method_verifier.cc revision 2ed76f95dd5a7edada82407a1853be803c9853a9
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "sirt_ref-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  ClassHelper kh(klass);
97  const DexFile& dex_file = kh.GetDexFile();
98  const DexFile::ClassDef* class_def = kh.GetClassDef();
99  mirror::Class* super = klass->GetSuperClass();
100  if (super == NULL && strcmp("Ljava/lang/Object;", kh.GetDescriptor()) != 0) {
101    early_failure = true;
102    failure_message = " that has no super class";
103  } else if (super != NULL && super->IsFinal()) {
104    early_failure = true;
105    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
106  } else if (class_def == NULL) {
107    early_failure = true;
108    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
109  }
110  if (early_failure) {
111    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
112    if (Runtime::Current()->IsCompiler()) {
113      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
114      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
115    }
116    return kHardFailure;
117  }
118  Thread* self = Thread::Current();
119  SirtRef<mirror::DexCache> dex_cache(self, kh.GetDexCache());
120  SirtRef<mirror::ClassLoader> class_loader(self, klass->GetClassLoader());
121  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
122}
123
124MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
125                                                        SirtRef<mirror::DexCache>& dex_cache,
126                                                        SirtRef<mirror::ClassLoader>& class_loader,
127                                                        const DexFile::ClassDef* class_def,
128                                                        bool allow_soft_failures,
129                                                        std::string* error) {
130  DCHECK(class_def != nullptr);
131  const byte* class_data = dex_file->GetClassData(*class_def);
132  if (class_data == NULL) {
133    // empty class, probably a marker interface
134    return kNoFailure;
135  }
136  ClassDataItemIterator it(*dex_file, class_data);
137  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
138    it.Next();
139  }
140  size_t error_count = 0;
141  bool hard_fail = false;
142  ClassLinker* linker = Runtime::Current()->GetClassLinker();
143  int64_t previous_direct_method_idx = -1;
144  while (it.HasNextDirectMethod()) {
145    uint32_t method_idx = it.GetMemberIndex();
146    if (method_idx == previous_direct_method_idx) {
147      // smali can create dex files with two encoded_methods sharing the same method_idx
148      // http://code.google.com/p/smali/issues/detail?id=119
149      it.Next();
150      continue;
151    }
152    previous_direct_method_idx = method_idx;
153    InvokeType type = it.GetMethodInvokeType(*class_def);
154    mirror::ArtMethod* method =
155        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures);
170    if (result != kNoFailure) {
171      if (result == kHardFailure) {
172        hard_fail = true;
173        if (error_count > 0) {
174          *error += "\n";
175        }
176        *error = "Verifier rejected class ";
177        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
178        *error += " due to bad method ";
179        *error += PrettyMethod(method_idx, *dex_file);
180      }
181      ++error_count;
182    }
183    it.Next();
184  }
185  int64_t previous_virtual_method_idx = -1;
186  while (it.HasNextVirtualMethod()) {
187    uint32_t method_idx = it.GetMemberIndex();
188    if (method_idx == previous_virtual_method_idx) {
189      // smali can create dex files with two encoded_methods sharing the same method_idx
190      // http://code.google.com/p/smali/issues/detail?id=119
191      it.Next();
192      continue;
193    }
194    previous_virtual_method_idx = method_idx;
195    InvokeType type = it.GetMethodInvokeType(*class_def);
196    mirror::ArtMethod* method =
197        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
198    if (method == NULL) {
199      DCHECK(Thread::Current()->IsExceptionPending());
200      // We couldn't resolve the method, but continue regardless.
201      Thread::Current()->ClearException();
202    }
203    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
204                                                      dex_file,
205                                                      dex_cache,
206                                                      class_loader,
207                                                      class_def,
208                                                      it.GetMethodCodeItem(),
209                                                      method,
210                                                      it.GetMemberAccessFlags(),
211                                                      allow_soft_failures);
212    if (result != kNoFailure) {
213      if (result == kHardFailure) {
214        hard_fail = true;
215        if (error_count > 0) {
216          *error += "\n";
217        }
218        *error = "Verifier rejected class ";
219        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
220        *error += " due to bad method ";
221        *error += PrettyMethod(method_idx, *dex_file);
222      }
223      ++error_count;
224    }
225    it.Next();
226  }
227  if (error_count == 0) {
228    return kNoFailure;
229  } else {
230    return hard_fail ? kHardFailure : kSoftFailure;
231  }
232}
233
234MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
235                                                         const DexFile* dex_file,
236                                                         SirtRef<mirror::DexCache>& dex_cache,
237                                                         SirtRef<mirror::ClassLoader>& class_loader,
238                                                         const DexFile::ClassDef* class_def,
239                                                         const DexFile::CodeItem* code_item,
240                                                         mirror::ArtMethod* method,
241                                                         uint32_t method_access_flags,
242                                                         bool allow_soft_failures) {
243  MethodVerifier::FailureKind result = kNoFailure;
244  uint64_t start_ns = NanoTime();
245
246  MethodVerifier verifier_(dex_file, &dex_cache, &class_loader, class_def, code_item,
247                           method_idx, method, method_access_flags, true, allow_soft_failures);
248  if (verifier_.Verify()) {
249    // Verification completed, however failures may be pending that didn't cause the verification
250    // to hard fail.
251    CHECK(!verifier_.have_pending_hard_failure_);
252    if (verifier_.failures_.size() != 0) {
253      if (VLOG_IS_ON(verifier)) {
254          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
255                                << PrettyMethod(method_idx, *dex_file) << "\n");
256      }
257      result = kSoftFailure;
258    }
259  } else {
260    // Bad method data.
261    CHECK_NE(verifier_.failures_.size(), 0U);
262    CHECK(verifier_.have_pending_hard_failure_);
263    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
264                                    << PrettyMethod(method_idx, *dex_file) << "\n");
265    if (gDebugVerify) {
266      std::cout << "\n" << verifier_.info_messages_.str();
267      verifier_.Dump(std::cout);
268    }
269    result = kHardFailure;
270  }
271  uint64_t duration_ns = NanoTime() - start_ns;
272  if (duration_ns > MsToNs(100)) {
273    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
274                 << " took " << PrettyDuration(duration_ns);
275  }
276  return result;
277}
278
279void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
280                                         const DexFile* dex_file,
281                                         SirtRef<mirror::DexCache>& dex_cache,
282                                         SirtRef<mirror::ClassLoader>& class_loader,
283                                         const DexFile::ClassDef* class_def,
284                                         const DexFile::CodeItem* code_item,
285                                         mirror::ArtMethod* method,
286                                         uint32_t method_access_flags) {
287  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
288                          dex_method_idx, method, method_access_flags, true, true);
289  verifier.Verify();
290  verifier.DumpFailures(os);
291  os << verifier.info_messages_.str();
292  verifier.Dump(os);
293}
294
295MethodVerifier::MethodVerifier(const DexFile* dex_file, SirtRef<mirror::DexCache>* dex_cache,
296                               SirtRef<mirror::ClassLoader>* class_loader,
297                               const DexFile::ClassDef* class_def,
298                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
299                               mirror::ArtMethod* method, uint32_t method_access_flags,
300                               bool can_load_classes, bool allow_soft_failures)
301    : reg_types_(can_load_classes),
302      work_insn_idx_(-1),
303      dex_method_idx_(dex_method_idx),
304      mirror_method_(method),
305      method_access_flags_(method_access_flags),
306      return_type_(nullptr),
307      dex_file_(dex_file),
308      dex_cache_(dex_cache),
309      class_loader_(class_loader),
310      class_def_(class_def),
311      code_item_(code_item),
312      declaring_class_(NULL),
313      interesting_dex_pc_(-1),
314      monitor_enter_dex_pcs_(nullptr),
315      have_pending_hard_failure_(false),
316      have_pending_runtime_throw_failure_(false),
317      new_instance_count_(0),
318      monitor_enter_count_(0),
319      can_load_classes_(can_load_classes),
320      allow_soft_failures_(allow_soft_failures),
321      has_check_casts_(false),
322      has_virtual_or_interface_invokes_(false) {
323  Runtime::Current()->AddMethodVerifier(this);
324  DCHECK(class_def != nullptr);
325}
326
327MethodVerifier::~MethodVerifier() {
328  Runtime::Current()->RemoveMethodVerifier(this);
329  STLDeleteElements(&failure_messages_);
330}
331
332void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
333                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
334  MethodHelper mh(m);
335  Thread* self = Thread::Current();
336  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
337  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
338  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
339                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
340                          true);
341  verifier.interesting_dex_pc_ = dex_pc;
342  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
343  verifier.FindLocksAtDexPc();
344}
345
346void MethodVerifier::FindLocksAtDexPc() {
347  CHECK(monitor_enter_dex_pcs_ != NULL);
348  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
349
350  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
351  // verification. In practice, the phase we want relies on data structures set up by all the
352  // earlier passes, so we just run the full method verification and bail out early when we've
353  // got what we wanted.
354  Verify();
355}
356
357mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
358                                                        uint32_t dex_pc) {
359  MethodHelper mh(m);
360  Thread* self = Thread::Current();
361  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
362  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
363  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
364                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
365                          true);
366  return verifier.FindAccessedFieldAtDexPc(dex_pc);
367}
368
369mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
370  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
371
372  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
373  // verification. In practice, the phase we want relies on data structures set up by all the
374  // earlier passes, so we just run the full method verification and bail out early when we've
375  // got what we wanted.
376  bool success = Verify();
377  if (!success) {
378    return nullptr;
379  }
380  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
381  if (register_line == NULL) {
382    return nullptr;
383  }
384  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
385  return GetQuickFieldAccess(inst, register_line);
386}
387
388mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
389                                                            uint32_t dex_pc) {
390  MethodHelper mh(m);
391  Thread* self = Thread::Current();
392  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
393  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
394  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
395                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
396                          true);
397  return verifier.FindInvokedMethodAtDexPc(dex_pc);
398}
399
400mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
401  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
402
403  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
404  // verification. In practice, the phase we want relies on data structures set up by all the
405  // earlier passes, so we just run the full method verification and bail out early when we've
406  // got what we wanted.
407  bool success = Verify();
408  if (!success) {
409    return NULL;
410  }
411  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
412  if (register_line == NULL) {
413    return NULL;
414  }
415  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
416  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
417  return GetQuickInvokedMethod(inst, register_line, is_range);
418}
419
420bool MethodVerifier::Verify() {
421  // If there aren't any instructions, make sure that's expected, then exit successfully.
422  if (code_item_ == NULL) {
423    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
424      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
425      return false;
426    } else {
427      return true;
428    }
429  }
430  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
431  if (code_item_->ins_size_ > code_item_->registers_size_) {
432    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
433                                      << " regs=" << code_item_->registers_size_;
434    return false;
435  }
436  // Allocate and initialize an array to hold instruction data.
437  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
438  // Run through the instructions and see if the width checks out.
439  bool result = ComputeWidthsAndCountOps();
440  // Flag instructions guarded by a "try" block and check exception handlers.
441  result = result && ScanTryCatchBlocks();
442  // Perform static instruction verification.
443  result = result && VerifyInstructions();
444  // Perform code-flow analysis and return.
445  result = result && VerifyCodeFlow();
446  // Compute information for compiler.
447  if (result && Runtime::Current()->IsCompiler()) {
448    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
449  }
450  return result;
451}
452
453std::ostream& MethodVerifier::Fail(VerifyError error) {
454  switch (error) {
455    case VERIFY_ERROR_NO_CLASS:
456    case VERIFY_ERROR_NO_FIELD:
457    case VERIFY_ERROR_NO_METHOD:
458    case VERIFY_ERROR_ACCESS_CLASS:
459    case VERIFY_ERROR_ACCESS_FIELD:
460    case VERIFY_ERROR_ACCESS_METHOD:
461    case VERIFY_ERROR_INSTANTIATION:
462    case VERIFY_ERROR_CLASS_CHANGE:
463      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
464        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
465        // class change and instantiation errors into soft verification errors so that we re-verify
466        // at runtime. We may fail to find or to agree on access because of not yet available class
467        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
468        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
469        // paths" that dynamically perform the verification and cause the behavior to be that akin
470        // to an interpreter.
471        error = VERIFY_ERROR_BAD_CLASS_SOFT;
472      } else {
473        // If we fail again at runtime, mark that this instruction would throw and force this
474        // method to be executed using the interpreter with checks.
475        have_pending_runtime_throw_failure_ = true;
476      }
477      break;
478      // Indication that verification should be retried at runtime.
479    case VERIFY_ERROR_BAD_CLASS_SOFT:
480      if (!allow_soft_failures_) {
481        have_pending_hard_failure_ = true;
482      }
483      break;
484      // Hard verification failures at compile time will still fail at runtime, so the class is
485      // marked as rejected to prevent it from being compiled.
486    case VERIFY_ERROR_BAD_CLASS_HARD: {
487      if (Runtime::Current()->IsCompiler()) {
488        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
489        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
490      }
491      have_pending_hard_failure_ = true;
492      break;
493    }
494  }
495  failures_.push_back(error);
496  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
497                                    work_insn_idx_));
498  std::ostringstream* failure_message = new std::ostringstream(location);
499  failure_messages_.push_back(failure_message);
500  return *failure_message;
501}
502
503void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
504  size_t failure_num = failure_messages_.size();
505  DCHECK_NE(failure_num, 0U);
506  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
507  prepend += last_fail_message->str();
508  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
509  delete last_fail_message;
510}
511
512void MethodVerifier::AppendToLastFailMessage(std::string append) {
513  size_t failure_num = failure_messages_.size();
514  DCHECK_NE(failure_num, 0U);
515  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
516  (*last_fail_message) << append;
517}
518
519bool MethodVerifier::ComputeWidthsAndCountOps() {
520  const uint16_t* insns = code_item_->insns_;
521  size_t insns_size = code_item_->insns_size_in_code_units_;
522  const Instruction* inst = Instruction::At(insns);
523  size_t new_instance_count = 0;
524  size_t monitor_enter_count = 0;
525  size_t dex_pc = 0;
526
527  while (dex_pc < insns_size) {
528    Instruction::Code opcode = inst->Opcode();
529    switch (opcode) {
530      case Instruction::APUT_OBJECT:
531      case Instruction::CHECK_CAST:
532        has_check_casts_ = true;
533        break;
534      case Instruction::INVOKE_VIRTUAL:
535      case Instruction::INVOKE_VIRTUAL_RANGE:
536      case Instruction::INVOKE_INTERFACE:
537      case Instruction::INVOKE_INTERFACE_RANGE:
538        has_virtual_or_interface_invokes_ = true;
539        break;
540      case Instruction::MONITOR_ENTER:
541        monitor_enter_count++;
542        break;
543      case Instruction::NEW_INSTANCE:
544        new_instance_count++;
545        break;
546      default:
547        break;
548    }
549    size_t inst_size = inst->SizeInCodeUnits();
550    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
551    dex_pc += inst_size;
552    inst = inst->Next();
553  }
554
555  if (dex_pc != insns_size) {
556    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
557                                      << dex_pc << " vs. " << insns_size << ")";
558    return false;
559  }
560
561  new_instance_count_ = new_instance_count;
562  monitor_enter_count_ = monitor_enter_count;
563  return true;
564}
565
566bool MethodVerifier::ScanTryCatchBlocks() {
567  uint32_t tries_size = code_item_->tries_size_;
568  if (tries_size == 0) {
569    return true;
570  }
571  uint32_t insns_size = code_item_->insns_size_in_code_units_;
572  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
573
574  for (uint32_t idx = 0; idx < tries_size; idx++) {
575    const DexFile::TryItem* try_item = &tries[idx];
576    uint32_t start = try_item->start_addr_;
577    uint32_t end = start + try_item->insn_count_;
578    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
579      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
580                                        << " endAddr=" << end << " (size=" << insns_size << ")";
581      return false;
582    }
583    if (!insn_flags_[start].IsOpcode()) {
584      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
585          << "'try' block starts inside an instruction (" << start << ")";
586      return false;
587    }
588    for (uint32_t dex_pc = start; dex_pc < end;
589        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
590      insn_flags_[dex_pc].SetInTry();
591    }
592  }
593  // Iterate over each of the handlers to verify target addresses.
594  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
595  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
596  ClassLinker* linker = Runtime::Current()->GetClassLinker();
597  for (uint32_t idx = 0; idx < handlers_size; idx++) {
598    CatchHandlerIterator iterator(handlers_ptr);
599    for (; iterator.HasNext(); iterator.Next()) {
600      uint32_t dex_pc= iterator.GetHandlerAddress();
601      if (!insn_flags_[dex_pc].IsOpcode()) {
602        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
603            << "exception handler starts at bad address (" << dex_pc << ")";
604        return false;
605      }
606      insn_flags_[dex_pc].SetBranchTarget();
607      // Ensure exception types are resolved so that they don't need resolution to be delivered,
608      // unresolved exception types will be ignored by exception delivery
609      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
610        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
611                                                            iterator.GetHandlerTypeIndex(),
612                                                            *dex_cache_, *class_loader_);
613        if (exception_type == NULL) {
614          DCHECK(Thread::Current()->IsExceptionPending());
615          Thread::Current()->ClearException();
616        }
617      }
618    }
619    handlers_ptr = iterator.EndDataPointer();
620  }
621  return true;
622}
623
624bool MethodVerifier::VerifyInstructions() {
625  const Instruction* inst = Instruction::At(code_item_->insns_);
626
627  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
628  insn_flags_[0].SetBranchTarget();
629  insn_flags_[0].SetCompileTimeInfoPoint();
630
631  uint32_t insns_size = code_item_->insns_size_in_code_units_;
632  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
633    if (!VerifyInstruction(inst, dex_pc)) {
634      DCHECK_NE(failures_.size(), 0U);
635      return false;
636    }
637    /* Flag instructions that are garbage collection points */
638    // All invoke points are marked as "Throw" points already.
639    // We are relying on this to also count all the invokes as interesting.
640    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
641      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
642    } else if (inst->IsReturn()) {
643      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
644    }
645    dex_pc += inst->SizeInCodeUnits();
646    inst = inst->Next();
647  }
648  return true;
649}
650
651bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
652  DecodedInstruction dec_insn(inst);
653  bool result = true;
654  switch (inst->GetVerifyTypeArgumentA()) {
655    case Instruction::kVerifyRegA:
656      result = result && CheckRegisterIndex(dec_insn.vA);
657      break;
658    case Instruction::kVerifyRegAWide:
659      result = result && CheckWideRegisterIndex(dec_insn.vA);
660      break;
661  }
662  switch (inst->GetVerifyTypeArgumentB()) {
663    case Instruction::kVerifyRegB:
664      result = result && CheckRegisterIndex(dec_insn.vB);
665      break;
666    case Instruction::kVerifyRegBField:
667      result = result && CheckFieldIndex(dec_insn.vB);
668      break;
669    case Instruction::kVerifyRegBMethod:
670      result = result && CheckMethodIndex(dec_insn.vB);
671      break;
672    case Instruction::kVerifyRegBNewInstance:
673      result = result && CheckNewInstance(dec_insn.vB);
674      break;
675    case Instruction::kVerifyRegBString:
676      result = result && CheckStringIndex(dec_insn.vB);
677      break;
678    case Instruction::kVerifyRegBType:
679      result = result && CheckTypeIndex(dec_insn.vB);
680      break;
681    case Instruction::kVerifyRegBWide:
682      result = result && CheckWideRegisterIndex(dec_insn.vB);
683      break;
684  }
685  switch (inst->GetVerifyTypeArgumentC()) {
686    case Instruction::kVerifyRegC:
687      result = result && CheckRegisterIndex(dec_insn.vC);
688      break;
689    case Instruction::kVerifyRegCField:
690      result = result && CheckFieldIndex(dec_insn.vC);
691      break;
692    case Instruction::kVerifyRegCNewArray:
693      result = result && CheckNewArray(dec_insn.vC);
694      break;
695    case Instruction::kVerifyRegCType:
696      result = result && CheckTypeIndex(dec_insn.vC);
697      break;
698    case Instruction::kVerifyRegCWide:
699      result = result && CheckWideRegisterIndex(dec_insn.vC);
700      break;
701  }
702  switch (inst->GetVerifyExtraFlags()) {
703    case Instruction::kVerifyArrayData:
704      result = result && CheckArrayData(code_offset);
705      break;
706    case Instruction::kVerifyBranchTarget:
707      result = result && CheckBranchTarget(code_offset);
708      break;
709    case Instruction::kVerifySwitchTargets:
710      result = result && CheckSwitchTargets(code_offset);
711      break;
712    case Instruction::kVerifyVarArg:
713      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
714      break;
715    case Instruction::kVerifyVarArgRange:
716      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
717      break;
718    case Instruction::kVerifyError:
719      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
720      result = false;
721      break;
722  }
723  return result;
724}
725
726bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
727  if (idx >= code_item_->registers_size_) {
728    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
729                                      << code_item_->registers_size_ << ")";
730    return false;
731  }
732  return true;
733}
734
735bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
736  if (idx + 1 >= code_item_->registers_size_) {
737    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
738                                      << "+1 >= " << code_item_->registers_size_ << ")";
739    return false;
740  }
741  return true;
742}
743
744bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
745  if (idx >= dex_file_->GetHeader().field_ids_size_) {
746    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
747                                      << dex_file_->GetHeader().field_ids_size_ << ")";
748    return false;
749  }
750  return true;
751}
752
753bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
754  if (idx >= dex_file_->GetHeader().method_ids_size_) {
755    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
756                                      << dex_file_->GetHeader().method_ids_size_ << ")";
757    return false;
758  }
759  return true;
760}
761
762bool MethodVerifier::CheckNewInstance(uint32_t idx) {
763  if (idx >= dex_file_->GetHeader().type_ids_size_) {
764    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
765                                      << dex_file_->GetHeader().type_ids_size_ << ")";
766    return false;
767  }
768  // We don't need the actual class, just a pointer to the class name.
769  const char* descriptor = dex_file_->StringByTypeIdx(idx);
770  if (descriptor[0] != 'L') {
771    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
772    return false;
773  }
774  return true;
775}
776
777bool MethodVerifier::CheckStringIndex(uint32_t idx) {
778  if (idx >= dex_file_->GetHeader().string_ids_size_) {
779    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
780                                      << dex_file_->GetHeader().string_ids_size_ << ")";
781    return false;
782  }
783  return true;
784}
785
786bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
787  if (idx >= dex_file_->GetHeader().type_ids_size_) {
788    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
789                                      << dex_file_->GetHeader().type_ids_size_ << ")";
790    return false;
791  }
792  return true;
793}
794
795bool MethodVerifier::CheckNewArray(uint32_t idx) {
796  if (idx >= dex_file_->GetHeader().type_ids_size_) {
797    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
798                                      << dex_file_->GetHeader().type_ids_size_ << ")";
799    return false;
800  }
801  int bracket_count = 0;
802  const char* descriptor = dex_file_->StringByTypeIdx(idx);
803  const char* cp = descriptor;
804  while (*cp++ == '[') {
805    bracket_count++;
806  }
807  if (bracket_count == 0) {
808    /* The given class must be an array type. */
809    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
810        << "can't new-array class '" << descriptor << "' (not an array)";
811    return false;
812  } else if (bracket_count > 255) {
813    /* It is illegal to create an array of more than 255 dimensions. */
814    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
815        << "can't new-array class '" << descriptor << "' (exceeds limit)";
816    return false;
817  }
818  return true;
819}
820
821bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
822  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
823  const uint16_t* insns = code_item_->insns_ + cur_offset;
824  const uint16_t* array_data;
825  int32_t array_data_offset;
826
827  DCHECK_LT(cur_offset, insn_count);
828  /* make sure the start of the array data table is in range */
829  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
830  if ((int32_t) cur_offset + array_data_offset < 0 ||
831      cur_offset + array_data_offset + 2 >= insn_count) {
832    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
833                                      << ", data offset " << array_data_offset
834                                      << ", count " << insn_count;
835    return false;
836  }
837  /* offset to array data table is a relative branch-style offset */
838  array_data = insns + array_data_offset;
839  /* make sure the table is 32-bit aligned */
840  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
841    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
842                                      << ", data offset " << array_data_offset;
843    return false;
844  }
845  uint32_t value_width = array_data[1];
846  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
847  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
848  /* make sure the end of the switch is in range */
849  if (cur_offset + array_data_offset + table_size > insn_count) {
850    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
851                                      << ", data offset " << array_data_offset << ", end "
852                                      << cur_offset + array_data_offset + table_size
853                                      << ", count " << insn_count;
854    return false;
855  }
856  return true;
857}
858
859bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
860  int32_t offset;
861  bool isConditional, selfOkay;
862  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
863    return false;
864  }
865  if (!selfOkay && offset == 0) {
866    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
867                                      << reinterpret_cast<void*>(cur_offset);
868    return false;
869  }
870  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
871  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
872  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
873    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
874                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
875    return false;
876  }
877  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
878  int32_t abs_offset = cur_offset + offset;
879  if (abs_offset < 0 ||
880      (uint32_t) abs_offset >= insn_count ||
881      !insn_flags_[abs_offset].IsOpcode()) {
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
883                                      << reinterpret_cast<void*>(abs_offset) << ") at "
884                                      << reinterpret_cast<void*>(cur_offset);
885    return false;
886  }
887  insn_flags_[abs_offset].SetBranchTarget();
888  return true;
889}
890
891bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
892                                  bool* selfOkay) {
893  const uint16_t* insns = code_item_->insns_ + cur_offset;
894  *pConditional = false;
895  *selfOkay = false;
896  switch (*insns & 0xff) {
897    case Instruction::GOTO:
898      *pOffset = ((int16_t) *insns) >> 8;
899      break;
900    case Instruction::GOTO_32:
901      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
902      *selfOkay = true;
903      break;
904    case Instruction::GOTO_16:
905      *pOffset = (int16_t) insns[1];
906      break;
907    case Instruction::IF_EQ:
908    case Instruction::IF_NE:
909    case Instruction::IF_LT:
910    case Instruction::IF_GE:
911    case Instruction::IF_GT:
912    case Instruction::IF_LE:
913    case Instruction::IF_EQZ:
914    case Instruction::IF_NEZ:
915    case Instruction::IF_LTZ:
916    case Instruction::IF_GEZ:
917    case Instruction::IF_GTZ:
918    case Instruction::IF_LEZ:
919      *pOffset = (int16_t) insns[1];
920      *pConditional = true;
921      break;
922    default:
923      return false;
924      break;
925  }
926  return true;
927}
928
929bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
930  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
931  DCHECK_LT(cur_offset, insn_count);
932  const uint16_t* insns = code_item_->insns_ + cur_offset;
933  /* make sure the start of the switch is in range */
934  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
935  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
936    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
937                                      << ", switch offset " << switch_offset
938                                      << ", count " << insn_count;
939    return false;
940  }
941  /* offset to switch table is a relative branch-style offset */
942  const uint16_t* switch_insns = insns + switch_offset;
943  /* make sure the table is 32-bit aligned */
944  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
945    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
946                                      << ", switch offset " << switch_offset;
947    return false;
948  }
949  uint32_t switch_count = switch_insns[1];
950  int32_t keys_offset, targets_offset;
951  uint16_t expected_signature;
952  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
953    /* 0=sig, 1=count, 2/3=firstKey */
954    targets_offset = 4;
955    keys_offset = -1;
956    expected_signature = Instruction::kPackedSwitchSignature;
957  } else {
958    /* 0=sig, 1=count, 2..count*2 = keys */
959    keys_offset = 2;
960    targets_offset = 2 + 2 * switch_count;
961    expected_signature = Instruction::kSparseSwitchSignature;
962  }
963  uint32_t table_size = targets_offset + switch_count * 2;
964  if (switch_insns[0] != expected_signature) {
965    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
966        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
967                        switch_insns[0], expected_signature);
968    return false;
969  }
970  /* make sure the end of the switch is in range */
971  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
972    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
973                                      << ", switch offset " << switch_offset
974                                      << ", end " << (cur_offset + switch_offset + table_size)
975                                      << ", count " << insn_count;
976    return false;
977  }
978  /* for a sparse switch, verify the keys are in ascending order */
979  if (keys_offset > 0 && switch_count > 1) {
980    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
981    for (uint32_t targ = 1; targ < switch_count; targ++) {
982      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
983                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
984      if (key <= last_key) {
985        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
986                                          << ", this=" << key;
987        return false;
988      }
989      last_key = key;
990    }
991  }
992  /* verify each switch target */
993  for (uint32_t targ = 0; targ < switch_count; targ++) {
994    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
995                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
996    int32_t abs_offset = cur_offset + offset;
997    if (abs_offset < 0 ||
998        abs_offset >= (int32_t) insn_count ||
999        !insn_flags_[abs_offset].IsOpcode()) {
1000      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1001                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1002                                        << reinterpret_cast<void*>(cur_offset)
1003                                        << "[" << targ << "]";
1004      return false;
1005    }
1006    insn_flags_[abs_offset].SetBranchTarget();
1007  }
1008  return true;
1009}
1010
1011bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1012  if (vA > 5) {
1013    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1014    return false;
1015  }
1016  uint16_t registers_size = code_item_->registers_size_;
1017  for (uint32_t idx = 0; idx < vA; idx++) {
1018    if (arg[idx] >= registers_size) {
1019      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1020                                        << ") in non-range invoke (>= " << registers_size << ")";
1021      return false;
1022    }
1023  }
1024
1025  return true;
1026}
1027
1028bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1029  uint16_t registers_size = code_item_->registers_size_;
1030  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1031  // integer overflow when adding them here.
1032  if (vA + vC > registers_size) {
1033    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1034                                      << " in range invoke (> " << registers_size << ")";
1035    return false;
1036  }
1037  return true;
1038}
1039
1040bool MethodVerifier::VerifyCodeFlow() {
1041  uint16_t registers_size = code_item_->registers_size_;
1042  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1043
1044  if (registers_size * insns_size > 4*1024*1024) {
1045    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1046                 << " insns_size=" << insns_size << ")";
1047  }
1048  /* Create and initialize table holding register status */
1049  reg_table_.Init(kTrackCompilerInterestPoints,
1050                  insn_flags_.get(),
1051                  insns_size,
1052                  registers_size,
1053                  this);
1054
1055
1056  work_line_.reset(RegisterLine::Create(registers_size, this));
1057  saved_line_.reset(RegisterLine::Create(registers_size, this));
1058
1059  /* Initialize register types of method arguments. */
1060  if (!SetTypesFromSignature()) {
1061    DCHECK_NE(failures_.size(), 0U);
1062    std::string prepend("Bad signature in ");
1063    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1064    PrependToLastFailMessage(prepend);
1065    return false;
1066  }
1067  /* Perform code flow verification. */
1068  if (!CodeFlowVerifyMethod()) {
1069    DCHECK_NE(failures_.size(), 0U);
1070    return false;
1071  }
1072  return true;
1073}
1074
1075std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1076  DCHECK_EQ(failures_.size(), failure_messages_.size());
1077  for (size_t i = 0; i < failures_.size(); ++i) {
1078      os << failure_messages_[i]->str() << "\n";
1079  }
1080  return os;
1081}
1082
1083extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1084    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1085  v->Dump(std::cerr);
1086}
1087
1088void MethodVerifier::Dump(std::ostream& os) {
1089  if (code_item_ == NULL) {
1090    os << "Native method\n";
1091    return;
1092  }
1093  {
1094    os << "Register Types:\n";
1095    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1096    std::ostream indent_os(&indent_filter);
1097    reg_types_.Dump(indent_os);
1098  }
1099  os << "Dumping instructions and register lines:\n";
1100  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1101  std::ostream indent_os(&indent_filter);
1102  const Instruction* inst = Instruction::At(code_item_->insns_);
1103  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1104      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1105    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1106    if (reg_line != NULL) {
1107      indent_os << reg_line->Dump() << "\n";
1108    }
1109    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1110    const bool kDumpHexOfInstruction = false;
1111    if (kDumpHexOfInstruction) {
1112      indent_os << inst->DumpHex(5) << " ";
1113    }
1114    indent_os << inst->DumpString(dex_file_) << "\n";
1115    inst = inst->Next();
1116  }
1117}
1118
1119static bool IsPrimitiveDescriptor(char descriptor) {
1120  switch (descriptor) {
1121    case 'I':
1122    case 'C':
1123    case 'S':
1124    case 'B':
1125    case 'Z':
1126    case 'F':
1127    case 'D':
1128    case 'J':
1129      return true;
1130    default:
1131      return false;
1132  }
1133}
1134
1135bool MethodVerifier::SetTypesFromSignature() {
1136  RegisterLine* reg_line = reg_table_.GetLine(0);
1137  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1138  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1139
1140  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1141  // Include the "this" pointer.
1142  size_t cur_arg = 0;
1143  if (!IsStatic()) {
1144    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1145    // argument as uninitialized. This restricts field access until the superclass constructor is
1146    // called.
1147    const RegType& declaring_class = GetDeclaringClass();
1148    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1149      reg_line->SetRegisterType(arg_start + cur_arg,
1150                                reg_types_.UninitializedThisArgument(declaring_class));
1151    } else {
1152      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1153    }
1154    cur_arg++;
1155  }
1156
1157  const DexFile::ProtoId& proto_id =
1158      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1159  DexFileParameterIterator iterator(*dex_file_, proto_id);
1160
1161  for (; iterator.HasNext(); iterator.Next()) {
1162    const char* descriptor = iterator.GetDescriptor();
1163    if (descriptor == NULL) {
1164      LOG(FATAL) << "Null descriptor";
1165    }
1166    if (cur_arg >= expected_args) {
1167      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1168                                        << " args, found more (" << descriptor << ")";
1169      return false;
1170    }
1171    switch (descriptor[0]) {
1172      case 'L':
1173      case '[':
1174        // We assume that reference arguments are initialized. The only way it could be otherwise
1175        // (assuming the caller was verified) is if the current method is <init>, but in that case
1176        // it's effectively considered initialized the instant we reach here (in the sense that we
1177        // can return without doing anything or call virtual methods).
1178        {
1179          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1180          if (!reg_type.IsNonZeroReferenceTypes()) {
1181            DCHECK(HasFailures());
1182            return false;
1183          }
1184          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1185        }
1186        break;
1187      case 'Z':
1188        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1189        break;
1190      case 'C':
1191        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1192        break;
1193      case 'B':
1194        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1195        break;
1196      case 'I':
1197        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1198        break;
1199      case 'S':
1200        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1201        break;
1202      case 'F':
1203        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1204        break;
1205      case 'J':
1206      case 'D': {
1207        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1208        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1209        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1210        cur_arg++;
1211        break;
1212      }
1213      default:
1214        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1215                                          << descriptor << "'";
1216        return false;
1217    }
1218    cur_arg++;
1219  }
1220  if (cur_arg != expected_args) {
1221    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1222                                      << " arguments, found " << cur_arg;
1223    return false;
1224  }
1225  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1226  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1227  // format. Only major difference from the method argument format is that 'V' is supported.
1228  bool result;
1229  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1230    result = descriptor[1] == '\0';
1231  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1232    size_t i = 0;
1233    do {
1234      i++;
1235    } while (descriptor[i] == '[');  // process leading [
1236    if (descriptor[i] == 'L') {  // object array
1237      do {
1238        i++;  // find closing ;
1239      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1240      result = descriptor[i] == ';';
1241    } else {  // primitive array
1242      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1243    }
1244  } else if (descriptor[0] == 'L') {
1245    // could be more thorough here, but shouldn't be required
1246    size_t i = 0;
1247    do {
1248      i++;
1249    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1250    result = descriptor[i] == ';';
1251  } else {
1252    result = false;
1253  }
1254  if (!result) {
1255    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1256                                      << descriptor << "'";
1257  }
1258  return result;
1259}
1260
1261bool MethodVerifier::CodeFlowVerifyMethod() {
1262  const uint16_t* insns = code_item_->insns_;
1263  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1264
1265  /* Begin by marking the first instruction as "changed". */
1266  insn_flags_[0].SetChanged();
1267  uint32_t start_guess = 0;
1268
1269  /* Continue until no instructions are marked "changed". */
1270  while (true) {
1271    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1272    uint32_t insn_idx = start_guess;
1273    for (; insn_idx < insns_size; insn_idx++) {
1274      if (insn_flags_[insn_idx].IsChanged())
1275        break;
1276    }
1277    if (insn_idx == insns_size) {
1278      if (start_guess != 0) {
1279        /* try again, starting from the top */
1280        start_guess = 0;
1281        continue;
1282      } else {
1283        /* all flags are clear */
1284        break;
1285      }
1286    }
1287    // We carry the working set of registers from instruction to instruction. If this address can
1288    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1289    // "changed" flags, we need to load the set of registers from the table.
1290    // Because we always prefer to continue on to the next instruction, we should never have a
1291    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1292    // target.
1293    work_insn_idx_ = insn_idx;
1294    if (insn_flags_[insn_idx].IsBranchTarget()) {
1295      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1296    } else {
1297#ifndef NDEBUG
1298      /*
1299       * Sanity check: retrieve the stored register line (assuming
1300       * a full table) and make sure it actually matches.
1301       */
1302      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1303      if (register_line != NULL) {
1304        if (work_line_->CompareLine(register_line) != 0) {
1305          Dump(std::cout);
1306          std::cout << info_messages_.str();
1307          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1308                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1309                     << " work_line=" << *work_line_ << "\n"
1310                     << "  expected=" << *register_line;
1311        }
1312      }
1313#endif
1314    }
1315    if (!CodeFlowVerifyInstruction(&start_guess)) {
1316      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1317      prepend += " failed to verify: ";
1318      PrependToLastFailMessage(prepend);
1319      return false;
1320    }
1321    /* Clear "changed" and mark as visited. */
1322    insn_flags_[insn_idx].SetVisited();
1323    insn_flags_[insn_idx].ClearChanged();
1324  }
1325
1326  if (gDebugVerify) {
1327    /*
1328     * Scan for dead code. There's nothing "evil" about dead code
1329     * (besides the wasted space), but it indicates a flaw somewhere
1330     * down the line, possibly in the verifier.
1331     *
1332     * If we've substituted "always throw" instructions into the stream,
1333     * we are almost certainly going to have some dead code.
1334     */
1335    int dead_start = -1;
1336    uint32_t insn_idx = 0;
1337    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1338      /*
1339       * Switch-statement data doesn't get "visited" by scanner. It
1340       * may or may not be preceded by a padding NOP (for alignment).
1341       */
1342      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1343          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1344          insns[insn_idx] == Instruction::kArrayDataSignature ||
1345          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1346           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1347            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1348            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1349        insn_flags_[insn_idx].SetVisited();
1350      }
1351
1352      if (!insn_flags_[insn_idx].IsVisited()) {
1353        if (dead_start < 0)
1354          dead_start = insn_idx;
1355      } else if (dead_start >= 0) {
1356        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1357                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1358        dead_start = -1;
1359      }
1360    }
1361    if (dead_start >= 0) {
1362      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1363                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1364    }
1365    // To dump the state of the verify after a method, do something like:
1366    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1367    //     "boolean java.lang.String.equals(java.lang.Object)") {
1368    //   LOG(INFO) << info_messages_.str();
1369    // }
1370  }
1371  return true;
1372}
1373
1374bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1375  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1376  // We want the state _before_ the instruction, for the case where the dex pc we're
1377  // interested in is itself a monitor-enter instruction (which is a likely place
1378  // for a thread to be suspended).
1379  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1380    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1381    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1382      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1383    }
1384  }
1385
1386  /*
1387   * Once we finish decoding the instruction, we need to figure out where
1388   * we can go from here. There are three possible ways to transfer
1389   * control to another statement:
1390   *
1391   * (1) Continue to the next instruction. Applies to all but
1392   *     unconditional branches, method returns, and exception throws.
1393   * (2) Branch to one or more possible locations. Applies to branches
1394   *     and switch statements.
1395   * (3) Exception handlers. Applies to any instruction that can
1396   *     throw an exception that is handled by an encompassing "try"
1397   *     block.
1398   *
1399   * We can also return, in which case there is no successor instruction
1400   * from this point.
1401   *
1402   * The behavior can be determined from the opcode flags.
1403   */
1404  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1405  const Instruction* inst = Instruction::At(insns);
1406  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1407
1408  int32_t branch_target = 0;
1409  bool just_set_result = false;
1410  if (gDebugVerify) {
1411    // Generate processing back trace to debug verifier
1412    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1413                    << *work_line_.get() << "\n";
1414  }
1415
1416  /*
1417   * Make a copy of the previous register state. If the instruction
1418   * can throw an exception, we will copy/merge this into the "catch"
1419   * address rather than work_line, because we don't want the result
1420   * from the "successful" code path (e.g. a check-cast that "improves"
1421   * a type) to be visible to the exception handler.
1422   */
1423  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1424    saved_line_->CopyFromLine(work_line_.get());
1425  } else {
1426#ifndef NDEBUG
1427    saved_line_->FillWithGarbage();
1428#endif
1429  }
1430
1431
1432  // We need to ensure the work line is consistent while performing validation. When we spot a
1433  // peephole pattern we compute a new line for either the fallthrough instruction or the
1434  // branch target.
1435  UniquePtr<RegisterLine> branch_line;
1436  UniquePtr<RegisterLine> fallthrough_line;
1437
1438  // We need precise constant types only for deoptimization which happens at runtime.
1439  const bool need_precise_constant = !Runtime::Current()->IsCompiler();
1440
1441  switch (inst->Opcode()) {
1442    case Instruction::NOP:
1443      /*
1444       * A "pure" NOP has no effect on anything. Data tables start with
1445       * a signature that looks like a NOP; if we see one of these in
1446       * the course of executing code then we have a problem.
1447       */
1448      if (inst->VRegA_10x() != 0) {
1449        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1450      }
1451      break;
1452
1453    case Instruction::MOVE:
1454      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1455      break;
1456    case Instruction::MOVE_FROM16:
1457      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1458      break;
1459    case Instruction::MOVE_16:
1460      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1461      break;
1462    case Instruction::MOVE_WIDE:
1463      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1464      break;
1465    case Instruction::MOVE_WIDE_FROM16:
1466      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1467      break;
1468    case Instruction::MOVE_WIDE_16:
1469      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1470      break;
1471    case Instruction::MOVE_OBJECT:
1472      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1473      break;
1474    case Instruction::MOVE_OBJECT_FROM16:
1475      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1476      break;
1477    case Instruction::MOVE_OBJECT_16:
1478      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1479      break;
1480
1481    /*
1482     * The move-result instructions copy data out of a "pseudo-register"
1483     * with the results from the last method invocation. In practice we
1484     * might want to hold the result in an actual CPU register, so the
1485     * Dalvik spec requires that these only appear immediately after an
1486     * invoke or filled-new-array.
1487     *
1488     * These calls invalidate the "result" register. (This is now
1489     * redundant with the reset done below, but it can make the debug info
1490     * easier to read in some cases.)
1491     */
1492    case Instruction::MOVE_RESULT:
1493      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1494      break;
1495    case Instruction::MOVE_RESULT_WIDE:
1496      work_line_->CopyResultRegister2(inst->VRegA_11x());
1497      break;
1498    case Instruction::MOVE_RESULT_OBJECT:
1499      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1500      break;
1501
1502    case Instruction::MOVE_EXCEPTION: {
1503      /*
1504       * This statement can only appear as the first instruction in an exception handler. We verify
1505       * that as part of extracting the exception type from the catch block list.
1506       */
1507      const RegType& res_type = GetCaughtExceptionType();
1508      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1509      break;
1510    }
1511    case Instruction::RETURN_VOID:
1512      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1513        if (!GetMethodReturnType().IsConflict()) {
1514          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1515        }
1516      }
1517      break;
1518    case Instruction::RETURN:
1519      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1520        /* check the method signature */
1521        const RegType& return_type = GetMethodReturnType();
1522        if (!return_type.IsCategory1Types()) {
1523          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1524                                            << return_type;
1525        } else {
1526          // Compilers may generate synthetic functions that write byte values into boolean fields.
1527          // Also, it may use integer values for boolean, byte, short, and character return types.
1528          const uint32_t vregA = inst->VRegA_11x();
1529          const RegType& src_type = work_line_->GetRegisterType(vregA);
1530          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1531                          ((return_type.IsBoolean() || return_type.IsByte() ||
1532                           return_type.IsShort() || return_type.IsChar()) &&
1533                           src_type.IsInteger()));
1534          /* check the register contents */
1535          bool success =
1536              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1537          if (!success) {
1538            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1539          }
1540        }
1541      }
1542      break;
1543    case Instruction::RETURN_WIDE:
1544      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1545        /* check the method signature */
1546        const RegType& return_type = GetMethodReturnType();
1547        if (!return_type.IsCategory2Types()) {
1548          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1549        } else {
1550          /* check the register contents */
1551          const uint32_t vregA = inst->VRegA_11x();
1552          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1553          if (!success) {
1554            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1555          }
1556        }
1557      }
1558      break;
1559    case Instruction::RETURN_OBJECT:
1560      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1561        const RegType& return_type = GetMethodReturnType();
1562        if (!return_type.IsReferenceTypes()) {
1563          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1564        } else {
1565          /* return_type is the *expected* return type, not register value */
1566          DCHECK(!return_type.IsZero());
1567          DCHECK(!return_type.IsUninitializedReference());
1568          const uint32_t vregA = inst->VRegA_11x();
1569          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1570          // Disallow returning uninitialized values and verify that the reference in vAA is an
1571          // instance of the "return_type"
1572          if (reg_type.IsUninitializedTypes()) {
1573            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1574                                              << reg_type << "'";
1575          } else if (!return_type.IsAssignableFrom(reg_type)) {
1576            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1577              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1578                  << "' or '" << reg_type << "'";
1579            } else {
1580              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1581                  << "', but expected from declaration '" << return_type << "'";
1582            }
1583          }
1584        }
1585      }
1586      break;
1587
1588      /* could be boolean, int, float, or a null reference */
1589    case Instruction::CONST_4: {
1590      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1591      work_line_->SetRegisterType(inst->VRegA_11n(),
1592                                  DetermineCat1Constant(val, need_precise_constant));
1593      break;
1594    }
1595    case Instruction::CONST_16: {
1596      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1597      work_line_->SetRegisterType(inst->VRegA_21s(),
1598                                  DetermineCat1Constant(val, need_precise_constant));
1599      break;
1600    }
1601    case Instruction::CONST: {
1602      int32_t val = inst->VRegB_31i();
1603      work_line_->SetRegisterType(inst->VRegA_31i(),
1604                                  DetermineCat1Constant(val, need_precise_constant));
1605      break;
1606    }
1607    case Instruction::CONST_HIGH16: {
1608      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1609      work_line_->SetRegisterType(inst->VRegA_21h(),
1610                                  DetermineCat1Constant(val, need_precise_constant));
1611      break;
1612    }
1613      /* could be long or double; resolved upon use */
1614    case Instruction::CONST_WIDE_16: {
1615      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1616      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1617      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1618      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1619      break;
1620    }
1621    case Instruction::CONST_WIDE_32: {
1622      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1623      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1624      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1625      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1626      break;
1627    }
1628    case Instruction::CONST_WIDE: {
1629      int64_t val = inst->VRegB_51l();
1630      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1631      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1632      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1633      break;
1634    }
1635    case Instruction::CONST_WIDE_HIGH16: {
1636      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1637      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1638      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1639      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1640      break;
1641    }
1642    case Instruction::CONST_STRING:
1643      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1644      break;
1645    case Instruction::CONST_STRING_JUMBO:
1646      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1647      break;
1648    case Instruction::CONST_CLASS: {
1649      // Get type from instruction if unresolved then we need an access check
1650      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1651      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1652      // Register holds class, ie its type is class, on error it will hold Conflict.
1653      work_line_->SetRegisterType(inst->VRegA_21c(),
1654                                  res_type.IsConflict() ? res_type
1655                                                        : reg_types_.JavaLangClass(true));
1656      break;
1657    }
1658    case Instruction::MONITOR_ENTER:
1659      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1660      break;
1661    case Instruction::MONITOR_EXIT:
1662      /*
1663       * monitor-exit instructions are odd. They can throw exceptions,
1664       * but when they do they act as if they succeeded and the PC is
1665       * pointing to the following instruction. (This behavior goes back
1666       * to the need to handle asynchronous exceptions, a now-deprecated
1667       * feature that Dalvik doesn't support.)
1668       *
1669       * In practice we don't need to worry about this. The only
1670       * exceptions that can be thrown from monitor-exit are for a
1671       * null reference and -exit without a matching -enter. If the
1672       * structured locking checks are working, the former would have
1673       * failed on the -enter instruction, and the latter is impossible.
1674       *
1675       * This is fortunate, because issue 3221411 prevents us from
1676       * chasing the "can throw" path when monitor verification is
1677       * enabled. If we can fully verify the locking we can ignore
1678       * some catch blocks (which will show up as "dead" code when
1679       * we skip them here); if we can't, then the code path could be
1680       * "live" so we still need to check it.
1681       */
1682      opcode_flags &= ~Instruction::kThrow;
1683      work_line_->PopMonitor(inst->VRegA_11x());
1684      break;
1685
1686    case Instruction::CHECK_CAST:
1687    case Instruction::INSTANCE_OF: {
1688      /*
1689       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1690       * could be a "upcast" -- not expected, so we don't try to address it.)
1691       *
1692       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1693       * dec_insn.vA when branching to a handler.
1694       */
1695      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1696      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1697      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1698      if (res_type.IsConflict()) {
1699        DCHECK_NE(failures_.size(), 0U);
1700        if (!is_checkcast) {
1701          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1702        }
1703        break;  // bad class
1704      }
1705      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1706      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1707      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1708      if (!res_type.IsNonZeroReferenceTypes()) {
1709        if (is_checkcast) {
1710          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1711        } else {
1712          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1713        }
1714      } else if (!orig_type.IsReferenceTypes()) {
1715        if (is_checkcast) {
1716          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1717        } else {
1718          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1719        }
1720      } else {
1721        if (is_checkcast) {
1722          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1723        } else {
1724          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1725        }
1726      }
1727      break;
1728    }
1729    case Instruction::ARRAY_LENGTH: {
1730      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1731      if (res_type.IsReferenceTypes()) {
1732        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1733          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1734        } else {
1735          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1736        }
1737      }
1738      break;
1739    }
1740    case Instruction::NEW_INSTANCE: {
1741      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1742      if (res_type.IsConflict()) {
1743        DCHECK_NE(failures_.size(), 0U);
1744        break;  // bad class
1745      }
1746      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1747      // can't create an instance of an interface or abstract class */
1748      if (!res_type.IsInstantiableTypes()) {
1749        Fail(VERIFY_ERROR_INSTANTIATION)
1750            << "new-instance on primitive, interface or abstract class" << res_type;
1751        // Soft failure so carry on to set register type.
1752      }
1753      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1754      // Any registers holding previous allocations from this address that have not yet been
1755      // initialized must be marked invalid.
1756      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1757      // add the new uninitialized reference to the register state
1758      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1759      break;
1760    }
1761    case Instruction::NEW_ARRAY:
1762      VerifyNewArray(inst, false, false);
1763      break;
1764    case Instruction::FILLED_NEW_ARRAY:
1765      VerifyNewArray(inst, true, false);
1766      just_set_result = true;  // Filled new array sets result register
1767      break;
1768    case Instruction::FILLED_NEW_ARRAY_RANGE:
1769      VerifyNewArray(inst, true, true);
1770      just_set_result = true;  // Filled new array range sets result register
1771      break;
1772    case Instruction::CMPL_FLOAT:
1773    case Instruction::CMPG_FLOAT:
1774      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1775        break;
1776      }
1777      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1778        break;
1779      }
1780      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1781      break;
1782    case Instruction::CMPL_DOUBLE:
1783    case Instruction::CMPG_DOUBLE:
1784      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1785                                              reg_types_.DoubleHi())) {
1786        break;
1787      }
1788      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1789                                              reg_types_.DoubleHi())) {
1790        break;
1791      }
1792      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1793      break;
1794    case Instruction::CMP_LONG:
1795      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1796                                              reg_types_.LongHi())) {
1797        break;
1798      }
1799      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1800                                              reg_types_.LongHi())) {
1801        break;
1802      }
1803      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1804      break;
1805    case Instruction::THROW: {
1806      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1807      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1808        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1809            << "thrown class " << res_type << " not instanceof Throwable";
1810      }
1811      break;
1812    }
1813    case Instruction::GOTO:
1814    case Instruction::GOTO_16:
1815    case Instruction::GOTO_32:
1816      /* no effect on or use of registers */
1817      break;
1818
1819    case Instruction::PACKED_SWITCH:
1820    case Instruction::SPARSE_SWITCH:
1821      /* verify that vAA is an integer, or can be converted to one */
1822      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1823      break;
1824
1825    case Instruction::FILL_ARRAY_DATA: {
1826      /* Similar to the verification done for APUT */
1827      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1828      /* array_type can be null if the reg type is Zero */
1829      if (!array_type.IsZero()) {
1830        if (!array_type.IsArrayTypes()) {
1831          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1832                                            << array_type;
1833        } else {
1834          const RegType& component_type = reg_types_.GetComponentType(array_type,
1835                                                                      class_loader_->get());
1836          DCHECK(!component_type.IsConflict());
1837          if (component_type.IsNonZeroReferenceTypes()) {
1838            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1839                                              << component_type;
1840          } else {
1841            // Now verify if the element width in the table matches the element width declared in
1842            // the array
1843            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1844            if (array_data[0] != Instruction::kArrayDataSignature) {
1845              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1846            } else {
1847              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1848              // Since we don't compress the data in Dex, expect to see equal width of data stored
1849              // in the table and expected from the array class.
1850              if (array_data[1] != elem_width) {
1851                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1852                                                  << " vs " << elem_width << ")";
1853              }
1854            }
1855          }
1856        }
1857      }
1858      break;
1859    }
1860    case Instruction::IF_EQ:
1861    case Instruction::IF_NE: {
1862      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1863      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1864      bool mismatch = false;
1865      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1866        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1867      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1868        mismatch = !reg_type2.IsReferenceTypes();
1869      } else {  // both integral?
1870        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1871      }
1872      if (mismatch) {
1873        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1874                                          << reg_type2 << ") must both be references or integral";
1875      }
1876      break;
1877    }
1878    case Instruction::IF_LT:
1879    case Instruction::IF_GE:
1880    case Instruction::IF_GT:
1881    case Instruction::IF_LE: {
1882      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1883      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1884      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1885        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1886                                          << reg_type2 << ") must be integral";
1887      }
1888      break;
1889    }
1890    case Instruction::IF_EQZ:
1891    case Instruction::IF_NEZ: {
1892      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1893      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1894        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1895                                          << " unexpected as arg to if-eqz/if-nez";
1896      }
1897
1898      // Find previous instruction - its existence is a precondition to peephole optimization.
1899      uint32_t instance_of_idx = 0;
1900      if (0 != work_insn_idx_) {
1901        instance_of_idx = work_insn_idx_ - 1;
1902        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1903          instance_of_idx--;
1904        }
1905        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1906      } else {
1907        break;
1908      }
1909
1910      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1911
1912      /* Check for peep-hole pattern of:
1913       *    ...;
1914       *    instance-of vX, vY, T;
1915       *    ifXXX vX, label ;
1916       *    ...;
1917       * label:
1918       *    ...;
1919       * and sharpen the type of vY to be type T.
1920       * Note, this pattern can't be if:
1921       *  - if there are other branches to this branch,
1922       *  - when vX == vY.
1923       */
1924      if (!CurrentInsnFlags()->IsBranchTarget() &&
1925          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1926          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1927          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1928        // Check that the we are not attempting conversion to interface types,
1929        // which is not done because of the multiple inheritance implications.
1930        // Also don't change the type if it would result in an upcast.
1931        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1932        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1933
1934        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1935            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1936          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1937          if (inst->Opcode() == Instruction::IF_EQZ) {
1938            fallthrough_line.reset(update_line);
1939          } else {
1940            branch_line.reset(update_line);
1941          }
1942          update_line->CopyFromLine(work_line_.get());
1943          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1944          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1945            // See if instance-of was preceded by a move-object operation, common due to the small
1946            // register encoding space of instance-of, and propagate type information to the source
1947            // of the move-object.
1948            uint32_t move_idx = instance_of_idx - 1;
1949            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1950              move_idx--;
1951            }
1952            CHECK(insn_flags_[move_idx].IsOpcode());
1953            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1954            switch (move_inst->Opcode()) {
1955              case Instruction::MOVE_OBJECT:
1956                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1957                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1958                }
1959                break;
1960              case Instruction::MOVE_OBJECT_FROM16:
1961                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1962                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1963                }
1964                break;
1965              case Instruction::MOVE_OBJECT_16:
1966                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1967                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1968                }
1969                break;
1970              default:
1971                break;
1972            }
1973          }
1974        }
1975      }
1976
1977      break;
1978    }
1979    case Instruction::IF_LTZ:
1980    case Instruction::IF_GEZ:
1981    case Instruction::IF_GTZ:
1982    case Instruction::IF_LEZ: {
1983      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1984      if (!reg_type.IsIntegralTypes()) {
1985        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1986                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1987      }
1988      break;
1989    }
1990    case Instruction::AGET_BOOLEAN:
1991      VerifyAGet(inst, reg_types_.Boolean(), true);
1992      break;
1993    case Instruction::AGET_BYTE:
1994      VerifyAGet(inst, reg_types_.Byte(), true);
1995      break;
1996    case Instruction::AGET_CHAR:
1997      VerifyAGet(inst, reg_types_.Char(), true);
1998      break;
1999    case Instruction::AGET_SHORT:
2000      VerifyAGet(inst, reg_types_.Short(), true);
2001      break;
2002    case Instruction::AGET:
2003      VerifyAGet(inst, reg_types_.Integer(), true);
2004      break;
2005    case Instruction::AGET_WIDE:
2006      VerifyAGet(inst, reg_types_.LongLo(), true);
2007      break;
2008    case Instruction::AGET_OBJECT:
2009      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2010      break;
2011
2012    case Instruction::APUT_BOOLEAN:
2013      VerifyAPut(inst, reg_types_.Boolean(), true);
2014      break;
2015    case Instruction::APUT_BYTE:
2016      VerifyAPut(inst, reg_types_.Byte(), true);
2017      break;
2018    case Instruction::APUT_CHAR:
2019      VerifyAPut(inst, reg_types_.Char(), true);
2020      break;
2021    case Instruction::APUT_SHORT:
2022      VerifyAPut(inst, reg_types_.Short(), true);
2023      break;
2024    case Instruction::APUT:
2025      VerifyAPut(inst, reg_types_.Integer(), true);
2026      break;
2027    case Instruction::APUT_WIDE:
2028      VerifyAPut(inst, reg_types_.LongLo(), true);
2029      break;
2030    case Instruction::APUT_OBJECT:
2031      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2032      break;
2033
2034    case Instruction::IGET_BOOLEAN:
2035      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2036      break;
2037    case Instruction::IGET_BYTE:
2038      VerifyISGet(inst, reg_types_.Byte(), true, false);
2039      break;
2040    case Instruction::IGET_CHAR:
2041      VerifyISGet(inst, reg_types_.Char(), true, false);
2042      break;
2043    case Instruction::IGET_SHORT:
2044      VerifyISGet(inst, reg_types_.Short(), true, false);
2045      break;
2046    case Instruction::IGET:
2047      VerifyISGet(inst, reg_types_.Integer(), true, false);
2048      break;
2049    case Instruction::IGET_WIDE:
2050      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2051      break;
2052    case Instruction::IGET_OBJECT:
2053      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2054      break;
2055
2056    case Instruction::IPUT_BOOLEAN:
2057      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2058      break;
2059    case Instruction::IPUT_BYTE:
2060      VerifyISPut(inst, reg_types_.Byte(), true, false);
2061      break;
2062    case Instruction::IPUT_CHAR:
2063      VerifyISPut(inst, reg_types_.Char(), true, false);
2064      break;
2065    case Instruction::IPUT_SHORT:
2066      VerifyISPut(inst, reg_types_.Short(), true, false);
2067      break;
2068    case Instruction::IPUT:
2069      VerifyISPut(inst, reg_types_.Integer(), true, false);
2070      break;
2071    case Instruction::IPUT_WIDE:
2072      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2073      break;
2074    case Instruction::IPUT_OBJECT:
2075      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2076      break;
2077
2078    case Instruction::SGET_BOOLEAN:
2079      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2080      break;
2081    case Instruction::SGET_BYTE:
2082      VerifyISGet(inst, reg_types_.Byte(), true, true);
2083      break;
2084    case Instruction::SGET_CHAR:
2085      VerifyISGet(inst, reg_types_.Char(), true, true);
2086      break;
2087    case Instruction::SGET_SHORT:
2088      VerifyISGet(inst, reg_types_.Short(), true, true);
2089      break;
2090    case Instruction::SGET:
2091      VerifyISGet(inst, reg_types_.Integer(), true, true);
2092      break;
2093    case Instruction::SGET_WIDE:
2094      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2095      break;
2096    case Instruction::SGET_OBJECT:
2097      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2098      break;
2099
2100    case Instruction::SPUT_BOOLEAN:
2101      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2102      break;
2103    case Instruction::SPUT_BYTE:
2104      VerifyISPut(inst, reg_types_.Byte(), true, true);
2105      break;
2106    case Instruction::SPUT_CHAR:
2107      VerifyISPut(inst, reg_types_.Char(), true, true);
2108      break;
2109    case Instruction::SPUT_SHORT:
2110      VerifyISPut(inst, reg_types_.Short(), true, true);
2111      break;
2112    case Instruction::SPUT:
2113      VerifyISPut(inst, reg_types_.Integer(), true, true);
2114      break;
2115    case Instruction::SPUT_WIDE:
2116      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2117      break;
2118    case Instruction::SPUT_OBJECT:
2119      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2120      break;
2121
2122    case Instruction::INVOKE_VIRTUAL:
2123    case Instruction::INVOKE_VIRTUAL_RANGE:
2124    case Instruction::INVOKE_SUPER:
2125    case Instruction::INVOKE_SUPER_RANGE: {
2126      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2127                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2128      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2129                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2130      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2131                                                                   is_range, is_super);
2132      const RegType* return_type = nullptr;
2133      if (called_method != nullptr) {
2134        MethodHelper mh(called_method);
2135        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2136        if (return_type_class != nullptr) {
2137          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2138                                              return_type_class->CannotBeAssignedFromOtherTypes());
2139        } else {
2140          Thread* self = Thread::Current();
2141          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2142          self->ClearException();
2143        }
2144      }
2145      if (return_type == nullptr) {
2146        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2147        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2148        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2149        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2150        return_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2151      }
2152      if (!return_type->IsLowHalf()) {
2153        work_line_->SetResultRegisterType(*return_type);
2154      } else {
2155        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2156      }
2157      just_set_result = true;
2158      break;
2159    }
2160    case Instruction::INVOKE_DIRECT:
2161    case Instruction::INVOKE_DIRECT_RANGE: {
2162      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2163      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2164                                                                   is_range, false);
2165      const char* return_type_descriptor;
2166      bool is_constructor;
2167      if (called_method == NULL) {
2168        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2169        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2170        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2171        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2172        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2173      } else {
2174        is_constructor = called_method->IsConstructor();
2175        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2176      }
2177      if (is_constructor) {
2178        /*
2179         * Some additional checks when calling a constructor. We know from the invocation arg check
2180         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2181         * that to require that called_method->klass is the same as this->klass or this->super,
2182         * allowing the latter only if the "this" argument is the same as the "this" argument to
2183         * this method (which implies that we're in a constructor ourselves).
2184         */
2185        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2186        if (this_type.IsConflict())  // failure.
2187          break;
2188
2189        /* no null refs allowed (?) */
2190        if (this_type.IsZero()) {
2191          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2192          break;
2193        }
2194
2195        /* must be in same class or in superclass */
2196        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2197        // TODO: re-enable constructor type verification
2198        // if (this_super_klass.IsConflict()) {
2199          // Unknown super class, fail so we re-check at runtime.
2200          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2201          // break;
2202        // }
2203
2204        /* arg must be an uninitialized reference */
2205        if (!this_type.IsUninitializedTypes()) {
2206          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2207              << this_type;
2208          break;
2209        }
2210
2211        /*
2212         * Replace the uninitialized reference with an initialized one. We need to do this for all
2213         * registers that have the same object instance in them, not just the "this" register.
2214         */
2215        work_line_->MarkRefsAsInitialized(this_type);
2216      }
2217      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(),
2218                                                             return_type_descriptor, false);
2219      if (!return_type.IsLowHalf()) {
2220        work_line_->SetResultRegisterType(return_type);
2221      } else {
2222        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2223      }
2224      just_set_result = true;
2225      break;
2226    }
2227    case Instruction::INVOKE_STATIC:
2228    case Instruction::INVOKE_STATIC_RANGE: {
2229        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2230        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2231                                                                     METHOD_STATIC,
2232                                                                     is_range,
2233                                                                     false);
2234        const char* descriptor;
2235        if (called_method == NULL) {
2236          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2237          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2238          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2239          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2240        } else {
2241          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2242        }
2243        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2244                                                                false);
2245        if (!return_type.IsLowHalf()) {
2246          work_line_->SetResultRegisterType(return_type);
2247        } else {
2248          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2249        }
2250        just_set_result = true;
2251      }
2252      break;
2253    case Instruction::INVOKE_INTERFACE:
2254    case Instruction::INVOKE_INTERFACE_RANGE: {
2255      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2256      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2257                                                                METHOD_INTERFACE,
2258                                                                is_range,
2259                                                                false);
2260      if (abs_method != NULL) {
2261        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2262        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2263          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2264              << PrettyMethod(abs_method) << "'";
2265          break;
2266        }
2267      }
2268      /* Get the type of the "this" arg, which should either be a sub-interface of called
2269       * interface or Object (see comments in RegType::JoinClass).
2270       */
2271      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2272      if (this_type.IsZero()) {
2273        /* null pointer always passes (and always fails at runtime) */
2274      } else {
2275        if (this_type.IsUninitializedTypes()) {
2276          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2277              << this_type;
2278          break;
2279        }
2280        // In the past we have tried to assert that "called_interface" is assignable
2281        // from "this_type.GetClass()", however, as we do an imprecise Join
2282        // (RegType::JoinClass) we don't have full information on what interfaces are
2283        // implemented by "this_type". For example, two classes may implement the same
2284        // interfaces and have a common parent that doesn't implement the interface. The
2285        // join will set "this_type" to the parent class and a test that this implements
2286        // the interface will incorrectly fail.
2287      }
2288      /*
2289       * We don't have an object instance, so we can't find the concrete method. However, all of
2290       * the type information is in the abstract method, so we're good.
2291       */
2292      const char* descriptor;
2293      if (abs_method == NULL) {
2294        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2295        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2296        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2297        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2298      } else {
2299        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2300      }
2301      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2302                                                             false);
2303      if (!return_type.IsLowHalf()) {
2304        work_line_->SetResultRegisterType(return_type);
2305      } else {
2306        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2307      }
2308      just_set_result = true;
2309      break;
2310    }
2311    case Instruction::NEG_INT:
2312    case Instruction::NOT_INT:
2313      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2314      break;
2315    case Instruction::NEG_LONG:
2316    case Instruction::NOT_LONG:
2317      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2318                                   reg_types_.LongLo(), reg_types_.LongHi());
2319      break;
2320    case Instruction::NEG_FLOAT:
2321      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2322      break;
2323    case Instruction::NEG_DOUBLE:
2324      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2325                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2326      break;
2327    case Instruction::INT_TO_LONG:
2328      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2329                                     reg_types_.Integer());
2330      break;
2331    case Instruction::INT_TO_FLOAT:
2332      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2333      break;
2334    case Instruction::INT_TO_DOUBLE:
2335      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2336                                     reg_types_.Integer());
2337      break;
2338    case Instruction::LONG_TO_INT:
2339      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2340                                       reg_types_.LongLo(), reg_types_.LongHi());
2341      break;
2342    case Instruction::LONG_TO_FLOAT:
2343      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2344                                       reg_types_.LongLo(), reg_types_.LongHi());
2345      break;
2346    case Instruction::LONG_TO_DOUBLE:
2347      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2348                                   reg_types_.LongLo(), reg_types_.LongHi());
2349      break;
2350    case Instruction::FLOAT_TO_INT:
2351      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2352      break;
2353    case Instruction::FLOAT_TO_LONG:
2354      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2355                                     reg_types_.Float());
2356      break;
2357    case Instruction::FLOAT_TO_DOUBLE:
2358      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2359                                     reg_types_.Float());
2360      break;
2361    case Instruction::DOUBLE_TO_INT:
2362      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2363                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2364      break;
2365    case Instruction::DOUBLE_TO_LONG:
2366      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2367                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2368      break;
2369    case Instruction::DOUBLE_TO_FLOAT:
2370      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2371                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2372      break;
2373    case Instruction::INT_TO_BYTE:
2374      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2375      break;
2376    case Instruction::INT_TO_CHAR:
2377      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2378      break;
2379    case Instruction::INT_TO_SHORT:
2380      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2381      break;
2382
2383    case Instruction::ADD_INT:
2384    case Instruction::SUB_INT:
2385    case Instruction::MUL_INT:
2386    case Instruction::REM_INT:
2387    case Instruction::DIV_INT:
2388    case Instruction::SHL_INT:
2389    case Instruction::SHR_INT:
2390    case Instruction::USHR_INT:
2391      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2392                                reg_types_.Integer(), false);
2393      break;
2394    case Instruction::AND_INT:
2395    case Instruction::OR_INT:
2396    case Instruction::XOR_INT:
2397      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2398                                reg_types_.Integer(), true);
2399      break;
2400    case Instruction::ADD_LONG:
2401    case Instruction::SUB_LONG:
2402    case Instruction::MUL_LONG:
2403    case Instruction::DIV_LONG:
2404    case Instruction::REM_LONG:
2405    case Instruction::AND_LONG:
2406    case Instruction::OR_LONG:
2407    case Instruction::XOR_LONG:
2408      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2409                                    reg_types_.LongLo(), reg_types_.LongHi(),
2410                                    reg_types_.LongLo(), reg_types_.LongHi());
2411      break;
2412    case Instruction::SHL_LONG:
2413    case Instruction::SHR_LONG:
2414    case Instruction::USHR_LONG:
2415      /* shift distance is Int, making these different from other binary operations */
2416      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2417                                         reg_types_.Integer());
2418      break;
2419    case Instruction::ADD_FLOAT:
2420    case Instruction::SUB_FLOAT:
2421    case Instruction::MUL_FLOAT:
2422    case Instruction::DIV_FLOAT:
2423    case Instruction::REM_FLOAT:
2424      work_line_->CheckBinaryOp(inst,
2425                                reg_types_.Float(),
2426                                reg_types_.Float(),
2427                                reg_types_.Float(),
2428                                false);
2429      break;
2430    case Instruction::ADD_DOUBLE:
2431    case Instruction::SUB_DOUBLE:
2432    case Instruction::MUL_DOUBLE:
2433    case Instruction::DIV_DOUBLE:
2434    case Instruction::REM_DOUBLE:
2435      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2436                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2437                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2438      break;
2439    case Instruction::ADD_INT_2ADDR:
2440    case Instruction::SUB_INT_2ADDR:
2441    case Instruction::MUL_INT_2ADDR:
2442    case Instruction::REM_INT_2ADDR:
2443    case Instruction::SHL_INT_2ADDR:
2444    case Instruction::SHR_INT_2ADDR:
2445    case Instruction::USHR_INT_2ADDR:
2446      work_line_->CheckBinaryOp2addr(inst,
2447                                     reg_types_.Integer(),
2448                                     reg_types_.Integer(),
2449                                     reg_types_.Integer(),
2450                                     false);
2451      break;
2452    case Instruction::AND_INT_2ADDR:
2453    case Instruction::OR_INT_2ADDR:
2454    case Instruction::XOR_INT_2ADDR:
2455      work_line_->CheckBinaryOp2addr(inst,
2456                                     reg_types_.Integer(),
2457                                     reg_types_.Integer(),
2458                                     reg_types_.Integer(),
2459                                     true);
2460      break;
2461    case Instruction::DIV_INT_2ADDR:
2462      work_line_->CheckBinaryOp2addr(inst,
2463                                     reg_types_.Integer(),
2464                                     reg_types_.Integer(),
2465                                     reg_types_.Integer(),
2466                                     false);
2467      break;
2468    case Instruction::ADD_LONG_2ADDR:
2469    case Instruction::SUB_LONG_2ADDR:
2470    case Instruction::MUL_LONG_2ADDR:
2471    case Instruction::DIV_LONG_2ADDR:
2472    case Instruction::REM_LONG_2ADDR:
2473    case Instruction::AND_LONG_2ADDR:
2474    case Instruction::OR_LONG_2ADDR:
2475    case Instruction::XOR_LONG_2ADDR:
2476      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2477                                         reg_types_.LongLo(), reg_types_.LongHi(),
2478                                         reg_types_.LongLo(), reg_types_.LongHi());
2479      break;
2480    case Instruction::SHL_LONG_2ADDR:
2481    case Instruction::SHR_LONG_2ADDR:
2482    case Instruction::USHR_LONG_2ADDR:
2483      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2484                                              reg_types_.Integer());
2485      break;
2486    case Instruction::ADD_FLOAT_2ADDR:
2487    case Instruction::SUB_FLOAT_2ADDR:
2488    case Instruction::MUL_FLOAT_2ADDR:
2489    case Instruction::DIV_FLOAT_2ADDR:
2490    case Instruction::REM_FLOAT_2ADDR:
2491      work_line_->CheckBinaryOp2addr(inst,
2492                                     reg_types_.Float(),
2493                                     reg_types_.Float(),
2494                                     reg_types_.Float(),
2495                                     false);
2496      break;
2497    case Instruction::ADD_DOUBLE_2ADDR:
2498    case Instruction::SUB_DOUBLE_2ADDR:
2499    case Instruction::MUL_DOUBLE_2ADDR:
2500    case Instruction::DIV_DOUBLE_2ADDR:
2501    case Instruction::REM_DOUBLE_2ADDR:
2502      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2503                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2504                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2505      break;
2506    case Instruction::ADD_INT_LIT16:
2507    case Instruction::RSUB_INT:
2508    case Instruction::MUL_INT_LIT16:
2509    case Instruction::DIV_INT_LIT16:
2510    case Instruction::REM_INT_LIT16:
2511      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2512      break;
2513    case Instruction::AND_INT_LIT16:
2514    case Instruction::OR_INT_LIT16:
2515    case Instruction::XOR_INT_LIT16:
2516      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2517      break;
2518    case Instruction::ADD_INT_LIT8:
2519    case Instruction::RSUB_INT_LIT8:
2520    case Instruction::MUL_INT_LIT8:
2521    case Instruction::DIV_INT_LIT8:
2522    case Instruction::REM_INT_LIT8:
2523    case Instruction::SHL_INT_LIT8:
2524    case Instruction::SHR_INT_LIT8:
2525    case Instruction::USHR_INT_LIT8:
2526      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2527      break;
2528    case Instruction::AND_INT_LIT8:
2529    case Instruction::OR_INT_LIT8:
2530    case Instruction::XOR_INT_LIT8:
2531      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2532      break;
2533
2534    // Special instructions.
2535    case Instruction::RETURN_VOID_BARRIER:
2536      if (!IsConstructor() || IsStatic()) {
2537          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2538      }
2539      break;
2540    // Note: the following instructions encode offsets derived from class linking.
2541    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2542    // meaning if the class linking and resolution were successful.
2543    case Instruction::IGET_QUICK:
2544      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2545      break;
2546    case Instruction::IGET_WIDE_QUICK:
2547      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2548      break;
2549    case Instruction::IGET_OBJECT_QUICK:
2550      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2551      break;
2552    case Instruction::IPUT_QUICK:
2553      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2554      break;
2555    case Instruction::IPUT_WIDE_QUICK:
2556      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2557      break;
2558    case Instruction::IPUT_OBJECT_QUICK:
2559      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2560      break;
2561    case Instruction::INVOKE_VIRTUAL_QUICK:
2562    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2563      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2564      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2565      if (called_method != NULL) {
2566        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2567        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2568                                                               false);
2569        if (!return_type.IsLowHalf()) {
2570          work_line_->SetResultRegisterType(return_type);
2571        } else {
2572          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2573        }
2574        just_set_result = true;
2575      }
2576      break;
2577    }
2578
2579    /* These should never appear during verification. */
2580    case Instruction::UNUSED_3E:
2581    case Instruction::UNUSED_3F:
2582    case Instruction::UNUSED_40:
2583    case Instruction::UNUSED_41:
2584    case Instruction::UNUSED_42:
2585    case Instruction::UNUSED_43:
2586    case Instruction::UNUSED_79:
2587    case Instruction::UNUSED_7A:
2588    case Instruction::UNUSED_EB:
2589    case Instruction::UNUSED_EC:
2590    case Instruction::UNUSED_ED:
2591    case Instruction::UNUSED_EE:
2592    case Instruction::UNUSED_EF:
2593    case Instruction::UNUSED_F0:
2594    case Instruction::UNUSED_F1:
2595    case Instruction::UNUSED_F2:
2596    case Instruction::UNUSED_F3:
2597    case Instruction::UNUSED_F4:
2598    case Instruction::UNUSED_F5:
2599    case Instruction::UNUSED_F6:
2600    case Instruction::UNUSED_F7:
2601    case Instruction::UNUSED_F8:
2602    case Instruction::UNUSED_F9:
2603    case Instruction::UNUSED_FA:
2604    case Instruction::UNUSED_FB:
2605    case Instruction::UNUSED_FC:
2606    case Instruction::UNUSED_FD:
2607    case Instruction::UNUSED_FE:
2608    case Instruction::UNUSED_FF:
2609      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2610      break;
2611
2612    /*
2613     * DO NOT add a "default" clause here. Without it the compiler will
2614     * complain if an instruction is missing (which is desirable).
2615     */
2616  }  // end - switch (dec_insn.opcode)
2617
2618  if (have_pending_hard_failure_) {
2619    if (Runtime::Current()->IsCompiler()) {
2620      /* When compiling, check that the last failure is a hard failure */
2621      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2622    }
2623    /* immediate failure, reject class */
2624    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2625    return false;
2626  } else if (have_pending_runtime_throw_failure_) {
2627    /* checking interpreter will throw, mark following code as unreachable */
2628    opcode_flags = Instruction::kThrow;
2629  }
2630  /*
2631   * If we didn't just set the result register, clear it out. This ensures that you can only use
2632   * "move-result" immediately after the result is set. (We could check this statically, but it's
2633   * not expensive and it makes our debugging output cleaner.)
2634   */
2635  if (!just_set_result) {
2636    work_line_->SetResultTypeToUnknown();
2637  }
2638
2639
2640
2641  /*
2642   * Handle "branch". Tag the branch target.
2643   *
2644   * NOTE: instructions like Instruction::EQZ provide information about the
2645   * state of the register when the branch is taken or not taken. For example,
2646   * somebody could get a reference field, check it for zero, and if the
2647   * branch is taken immediately store that register in a boolean field
2648   * since the value is known to be zero. We do not currently account for
2649   * that, and will reject the code.
2650   *
2651   * TODO: avoid re-fetching the branch target
2652   */
2653  if ((opcode_flags & Instruction::kBranch) != 0) {
2654    bool isConditional, selfOkay;
2655    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2656      /* should never happen after static verification */
2657      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2658      return false;
2659    }
2660    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2661    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2662      return false;
2663    }
2664    /* update branch target, set "changed" if appropriate */
2665    if (NULL != branch_line.get()) {
2666      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2667        return false;
2668      }
2669    } else {
2670      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2671        return false;
2672      }
2673    }
2674  }
2675
2676  /*
2677   * Handle "switch". Tag all possible branch targets.
2678   *
2679   * We've already verified that the table is structurally sound, so we
2680   * just need to walk through and tag the targets.
2681   */
2682  if ((opcode_flags & Instruction::kSwitch) != 0) {
2683    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2684    const uint16_t* switch_insns = insns + offset_to_switch;
2685    int switch_count = switch_insns[1];
2686    int offset_to_targets, targ;
2687
2688    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2689      /* 0 = sig, 1 = count, 2/3 = first key */
2690      offset_to_targets = 4;
2691    } else {
2692      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2693      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2694      offset_to_targets = 2 + 2 * switch_count;
2695    }
2696
2697    /* verify each switch target */
2698    for (targ = 0; targ < switch_count; targ++) {
2699      int offset;
2700      uint32_t abs_offset;
2701
2702      /* offsets are 32-bit, and only partly endian-swapped */
2703      offset = switch_insns[offset_to_targets + targ * 2] |
2704         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2705      abs_offset = work_insn_idx_ + offset;
2706      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2707      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2708        return false;
2709      }
2710      if (!UpdateRegisters(abs_offset, work_line_.get()))
2711        return false;
2712    }
2713  }
2714
2715  /*
2716   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2717   * "try" block when they throw, control transfers out of the method.)
2718   */
2719  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2720    bool within_catch_all = false;
2721    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2722
2723    for (; iterator.HasNext(); iterator.Next()) {
2724      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2725        within_catch_all = true;
2726      }
2727      /*
2728       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2729       * "work_regs", because at runtime the exception will be thrown before the instruction
2730       * modifies any registers.
2731       */
2732      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2733        return false;
2734      }
2735    }
2736
2737    /*
2738     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2739     * instruction. This does apply to monitor-exit because of async exception handling.
2740     */
2741    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2742      /*
2743       * The state in work_line reflects the post-execution state. If the current instruction is a
2744       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2745       * it will do so before grabbing the lock).
2746       */
2747      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2748        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2749            << "expected to be within a catch-all for an instruction where a monitor is held";
2750        return false;
2751      }
2752    }
2753  }
2754
2755  /* Handle "continue". Tag the next consecutive instruction.
2756   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2757   *        because it changes work_line_ when performing peephole optimization
2758   *        and this change should not be used in those cases.
2759   */
2760  if ((opcode_flags & Instruction::kContinue) != 0) {
2761    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2762    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2763      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2764      return false;
2765    }
2766    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2767    // next instruction isn't one.
2768    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2769      return false;
2770    }
2771    if (NULL != fallthrough_line.get()) {
2772      // Make workline consistent with fallthrough computed from peephole optimization.
2773      work_line_->CopyFromLine(fallthrough_line.get());
2774    }
2775    if (insn_flags_[next_insn_idx].IsReturn()) {
2776      // For returns we only care about the operand to the return, all other registers are dead.
2777      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2778      Instruction::Code opcode = ret_inst->Opcode();
2779      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2780        work_line_->MarkAllRegistersAsConflicts();
2781      } else {
2782        if (opcode == Instruction::RETURN_WIDE) {
2783          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2784        } else {
2785          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2786        }
2787      }
2788    }
2789    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2790    if (next_line != NULL) {
2791      // Merge registers into what we have for the next instruction,
2792      // and set the "changed" flag if needed.
2793      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2794        return false;
2795      }
2796    } else {
2797      /*
2798       * We're not recording register data for the next instruction, so we don't know what the
2799       * prior state was. We have to assume that something has changed and re-evaluate it.
2800       */
2801      insn_flags_[next_insn_idx].SetChanged();
2802    }
2803  }
2804
2805  /* If we're returning from the method, make sure monitor stack is empty. */
2806  if ((opcode_flags & Instruction::kReturn) != 0) {
2807    if (!work_line_->VerifyMonitorStackEmpty()) {
2808      return false;
2809    }
2810  }
2811
2812  /*
2813   * Update start_guess. Advance to the next instruction of that's
2814   * possible, otherwise use the branch target if one was found. If
2815   * neither of those exists we're in a return or throw; leave start_guess
2816   * alone and let the caller sort it out.
2817   */
2818  if ((opcode_flags & Instruction::kContinue) != 0) {
2819    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2820  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2821    /* we're still okay if branch_target is zero */
2822    *start_guess = work_insn_idx_ + branch_target;
2823  }
2824
2825  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2826  DCHECK(insn_flags_[*start_guess].IsOpcode());
2827
2828  return true;
2829}  // NOLINT(readability/fn_size)
2830
2831const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2832  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2833  const RegType& referrer = GetDeclaringClass();
2834  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2835  const RegType& result =
2836      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2837                                           klass->CannotBeAssignedFromOtherTypes())
2838                    : reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2839  if (result.IsConflict()) {
2840    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2841        << "' in " << referrer;
2842    return result;
2843  }
2844  if (klass == NULL && !result.IsUnresolvedTypes()) {
2845    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2846  }
2847  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2848  // check at runtime if access is allowed and so pass here. If result is
2849  // primitive, skip the access check.
2850  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2851      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2852    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2853                                    << referrer << "' -> '" << result << "'";
2854  }
2855  return result;
2856}
2857
2858const RegType& MethodVerifier::GetCaughtExceptionType() {
2859  const RegType* common_super = NULL;
2860  if (code_item_->tries_size_ != 0) {
2861    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2862    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2863    for (uint32_t i = 0; i < handlers_size; i++) {
2864      CatchHandlerIterator iterator(handlers_ptr);
2865      for (; iterator.HasNext(); iterator.Next()) {
2866        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2867          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2868            common_super = &reg_types_.JavaLangThrowable(false);
2869          } else {
2870            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2871            if (common_super == NULL) {
2872              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2873              // as that is caught at runtime
2874              common_super = &exception;
2875            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2876              if (exception.IsUnresolvedTypes()) {
2877                // We don't know enough about the type. Fail here and let runtime handle it.
2878                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2879                return exception;
2880              } else {
2881                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2882                return reg_types_.Conflict();
2883              }
2884            } else if (common_super->Equals(exception)) {
2885              // odd case, but nothing to do
2886            } else {
2887              common_super = &common_super->Merge(exception, &reg_types_);
2888              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2889            }
2890          }
2891        }
2892      }
2893      handlers_ptr = iterator.EndDataPointer();
2894    }
2895  }
2896  if (common_super == NULL) {
2897    /* no catch blocks, or no catches with classes we can find */
2898    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2899    return reg_types_.Conflict();
2900  }
2901  return *common_super;
2902}
2903
2904mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2905                                                               MethodType method_type) {
2906  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2907  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2908  if (klass_type.IsConflict()) {
2909    std::string append(" in attempt to access method ");
2910    append += dex_file_->GetMethodName(method_id);
2911    AppendToLastFailMessage(append);
2912    return NULL;
2913  }
2914  if (klass_type.IsUnresolvedTypes()) {
2915    return NULL;  // Can't resolve Class so no more to do here
2916  }
2917  mirror::Class* klass = klass_type.GetClass();
2918  const RegType& referrer = GetDeclaringClass();
2919  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2920  if (res_method == NULL) {
2921    const char* name = dex_file_->GetMethodName(method_id);
2922    const Signature signature = dex_file_->GetMethodSignature(method_id);
2923
2924    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2925      res_method = klass->FindDirectMethod(name, signature);
2926    } else if (method_type == METHOD_INTERFACE) {
2927      res_method = klass->FindInterfaceMethod(name, signature);
2928    } else {
2929      res_method = klass->FindVirtualMethod(name, signature);
2930    }
2931    if (res_method != NULL) {
2932      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2933    } else {
2934      // If a virtual or interface method wasn't found with the expected type, look in
2935      // the direct methods. This can happen when the wrong invoke type is used or when
2936      // a class has changed, and will be flagged as an error in later checks.
2937      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2938        res_method = klass->FindDirectMethod(name, signature);
2939      }
2940      if (res_method == NULL) {
2941        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2942                                     << PrettyDescriptor(klass) << "." << name
2943                                     << " " << signature;
2944        return NULL;
2945      }
2946    }
2947  }
2948  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2949  // enforce them here.
2950  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2952                                      << PrettyMethod(res_method);
2953    return NULL;
2954  }
2955  // Disallow any calls to class initializers.
2956  if (MethodHelper(res_method).IsClassInitializer()) {
2957    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2958                                      << PrettyMethod(res_method);
2959    return NULL;
2960  }
2961  // Check if access is allowed.
2962  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2963    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2964                                     << " from " << referrer << ")";
2965    return res_method;
2966  }
2967  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2968  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2969    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2970                                      << PrettyMethod(res_method);
2971    return NULL;
2972  }
2973  // Check that interface methods match interface classes.
2974  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2975    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2976                                    << " is in an interface class " << PrettyClass(klass);
2977    return NULL;
2978  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2979    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2980                                    << " is in a non-interface class " << PrettyClass(klass);
2981    return NULL;
2982  }
2983  // See if the method type implied by the invoke instruction matches the access flags for the
2984  // target method.
2985  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2986      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2987      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2988      ) {
2989    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2990                                       " type of " << PrettyMethod(res_method);
2991    return NULL;
2992  }
2993  return res_method;
2994}
2995
2996mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2997                                                             MethodType method_type,
2998                                                             bool is_range,
2999                                                             bool is_super) {
3000  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3001  // we're making.
3002  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3003  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3004  if (res_method == NULL) {  // error or class is unresolved
3005    return NULL;
3006  }
3007
3008  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3009  // has a vtable entry for the target method.
3010  if (is_super) {
3011    DCHECK(method_type == METHOD_VIRTUAL);
3012    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3013    if (super.IsUnresolvedTypes()) {
3014      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3015                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3016                                   << " to super " << PrettyMethod(res_method);
3017      return NULL;
3018    }
3019    mirror::Class* super_klass = super.GetClass();
3020    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3021      MethodHelper mh(res_method);
3022      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3023                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3024                                   << " to super " << super
3025                                   << "." << mh.GetName()
3026                                   << mh.GetSignature();
3027      return NULL;
3028    }
3029  }
3030  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3031  // match the call to the signature. Also, we might be calling through an abstract method
3032  // definition (which doesn't have register count values).
3033  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3034  /* caught by static verifier */
3035  DCHECK(is_range || expected_args <= 5);
3036  if (expected_args > code_item_->outs_size_) {
3037    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3038        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3039    return NULL;
3040  }
3041
3042  /*
3043   * Check the "this" argument, which must be an instance of the class that declared the method.
3044   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3045   * rigorous check here (which is okay since we have to do it at runtime).
3046   */
3047  size_t actual_args = 0;
3048  if (!res_method->IsStatic()) {
3049    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3050    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3051      return NULL;
3052    }
3053    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3054      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3055      return NULL;
3056    }
3057    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3058      mirror::Class* klass = res_method->GetDeclaringClass();
3059      const RegType& res_method_class =
3060          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3061                               klass->CannotBeAssignedFromOtherTypes());
3062      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3063        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3064            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3065            << "' not instance of '" << res_method_class << "'";
3066        return NULL;
3067      }
3068    }
3069    actual_args++;
3070  }
3071  /*
3072   * Process the target method's signature. This signature may or may not
3073   * have been verified, so we can't assume it's properly formed.
3074   */
3075  MethodHelper mh(res_method);
3076  const DexFile::TypeList* params = mh.GetParameterTypeList();
3077  size_t params_size = params == NULL ? 0 : params->Size();
3078  uint32_t arg[5];
3079  if (!is_range) {
3080    inst->GetArgs(arg);
3081  }
3082  for (size_t param_index = 0; param_index < params_size; param_index++) {
3083    if (actual_args >= expected_args) {
3084      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3085          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3086          << " (where longs/doubles count twice).";
3087      return NULL;
3088    }
3089    const char* descriptor =
3090        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3091    if (descriptor == NULL) {
3092      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3093          << " missing signature component";
3094      return NULL;
3095    }
3096    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3097    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3098    if (reg_type.IsIntegralTypes()) {
3099      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3100      if (!src_type.IsIntegralTypes()) {
3101        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3102                                          << " but expected " << reg_type;
3103        return res_method;
3104      }
3105    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3106      return res_method;
3107    }
3108    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3109  }
3110  if (actual_args != expected_args) {
3111    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3112        << " expected " << expected_args << " arguments, found " << actual_args;
3113    return NULL;
3114  } else {
3115    return res_method;
3116  }
3117}
3118
3119mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3120                                                         RegisterLine* reg_line, bool is_range) {
3121  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3122         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3123  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3124  if (!actual_arg_type.HasClass()) {
3125    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3126    return nullptr;
3127  }
3128  mirror::ObjectArray<mirror::ArtMethod>* vtable = actual_arg_type.GetClass()->GetVTable();
3129  CHECK(vtable != nullptr);
3130  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3131  CHECK_LT(static_cast<int32_t>(vtable_index), vtable->GetLength());
3132  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3133  CHECK(!Thread::Current()->IsExceptionPending());
3134  return res_method;
3135}
3136
3137mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3138                                                                     bool is_range) {
3139  DCHECK(Runtime::Current()->IsStarted());
3140  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3141                                                             is_range);
3142  if (res_method == NULL) {
3143    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3144    return NULL;
3145  }
3146  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3147
3148  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3149  // match the call to the signature. Also, we might be calling through an abstract method
3150  // definition (which doesn't have register count values).
3151  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3152  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3153    return NULL;
3154  }
3155  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3156  /* caught by static verifier */
3157  DCHECK(is_range || expected_args <= 5);
3158  if (expected_args > code_item_->outs_size_) {
3159    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3160        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3161    return NULL;
3162  }
3163
3164  /*
3165   * Check the "this" argument, which must be an instance of the class that declared the method.
3166   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3167   * rigorous check here (which is okay since we have to do it at runtime).
3168   */
3169  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3170    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3171    return NULL;
3172  }
3173  if (!actual_arg_type.IsZero()) {
3174    mirror::Class* klass = res_method->GetDeclaringClass();
3175    const RegType& res_method_class =
3176        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3177                             klass->CannotBeAssignedFromOtherTypes());
3178    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3179      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3180          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3181          << "' not instance of '" << res_method_class << "'";
3182      return NULL;
3183    }
3184  }
3185  /*
3186   * Process the target method's signature. This signature may or may not
3187   * have been verified, so we can't assume it's properly formed.
3188   */
3189  MethodHelper mh(res_method);
3190  const DexFile::TypeList* params = mh.GetParameterTypeList();
3191  size_t params_size = params == NULL ? 0 : params->Size();
3192  uint32_t arg[5];
3193  if (!is_range) {
3194    inst->GetArgs(arg);
3195  }
3196  size_t actual_args = 1;
3197  for (size_t param_index = 0; param_index < params_size; param_index++) {
3198    if (actual_args >= expected_args) {
3199      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3200                                        << "'. Expected " << expected_args
3201                                         << " arguments, processing argument " << actual_args
3202                                        << " (where longs/doubles count twice).";
3203      return NULL;
3204    }
3205    const char* descriptor =
3206        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3207    if (descriptor == NULL) {
3208      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3209                                        << " missing signature component";
3210      return NULL;
3211    }
3212    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3213    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3214    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3215      return res_method;
3216    }
3217    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3218  }
3219  if (actual_args != expected_args) {
3220    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3221              << " expected " << expected_args << " arguments, found " << actual_args;
3222    return NULL;
3223  } else {
3224    return res_method;
3225  }
3226}
3227
3228void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3229  uint32_t type_idx;
3230  if (!is_filled) {
3231    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3232    type_idx = inst->VRegC_22c();
3233  } else if (!is_range) {
3234    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3235    type_idx = inst->VRegB_35c();
3236  } else {
3237    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3238    type_idx = inst->VRegB_3rc();
3239  }
3240  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3241  if (res_type.IsConflict()) {  // bad class
3242    DCHECK_NE(failures_.size(), 0U);
3243  } else {
3244    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3245    if (!res_type.IsArrayTypes()) {
3246      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3247    } else if (!is_filled) {
3248      /* make sure "size" register is valid type */
3249      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3250      /* set register type to array class */
3251      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3252      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3253    } else {
3254      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3255      // the list and fail. It's legal, if silly, for arg_count to be zero.
3256      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->get());
3257      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3258      uint32_t arg[5];
3259      if (!is_range) {
3260        inst->GetArgs(arg);
3261      }
3262      for (size_t ui = 0; ui < arg_count; ui++) {
3263        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3264        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3265          work_line_->SetResultRegisterType(reg_types_.Conflict());
3266          return;
3267        }
3268      }
3269      // filled-array result goes into "result" register
3270      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3271      work_line_->SetResultRegisterType(precise_type);
3272    }
3273  }
3274}
3275
3276void MethodVerifier::VerifyAGet(const Instruction* inst,
3277                                const RegType& insn_type, bool is_primitive) {
3278  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3279  if (!index_type.IsArrayIndexTypes()) {
3280    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3281  } else {
3282    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3283    if (array_type.IsZero()) {
3284      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3285      // instruction type. TODO: have a proper notion of bottom here.
3286      if (!is_primitive || insn_type.IsCategory1Types()) {
3287        // Reference or category 1
3288        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3289      } else {
3290        // Category 2
3291        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3292                                        reg_types_.FromCat2ConstHi(0, false));
3293      }
3294    } else if (!array_type.IsArrayTypes()) {
3295      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3296    } else {
3297      /* verify the class */
3298      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3299      if (!component_type.IsReferenceTypes() && !is_primitive) {
3300        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3301            << " source for aget-object";
3302      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3303        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3304            << " source for category 1 aget";
3305      } else if (is_primitive && !insn_type.Equals(component_type) &&
3306                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3307                 (insn_type.IsLong() && component_type.IsDouble()))) {
3308        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3309            << " incompatible with aget of type " << insn_type;
3310      } else {
3311        // Use knowledge of the field type which is stronger than the type inferred from the
3312        // instruction, which can't differentiate object types and ints from floats, longs from
3313        // doubles.
3314        if (!component_type.IsLowHalf()) {
3315          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3316        } else {
3317          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3318                                          component_type.HighHalf(&reg_types_));
3319        }
3320      }
3321    }
3322  }
3323}
3324
3325void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3326                                        const uint32_t vregA) {
3327  // Primitive assignability rules are weaker than regular assignability rules.
3328  bool instruction_compatible;
3329  bool value_compatible;
3330  const RegType& value_type = work_line_->GetRegisterType(vregA);
3331  if (target_type.IsIntegralTypes()) {
3332    instruction_compatible = target_type.Equals(insn_type);
3333    value_compatible = value_type.IsIntegralTypes();
3334  } else if (target_type.IsFloat()) {
3335    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3336    value_compatible = value_type.IsFloatTypes();
3337  } else if (target_type.IsLong()) {
3338    instruction_compatible = insn_type.IsLong();
3339    value_compatible = value_type.IsLongTypes();
3340  } else if (target_type.IsDouble()) {
3341    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3342    value_compatible = value_type.IsDoubleTypes();
3343  } else {
3344    instruction_compatible = false;  // reference with primitive store
3345    value_compatible = false;  // unused
3346  }
3347  if (!instruction_compatible) {
3348    // This is a global failure rather than a class change failure as the instructions and
3349    // the descriptors for the type should have been consistent within the same file at
3350    // compile time.
3351    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3352        << "' but expected type '" << target_type << "'";
3353    return;
3354  }
3355  if (!value_compatible) {
3356    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3357        << " of type " << value_type << " but expected " << target_type << " for put";
3358    return;
3359  }
3360}
3361
3362void MethodVerifier::VerifyAPut(const Instruction* inst,
3363                                const RegType& insn_type, bool is_primitive) {
3364  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3365  if (!index_type.IsArrayIndexTypes()) {
3366    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3367  } else {
3368    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3369    if (array_type.IsZero()) {
3370      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3371      // instruction type.
3372    } else if (!array_type.IsArrayTypes()) {
3373      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3374    } else {
3375      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3376      const uint32_t vregA = inst->VRegA_23x();
3377      if (is_primitive) {
3378        VerifyPrimitivePut(component_type, insn_type, vregA);
3379      } else {
3380        if (!component_type.IsReferenceTypes()) {
3381          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3382              << " source for aput-object";
3383        } else {
3384          // The instruction agrees with the type of array, confirm the value to be stored does too
3385          // Note: we use the instruction type (rather than the component type) for aput-object as
3386          // incompatible classes will be caught at runtime as an array store exception
3387          work_line_->VerifyRegisterType(vregA, insn_type);
3388        }
3389      }
3390    }
3391  }
3392}
3393
3394mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3395  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3396  // Check access to class
3397  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3398  if (klass_type.IsConflict()) {  // bad class
3399    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3400                                         field_idx, dex_file_->GetFieldName(field_id),
3401                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3402    return NULL;
3403  }
3404  if (klass_type.IsUnresolvedTypes()) {
3405    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3406  }
3407  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3408  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3409                                                          *class_loader_);
3410  if (field == NULL) {
3411    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3412              << dex_file_->GetFieldName(field_id) << ") in "
3413              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3414    DCHECK(Thread::Current()->IsExceptionPending());
3415    Thread::Current()->ClearException();
3416    return NULL;
3417  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3418                                                  field->GetAccessFlags())) {
3419    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3420                                    << " from " << GetDeclaringClass();
3421    return NULL;
3422  } else if (!field->IsStatic()) {
3423    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3424    return NULL;
3425  }
3426  return field;
3427}
3428
3429mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3430  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3431  // Check access to class
3432  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3433  if (klass_type.IsConflict()) {
3434    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3435                                         field_idx, dex_file_->GetFieldName(field_id),
3436                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3437    return NULL;
3438  }
3439  if (klass_type.IsUnresolvedTypes()) {
3440    return NULL;  // Can't resolve Class so no more to do here
3441  }
3442  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3443  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3444                                                          *class_loader_);
3445  if (field == NULL) {
3446    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3447              << dex_file_->GetFieldName(field_id) << ") in "
3448              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3449    DCHECK(Thread::Current()->IsExceptionPending());
3450    Thread::Current()->ClearException();
3451    return NULL;
3452  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3453                                                  field->GetAccessFlags())) {
3454    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3455                                    << " from " << GetDeclaringClass();
3456    return NULL;
3457  } else if (field->IsStatic()) {
3458    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3459                                    << " to not be static";
3460    return NULL;
3461  } else if (obj_type.IsZero()) {
3462    // Cannot infer and check type, however, access will cause null pointer exception
3463    return field;
3464  } else {
3465    mirror::Class* klass = field->GetDeclaringClass();
3466    const RegType& field_klass =
3467        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3468                             klass, klass->CannotBeAssignedFromOtherTypes());
3469    if (obj_type.IsUninitializedTypes() &&
3470        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3471            !field_klass.Equals(GetDeclaringClass()))) {
3472      // Field accesses through uninitialized references are only allowable for constructors where
3473      // the field is declared in this class
3474      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3475                                        << " of a not fully initialized object within the context"
3476                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3477      return NULL;
3478    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3479      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3480      // of C1. For resolution to occur the declared class of the field must be compatible with
3481      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3482      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3483                                  << " from object of type " << obj_type;
3484      return NULL;
3485    } else {
3486      return field;
3487    }
3488  }
3489}
3490
3491void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3492                                 bool is_primitive, bool is_static) {
3493  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3494  mirror::ArtField* field;
3495  if (is_static) {
3496    field = GetStaticField(field_idx);
3497  } else {
3498    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3499    field = GetInstanceField(object_type, field_idx);
3500  }
3501  const RegType* field_type = nullptr;
3502  if (field != NULL) {
3503    FieldHelper fh(field);
3504    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3505    if (field_type_class != nullptr) {
3506      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3507                                         field_type_class->CannotBeAssignedFromOtherTypes());
3508    } else {
3509      Thread* self = Thread::Current();
3510      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3511      self->ClearException();
3512    }
3513  }
3514  if (field_type == nullptr) {
3515    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3516    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3517    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3518  }
3519  DCHECK(field_type != nullptr);
3520  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3521  if (is_primitive) {
3522    if (field_type->Equals(insn_type) ||
3523        (field_type->IsFloat() && insn_type.IsInteger()) ||
3524        (field_type->IsDouble() && insn_type.IsLong())) {
3525      // expected that read is of the correct primitive type or that int reads are reading
3526      // floats or long reads are reading doubles
3527    } else {
3528      // This is a global failure rather than a class change failure as the instructions and
3529      // the descriptors for the type should have been consistent within the same file at
3530      // compile time
3531      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3532                                        << " to be of type '" << insn_type
3533                                        << "' but found type '" << *field_type << "' in get";
3534      return;
3535    }
3536  } else {
3537    if (!insn_type.IsAssignableFrom(*field_type)) {
3538      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3539                                        << " to be compatible with type '" << insn_type
3540                                        << "' but found type '" << *field_type
3541                                        << "' in get-object";
3542      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3543      return;
3544    }
3545  }
3546  if (!field_type->IsLowHalf()) {
3547    work_line_->SetRegisterType(vregA, *field_type);
3548  } else {
3549    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3550  }
3551}
3552
3553void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3554                                 bool is_primitive, bool is_static) {
3555  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3556  mirror::ArtField* field;
3557  if (is_static) {
3558    field = GetStaticField(field_idx);
3559  } else {
3560    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3561    field = GetInstanceField(object_type, field_idx);
3562  }
3563  const RegType* field_type = nullptr;
3564  if (field != NULL) {
3565    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3566      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3567                                      << " from other class " << GetDeclaringClass();
3568      return;
3569    }
3570    FieldHelper fh(field);
3571    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3572    if (field_type_class != nullptr) {
3573      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3574                                         field_type_class->CannotBeAssignedFromOtherTypes());
3575    } else {
3576      Thread* self = Thread::Current();
3577      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3578      self->ClearException();
3579    }
3580  }
3581  if (field_type == nullptr) {
3582    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3583    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3584    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3585  }
3586  DCHECK(field_type != nullptr);
3587  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3588  if (is_primitive) {
3589    VerifyPrimitivePut(*field_type, insn_type, vregA);
3590  } else {
3591    if (!insn_type.IsAssignableFrom(*field_type)) {
3592      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3593                                        << " to be compatible with type '" << insn_type
3594                                        << "' but found type '" << *field_type
3595                                        << "' in put-object";
3596      return;
3597    }
3598    work_line_->VerifyRegisterType(vregA, *field_type);
3599  }
3600}
3601
3602// Look for an instance field with this offset.
3603// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3604static mirror::ArtField* FindInstanceFieldWithOffset(mirror::Class* klass, uint32_t field_offset)
3605    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3606  mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3607  if (instance_fields != NULL) {
3608    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3609      mirror::ArtField* field = instance_fields->Get(i);
3610      if (field->GetOffset().Uint32Value() == field_offset) {
3611        return field;
3612      }
3613    }
3614  }
3615  // We did not find field in class: look into superclass.
3616  if (klass->GetSuperClass() != NULL) {
3617    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3618  } else {
3619    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3620        << "' from '" << PrettyDescriptor(klass) << "'";
3621    return nullptr;
3622  }
3623}
3624
3625mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3626                                                      RegisterLine* reg_line) {
3627  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3628         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3629         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3630         inst->Opcode() == Instruction::IPUT_QUICK ||
3631         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3632         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3633  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3634  if (!object_type.HasClass()) {
3635    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3636    return nullptr;
3637  }
3638  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3639  return FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
3640}
3641
3642void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3643                                     bool is_primitive) {
3644  DCHECK(Runtime::Current()->IsStarted());
3645  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3646  if (field == NULL) {
3647    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3648    return;
3649  }
3650  FieldHelper fh(field);
3651  mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3652  const RegType* field_type;
3653  if (field_type_class != nullptr) {
3654    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3655                                       field_type_class->CannotBeAssignedFromOtherTypes());
3656  } else {
3657    Thread* self = Thread::Current();
3658    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3659    self->ClearException();
3660    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3661                                            fh.GetTypeDescriptor(), false);
3662  }
3663  DCHECK(field_type != nullptr);
3664  const uint32_t vregA = inst->VRegA_22c();
3665  if (is_primitive) {
3666    if (field_type->Equals(insn_type) ||
3667        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3668        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3669      // expected that read is of the correct primitive type or that int reads are reading
3670      // floats or long reads are reading doubles
3671    } else {
3672      // This is a global failure rather than a class change failure as the instructions and
3673      // the descriptors for the type should have been consistent within the same file at
3674      // compile time
3675      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3676                                        << " to be of type '" << insn_type
3677                                        << "' but found type '" << *field_type << "' in get";
3678      return;
3679    }
3680  } else {
3681    if (!insn_type.IsAssignableFrom(*field_type)) {
3682      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3683                                        << " to be compatible with type '" << insn_type
3684                                        << "' but found type '" << *field_type
3685                                        << "' in get-object";
3686      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3687      return;
3688    }
3689  }
3690  if (!field_type->IsLowHalf()) {
3691    work_line_->SetRegisterType(vregA, *field_type);
3692  } else {
3693    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3694  }
3695}
3696
3697void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3698                                     bool is_primitive) {
3699  DCHECK(Runtime::Current()->IsStarted());
3700  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3701  if (field == NULL) {
3702    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3703    return;
3704  }
3705  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3706  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3707  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3708  if (field != NULL) {
3709    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3710      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3711                                      << " from other class " << GetDeclaringClass();
3712      return;
3713    }
3714  }
3715  const uint32_t vregA = inst->VRegA_22c();
3716  if (is_primitive) {
3717    // Primitive field assignability rules are weaker than regular assignability rules
3718    bool instruction_compatible;
3719    bool value_compatible;
3720    const RegType& value_type = work_line_->GetRegisterType(vregA);
3721    if (field_type.IsIntegralTypes()) {
3722      instruction_compatible = insn_type.IsIntegralTypes();
3723      value_compatible = value_type.IsIntegralTypes();
3724    } else if (field_type.IsFloat()) {
3725      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3726      value_compatible = value_type.IsFloatTypes();
3727    } else if (field_type.IsLong()) {
3728      instruction_compatible = insn_type.IsLong();
3729      value_compatible = value_type.IsLongTypes();
3730    } else if (field_type.IsDouble()) {
3731      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3732      value_compatible = value_type.IsDoubleTypes();
3733    } else {
3734      instruction_compatible = false;  // reference field with primitive store
3735      value_compatible = false;  // unused
3736    }
3737    if (!instruction_compatible) {
3738      // This is a global failure rather than a class change failure as the instructions and
3739      // the descriptors for the type should have been consistent within the same file at
3740      // compile time
3741      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3742                                        << " to be of type '" << insn_type
3743                                        << "' but found type '" << field_type
3744                                        << "' in put";
3745      return;
3746    }
3747    if (!value_compatible) {
3748      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3749          << " of type " << value_type
3750          << " but expected " << field_type
3751          << " for store to " << PrettyField(field) << " in put";
3752      return;
3753    }
3754  } else {
3755    if (!insn_type.IsAssignableFrom(field_type)) {
3756      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3757                                        << " to be compatible with type '" << insn_type
3758                                        << "' but found type '" << field_type
3759                                        << "' in put-object";
3760      return;
3761    }
3762    work_line_->VerifyRegisterType(vregA, field_type);
3763  }
3764}
3765
3766bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3767  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3768    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3769    return false;
3770  }
3771  return true;
3772}
3773
3774bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3775  bool changed = true;
3776  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3777  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3778    /*
3779     * We haven't processed this instruction before, and we haven't touched the registers here, so
3780     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3781     * only way a register can transition out of "unknown", so this is not just an optimization.)
3782     */
3783    if (!insn_flags_[next_insn].IsReturn()) {
3784      target_line->CopyFromLine(merge_line);
3785    } else {
3786      // Verify that the monitor stack is empty on return.
3787      if (!merge_line->VerifyMonitorStackEmpty()) {
3788        return false;
3789      }
3790      // For returns we only care about the operand to the return, all other registers are dead.
3791      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3792      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3793      Instruction::Code opcode = ret_inst->Opcode();
3794      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3795        target_line->MarkAllRegistersAsConflicts();
3796      } else {
3797        target_line->CopyFromLine(merge_line);
3798        if (opcode == Instruction::RETURN_WIDE) {
3799          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3800        } else {
3801          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3802        }
3803      }
3804    }
3805  } else {
3806    UniquePtr<RegisterLine> copy(gDebugVerify ?
3807                                 RegisterLine::Create(target_line->NumRegs(), this) :
3808                                 NULL);
3809    if (gDebugVerify) {
3810      copy->CopyFromLine(target_line);
3811    }
3812    changed = target_line->MergeRegisters(merge_line);
3813    if (have_pending_hard_failure_) {
3814      return false;
3815    }
3816    if (gDebugVerify && changed) {
3817      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3818                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3819                      << *copy.get() << "  MERGE\n"
3820                      << *merge_line << "  ==\n"
3821                      << *target_line << "\n";
3822    }
3823  }
3824  if (changed) {
3825    insn_flags_[next_insn].SetChanged();
3826  }
3827  return true;
3828}
3829
3830InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3831  return &insn_flags_[work_insn_idx_];
3832}
3833
3834const RegType& MethodVerifier::GetMethodReturnType() {
3835  if (return_type_ == nullptr) {
3836    if (mirror_method_ != NULL) {
3837      MethodHelper mh(mirror_method_);
3838      mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
3839      if (return_type_class != nullptr) {
3840        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3841                                             return_type_class->CannotBeAssignedFromOtherTypes());
3842      } else {
3843        Thread* self = Thread::Current();
3844        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3845        self->ClearException();
3846      }
3847    }
3848    if (return_type_ == nullptr) {
3849      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3850      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3851      uint16_t return_type_idx = proto_id.return_type_idx_;
3852      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3853      return_type_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3854    }
3855  }
3856  return *return_type_;
3857}
3858
3859const RegType& MethodVerifier::GetDeclaringClass() {
3860  if (declaring_class_ == NULL) {
3861    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3862    const char* descriptor
3863        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3864    if (mirror_method_ != NULL) {
3865      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3866      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3867                                               klass->CannotBeAssignedFromOtherTypes());
3868    } else {
3869      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3870    }
3871  }
3872  return *declaring_class_;
3873}
3874
3875std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3876  RegisterLine* line = reg_table_.GetLine(dex_pc);
3877  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3878  std::vector<int32_t> result;
3879  for (size_t i = 0; i < line->NumRegs(); ++i) {
3880    const RegType& type = line->GetRegisterType(i);
3881    if (type.IsConstant()) {
3882      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3883      result.push_back(type.ConstantValue());
3884    } else if (type.IsConstantLo()) {
3885      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3886      result.push_back(type.ConstantValueLo());
3887    } else if (type.IsConstantHi()) {
3888      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3889      result.push_back(type.ConstantValueHi());
3890    } else if (type.IsIntegralTypes()) {
3891      result.push_back(kIntVReg);
3892      result.push_back(0);
3893    } else if (type.IsFloat()) {
3894      result.push_back(kFloatVReg);
3895      result.push_back(0);
3896    } else if (type.IsLong()) {
3897      result.push_back(kLongLoVReg);
3898      result.push_back(0);
3899      result.push_back(kLongHiVReg);
3900      result.push_back(0);
3901      ++i;
3902    } else if (type.IsDouble()) {
3903      result.push_back(kDoubleLoVReg);
3904      result.push_back(0);
3905      result.push_back(kDoubleHiVReg);
3906      result.push_back(0);
3907      ++i;
3908    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
3909      result.push_back(kUndefined);
3910      result.push_back(0);
3911    } else {
3912      CHECK(type.IsNonZeroReferenceTypes());
3913      result.push_back(kReferenceVReg);
3914      result.push_back(0);
3915    }
3916  }
3917  return result;
3918}
3919
3920const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
3921  if (precise) {
3922    // Precise constant type.
3923    return reg_types_.FromCat1Const(value, true);
3924  } else {
3925    // Imprecise constant type.
3926    if (value < -32768) {
3927      return reg_types_.IntConstant();
3928    } else if (value < -128) {
3929      return reg_types_.ShortConstant();
3930    } else if (value < 0) {
3931      return reg_types_.ByteConstant();
3932    } else if (value == 0) {
3933      return reg_types_.Zero();
3934    } else if (value == 1) {
3935      return reg_types_.One();
3936    } else if (value < 128) {
3937      return reg_types_.PosByteConstant();
3938    } else if (value < 32768) {
3939      return reg_types_.PosShortConstant();
3940    } else if (value < 65536) {
3941      return reg_types_.CharConstant();
3942    } else {
3943      return reg_types_.IntConstant();
3944    }
3945  }
3946}
3947
3948void MethodVerifier::Init() {
3949  art::verifier::RegTypeCache::Init();
3950}
3951
3952void MethodVerifier::Shutdown() {
3953  verifier::RegTypeCache::ShutDown();
3954}
3955
3956void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
3957  reg_types_.VisitRoots(callback, arg);
3958}
3959
3960}  // namespace verifier
3961}  // namespace art
3962