // }
1385  }
1386  return true;
1387}
1388
1389bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1390  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1391  // We want the state _before_ the instruction, for the case where the dex pc we're
1392  // interested in is itself a monitor-enter instruction (which is a likely place
1393  // for a thread to be suspended).
1394  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1395    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1396    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1397      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1398    }
1399  }
1400
1401  /*
1402   * Once we finish decoding the instruction, we need to figure out where
1403   * we can go from here. There are three possible ways to transfer
1404   * control to another statement:
1405   *
1406   * (1) Continue to the next instruction. Applies to all but
1407   *     unconditional branches, method returns, and exception throws.
1408   * (2) Branch to one or more possible locations. Applies to branches
1409   *     and switch statements.
1410   * (3) Exception handlers. Applies to any instruction that can
1411   *     throw an exception that is handled by an encompassing "try"
1412   *     block.
1413   *
1414   * We can also return, in which case there is no successor instruction
1415   * from this point.
1416   *
1417   * The behavior can be determined from the opcode flags.
1418   */
1419  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1420  const Instruction* inst = Instruction::At(insns);
1421  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1422
1423  int32_t branch_target = 0;
1424  bool just_set_result = false;
1425  if (gDebugVerify) {
1426    // Generate processing back trace to debug verifier
1427    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1428                    << *work_line_.get() << "\n";
1429  }
1430
1431  /*
1432   * Make a copy of the previous register state. If the instruction
1433   * can throw an exception, we will copy/merge this into the "catch"
1434   * address rather than work_line, because we don't want the result
1435   * from the "successful" code path (e.g. a check-cast that "improves"
1436   * a type) to be visible to the exception handler.
1437   */
1438  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1439    saved_line_->CopyFromLine(work_line_.get());
1440  } else {
1441#ifndef NDEBUG
1442    saved_line_->FillWithGarbage();
1443#endif
1444  }
1445
1446
1447  // We need to ensure the work line is consistent while performing validation. When we spot a
1448  // peephole pattern we compute a new line for either the fallthrough instruction or the
1449  // branch target.
1450  std::unique_ptr<RegisterLine> branch_line;
1451  std::unique_ptr<RegisterLine> fallthrough_line;
1452
1453  switch (inst->Opcode()) {
1454    case Instruction::NOP:
1455      /*
1456       * A "pure" NOP has no effect on anything. Data tables start with
1457       * a signature that looks like a NOP; if we see one of these in
1458       * the course of executing code then we have a problem.
1459       */
1460      if (inst->VRegA_10x() != 0) {
1461        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1462      }
1463      break;
1464
1465    case Instruction::MOVE:
1466      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1467      break;
1468    case Instruction::MOVE_FROM16:
1469      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1470      break;
1471    case Instruction::MOVE_16:
1472      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1473      break;
1474    case Instruction::MOVE_WIDE:
1475      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1476      break;
1477    case Instruction::MOVE_WIDE_FROM16:
1478      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1479      break;
1480    case Instruction::MOVE_WIDE_16:
1481      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1482      break;
1483    case Instruction::MOVE_OBJECT:
1484      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1485      break;
1486    case Instruction::MOVE_OBJECT_FROM16:
1487      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1488      break;
1489    case Instruction::MOVE_OBJECT_16:
1490      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1491      break;
1492
1493    /*
1494     * The move-result instructions copy data out of a "pseudo-register"
1495     * with the results from the last method invocation. In practice we
1496     * might want to hold the result in an actual CPU register, so the
1497     * Dalvik spec requires that these only appear immediately after an
1498     * invoke or filled-new-array.
1499     *
1500     * These calls invalidate the "result" register. (This is now
1501     * redundant with the reset done below, but it can make the debug info
1502     * easier to read in some cases.)
1503     */
1504    case Instruction::MOVE_RESULT:
1505      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1506      break;
1507    case Instruction::MOVE_RESULT_WIDE:
1508      work_line_->CopyResultRegister2(inst->VRegA_11x());
1509      break;
1510    case Instruction::MOVE_RESULT_OBJECT:
1511      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1512      break;
1513
1514    case Instruction::MOVE_EXCEPTION: {
1515      /*
1516       * This statement can only appear as the first instruction in an exception handler. We verify
1517       * that as part of extracting the exception type from the catch block list.
1518       */
1519      const RegType& res_type = GetCaughtExceptionType();
1520      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1521      break;
1522    }
1523    case Instruction::RETURN_VOID:
1524      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1525        if (!GetMethodReturnType().IsConflict()) {
1526          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1527        }
1528      }
1529      break;
1530    case Instruction::RETURN:
1531      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1532        /* check the method signature */
1533        const RegType& return_type = GetMethodReturnType();
1534        if (!return_type.IsCategory1Types()) {
1535          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1536                                            << return_type;
1537        } else {
1538          // Compilers may generate synthetic functions that write byte values into boolean fields.
1539          // Also, it may use integer values for boolean, byte, short, and character return types.
1540          const uint32_t vregA = inst->VRegA_11x();
1541          const RegType& src_type = work_line_->GetRegisterType(vregA);
1542          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1543                          ((return_type.IsBoolean() || return_type.IsByte() ||
1544                           return_type.IsShort() || return_type.IsChar()) &&
1545                           src_type.IsInteger()));
1546          /* check the register contents */
1547          bool success =
1548              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1549          if (!success) {
1550            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1551          }
1552        }
1553      }
1554      break;
1555    case Instruction::RETURN_WIDE:
1556      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1557        /* check the method signature */
1558        const RegType& return_type = GetMethodReturnType();
1559        if (!return_type.IsCategory2Types()) {
1560          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1561        } else {
1562          /* check the register contents */
1563          const uint32_t vregA = inst->VRegA_11x();
1564          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1565          if (!success) {
1566            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1567          }
1568        }
1569      }
1570      break;
1571    case Instruction::RETURN_OBJECT:
1572      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1573        const RegType& return_type = GetMethodReturnType();
1574        if (!return_type.IsReferenceTypes()) {
1575          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1576        } else {
1577          /* return_type is the *expected* return type, not register value */
1578          DCHECK(!return_type.IsZero());
1579          DCHECK(!return_type.IsUninitializedReference());
1580          const uint32_t vregA = inst->VRegA_11x();
1581          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1582          // Disallow returning uninitialized values and verify that the reference in vAA is an
1583          // instance of the "return_type"
1584          if (reg_type.IsUninitializedTypes()) {
1585            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1586                                              << reg_type << "'";
1587          } else if (!return_type.IsAssignableFrom(reg_type)) {
1588            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1589              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1590                  << "' or '" << reg_type << "'";
1591            } else {
1592              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1593                  << "', but expected from declaration '" << return_type << "'";
1594            }
1595          }
1596        }
1597      }
1598      break;
1599
1600      /* could be boolean, int, float, or a null reference */
1601    case Instruction::CONST_4: {
1602      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1603      work_line_->SetRegisterType(inst->VRegA_11n(),
1604                                  DetermineCat1Constant(val, need_precise_constants_));
1605      break;
1606    }
1607    case Instruction::CONST_16: {
1608      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1609      work_line_->SetRegisterType(inst->VRegA_21s(),
1610                                  DetermineCat1Constant(val, need_precise_constants_));
1611      break;
1612    }
1613    case Instruction::CONST: {
1614      int32_t val = inst->VRegB_31i();
1615      work_line_->SetRegisterType(inst->VRegA_31i(),
1616                                  DetermineCat1Constant(val, need_precise_constants_));
1617      break;
1618    }
1619    case Instruction::CONST_HIGH16: {
1620      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1621      work_line_->SetRegisterType(inst->VRegA_21h(),
1622                                  DetermineCat1Constant(val, need_precise_constants_));
1623      break;
1624    }
1625      /* could be long or double; resolved upon use */
1626    case Instruction::CONST_WIDE_16: {
1627      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1628      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1629      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1630      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1631      break;
1632    }
1633    case Instruction::CONST_WIDE_32: {
1634      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1635      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1636      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1637      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1638      break;
1639    }
1640    case Instruction::CONST_WIDE: {
1641      int64_t val = inst->VRegB_51l();
1642      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1643      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1644      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1645      break;
1646    }
1647    case Instruction::CONST_WIDE_HIGH16: {
1648      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1649      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1650      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1651      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1652      break;
1653    }
1654    case Instruction::CONST_STRING:
1655      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1656      break;
1657    case Instruction::CONST_STRING_JUMBO:
1658      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1659      break;
1660    case Instruction::CONST_CLASS: {
1661      // Get type from instruction if unresolved then we need an access check
1662      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1663      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1664      // Register holds class, ie its type is class, on error it will hold Conflict.
1665      work_line_->SetRegisterType(inst->VRegA_21c(),
1666                                  res_type.IsConflict() ? res_type
1667                                                        : reg_types_.JavaLangClass(true));
1668      break;
1669    }
1670    case Instruction::MONITOR_ENTER:
1671      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1672      break;
1673    case Instruction::MONITOR_EXIT:
1674      /*
1675       * monitor-exit instructions are odd. They can throw exceptions,
1676       * but when they do they act as if they succeeded and the PC is
1677       * pointing to the following instruction. (This behavior goes back
1678       * to the need to handle asynchronous exceptions, a now-deprecated
1679       * feature that Dalvik doesn't support.)
1680       *
1681       * In practice we don't need to worry about this. The only
1682       * exceptions that can be thrown from monitor-exit are for a
1683       * null reference and -exit without a matching -enter. If the
1684       * structured locking checks are working, the former would have
1685       * failed on the -enter instruction, and the latter is impossible.
1686       *
1687       * This is fortunate, because issue 3221411 prevents us from
1688       * chasing the "can throw" path when monitor verification is
1689       * enabled. If we can fully verify the locking we can ignore
1690       * some catch blocks (which will show up as "dead" code when
1691       * we skip them here); if we can't, then the code path could be
1692       * "live" so we still need to check it.
1693       */
1694      opcode_flags &= ~Instruction::kThrow;
1695      work_line_->PopMonitor(inst->VRegA_11x());
1696      break;
1697
1698    case Instruction::CHECK_CAST:
1699    case Instruction::INSTANCE_OF: {
1700      /*
1701       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1702       * could be a "upcast" -- not expected, so we don't try to address it.)
1703       *
1704       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1705       * dec_insn.vA when branching to a handler.
1706       */
1707      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1708      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1709      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1710      if (res_type.IsConflict()) {
1711        DCHECK_NE(failures_.size(), 0U);
1712        if (!is_checkcast) {
1713          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1714        }
1715        break;  // bad class
1716      }
1717      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1718      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1719      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1720      if (!res_type.IsNonZeroReferenceTypes()) {
1721        if (is_checkcast) {
1722          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1723        } else {
1724          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1725        }
1726      } else if (!orig_type.IsReferenceTypes()) {
1727        if (is_checkcast) {
1728          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1729        } else {
1730          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1731        }
1732      } else {
1733        if (is_checkcast) {
1734          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1735        } else {
1736          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1737        }
1738      }
1739      break;
1740    }
1741    case Instruction::ARRAY_LENGTH: {
1742      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1743      if (res_type.IsReferenceTypes()) {
1744        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1745          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1746        } else {
1747          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1748        }
1749      }
1750      break;
1751    }
1752    case Instruction::NEW_INSTANCE: {
1753      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1754      if (res_type.IsConflict()) {
1755        DCHECK_NE(failures_.size(), 0U);
1756        break;  // bad class
1757      }
1758      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1759      // can't create an instance of an interface or abstract class */
1760      if (!res_type.IsInstantiableTypes()) {
1761        Fail(VERIFY_ERROR_INSTANTIATION)
1762            << "new-instance on primitive, interface or abstract class" << res_type;
1763        // Soft failure so carry on to set register type.
1764      }
1765      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1766      // Any registers holding previous allocations from this address that have not yet been
1767      // initialized must be marked invalid.
1768      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1769      // add the new uninitialized reference to the register state
1770      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1771      break;
1772    }
1773    case Instruction::NEW_ARRAY:
1774      VerifyNewArray(inst, false, false);
1775      break;
1776    case Instruction::FILLED_NEW_ARRAY:
1777      VerifyNewArray(inst, true, false);
1778      just_set_result = true;  // Filled new array sets result register
1779      break;
1780    case Instruction::FILLED_NEW_ARRAY_RANGE:
1781      VerifyNewArray(inst, true, true);
1782      just_set_result = true;  // Filled new array range sets result register
1783      break;
1784    case Instruction::CMPL_FLOAT:
1785    case Instruction::CMPG_FLOAT:
1786      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1787        break;
1788      }
1789      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1790        break;
1791      }
1792      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1793      break;
1794    case Instruction::CMPL_DOUBLE:
1795    case Instruction::CMPG_DOUBLE:
1796      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1797                                              reg_types_.DoubleHi())) {
1798        break;
1799      }
1800      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1801                                              reg_types_.DoubleHi())) {
1802        break;
1803      }
1804      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1805      break;
1806    case Instruction::CMP_LONG:
1807      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1808                                              reg_types_.LongHi())) {
1809        break;
1810      }
1811      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1812                                              reg_types_.LongHi())) {
1813        break;
1814      }
1815      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1816      break;
1817    case Instruction::THROW: {
1818      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1819      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1820        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1821            << "thrown class " << res_type << " not instanceof Throwable";
1822      }
1823      break;
1824    }
1825    case Instruction::GOTO:
1826    case Instruction::GOTO_16:
1827    case Instruction::GOTO_32:
1828      /* no effect on or use of registers */
1829      break;
1830
1831    case Instruction::PACKED_SWITCH:
1832    case Instruction::SPARSE_SWITCH:
1833      /* verify that vAA is an integer, or can be converted to one */
1834      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1835      break;
1836
1837    case Instruction::FILL_ARRAY_DATA: {
1838      /* Similar to the verification done for APUT */
1839      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1840      /* array_type can be null if the reg type is Zero */
1841      if (!array_type.IsZero()) {
1842        if (!array_type.IsArrayTypes()) {
1843          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1844                                            << array_type;
1845        } else {
1846          const RegType& component_type = reg_types_.GetComponentType(array_type,
1847                                                                      class_loader_->Get());
1848          DCHECK(!component_type.IsConflict());
1849          if (component_type.IsNonZeroReferenceTypes()) {
1850            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1851                                              << component_type;
1852          } else {
1853            // Now verify if the element width in the table matches the element width declared in
1854            // the array
1855            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1856            if (array_data[0] != Instruction::kArrayDataSignature) {
1857              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1858            } else {
1859              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1860              // Since we don't compress the data in Dex, expect to see equal width of data stored
1861              // in the table and expected from the array class.
1862              if (array_data[1] != elem_width) {
1863                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1864                                                  << " vs " << elem_width << ")";
1865              }
1866            }
1867          }
1868        }
1869      }
1870      break;
1871    }
1872    case Instruction::IF_EQ:
1873    case Instruction::IF_NE: {
1874      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1875      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1876      bool mismatch = false;
1877      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1878        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1879      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1880        mismatch = !reg_type2.IsReferenceTypes();
1881      } else {  // both integral?
1882        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1883      }
1884      if (mismatch) {
1885        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1886                                          << reg_type2 << ") must both be references or integral";
1887      }
1888      break;
1889    }
1890    case Instruction::IF_LT:
1891    case Instruction::IF_GE:
1892    case Instruction::IF_GT:
1893    case Instruction::IF_LE: {
1894      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1895      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1896      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1897        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1898                                          << reg_type2 << ") must be integral";
1899      }
1900      break;
1901    }
1902    case Instruction::IF_EQZ:
1903    case Instruction::IF_NEZ: {
1904      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1905      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1906        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1907                                          << " unexpected as arg to if-eqz/if-nez";
1908      }
1909
1910      // Find previous instruction - its existence is a precondition to peephole optimization.
1911      uint32_t instance_of_idx = 0;
1912      if (0 != work_insn_idx_) {
1913        instance_of_idx = work_insn_idx_ - 1;
1914        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1915          instance_of_idx--;
1916        }
1917        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1918      } else {
1919        break;
1920      }
1921
1922      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1923
1924      /* Check for peep-hole pattern of:
1925       *    ...;
1926       *    instance-of vX, vY, T;
1927       *    ifXXX vX, label ;
1928       *    ...;
1929       * label:
1930       *    ...;
1931       * and sharpen the type of vY to be type T.
1932       * Note, this pattern can't be if:
1933       *  - if there are other branches to this branch,
1934       *  - when vX == vY.
1935       */
1936      if (!CurrentInsnFlags()->IsBranchTarget() &&
1937          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1938          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1939          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1940        // Check that the we are not attempting conversion to interface types,
1941        // which is not done because of the multiple inheritance implications.
1942        // Also don't change the type if it would result in an upcast.
1943        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1944        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1945
1946        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1947            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1948          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1949          if (inst->Opcode() == Instruction::IF_EQZ) {
1950            fallthrough_line.reset(update_line);
1951          } else {
1952            branch_line.reset(update_line);
1953          }
1954          update_line->CopyFromLine(work_line_.get());
1955          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1956          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1957            // See if instance-of was preceded by a move-object operation, common due to the small
1958            // register encoding space of instance-of, and propagate type information to the source
1959            // of the move-object.
1960            uint32_t move_idx = instance_of_idx - 1;
1961            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1962              move_idx--;
1963            }
1964            CHECK(insn_flags_[move_idx].IsOpcode());
1965            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1966            switch (move_inst->Opcode()) {
1967              case Instruction::MOVE_OBJECT:
1968                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1969                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1970                }
1971                break;
1972              case Instruction::MOVE_OBJECT_FROM16:
1973                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1974                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1975                }
1976                break;
1977              case Instruction::MOVE_OBJECT_16:
1978                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1979                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1980                }
1981                break;
1982              default:
1983                break;
1984            }
1985          }
1986        }
1987      }
1988
1989      break;
1990    }
1991    case Instruction::IF_LTZ:
1992    case Instruction::IF_GEZ:
1993    case Instruction::IF_GTZ:
1994    case Instruction::IF_LEZ: {
1995      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1996      if (!reg_type.IsIntegralTypes()) {
1997        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1998                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1999      }
2000      break;
2001    }
2002    case Instruction::AGET_BOOLEAN:
2003      VerifyAGet(inst, reg_types_.Boolean(), true);
2004      break;
2005    case Instruction::AGET_BYTE:
2006      VerifyAGet(inst, reg_types_.Byte(), true);
2007      break;
2008    case Instruction::AGET_CHAR:
2009      VerifyAGet(inst, reg_types_.Char(), true);
2010      break;
2011    case Instruction::AGET_SHORT:
2012      VerifyAGet(inst, reg_types_.Short(), true);
2013      break;
2014    case Instruction::AGET:
2015      VerifyAGet(inst, reg_types_.Integer(), true);
2016      break;
2017    case Instruction::AGET_WIDE:
2018      VerifyAGet(inst, reg_types_.LongLo(), true);
2019      break;
2020    case Instruction::AGET_OBJECT:
2021      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2022      break;
2023
2024    case Instruction::APUT_BOOLEAN:
2025      VerifyAPut(inst, reg_types_.Boolean(), true);
2026      break;
2027    case Instruction::APUT_BYTE:
2028      VerifyAPut(inst, reg_types_.Byte(), true);
2029      break;
2030    case Instruction::APUT_CHAR:
2031      VerifyAPut(inst, reg_types_.Char(), true);
2032      break;
2033    case Instruction::APUT_SHORT:
2034      VerifyAPut(inst, reg_types_.Short(), true);
2035      break;
2036    case Instruction::APUT:
2037      VerifyAPut(inst, reg_types_.Integer(), true);
2038      break;
2039    case Instruction::APUT_WIDE:
2040      VerifyAPut(inst, reg_types_.LongLo(), true);
2041      break;
2042    case Instruction::APUT_OBJECT:
2043      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2044      break;
2045
2046    case Instruction::IGET_BOOLEAN:
2047      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2048      break;
2049    case Instruction::IGET_BYTE:
2050      VerifyISGet(inst, reg_types_.Byte(), true, false);
2051      break;
2052    case Instruction::IGET_CHAR:
2053      VerifyISGet(inst, reg_types_.Char(), true, false);
2054      break;
2055    case Instruction::IGET_SHORT:
2056      VerifyISGet(inst, reg_types_.Short(), true, false);
2057      break;
2058    case Instruction::IGET:
2059      VerifyISGet(inst, reg_types_.Integer(), true, false);
2060      break;
2061    case Instruction::IGET_WIDE:
2062      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2063      break;
2064    case Instruction::IGET_OBJECT:
2065      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2066      break;
2067
2068    case Instruction::IPUT_BOOLEAN:
2069      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2070      break;
2071    case Instruction::IPUT_BYTE:
2072      VerifyISPut(inst, reg_types_.Byte(), true, false);
2073      break;
2074    case Instruction::IPUT_CHAR:
2075      VerifyISPut(inst, reg_types_.Char(), true, false);
2076      break;
2077    case Instruction::IPUT_SHORT:
2078      VerifyISPut(inst, reg_types_.Short(), true, false);
2079      break;
2080    case Instruction::IPUT:
2081      VerifyISPut(inst, reg_types_.Integer(), true, false);
2082      break;
2083    case Instruction::IPUT_WIDE:
2084      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2085      break;
2086    case Instruction::IPUT_OBJECT:
2087      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2088      break;
2089
2090    case Instruction::SGET_BOOLEAN:
2091      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2092      break;
2093    case Instruction::SGET_BYTE:
2094      VerifyISGet(inst, reg_types_.Byte(), true, true);
2095      break;
2096    case Instruction::SGET_CHAR:
2097      VerifyISGet(inst, reg_types_.Char(), true, true);
2098      break;
2099    case Instruction::SGET_SHORT:
2100      VerifyISGet(inst, reg_types_.Short(), true, true);
2101      break;
2102    case Instruction::SGET:
2103      VerifyISGet(inst, reg_types_.Integer(), true, true);
2104      break;
2105    case Instruction::SGET_WIDE:
2106      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2107      break;
2108    case Instruction::SGET_OBJECT:
2109      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2110      break;
2111
2112    case Instruction::SPUT_BOOLEAN:
2113      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2114      break;
2115    case Instruction::SPUT_BYTE:
2116      VerifyISPut(inst, reg_types_.Byte(), true, true);
2117      break;
2118    case Instruction::SPUT_CHAR:
2119      VerifyISPut(inst, reg_types_.Char(), true, true);
2120      break;
2121    case Instruction::SPUT_SHORT:
2122      VerifyISPut(inst, reg_types_.Short(), true, true);
2123      break;
2124    case Instruction::SPUT:
2125      VerifyISPut(inst, reg_types_.Integer(), true, true);
2126      break;
2127    case Instruction::SPUT_WIDE:
2128      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2129      break;
2130    case Instruction::SPUT_OBJECT:
2131      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2132      break;
2133
2134    case Instruction::INVOKE_VIRTUAL:
2135    case Instruction::INVOKE_VIRTUAL_RANGE:
2136    case Instruction::INVOKE_SUPER:
2137    case Instruction::INVOKE_SUPER_RANGE: {
2138      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2139                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2140      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2141                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2142      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2143                                                              is_super);
2144      const RegType* return_type = nullptr;
2145      if (called_method != nullptr) {
2146        Thread* self = Thread::Current();
2147        StackHandleScope<1> hs(self);
2148        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2149        MethodHelper mh(h_called_method);
2150        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2151        if (return_type_class != nullptr) {
2152          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2153                                              return_type_class,
2154                                              return_type_class->CannotBeAssignedFromOtherTypes());
2155        } else {
2156          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2157          self->ClearException();
2158        }
2159      }
2160      if (return_type == nullptr) {
2161        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2162        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2163        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2164        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2165        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2166      }
2167      if (!return_type->IsLowHalf()) {
2168        work_line_->SetResultRegisterType(*return_type);
2169      } else {
2170        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2171      }
2172      just_set_result = true;
2173      break;
2174    }
2175    case Instruction::INVOKE_DIRECT:
2176    case Instruction::INVOKE_DIRECT_RANGE: {
2177      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2178      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2179                                                                   is_range, false);
2180      const char* return_type_descriptor;
2181      bool is_constructor;
2182      if (called_method == NULL) {
2183        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2184        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2185        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2186        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2187        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2188      } else {
2189        is_constructor = called_method->IsConstructor();
2190        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2191      }
2192      if (is_constructor) {
2193        /*
2194         * Some additional checks when calling a constructor. We know from the invocation arg check
2195         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2196         * that to require that called_method->klass is the same as this->klass or this->super,
2197         * allowing the latter only if the "this" argument is the same as the "this" argument to
2198         * this method (which implies that we're in a constructor ourselves).
2199         */
2200        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2201        if (this_type.IsConflict())  // failure.
2202          break;
2203
2204        /* no null refs allowed (?) */
2205        if (this_type.IsZero()) {
2206          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2207          break;
2208        }
2209
2210        /* must be in same class or in superclass */
2211        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2212        // TODO: re-enable constructor type verification
2213        // if (this_super_klass.IsConflict()) {
2214          // Unknown super class, fail so we re-check at runtime.
2215          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2216          // break;
2217        // }
2218
2219        /* arg must be an uninitialized reference */
2220        if (!this_type.IsUninitializedTypes()) {
2221          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2222              << this_type;
2223          break;
2224        }
2225
2226        /*
2227         * Replace the uninitialized reference with an initialized one. We need to do this for all
2228         * registers that have the same object instance in them, not just the "this" register.
2229         */
2230        work_line_->MarkRefsAsInitialized(this_type);
2231      }
2232      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(),
2233                                                             return_type_descriptor, false);
2234      if (!return_type.IsLowHalf()) {
2235        work_line_->SetResultRegisterType(return_type);
2236      } else {
2237        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2238      }
2239      just_set_result = true;
2240      break;
2241    }
2242    case Instruction::INVOKE_STATIC:
2243    case Instruction::INVOKE_STATIC_RANGE: {
2244        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2245        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2246                                                                     METHOD_STATIC,
2247                                                                     is_range,
2248                                                                     false);
2249        const char* descriptor;
2250        if (called_method == NULL) {
2251          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2252          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2253          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2254          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2255        } else {
2256          descriptor = called_method->GetReturnTypeDescriptor();
2257        }
2258        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2259                                                               false);
2260        if (!return_type.IsLowHalf()) {
2261          work_line_->SetResultRegisterType(return_type);
2262        } else {
2263          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2264        }
2265        just_set_result = true;
2266      }
2267      break;
2268    case Instruction::INVOKE_INTERFACE:
2269    case Instruction::INVOKE_INTERFACE_RANGE: {
2270      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2271      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2272                                                                METHOD_INTERFACE,
2273                                                                is_range,
2274                                                                false);
2275      if (abs_method != NULL) {
2276        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2277        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2278          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2279              << PrettyMethod(abs_method) << "'";
2280          break;
2281        }
2282      }
2283      /* Get the type of the "this" arg, which should either be a sub-interface of called
2284       * interface or Object (see comments in RegType::JoinClass).
2285       */
2286      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2287      if (this_type.IsZero()) {
2288        /* null pointer always passes (and always fails at runtime) */
2289      } else {
2290        if (this_type.IsUninitializedTypes()) {
2291          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2292              << this_type;
2293          break;
2294        }
2295        // In the past we have tried to assert that "called_interface" is assignable
2296        // from "this_type.GetClass()", however, as we do an imprecise Join
2297        // (RegType::JoinClass) we don't have full information on what interfaces are
2298        // implemented by "this_type". For example, two classes may implement the same
2299        // interfaces and have a common parent that doesn't implement the interface. The
2300        // join will set "this_type" to the parent class and a test that this implements
2301        // the interface will incorrectly fail.
2302      }
2303      /*
2304       * We don't have an object instance, so we can't find the concrete method. However, all of
2305       * the type information is in the abstract method, so we're good.
2306       */
2307      const char* descriptor;
2308      if (abs_method == NULL) {
2309        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2310        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2311        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2312        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2313      } else {
2314        descriptor = abs_method->GetReturnTypeDescriptor();
2315      }
2316      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2317                                                             false);
2318      if (!return_type.IsLowHalf()) {
2319        work_line_->SetResultRegisterType(return_type);
2320      } else {
2321        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2322      }
2323      just_set_result = true;
2324      break;
2325    }
2326    case Instruction::NEG_INT:
2327    case Instruction::NOT_INT:
2328      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2329      break;
2330    case Instruction::NEG_LONG:
2331    case Instruction::NOT_LONG:
2332      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2333                                   reg_types_.LongLo(), reg_types_.LongHi());
2334      break;
2335    case Instruction::NEG_FLOAT:
2336      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2337      break;
2338    case Instruction::NEG_DOUBLE:
2339      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2340                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2341      break;
2342    case Instruction::INT_TO_LONG:
2343      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2344                                     reg_types_.Integer());
2345      break;
2346    case Instruction::INT_TO_FLOAT:
2347      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2348      break;
2349    case Instruction::INT_TO_DOUBLE:
2350      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2351                                     reg_types_.Integer());
2352      break;
2353    case Instruction::LONG_TO_INT:
2354      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2355                                       reg_types_.LongLo(), reg_types_.LongHi());
2356      break;
2357    case Instruction::LONG_TO_FLOAT:
2358      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2359                                       reg_types_.LongLo(), reg_types_.LongHi());
2360      break;
2361    case Instruction::LONG_TO_DOUBLE:
2362      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2363                                   reg_types_.LongLo(), reg_types_.LongHi());
2364      break;
2365    case Instruction::FLOAT_TO_INT:
2366      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2367      break;
2368    case Instruction::FLOAT_TO_LONG:
2369      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2370                                     reg_types_.Float());
2371      break;
2372    case Instruction::FLOAT_TO_DOUBLE:
2373      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2374                                     reg_types_.Float());
2375      break;
2376    case Instruction::DOUBLE_TO_INT:
2377      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2378                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2379      break;
2380    case Instruction::DOUBLE_TO_LONG:
2381      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2382                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2383      break;
2384    case Instruction::DOUBLE_TO_FLOAT:
2385      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2386                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2387      break;
2388    case Instruction::INT_TO_BYTE:
2389      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2390      break;
2391    case Instruction::INT_TO_CHAR:
2392      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2393      break;
2394    case Instruction::INT_TO_SHORT:
2395      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2396      break;
2397
2398    case Instruction::ADD_INT:
2399    case Instruction::SUB_INT:
2400    case Instruction::MUL_INT:
2401    case Instruction::REM_INT:
2402    case Instruction::DIV_INT:
2403    case Instruction::SHL_INT:
2404    case Instruction::SHR_INT:
2405    case Instruction::USHR_INT:
2406      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2407                                reg_types_.Integer(), false);
2408      break;
2409    case Instruction::AND_INT:
2410    case Instruction::OR_INT:
2411    case Instruction::XOR_INT:
2412      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2413                                reg_types_.Integer(), true);
2414      break;
2415    case Instruction::ADD_LONG:
2416    case Instruction::SUB_LONG:
2417    case Instruction::MUL_LONG:
2418    case Instruction::DIV_LONG:
2419    case Instruction::REM_LONG:
2420    case Instruction::AND_LONG:
2421    case Instruction::OR_LONG:
2422    case Instruction::XOR_LONG:
2423      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2424                                    reg_types_.LongLo(), reg_types_.LongHi(),
2425                                    reg_types_.LongLo(), reg_types_.LongHi());
2426      break;
2427    case Instruction::SHL_LONG:
2428    case Instruction::SHR_LONG:
2429    case Instruction::USHR_LONG:
2430      /* shift distance is Int, making these different from other binary operations */
2431      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2432                                         reg_types_.Integer());
2433      break;
2434    case Instruction::ADD_FLOAT:
2435    case Instruction::SUB_FLOAT:
2436    case Instruction::MUL_FLOAT:
2437    case Instruction::DIV_FLOAT:
2438    case Instruction::REM_FLOAT:
2439      work_line_->CheckBinaryOp(inst,
2440                                reg_types_.Float(),
2441                                reg_types_.Float(),
2442                                reg_types_.Float(),
2443                                false);
2444      break;
2445    case Instruction::ADD_DOUBLE:
2446    case Instruction::SUB_DOUBLE:
2447    case Instruction::MUL_DOUBLE:
2448    case Instruction::DIV_DOUBLE:
2449    case Instruction::REM_DOUBLE:
2450      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2451                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2452                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2453      break;
2454    case Instruction::ADD_INT_2ADDR:
2455    case Instruction::SUB_INT_2ADDR:
2456    case Instruction::MUL_INT_2ADDR:
2457    case Instruction::REM_INT_2ADDR:
2458    case Instruction::SHL_INT_2ADDR:
2459    case Instruction::SHR_INT_2ADDR:
2460    case Instruction::USHR_INT_2ADDR:
2461      work_line_->CheckBinaryOp2addr(inst,
2462                                     reg_types_.Integer(),
2463                                     reg_types_.Integer(),
2464                                     reg_types_.Integer(),
2465                                     false);
2466      break;
2467    case Instruction::AND_INT_2ADDR:
2468    case Instruction::OR_INT_2ADDR:
2469    case Instruction::XOR_INT_2ADDR:
2470      work_line_->CheckBinaryOp2addr(inst,
2471                                     reg_types_.Integer(),
2472                                     reg_types_.Integer(),
2473                                     reg_types_.Integer(),
2474                                     true);
2475      break;
2476    case Instruction::DIV_INT_2ADDR:
2477      work_line_->CheckBinaryOp2addr(inst,
2478                                     reg_types_.Integer(),
2479                                     reg_types_.Integer(),
2480                                     reg_types_.Integer(),
2481                                     false);
2482      break;
2483    case Instruction::ADD_LONG_2ADDR:
2484    case Instruction::SUB_LONG_2ADDR:
2485    case Instruction::MUL_LONG_2ADDR:
2486    case Instruction::DIV_LONG_2ADDR:
2487    case Instruction::REM_LONG_2ADDR:
2488    case Instruction::AND_LONG_2ADDR:
2489    case Instruction::OR_LONG_2ADDR:
2490    case Instruction::XOR_LONG_2ADDR:
2491      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2492                                         reg_types_.LongLo(), reg_types_.LongHi(),
2493                                         reg_types_.LongLo(), reg_types_.LongHi());
2494      break;
2495    case Instruction::SHL_LONG_2ADDR:
2496    case Instruction::SHR_LONG_2ADDR:
2497    case Instruction::USHR_LONG_2ADDR:
2498      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2499                                              reg_types_.Integer());
2500      break;
2501    case Instruction::ADD_FLOAT_2ADDR:
2502    case Instruction::SUB_FLOAT_2ADDR:
2503    case Instruction::MUL_FLOAT_2ADDR:
2504    case Instruction::DIV_FLOAT_2ADDR:
2505    case Instruction::REM_FLOAT_2ADDR:
2506      work_line_->CheckBinaryOp2addr(inst,
2507                                     reg_types_.Float(),
2508                                     reg_types_.Float(),
2509                                     reg_types_.Float(),
2510                                     false);
2511      break;
2512    case Instruction::ADD_DOUBLE_2ADDR:
2513    case Instruction::SUB_DOUBLE_2ADDR:
2514    case Instruction::MUL_DOUBLE_2ADDR:
2515    case Instruction::DIV_DOUBLE_2ADDR:
2516    case Instruction::REM_DOUBLE_2ADDR:
2517      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2518                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2519                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2520      break;
2521    case Instruction::ADD_INT_LIT16:
2522    case Instruction::RSUB_INT:
2523    case Instruction::MUL_INT_LIT16:
2524    case Instruction::DIV_INT_LIT16:
2525    case Instruction::REM_INT_LIT16:
2526      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2527      break;
2528    case Instruction::AND_INT_LIT16:
2529    case Instruction::OR_INT_LIT16:
2530    case Instruction::XOR_INT_LIT16:
2531      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2532      break;
2533    case Instruction::ADD_INT_LIT8:
2534    case Instruction::RSUB_INT_LIT8:
2535    case Instruction::MUL_INT_LIT8:
2536    case Instruction::DIV_INT_LIT8:
2537    case Instruction::REM_INT_LIT8:
2538    case Instruction::SHL_INT_LIT8:
2539    case Instruction::SHR_INT_LIT8:
2540    case Instruction::USHR_INT_LIT8:
2541      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2542      break;
2543    case Instruction::AND_INT_LIT8:
2544    case Instruction::OR_INT_LIT8:
2545    case Instruction::XOR_INT_LIT8:
2546      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2547      break;
2548
2549    // Special instructions.
2550    case Instruction::RETURN_VOID_BARRIER:
2551      if (!IsConstructor() || IsStatic()) {
2552          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2553      }
2554      break;
2555    // Note: the following instructions encode offsets derived from class linking.
2556    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2557    // meaning if the class linking and resolution were successful.
2558    case Instruction::IGET_QUICK:
2559      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2560      break;
2561    case Instruction::IGET_WIDE_QUICK:
2562      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2563      break;
2564    case Instruction::IGET_OBJECT_QUICK:
2565      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2566      break;
2567    case Instruction::IPUT_QUICK:
2568      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2569      break;
2570    case Instruction::IPUT_WIDE_QUICK:
2571      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2572      break;
2573    case Instruction::IPUT_OBJECT_QUICK:
2574      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2575      break;
2576    case Instruction::INVOKE_VIRTUAL_QUICK:
2577    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2578      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2579      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2580      if (called_method != NULL) {
2581        const char* descriptor = called_method->GetReturnTypeDescriptor();
2582        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2583                                                               false);
2584        if (!return_type.IsLowHalf()) {
2585          work_line_->SetResultRegisterType(return_type);
2586        } else {
2587          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2588        }
2589        just_set_result = true;
2590      }
2591      break;
2592    }
2593
2594    /* These should never appear during verification. */
2595    case Instruction::UNUSED_3E:
2596    case Instruction::UNUSED_3F:
2597    case Instruction::UNUSED_40:
2598    case Instruction::UNUSED_41:
2599    case Instruction::UNUSED_42:
2600    case Instruction::UNUSED_43:
2601    case Instruction::UNUSED_79:
2602    case Instruction::UNUSED_7A:
2603    case Instruction::UNUSED_EB:
2604    case Instruction::UNUSED_EC:
2605    case Instruction::UNUSED_ED:
2606    case Instruction::UNUSED_EE:
2607    case Instruction::UNUSED_EF:
2608    case Instruction::UNUSED_F0:
2609    case Instruction::UNUSED_F1:
2610    case Instruction::UNUSED_F2:
2611    case Instruction::UNUSED_F3:
2612    case Instruction::UNUSED_F4:
2613    case Instruction::UNUSED_F5:
2614    case Instruction::UNUSED_F6:
2615    case Instruction::UNUSED_F7:
2616    case Instruction::UNUSED_F8:
2617    case Instruction::UNUSED_F9:
2618    case Instruction::UNUSED_FA:
2619    case Instruction::UNUSED_FB:
2620    case Instruction::UNUSED_FC:
2621    case Instruction::UNUSED_FD:
2622    case Instruction::UNUSED_FE:
2623    case Instruction::UNUSED_FF:
2624      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2625      break;
2626
2627    /*
2628     * DO NOT add a "default" clause here. Without it the compiler will
2629     * complain if an instruction is missing (which is desirable).
2630     */
2631  }  // end - switch (dec_insn.opcode)
2632
2633  if (have_pending_hard_failure_) {
2634    if (Runtime::Current()->IsCompiler()) {
2635      /* When compiling, check that the last failure is a hard failure */
2636      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2637    }
2638    /* immediate failure, reject class */
2639    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2640    return false;
2641  } else if (have_pending_runtime_throw_failure_) {
2642    /* checking interpreter will throw, mark following code as unreachable */
2643    opcode_flags = Instruction::kThrow;
2644  }
2645  /*
2646   * If we didn't just set the result register, clear it out. This ensures that you can only use
2647   * "move-result" immediately after the result is set. (We could check this statically, but it's
2648   * not expensive and it makes our debugging output cleaner.)
2649   */
2650  if (!just_set_result) {
2651    work_line_->SetResultTypeToUnknown();
2652  }
2653
2654
2655
2656  /*
2657   * Handle "branch". Tag the branch target.
2658   *
2659   * NOTE: instructions like Instruction::EQZ provide information about the
2660   * state of the register when the branch is taken or not taken. For example,
2661   * somebody could get a reference field, check it for zero, and if the
2662   * branch is taken immediately store that register in a boolean field
2663   * since the value is known to be zero. We do not currently account for
2664   * that, and will reject the code.
2665   *
2666   * TODO: avoid re-fetching the branch target
2667   */
2668  if ((opcode_flags & Instruction::kBranch) != 0) {
2669    bool isConditional, selfOkay;
2670    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2671      /* should never happen after static verification */
2672      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2673      return false;
2674    }
2675    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2676    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2677      return false;
2678    }
2679    /* update branch target, set "changed" if appropriate */
2680    if (NULL != branch_line.get()) {
2681      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2682        return false;
2683      }
2684    } else {
2685      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2686        return false;
2687      }
2688    }
2689  }
2690
2691  /*
2692   * Handle "switch". Tag all possible branch targets.
2693   *
2694   * We've already verified that the table is structurally sound, so we
2695   * just need to walk through and tag the targets.
2696   */
2697  if ((opcode_flags & Instruction::kSwitch) != 0) {
2698    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2699    const uint16_t* switch_insns = insns + offset_to_switch;
2700    int switch_count = switch_insns[1];
2701    int offset_to_targets, targ;
2702
2703    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2704      /* 0 = sig, 1 = count, 2/3 = first key */
2705      offset_to_targets = 4;
2706    } else {
2707      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2708      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2709      offset_to_targets = 2 + 2 * switch_count;
2710    }
2711
2712    /* verify each switch target */
2713    for (targ = 0; targ < switch_count; targ++) {
2714      int offset;
2715      uint32_t abs_offset;
2716
2717      /* offsets are 32-bit, and only partly endian-swapped */
2718      offset = switch_insns[offset_to_targets + targ * 2] |
2719         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2720      abs_offset = work_insn_idx_ + offset;
2721      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2722      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2723        return false;
2724      }
2725      if (!UpdateRegisters(abs_offset, work_line_.get()))
2726        return false;
2727    }
2728  }
2729
2730  /*
2731   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2732   * "try" block when they throw, control transfers out of the method.)
2733   */
2734  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2735    bool within_catch_all = false;
2736    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2737
2738    for (; iterator.HasNext(); iterator.Next()) {
2739      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2740        within_catch_all = true;
2741      }
2742      /*
2743       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2744       * "work_regs", because at runtime the exception will be thrown before the instruction
2745       * modifies any registers.
2746       */
2747      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2748        return false;
2749      }
2750    }
2751
2752    /*
2753     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2754     * instruction. This does apply to monitor-exit because of async exception handling.
2755     */
2756    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2757      /*
2758       * The state in work_line reflects the post-execution state. If the current instruction is a
2759       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2760       * it will do so before grabbing the lock).
2761       */
2762      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2763        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2764            << "expected to be within a catch-all for an instruction where a monitor is held";
2765        return false;
2766      }
2767    }
2768  }
2769
2770  /* Handle "continue". Tag the next consecutive instruction.
2771   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2772   *        because it changes work_line_ when performing peephole optimization
2773   *        and this change should not be used in those cases.
2774   */
2775  if ((opcode_flags & Instruction::kContinue) != 0) {
2776    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2777    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2778      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2779      return false;
2780    }
2781    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2782    // next instruction isn't one.
2783    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2784      return false;
2785    }
2786    if (NULL != fallthrough_line.get()) {
2787      // Make workline consistent with fallthrough computed from peephole optimization.
2788      work_line_->CopyFromLine(fallthrough_line.get());
2789    }
2790    if (insn_flags_[next_insn_idx].IsReturn()) {
2791      // For returns we only care about the operand to the return, all other registers are dead.
2792      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2793      Instruction::Code opcode = ret_inst->Opcode();
2794      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2795        work_line_->MarkAllRegistersAsConflicts();
2796      } else {
2797        if (opcode == Instruction::RETURN_WIDE) {
2798          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2799        } else {
2800          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2801        }
2802      }
2803    }
2804    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2805    if (next_line != NULL) {
2806      // Merge registers into what we have for the next instruction,
2807      // and set the "changed" flag if needed.
2808      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2809        return false;
2810      }
2811    } else {
2812      /*
2813       * We're not recording register data for the next instruction, so we don't know what the
2814       * prior state was. We have to assume that something has changed and re-evaluate it.
2815       */
2816      insn_flags_[next_insn_idx].SetChanged();
2817    }
2818  }
2819
2820  /* If we're returning from the method, make sure monitor stack is empty. */
2821  if ((opcode_flags & Instruction::kReturn) != 0) {
2822    if (!work_line_->VerifyMonitorStackEmpty()) {
2823      return false;
2824    }
2825  }
2826
2827  /*
2828   * Update start_guess. Advance to the next instruction of that's
2829   * possible, otherwise use the branch target if one was found. If
2830   * neither of those exists we're in a return or throw; leave start_guess
2831   * alone and let the caller sort it out.
2832   */
2833  if ((opcode_flags & Instruction::kContinue) != 0) {
2834    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2835  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2836    /* we're still okay if branch_target is zero */
2837    *start_guess = work_insn_idx_ + branch_target;
2838  }
2839
2840  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2841  DCHECK(insn_flags_[*start_guess].IsOpcode());
2842
2843  return true;
2844}  // NOLINT(readability/fn_size)
2845
2846const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2847  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2848  const RegType& referrer = GetDeclaringClass();
2849  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2850  const RegType& result =
2851      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2852                                           klass->CannotBeAssignedFromOtherTypes())
2853                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2854  if (result.IsConflict()) {
2855    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2856        << "' in " << referrer;
2857    return result;
2858  }
2859  if (klass == NULL && !result.IsUnresolvedTypes()) {
2860    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2861  }
2862  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2863  // check at runtime if access is allowed and so pass here. If result is
2864  // primitive, skip the access check.
2865  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2866      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2867    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2868                                    << referrer << "' -> '" << result << "'";
2869  }
2870  return result;
2871}
2872
2873const RegType& MethodVerifier::GetCaughtExceptionType() {
2874  const RegType* common_super = NULL;
2875  if (code_item_->tries_size_ != 0) {
2876    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2877    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2878    for (uint32_t i = 0; i < handlers_size; i++) {
2879      CatchHandlerIterator iterator(handlers_ptr);
2880      for (; iterator.HasNext(); iterator.Next()) {
2881        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2882          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2883            common_super = &reg_types_.JavaLangThrowable(false);
2884          } else {
2885            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2886            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2887              if (exception.IsUnresolvedTypes()) {
2888                // We don't know enough about the type. Fail here and let runtime handle it.
2889                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2890                return exception;
2891              } else {
2892                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2893                return reg_types_.Conflict();
2894              }
2895            } else if (common_super == nullptr) {
2896              common_super = &exception;
2897            } else if (common_super->Equals(exception)) {
2898              // odd case, but nothing to do
2899            } else {
2900              common_super = &common_super->Merge(exception, &reg_types_);
2901              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2902            }
2903          }
2904        }
2905      }
2906      handlers_ptr = iterator.EndDataPointer();
2907    }
2908  }
2909  if (common_super == NULL) {
2910    /* no catch blocks, or no catches with classes we can find */
2911    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2912    return reg_types_.Conflict();
2913  }
2914  return *common_super;
2915}
2916
2917mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2918                                                               MethodType method_type) {
2919  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2920  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2921  if (klass_type.IsConflict()) {
2922    std::string append(" in attempt to access method ");
2923    append += dex_file_->GetMethodName(method_id);
2924    AppendToLastFailMessage(append);
2925    return NULL;
2926  }
2927  if (klass_type.IsUnresolvedTypes()) {
2928    return NULL;  // Can't resolve Class so no more to do here
2929  }
2930  mirror::Class* klass = klass_type.GetClass();
2931  const RegType& referrer = GetDeclaringClass();
2932  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2933  if (res_method == NULL) {
2934    const char* name = dex_file_->GetMethodName(method_id);
2935    const Signature signature = dex_file_->GetMethodSignature(method_id);
2936
2937    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2938      res_method = klass->FindDirectMethod(name, signature);
2939    } else if (method_type == METHOD_INTERFACE) {
2940      res_method = klass->FindInterfaceMethod(name, signature);
2941    } else {
2942      res_method = klass->FindVirtualMethod(name, signature);
2943    }
2944    if (res_method != NULL) {
2945      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2946    } else {
2947      // If a virtual or interface method wasn't found with the expected type, look in
2948      // the direct methods. This can happen when the wrong invoke type is used or when
2949      // a class has changed, and will be flagged as an error in later checks.
2950      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2951        res_method = klass->FindDirectMethod(name, signature);
2952      }
2953      if (res_method == NULL) {
2954        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2955                                     << PrettyDescriptor(klass) << "." << name
2956                                     << " " << signature;
2957        return NULL;
2958      }
2959    }
2960  }
2961  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2962  // enforce them here.
2963  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2964    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2965                                      << PrettyMethod(res_method);
2966    return NULL;
2967  }
2968  // Disallow any calls to class initializers.
2969  if (res_method->IsClassInitializer()) {
2970    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2971                                      << PrettyMethod(res_method);
2972    return NULL;
2973  }
2974  // Check if access is allowed.
2975  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2976    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2977                                     << " from " << referrer << ")";
2978    return res_method;
2979  }
2980  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2981  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2982    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2983                                      << PrettyMethod(res_method);
2984    return NULL;
2985  }
2986  // Check that interface methods match interface classes.
2987  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2988    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2989                                    << " is in an interface class " << PrettyClass(klass);
2990    return NULL;
2991  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2992    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2993                                    << " is in a non-interface class " << PrettyClass(klass);
2994    return NULL;
2995  }
2996  // See if the method type implied by the invoke instruction matches the access flags for the
2997  // target method.
2998  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2999      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3000      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3001      ) {
3002    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3003                                       " type of " << PrettyMethod(res_method);
3004    return NULL;
3005  }
3006  return res_method;
3007}
3008
3009mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3010                                                             MethodType method_type,
3011                                                             bool is_range,
3012                                                             bool is_super) {
3013  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3014  // we're making.
3015  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3016
3017  // As the method may not have been resolved, make this static check against what we expect.
3018  const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3019  uint32_t shorty_idx = dex_file_->GetProtoId(method_id.proto_idx_).shorty_idx_;
3020  uint32_t shorty_len;
3021  const char* descriptor = dex_file_->StringDataAndUtf16LengthByIdx(shorty_idx, &shorty_len);
3022  int32_t sig_registers = method_type == METHOD_STATIC ? 0 : 1;
3023  for (size_t i = 1; i < shorty_len; i++) {
3024    if (descriptor[i] == 'J' || descriptor[i] == 'D') {
3025      sig_registers += 2;
3026    } else {
3027      sig_registers++;
3028    }
3029  }
3030  if (inst->VRegA() != sig_registers) {
3031    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3032        " arguments, found " << sig_registers;
3033    return nullptr;
3034  }
3035
3036  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3037  if (res_method == NULL) {  // error or class is unresolved
3038    return NULL;
3039  }
3040
3041  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3042  // has a vtable entry for the target method.
3043  if (is_super) {
3044    DCHECK(method_type == METHOD_VIRTUAL);
3045    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3046    if (super.IsUnresolvedTypes()) {
3047      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3048                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3049                                   << " to super " << PrettyMethod(res_method);
3050      return NULL;
3051    }
3052    mirror::Class* super_klass = super.GetClass();
3053    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3054      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3055                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3056                                   << " to super " << super
3057                                   << "." << res_method->GetName()
3058                                   << res_method->GetSignature();
3059      return NULL;
3060    }
3061  }
3062  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3063  // match the call to the signature. Also, we might be calling through an abstract method
3064  // definition (which doesn't have register count values).
3065  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3066  /* caught by static verifier */
3067  DCHECK(is_range || expected_args <= 5);
3068  if (expected_args > code_item_->outs_size_) {
3069    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3070        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3071    return NULL;
3072  }
3073
3074  /*
3075   * Check the "this" argument, which must be an instance of the class that declared the method.
3076   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3077   * rigorous check here (which is okay since we have to do it at runtime).
3078   */
3079  size_t actual_args = 0;
3080  if (!res_method->IsStatic()) {
3081    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3082    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3083      return NULL;
3084    }
3085    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3086      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3087      return NULL;
3088    }
3089    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3090      mirror::Class* klass = res_method->GetDeclaringClass();
3091      const RegType& res_method_class =
3092          reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3093                               klass->CannotBeAssignedFromOtherTypes());
3094      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3095        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3096            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3097            << "' not instance of '" << res_method_class << "'";
3098        return NULL;
3099      }
3100    }
3101    actual_args++;
3102  }
3103  /*
3104   * Process the target method's signature. This signature may or may not
3105   * have been verified, so we can't assume it's properly formed.
3106   */
3107  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3108  size_t params_size = params == NULL ? 0 : params->Size();
3109  uint32_t arg[5];
3110  if (!is_range) {
3111    inst->GetVarArgs(arg);
3112  }
3113  for (size_t param_index = 0; param_index < params_size; param_index++) {
3114    if (actual_args >= expected_args) {
3115      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3116          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3117          << " (where longs/doubles count twice).";
3118      return NULL;
3119    }
3120    const char* descriptor =
3121        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3122    if (descriptor == NULL) {
3123      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3124          << " missing signature component";
3125      return NULL;
3126    }
3127    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3128    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3129    if (reg_type.IsIntegralTypes()) {
3130      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3131      if (!src_type.IsIntegralTypes()) {
3132        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3133                                          << " but expected " << reg_type;
3134        return res_method;
3135      }
3136    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3137      return res_method;
3138    }
3139    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3140  }
3141  if (actual_args != expected_args) {
3142    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3143        << " expected " << expected_args << " arguments, found " << actual_args;
3144    return NULL;
3145  } else {
3146    return res_method;
3147  }
3148}
3149
3150mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3151                                                         RegisterLine* reg_line, bool is_range) {
3152  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3153         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3154  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3155  if (!actual_arg_type.HasClass()) {
3156    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3157    return nullptr;
3158  }
3159  mirror::ObjectArray<mirror::ArtMethod>* vtable = nullptr;
3160  mirror::Class* klass = actual_arg_type.GetClass();
3161  if (klass->IsInterface()) {
3162    // Derive Object.class from Class.class.getSuperclass().
3163    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3164    CHECK(object_klass->IsObjectClass());
3165    vtable = object_klass->GetVTable();
3166  } else {
3167    vtable = klass->GetVTable();
3168  }
3169  CHECK(vtable != nullptr) << PrettyDescriptor(klass);
3170  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3171  CHECK_LT(static_cast<int32_t>(vtable_index), vtable->GetLength()) << PrettyDescriptor(klass);
3172  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3173  CHECK(!Thread::Current()->IsExceptionPending());
3174  return res_method;
3175}
3176
3177mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3178                                                                     bool is_range) {
3179  DCHECK(Runtime::Current()->IsStarted());
3180  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3181                                                             is_range);
3182  if (res_method == NULL) {
3183    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3184    return NULL;
3185  }
3186  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3187
3188  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3189  // match the call to the signature. Also, we might be calling through an abstract method
3190  // definition (which doesn't have register count values).
3191  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3192  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3193    return NULL;
3194  }
3195  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3196  /* caught by static verifier */
3197  DCHECK(is_range || expected_args <= 5);
3198  if (expected_args > code_item_->outs_size_) {
3199    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3200        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3201    return NULL;
3202  }
3203
3204  /*
3205   * Check the "this" argument, which must be an instance of the class that declared the method.
3206   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3207   * rigorous check here (which is okay since we have to do it at runtime).
3208   */
3209  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3210    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3211    return NULL;
3212  }
3213  if (!actual_arg_type.IsZero()) {
3214    mirror::Class* klass = res_method->GetDeclaringClass();
3215    const RegType& res_method_class =
3216        reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3217                             klass->CannotBeAssignedFromOtherTypes());
3218    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3219      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3220          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3221          << "' not instance of '" << res_method_class << "'";
3222      return NULL;
3223    }
3224  }
3225  /*
3226   * Process the target method's signature. This signature may or may not
3227   * have been verified, so we can't assume it's properly formed.
3228   */
3229  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3230  size_t params_size = params == NULL ? 0 : params->Size();
3231  uint32_t arg[5];
3232  if (!is_range) {
3233    inst->GetVarArgs(arg);
3234  }
3235  size_t actual_args = 1;
3236  for (size_t param_index = 0; param_index < params_size; param_index++) {
3237    if (actual_args >= expected_args) {
3238      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3239                                        << "'. Expected " << expected_args
3240                                         << " arguments, processing argument " << actual_args
3241                                        << " (where longs/doubles count twice).";
3242      return NULL;
3243    }
3244    const char* descriptor =
3245        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3246    if (descriptor == NULL) {
3247      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3248                                        << " missing signature component";
3249      return NULL;
3250    }
3251    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3252    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3253    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3254      return res_method;
3255    }
3256    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3257  }
3258  if (actual_args != expected_args) {
3259    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3260              << " expected " << expected_args << " arguments, found " << actual_args;
3261    return NULL;
3262  } else {
3263    return res_method;
3264  }
3265}
3266
3267void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3268  uint32_t type_idx;
3269  if (!is_filled) {
3270    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3271    type_idx = inst->VRegC_22c();
3272  } else if (!is_range) {
3273    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3274    type_idx = inst->VRegB_35c();
3275  } else {
3276    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3277    type_idx = inst->VRegB_3rc();
3278  }
3279  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3280  if (res_type.IsConflict()) {  // bad class
3281    DCHECK_NE(failures_.size(), 0U);
3282  } else {
3283    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3284    if (!res_type.IsArrayTypes()) {
3285      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3286    } else if (!is_filled) {
3287      /* make sure "size" register is valid type */
3288      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3289      /* set register type to array class */
3290      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3291      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3292    } else {
3293      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3294      // the list and fail. It's legal, if silly, for arg_count to be zero.
3295      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3296      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3297      uint32_t arg[5];
3298      if (!is_range) {
3299        inst->GetVarArgs(arg);
3300      }
3301      for (size_t ui = 0; ui < arg_count; ui++) {
3302        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3303        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3304          work_line_->SetResultRegisterType(reg_types_.Conflict());
3305          return;
3306        }
3307      }
3308      // filled-array result goes into "result" register
3309      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3310      work_line_->SetResultRegisterType(precise_type);
3311    }
3312  }
3313}
3314
3315void MethodVerifier::VerifyAGet(const Instruction* inst,
3316                                const RegType& insn_type, bool is_primitive) {
3317  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3318  if (!index_type.IsArrayIndexTypes()) {
3319    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3320  } else {
3321    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3322    if (array_type.IsZero()) {
3323      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3324      // instruction type. TODO: have a proper notion of bottom here.
3325      if (!is_primitive || insn_type.IsCategory1Types()) {
3326        // Reference or category 1
3327        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3328      } else {
3329        // Category 2
3330        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3331                                        reg_types_.FromCat2ConstHi(0, false));
3332      }
3333    } else if (!array_type.IsArrayTypes()) {
3334      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3335    } else {
3336      /* verify the class */
3337      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3338      if (!component_type.IsReferenceTypes() && !is_primitive) {
3339        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3340            << " source for aget-object";
3341      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3342        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3343            << " source for category 1 aget";
3344      } else if (is_primitive && !insn_type.Equals(component_type) &&
3345                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3346                 (insn_type.IsLong() && component_type.IsDouble()))) {
3347        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3348            << " incompatible with aget of type " << insn_type;
3349      } else {
3350        // Use knowledge of the field type which is stronger than the type inferred from the
3351        // instruction, which can't differentiate object types and ints from floats, longs from
3352        // doubles.
3353        if (!component_type.IsLowHalf()) {
3354          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3355        } else {
3356          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3357                                          component_type.HighHalf(&reg_types_));
3358        }
3359      }
3360    }
3361  }
3362}
3363
3364void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3365                                        const uint32_t vregA) {
3366  // Primitive assignability rules are weaker than regular assignability rules.
3367  bool instruction_compatible;
3368  bool value_compatible;
3369  const RegType& value_type = work_line_->GetRegisterType(vregA);
3370  if (target_type.IsIntegralTypes()) {
3371    instruction_compatible = target_type.Equals(insn_type);
3372    value_compatible = value_type.IsIntegralTypes();
3373  } else if (target_type.IsFloat()) {
3374    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3375    value_compatible = value_type.IsFloatTypes();
3376  } else if (target_type.IsLong()) {
3377    instruction_compatible = insn_type.IsLong();
3378    value_compatible = value_type.IsLongTypes();
3379  } else if (target_type.IsDouble()) {
3380    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3381    value_compatible = value_type.IsDoubleTypes();
3382  } else {
3383    instruction_compatible = false;  // reference with primitive store
3384    value_compatible = false;  // unused
3385  }
3386  if (!instruction_compatible) {
3387    // This is a global failure rather than a class change failure as the instructions and
3388    // the descriptors for the type should have been consistent within the same file at
3389    // compile time.
3390    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3391        << "' but expected type '" << target_type << "'";
3392    return;
3393  }
3394  if (!value_compatible) {
3395    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3396        << " of type " << value_type << " but expected " << target_type << " for put";
3397    return;
3398  }
3399}
3400
3401void MethodVerifier::VerifyAPut(const Instruction* inst,
3402                                const RegType& insn_type, bool is_primitive) {
3403  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3404  if (!index_type.IsArrayIndexTypes()) {
3405    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3406  } else {
3407    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3408    if (array_type.IsZero()) {
3409      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3410      // instruction type.
3411    } else if (!array_type.IsArrayTypes()) {
3412      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3413    } else {
3414      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3415      const uint32_t vregA = inst->VRegA_23x();
3416      if (is_primitive) {
3417        VerifyPrimitivePut(component_type, insn_type, vregA);
3418      } else {
3419        if (!component_type.IsReferenceTypes()) {
3420          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3421              << " source for aput-object";
3422        } else {
3423          // The instruction agrees with the type of array, confirm the value to be stored does too
3424          // Note: we use the instruction type (rather than the component type) for aput-object as
3425          // incompatible classes will be caught at runtime as an array store exception
3426          work_line_->VerifyRegisterType(vregA, insn_type);
3427        }
3428      }
3429    }
3430  }
3431}
3432
3433mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3434  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3435  // Check access to class
3436  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3437  if (klass_type.IsConflict()) {  // bad class
3438    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3439                                         field_idx, dex_file_->GetFieldName(field_id),
3440                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3441    return NULL;
3442  }
3443  if (klass_type.IsUnresolvedTypes()) {
3444    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3445  }
3446  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3447  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3448                                                          *class_loader_);
3449  if (field == NULL) {
3450    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3451              << dex_file_->GetFieldName(field_id) << ") in "
3452              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3453    DCHECK(Thread::Current()->IsExceptionPending());
3454    Thread::Current()->ClearException();
3455    return NULL;
3456  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3457                                                  field->GetAccessFlags())) {
3458    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3459                                    << " from " << GetDeclaringClass();
3460    return NULL;
3461  } else if (!field->IsStatic()) {
3462    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3463    return NULL;
3464  }
3465  return field;
3466}
3467
3468mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3469  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3470  // Check access to class
3471  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3472  if (klass_type.IsConflict()) {
3473    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3474                                         field_idx, dex_file_->GetFieldName(field_id),
3475                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3476    return NULL;
3477  }
3478  if (klass_type.IsUnresolvedTypes()) {
3479    return NULL;  // Can't resolve Class so no more to do here
3480  }
3481  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3482  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3483                                                          *class_loader_);
3484  if (field == NULL) {
3485    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3486              << dex_file_->GetFieldName(field_id) << ") in "
3487              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3488    DCHECK(Thread::Current()->IsExceptionPending());
3489    Thread::Current()->ClearException();
3490    return NULL;
3491  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3492                                                  field->GetAccessFlags())) {
3493    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3494                                    << " from " << GetDeclaringClass();
3495    return NULL;
3496  } else if (field->IsStatic()) {
3497    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3498                                    << " to not be static";
3499    return NULL;
3500  } else if (obj_type.IsZero()) {
3501    // Cannot infer and check type, however, access will cause null pointer exception
3502    return field;
3503  } else {
3504    mirror::Class* klass = field->GetDeclaringClass();
3505    const RegType& field_klass =
3506        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3507                             klass, klass->CannotBeAssignedFromOtherTypes());
3508    if (obj_type.IsUninitializedTypes() &&
3509        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3510            !field_klass.Equals(GetDeclaringClass()))) {
3511      // Field accesses through uninitialized references are only allowable for constructors where
3512      // the field is declared in this class
3513      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3514                                        << " of a not fully initialized object within the context"
3515                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3516      return NULL;
3517    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3518      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3519      // of C1. For resolution to occur the declared class of the field must be compatible with
3520      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3521      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3522                                  << " from object of type " << obj_type;
3523      return NULL;
3524    } else {
3525      return field;
3526    }
3527  }
3528}
3529
3530void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3531                                 bool is_primitive, bool is_static) {
3532  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3533  mirror::ArtField* field;
3534  if (is_static) {
3535    field = GetStaticField(field_idx);
3536  } else {
3537    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3538    field = GetInstanceField(object_type, field_idx);
3539  }
3540  const RegType* field_type = nullptr;
3541  if (field != NULL) {
3542    Thread* self = Thread::Current();
3543    mirror::Class* field_type_class;
3544    {
3545      StackHandleScope<1> hs(self);
3546      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3547      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3548    }
3549    if (field_type_class != nullptr) {
3550      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3551                                         field_type_class->CannotBeAssignedFromOtherTypes());
3552    } else {
3553      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3554      self->ClearException();
3555    }
3556  }
3557  if (field_type == nullptr) {
3558    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3559    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3560    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3561  }
3562  DCHECK(field_type != nullptr);
3563  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3564  if (is_primitive) {
3565    if (field_type->Equals(insn_type) ||
3566        (field_type->IsFloat() && insn_type.IsInteger()) ||
3567        (field_type->IsDouble() && insn_type.IsLong())) {
3568      // expected that read is of the correct primitive type or that int reads are reading
3569      // floats or long reads are reading doubles
3570    } else {
3571      // This is a global failure rather than a class change failure as the instructions and
3572      // the descriptors for the type should have been consistent within the same file at
3573      // compile time
3574      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3575                                        << " to be of type '" << insn_type
3576                                        << "' but found type '" << *field_type << "' in get";
3577      return;
3578    }
3579  } else {
3580    if (!insn_type.IsAssignableFrom(*field_type)) {
3581      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3582                                        << " to be compatible with type '" << insn_type
3583                                        << "' but found type '" << *field_type
3584                                        << "' in Get-object";
3585      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3586      return;
3587    }
3588  }
3589  if (!field_type->IsLowHalf()) {
3590    work_line_->SetRegisterType(vregA, *field_type);
3591  } else {
3592    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3593  }
3594}
3595
3596void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3597                                 bool is_primitive, bool is_static) {
3598  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3599  mirror::ArtField* field;
3600  if (is_static) {
3601    field = GetStaticField(field_idx);
3602  } else {
3603    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3604    field = GetInstanceField(object_type, field_idx);
3605  }
3606  const RegType* field_type = nullptr;
3607  if (field != NULL) {
3608    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3609      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3610                                      << " from other class " << GetDeclaringClass();
3611      return;
3612    }
3613    mirror::Class* field_type_class;
3614    {
3615      StackHandleScope<1> hs(Thread::Current());
3616      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3617      FieldHelper fh(h_field);
3618      field_type_class = fh.GetType(can_load_classes_);
3619    }
3620    if (field_type_class != nullptr) {
3621      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3622                                         field_type_class->CannotBeAssignedFromOtherTypes());
3623    } else {
3624      Thread* self = Thread::Current();
3625      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3626      self->ClearException();
3627    }
3628  }
3629  if (field_type == nullptr) {
3630    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3631    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3632    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3633  }
3634  DCHECK(field_type != nullptr);
3635  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3636  if (is_primitive) {
3637    VerifyPrimitivePut(*field_type, insn_type, vregA);
3638  } else {
3639    if (!insn_type.IsAssignableFrom(*field_type)) {
3640      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3641                                        << " to be compatible with type '" << insn_type
3642                                        << "' but found type '" << *field_type
3643                                        << "' in put-object";
3644      return;
3645    }
3646    work_line_->VerifyRegisterType(vregA, *field_type);
3647  }
3648}
3649
3650mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3651                                                      RegisterLine* reg_line) {
3652  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3653         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3654         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3655         inst->Opcode() == Instruction::IPUT_QUICK ||
3656         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3657         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3658  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3659  if (!object_type.HasClass()) {
3660    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3661    return nullptr;
3662  }
3663  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3664  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3665                                                                      field_offset);
3666  if (f == nullptr) {
3667    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3668                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3669  }
3670  return f;
3671}
3672
3673void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3674                                     bool is_primitive) {
3675  DCHECK(Runtime::Current()->IsStarted());
3676  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3677  if (field == NULL) {
3678    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3679    return;
3680  }
3681  mirror::Class* field_type_class;
3682  {
3683    StackHandleScope<1> hs(Thread::Current());
3684    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3685    FieldHelper fh(h_field);
3686    field_type_class = fh.GetType(can_load_classes_);
3687  }
3688  const RegType* field_type;
3689  if (field_type_class != nullptr) {
3690    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3691                                       field_type_class->CannotBeAssignedFromOtherTypes());
3692  } else {
3693    Thread* self = Thread::Current();
3694    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3695    self->ClearException();
3696    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3697                                            field->GetTypeDescriptor(), false);
3698  }
3699  DCHECK(field_type != nullptr);
3700  const uint32_t vregA = inst->VRegA_22c();
3701  if (is_primitive) {
3702    if (field_type->Equals(insn_type) ||
3703        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3704        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3705      // expected that read is of the correct primitive type or that int reads are reading
3706      // floats or long reads are reading doubles
3707    } else {
3708      // This is a global failure rather than a class change failure as the instructions and
3709      // the descriptors for the type should have been consistent within the same file at
3710      // compile time
3711      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3712                                        << " to be of type '" << insn_type
3713                                        << "' but found type '" << *field_type << "' in Get";
3714      return;
3715    }
3716  } else {
3717    if (!insn_type.IsAssignableFrom(*field_type)) {
3718      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3719                                        << " to be compatible with type '" << insn_type
3720                                        << "' but found type '" << *field_type
3721                                        << "' in get-object";
3722      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3723      return;
3724    }
3725  }
3726  if (!field_type->IsLowHalf()) {
3727    work_line_->SetRegisterType(vregA, *field_type);
3728  } else {
3729    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3730  }
3731}
3732
3733void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3734                                     bool is_primitive) {
3735  DCHECK(Runtime::Current()->IsStarted());
3736  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3737  if (field == NULL) {
3738    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3739    return;
3740  }
3741  const char* descriptor = field->GetTypeDescriptor();
3742  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3743  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3744  if (field != NULL) {
3745    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3746      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3747                                      << " from other class " << GetDeclaringClass();
3748      return;
3749    }
3750  }
3751  const uint32_t vregA = inst->VRegA_22c();
3752  if (is_primitive) {
3753    // Primitive field assignability rules are weaker than regular assignability rules
3754    bool instruction_compatible;
3755    bool value_compatible;
3756    const RegType& value_type = work_line_->GetRegisterType(vregA);
3757    if (field_type.IsIntegralTypes()) {
3758      instruction_compatible = insn_type.IsIntegralTypes();
3759      value_compatible = value_type.IsIntegralTypes();
3760    } else if (field_type.IsFloat()) {
3761      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3762      value_compatible = value_type.IsFloatTypes();
3763    } else if (field_type.IsLong()) {
3764      instruction_compatible = insn_type.IsLong();
3765      value_compatible = value_type.IsLongTypes();
3766    } else if (field_type.IsDouble()) {
3767      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3768      value_compatible = value_type.IsDoubleTypes();
3769    } else {
3770      instruction_compatible = false;  // reference field with primitive store
3771      value_compatible = false;  // unused
3772    }
3773    if (!instruction_compatible) {
3774      // This is a global failure rather than a class change failure as the instructions and
3775      // the descriptors for the type should have been consistent within the same file at
3776      // compile time
3777      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3778                                        << " to be of type '" << insn_type
3779                                        << "' but found type '" << field_type
3780                                        << "' in put";
3781      return;
3782    }
3783    if (!value_compatible) {
3784      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3785          << " of type " << value_type
3786          << " but expected " << field_type
3787          << " for store to " << PrettyField(field) << " in put";
3788      return;
3789    }
3790  } else {
3791    if (!insn_type.IsAssignableFrom(field_type)) {
3792      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3793                                        << " to be compatible with type '" << insn_type
3794                                        << "' but found type '" << field_type
3795                                        << "' in put-object";
3796      return;
3797    }
3798    work_line_->VerifyRegisterType(vregA, field_type);
3799  }
3800}
3801
3802bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3803  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3804    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3805    return false;
3806  }
3807  return true;
3808}
3809
3810bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3811  bool changed = true;
3812  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3813  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3814    /*
3815     * We haven't processed this instruction before, and we haven't touched the registers here, so
3816     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3817     * only way a register can transition out of "unknown", so this is not just an optimization.)
3818     */
3819    if (!insn_flags_[next_insn].IsReturn()) {
3820      target_line->CopyFromLine(merge_line);
3821    } else {
3822      // Verify that the monitor stack is empty on return.
3823      if (!merge_line->VerifyMonitorStackEmpty()) {
3824        return false;
3825      }
3826      // For returns we only care about the operand to the return, all other registers are dead.
3827      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3828      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3829      Instruction::Code opcode = ret_inst->Opcode();
3830      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3831        target_line->MarkAllRegistersAsConflicts();
3832      } else {
3833        target_line->CopyFromLine(merge_line);
3834        if (opcode == Instruction::RETURN_WIDE) {
3835          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3836        } else {
3837          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3838        }
3839      }
3840    }
3841  } else {
3842    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
3843                                 RegisterLine::Create(target_line->NumRegs(), this) :
3844                                 NULL);
3845    if (gDebugVerify) {
3846      copy->CopyFromLine(target_line);
3847    }
3848    changed = target_line->MergeRegisters(merge_line);
3849    if (have_pending_hard_failure_) {
3850      return false;
3851    }
3852    if (gDebugVerify && changed) {
3853      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3854                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3855                      << *copy.get() << "  MERGE\n"
3856                      << *merge_line << "  ==\n"
3857                      << *target_line << "\n";
3858    }
3859  }
3860  if (changed) {
3861    insn_flags_[next_insn].SetChanged();
3862  }
3863  return true;
3864}
3865
3866InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3867  return &insn_flags_[work_insn_idx_];
3868}
3869
3870const RegType& MethodVerifier::GetMethodReturnType() {
3871  if (return_type_ == nullptr) {
3872    if (mirror_method_ != NULL) {
3873      Thread* self = Thread::Current();
3874      StackHandleScope<1> hs(self);
3875      mirror::Class* return_type_class;
3876      {
3877        HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
3878        return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
3879      }
3880      if (return_type_class != nullptr) {
3881        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
3882                                             return_type_class,
3883                                             return_type_class->CannotBeAssignedFromOtherTypes());
3884      } else {
3885        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3886        self->ClearException();
3887      }
3888    }
3889    if (return_type_ == nullptr) {
3890      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3891      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3892      uint16_t return_type_idx = proto_id.return_type_idx_;
3893      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3894      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3895    }
3896  }
3897  return *return_type_;
3898}
3899
3900const RegType& MethodVerifier::GetDeclaringClass() {
3901  if (declaring_class_ == NULL) {
3902    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3903    const char* descriptor
3904        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3905    if (mirror_method_ != NULL) {
3906      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3907      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3908                                               klass->CannotBeAssignedFromOtherTypes());
3909    } else {
3910      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3911    }
3912  }
3913  return *declaring_class_;
3914}
3915
3916std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3917  RegisterLine* line = reg_table_.GetLine(dex_pc);
3918  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3919  std::vector<int32_t> result;
3920  for (size_t i = 0; i < line->NumRegs(); ++i) {
3921    const RegType& type = line->GetRegisterType(i);
3922    if (type.IsConstant()) {
3923      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3924      result.push_back(type.ConstantValue());
3925    } else if (type.IsConstantLo()) {
3926      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3927      result.push_back(type.ConstantValueLo());
3928    } else if (type.IsConstantHi()) {
3929      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3930      result.push_back(type.ConstantValueHi());
3931    } else if (type.IsIntegralTypes()) {
3932      result.push_back(kIntVReg);
3933      result.push_back(0);
3934    } else if (type.IsFloat()) {
3935      result.push_back(kFloatVReg);
3936      result.push_back(0);
3937    } else if (type.IsLong()) {
3938      result.push_back(kLongLoVReg);
3939      result.push_back(0);
3940      result.push_back(kLongHiVReg);
3941      result.push_back(0);
3942      ++i;
3943    } else if (type.IsDouble()) {
3944      result.push_back(kDoubleLoVReg);
3945      result.push_back(0);
3946      result.push_back(kDoubleHiVReg);
3947      result.push_back(0);
3948      ++i;
3949    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
3950      result.push_back(kUndefined);
3951      result.push_back(0);
3952    } else {
3953      CHECK(type.IsNonZeroReferenceTypes());
3954      result.push_back(kReferenceVReg);
3955      result.push_back(0);
3956    }
3957  }
3958  return result;
3959}
3960
3961const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
3962  if (precise) {
3963    // Precise constant type.
3964    return reg_types_.FromCat1Const(value, true);
3965  } else {
3966    // Imprecise constant type.
3967    if (value < -32768) {
3968      return reg_types_.IntConstant();
3969    } else if (value < -128) {
3970      return reg_types_.ShortConstant();
3971    } else if (value < 0) {
3972      return reg_types_.ByteConstant();
3973    } else if (value == 0) {
3974      return reg_types_.Zero();
3975    } else if (value == 1) {
3976      return reg_types_.One();
3977    } else if (value < 128) {
3978      return reg_types_.PosByteConstant();
3979    } else if (value < 32768) {
3980      return reg_types_.PosShortConstant();
3981    } else if (value < 65536) {
3982      return reg_types_.CharConstant();
3983    } else {
3984      return reg_types_.IntConstant();
3985    }
3986  }
3987}
3988
3989void MethodVerifier::Init() {
3990  art::verifier::RegTypeCache::Init();
3991}
3992
3993void MethodVerifier::Shutdown() {
3994  verifier::RegTypeCache::ShutDown();
3995}
3996
3997void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
3998  reg_types_.VisitRoots(callback, arg);
3999}
4000
4001}  // namespace verifier
4002}  // namespace art
4003