method_verifier.cc revision 3ae8da0a803370be9dd410226438f636af553e22
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "art_method-inl.h"
23#include "base/logging.h"
24#include "base/mutex-inl.h"
25#include "base/time_utils.h"
26#include "class_linker.h"
27#include "compiler_callbacks.h"
28#include "dex_file-inl.h"
29#include "dex_instruction-inl.h"
30#include "dex_instruction_utils.h"
31#include "dex_instruction_visitor.h"
32#include "gc/accounting/card_table-inl.h"
33#include "indenter.h"
34#include "intern_table.h"
35#include "leb128.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "utils.h"
46#include "handle_scope-inl.h"
47#include "verifier/dex_gc_map.h"
48
49namespace art {
50namespace verifier {
51
52static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
53static constexpr bool gDebugVerify = false;
54// TODO: Add a constant to method_verifier to turn on verbose logging?
55
56void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
57                                 uint32_t insns_size, uint16_t registers_size,
58                                 MethodVerifier* verifier) {
59  DCHECK_GT(insns_size, 0U);
60  register_lines_.reset(new RegisterLine*[insns_size]());
61  size_ = insns_size;
62  for (uint32_t i = 0; i < insns_size; i++) {
63    bool interesting = false;
64    switch (mode) {
65      case kTrackRegsAll:
66        interesting = flags[i].IsOpcode();
67        break;
68      case kTrackCompilerInterestPoints:
69        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
70        break;
71      case kTrackRegsBranches:
72        interesting = flags[i].IsBranchTarget();
73        break;
74      default:
75        break;
76    }
77    if (interesting) {
78      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
79    }
80  }
81}
82
83PcToRegisterLineTable::~PcToRegisterLineTable() {
84  for (size_t i = 0; i < size_; i++) {
85    delete register_lines_[i];
86    if (kIsDebugBuild) {
87      register_lines_[i] = nullptr;
88    }
89  }
90}
91
92// Note: returns true on failure.
93ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
94                                             const char* error_msg, uint32_t work_insn_idx) {
95  if (kIsDebugBuild) {
96    // In a debug build, abort if the error condition is wrong.
97    DCHECK(condition) << error_msg << work_insn_idx;
98  } else {
99    // In a non-debug build, just fail the class.
100    if (!condition) {
101      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
102      return true;
103    }
104  }
105
106  return false;
107}
108
109static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
110  if (verifier->IsConstructor()) {
111    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
112    reg_line->CheckConstructorReturn(verifier);
113  }
114  reg_line->MarkAllRegistersAsConflicts(verifier);
115}
116
117MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
118    ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
119  StackHandleScope<2> hs(Thread::Current());
120  mirror::Class* klass = method->GetDeclaringClass();
121  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
122  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(
164      self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
165}
166
167MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
168                                                        const DexFile* dex_file,
169                                                        Handle<mirror::DexCache> dex_cache,
170                                                        Handle<mirror::ClassLoader> class_loader,
171                                                        const DexFile::ClassDef* class_def,
172                                                        bool allow_soft_failures,
173                                                        std::string* error) {
174  DCHECK(class_def != nullptr);
175
176  // A class must not be abstract and final.
177  if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
178    *error = "Verifier rejected class ";
179    *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
180    *error += ": class is abstract and final.";
181    return kHardFailure;
182  }
183
184  const uint8_t* class_data = dex_file->GetClassData(*class_def);
185  if (class_data == nullptr) {
186    // empty class, probably a marker interface
187    return kNoFailure;
188  }
189  ClassDataItemIterator it(*dex_file, class_data);
190  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
191    it.Next();
192  }
193  size_t error_count = 0;
194  bool hard_fail = false;
195  ClassLinker* linker = Runtime::Current()->GetClassLinker();
196  int64_t previous_direct_method_idx = -1;
197  while (it.HasNextDirectMethod()) {
198    self->AllowThreadSuspension();
199    uint32_t method_idx = it.GetMemberIndex();
200    if (method_idx == previous_direct_method_idx) {
201      // smali can create dex files with two encoded_methods sharing the same method_idx
202      // http://code.google.com/p/smali/issues/detail?id=119
203      it.Next();
204      continue;
205    }
206    previous_direct_method_idx = method_idx;
207    InvokeType type = it.GetMethodInvokeType(*class_def);
208    ArtMethod* method = linker->ResolveMethod(
209        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
210    if (method == nullptr) {
211      DCHECK(self->IsExceptionPending());
212      // We couldn't resolve the method, but continue regardless.
213      self->ClearException();
214    } else {
215      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
216    }
217    StackHandleScope<1> hs(self);
218    MethodVerifier::FailureKind result = VerifyMethod(self,
219                                                      method_idx,
220                                                      dex_file,
221                                                      dex_cache,
222                                                      class_loader,
223                                                      class_def,
224                                                      it.GetMethodCodeItem(),
225        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
226    if (result != kNoFailure) {
227      if (result == kHardFailure) {
228        hard_fail = true;
229        if (error_count > 0) {
230          *error += "\n";
231        }
232        *error = "Verifier rejected class ";
233        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
234        *error += " due to bad method ";
235        *error += PrettyMethod(method_idx, *dex_file);
236      }
237      ++error_count;
238    }
239    it.Next();
240  }
241  int64_t previous_virtual_method_idx = -1;
242  while (it.HasNextVirtualMethod()) {
243    self->AllowThreadSuspension();
244    uint32_t method_idx = it.GetMemberIndex();
245    if (method_idx == previous_virtual_method_idx) {
246      // smali can create dex files with two encoded_methods sharing the same method_idx
247      // http://code.google.com/p/smali/issues/detail?id=119
248      it.Next();
249      continue;
250    }
251    previous_virtual_method_idx = method_idx;
252    InvokeType type = it.GetMethodInvokeType(*class_def);
253    ArtMethod* method = linker->ResolveMethod(
254        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
255    if (method == nullptr) {
256      DCHECK(self->IsExceptionPending());
257      // We couldn't resolve the method, but continue regardless.
258      self->ClearException();
259    }
260    StackHandleScope<1> hs(self);
261    MethodVerifier::FailureKind result = VerifyMethod(self,
262                                                      method_idx,
263                                                      dex_file,
264                                                      dex_cache,
265                                                      class_loader,
266                                                      class_def,
267                                                      it.GetMethodCodeItem(),
268        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
269    if (result != kNoFailure) {
270      if (result == kHardFailure) {
271        hard_fail = true;
272        if (error_count > 0) {
273          *error += "\n";
274        }
275        *error = "Verifier rejected class ";
276        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
277        *error += " due to bad method ";
278        *error += PrettyMethod(method_idx, *dex_file);
279      }
280      ++error_count;
281    }
282    it.Next();
283  }
284  if (error_count == 0) {
285    return kNoFailure;
286  } else {
287    return hard_fail ? kHardFailure : kSoftFailure;
288  }
289}
290
291static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
292  if (code_item == nullptr) {
293    return false;
294  }
295
296  uint16_t registers_size = code_item->registers_size_;
297  uint32_t insns_size = code_item->insns_size_in_code_units_;
298
299  return registers_size * insns_size > 4*1024*1024;
300}
301
302MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
303                                                         const DexFile* dex_file,
304                                                         Handle<mirror::DexCache> dex_cache,
305                                                         Handle<mirror::ClassLoader> class_loader,
306                                                         const DexFile::ClassDef* class_def,
307                                                         const DexFile::CodeItem* code_item,
308                                                         ArtMethod* method,
309                                                         uint32_t method_access_flags,
310                                                         bool allow_soft_failures,
311                                                         bool need_precise_constants) {
312  MethodVerifier::FailureKind result = kNoFailure;
313  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
314
315  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
316                          method_idx, method, method_access_flags, true, allow_soft_failures,
317                          need_precise_constants, true);
318  if (verifier.Verify()) {
319    // Verification completed, however failures may be pending that didn't cause the verification
320    // to hard fail.
321    CHECK(!verifier.have_pending_hard_failure_);
322    if (verifier.failures_.size() != 0) {
323      if (VLOG_IS_ON(verifier)) {
324          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
325                                << PrettyMethod(method_idx, *dex_file) << "\n");
326      }
327      result = kSoftFailure;
328    }
329  } else {
330    // Bad method data.
331    CHECK_NE(verifier.failures_.size(), 0U);
332    CHECK(verifier.have_pending_hard_failure_);
333    verifier.DumpFailures(LOG(INFO) << "Verification error in "
334                                    << PrettyMethod(method_idx, *dex_file) << "\n");
335    if (gDebugVerify) {
336      std::cout << "\n" << verifier.info_messages_.str();
337      verifier.Dump(std::cout);
338    }
339    result = kHardFailure;
340  }
341  if (kTimeVerifyMethod) {
342    uint64_t duration_ns = NanoTime() - start_ns;
343    if (duration_ns > MsToNs(100)) {
344      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
345                   << " took " << PrettyDuration(duration_ns)
346                   << (IsLargeMethod(code_item) ? " (large method)" : "");
347    }
348  }
349  return result;
350}
351
352MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
353                                         const DexFile* dex_file,
354                                         Handle<mirror::DexCache> dex_cache,
355                                         Handle<mirror::ClassLoader> class_loader,
356                                         const DexFile::ClassDef* class_def,
357                                         const DexFile::CodeItem* code_item,
358                                         ArtMethod* method,
359                                         uint32_t method_access_flags) {
360  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
361                                                class_def, code_item, dex_method_idx, method,
362                                                method_access_flags, true, true, true, true);
363  verifier->Verify();
364  verifier->DumpFailures(os);
365  os << verifier->info_messages_.str();
366  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
367  // and querying any info is dangerous/can abort.
368  if (verifier->have_pending_hard_failure_) {
369    delete verifier;
370    return nullptr;
371  } else {
372    verifier->Dump(os);
373    return verifier;
374  }
375}
376
377MethodVerifier::MethodVerifier(Thread* self,
378                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
379                               Handle<mirror::ClassLoader> class_loader,
380                               const DexFile::ClassDef* class_def,
381                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
382                               ArtMethod* method, uint32_t method_access_flags,
383                               bool can_load_classes, bool allow_soft_failures,
384                               bool need_precise_constants, bool verify_to_dump,
385                               bool allow_thread_suspension)
386    : self_(self),
387      reg_types_(can_load_classes),
388      work_insn_idx_(DexFile::kDexNoIndex),
389      dex_method_idx_(dex_method_idx),
390      mirror_method_(method),
391      method_access_flags_(method_access_flags),
392      return_type_(nullptr),
393      dex_file_(dex_file),
394      dex_cache_(dex_cache),
395      class_loader_(class_loader),
396      class_def_(class_def),
397      code_item_(code_item),
398      declaring_class_(nullptr),
399      interesting_dex_pc_(-1),
400      monitor_enter_dex_pcs_(nullptr),
401      have_pending_hard_failure_(false),
402      have_pending_runtime_throw_failure_(false),
403      have_any_pending_runtime_throw_failure_(false),
404      new_instance_count_(0),
405      monitor_enter_count_(0),
406      can_load_classes_(can_load_classes),
407      allow_soft_failures_(allow_soft_failures),
408      need_precise_constants_(need_precise_constants),
409      has_check_casts_(false),
410      has_virtual_or_interface_invokes_(false),
411      verify_to_dump_(verify_to_dump),
412      allow_thread_suspension_(allow_thread_suspension),
413      link_(nullptr) {
414  self->PushVerifier(this);
415  DCHECK(class_def != nullptr);
416}
417
418MethodVerifier::~MethodVerifier() {
419  Thread::Current()->PopVerifier(this);
420  STLDeleteElements(&failure_messages_);
421}
422
423void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
424                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
425  StackHandleScope<2> hs(Thread::Current());
426  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
427  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
428  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
429                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
430                          false, true, false, false);
431  verifier.interesting_dex_pc_ = dex_pc;
432  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
433  verifier.FindLocksAtDexPc();
434}
435
436static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
437  const Instruction* inst = Instruction::At(code_item->insns_);
438
439  uint32_t insns_size = code_item->insns_size_in_code_units_;
440  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
441    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
442      return true;
443    }
444
445    dex_pc += inst->SizeInCodeUnits();
446    inst = inst->Next();
447  }
448
449  return false;
450}
451
452void MethodVerifier::FindLocksAtDexPc() {
453  CHECK(monitor_enter_dex_pcs_ != nullptr);
454  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
455
456  // Quick check whether there are any monitor_enter instructions at all.
457  if (!HasMonitorEnterInstructions(code_item_)) {
458    return;
459  }
460
461  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
462  // verification. In practice, the phase we want relies on data structures set up by all the
463  // earlier passes, so we just run the full method verification and bail out early when we've
464  // got what we wanted.
465  Verify();
466}
467
468ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
469  StackHandleScope<2> hs(Thread::Current());
470  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
471  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
472  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
473                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
474                          true, false, true);
475  return verifier.FindAccessedFieldAtDexPc(dex_pc);
476}
477
478ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
479  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
480
481  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
482  // verification. In practice, the phase we want relies on data structures set up by all the
483  // earlier passes, so we just run the full method verification and bail out early when we've
484  // got what we wanted.
485  bool success = Verify();
486  if (!success) {
487    return nullptr;
488  }
489  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
490  if (register_line == nullptr) {
491    return nullptr;
492  }
493  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
494  return GetQuickFieldAccess(inst, register_line);
495}
496
497ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
498  StackHandleScope<2> hs(Thread::Current());
499  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
500  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
501  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
502                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
503                          true, false, true);
504  return verifier.FindInvokedMethodAtDexPc(dex_pc);
505}
506
507ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
508  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
509
510  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
511  // verification. In practice, the phase we want relies on data structures set up by all the
512  // earlier passes, so we just run the full method verification and bail out early when we've
513  // got what we wanted.
514  bool success = Verify();
515  if (!success) {
516    return nullptr;
517  }
518  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
519  if (register_line == nullptr) {
520    return nullptr;
521  }
522  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
523  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
524  return GetQuickInvokedMethod(inst, register_line, is_range, false);
525}
526
527SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
528  Thread* self = Thread::Current();
529  StackHandleScope<2> hs(self);
530  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
531  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
532  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
533                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
534                          true, true, false, true);
535  return verifier.FindStringInitMap();
536}
537
538SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
539  Verify();
540  return GetStringInitPcRegMap();
541}
542
543bool MethodVerifier::Verify() {
544  // If there aren't any instructions, make sure that's expected, then exit successfully.
545  if (code_item_ == nullptr) {
546    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
547      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
548      return false;
549    } else {
550      return true;
551    }
552  }
553  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
554  if (code_item_->ins_size_ > code_item_->registers_size_) {
555    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
556                                      << " regs=" << code_item_->registers_size_;
557    return false;
558  }
559  // Allocate and initialize an array to hold instruction data.
560  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
561  // Run through the instructions and see if the width checks out.
562  bool result = ComputeWidthsAndCountOps();
563  // Flag instructions guarded by a "try" block and check exception handlers.
564  result = result && ScanTryCatchBlocks();
565  // Perform static instruction verification.
566  result = result && VerifyInstructions();
567  // Perform code-flow analysis and return.
568  result = result && VerifyCodeFlow();
569  // Compute information for compiler.
570  if (result && Runtime::Current()->IsCompiler()) {
571    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
572  }
573  return result;
574}
575
576std::ostream& MethodVerifier::Fail(VerifyError error) {
577  switch (error) {
578    case VERIFY_ERROR_NO_CLASS:
579    case VERIFY_ERROR_NO_FIELD:
580    case VERIFY_ERROR_NO_METHOD:
581    case VERIFY_ERROR_ACCESS_CLASS:
582    case VERIFY_ERROR_ACCESS_FIELD:
583    case VERIFY_ERROR_ACCESS_METHOD:
584    case VERIFY_ERROR_INSTANTIATION:
585    case VERIFY_ERROR_CLASS_CHANGE:
586      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
587        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
588        // class change and instantiation errors into soft verification errors so that we re-verify
589        // at runtime. We may fail to find or to agree on access because of not yet available class
590        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
591        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
592        // paths" that dynamically perform the verification and cause the behavior to be that akin
593        // to an interpreter.
594        error = VERIFY_ERROR_BAD_CLASS_SOFT;
595      } else {
596        // If we fail again at runtime, mark that this instruction would throw and force this
597        // method to be executed using the interpreter with checks.
598        have_pending_runtime_throw_failure_ = true;
599
600        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
601        // try to merge garbage.
602        // Note: this assumes that Fail is called before we do any work_line modifications.
603        // Note: this can fail before we touch any instruction, for the signature of a method. So
604        //       add a check.
605        if (work_insn_idx_ < DexFile::kDexNoIndex) {
606          const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
607          const Instruction* inst = Instruction::At(insns);
608          int opcode_flags = Instruction::FlagsOf(inst->Opcode());
609
610          if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
611            saved_line_->CopyFromLine(work_line_.get());
612          }
613        }
614      }
615      break;
616      // Indication that verification should be retried at runtime.
617    case VERIFY_ERROR_BAD_CLASS_SOFT:
618      if (!allow_soft_failures_) {
619        have_pending_hard_failure_ = true;
620      }
621      break;
622      // Hard verification failures at compile time will still fail at runtime, so the class is
623      // marked as rejected to prevent it from being compiled.
624    case VERIFY_ERROR_BAD_CLASS_HARD: {
625      if (Runtime::Current()->IsAotCompiler()) {
626        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
627        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
628      }
629      have_pending_hard_failure_ = true;
630      break;
631    }
632  }
633  failures_.push_back(error);
634  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
635                                    work_insn_idx_));
636  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
637  failure_messages_.push_back(failure_message);
638  return *failure_message;
639}
640
641std::ostream& MethodVerifier::LogVerifyInfo() {
642  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
643                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
644}
645
646void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
647  size_t failure_num = failure_messages_.size();
648  DCHECK_NE(failure_num, 0U);
649  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
650  prepend += last_fail_message->str();
651  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
652  delete last_fail_message;
653}
654
655void MethodVerifier::AppendToLastFailMessage(std::string append) {
656  size_t failure_num = failure_messages_.size();
657  DCHECK_NE(failure_num, 0U);
658  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
659  (*last_fail_message) << append;
660}
661
662bool MethodVerifier::ComputeWidthsAndCountOps() {
663  const uint16_t* insns = code_item_->insns_;
664  size_t insns_size = code_item_->insns_size_in_code_units_;
665  const Instruction* inst = Instruction::At(insns);
666  size_t new_instance_count = 0;
667  size_t monitor_enter_count = 0;
668  size_t dex_pc = 0;
669
670  while (dex_pc < insns_size) {
671    Instruction::Code opcode = inst->Opcode();
672    switch (opcode) {
673      case Instruction::APUT_OBJECT:
674      case Instruction::CHECK_CAST:
675        has_check_casts_ = true;
676        break;
677      case Instruction::INVOKE_VIRTUAL:
678      case Instruction::INVOKE_VIRTUAL_RANGE:
679      case Instruction::INVOKE_INTERFACE:
680      case Instruction::INVOKE_INTERFACE_RANGE:
681        has_virtual_or_interface_invokes_ = true;
682        break;
683      case Instruction::MONITOR_ENTER:
684        monitor_enter_count++;
685        break;
686      case Instruction::NEW_INSTANCE:
687        new_instance_count++;
688        break;
689      default:
690        break;
691    }
692    size_t inst_size = inst->SizeInCodeUnits();
693    insn_flags_[dex_pc].SetIsOpcode();
694    dex_pc += inst_size;
695    inst = inst->RelativeAt(inst_size);
696  }
697
698  if (dex_pc != insns_size) {
699    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
700                                      << dex_pc << " vs. " << insns_size << ")";
701    return false;
702  }
703
704  new_instance_count_ = new_instance_count;
705  monitor_enter_count_ = monitor_enter_count;
706  return true;
707}
708
709bool MethodVerifier::ScanTryCatchBlocks() {
710  uint32_t tries_size = code_item_->tries_size_;
711  if (tries_size == 0) {
712    return true;
713  }
714  uint32_t insns_size = code_item_->insns_size_in_code_units_;
715  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
716
717  for (uint32_t idx = 0; idx < tries_size; idx++) {
718    const DexFile::TryItem* try_item = &tries[idx];
719    uint32_t start = try_item->start_addr_;
720    uint32_t end = start + try_item->insn_count_;
721    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
722      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
723                                        << " endAddr=" << end << " (size=" << insns_size << ")";
724      return false;
725    }
726    if (!insn_flags_[start].IsOpcode()) {
727      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
728          << "'try' block starts inside an instruction (" << start << ")";
729      return false;
730    }
731    uint32_t dex_pc = start;
732    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
733    while (dex_pc < end) {
734      insn_flags_[dex_pc].SetInTry();
735      size_t insn_size = inst->SizeInCodeUnits();
736      dex_pc += insn_size;
737      inst = inst->RelativeAt(insn_size);
738    }
739  }
740  // Iterate over each of the handlers to verify target addresses.
741  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
742  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
743  ClassLinker* linker = Runtime::Current()->GetClassLinker();
744  for (uint32_t idx = 0; idx < handlers_size; idx++) {
745    CatchHandlerIterator iterator(handlers_ptr);
746    for (; iterator.HasNext(); iterator.Next()) {
747      uint32_t dex_pc= iterator.GetHandlerAddress();
748      if (!insn_flags_[dex_pc].IsOpcode()) {
749        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
750            << "exception handler starts at bad address (" << dex_pc << ")";
751        return false;
752      }
753      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
754        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
755            << "exception handler begins with move-result* (" << dex_pc << ")";
756        return false;
757      }
758      insn_flags_[dex_pc].SetBranchTarget();
759      // Ensure exception types are resolved so that they don't need resolution to be delivered,
760      // unresolved exception types will be ignored by exception delivery
761      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
762        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
763                                                            iterator.GetHandlerTypeIndex(),
764                                                            dex_cache_, class_loader_);
765        if (exception_type == nullptr) {
766          DCHECK(self_->IsExceptionPending());
767          self_->ClearException();
768        }
769      }
770    }
771    handlers_ptr = iterator.EndDataPointer();
772  }
773  return true;
774}
775
776bool MethodVerifier::VerifyInstructions() {
777  const Instruction* inst = Instruction::At(code_item_->insns_);
778
779  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
780  insn_flags_[0].SetBranchTarget();
781  insn_flags_[0].SetCompileTimeInfoPoint();
782
783  uint32_t insns_size = code_item_->insns_size_in_code_units_;
784  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
785    if (!VerifyInstruction(inst, dex_pc)) {
786      DCHECK_NE(failures_.size(), 0U);
787      return false;
788    }
789    /* Flag instructions that are garbage collection points */
790    // All invoke points are marked as "Throw" points already.
791    // We are relying on this to also count all the invokes as interesting.
792    if (inst->IsBranch()) {
793      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
794      // The compiler also needs safepoints for fall-through to loop heads.
795      // Such a loop head must be a target of a branch.
796      int32_t offset = 0;
797      bool cond, self_ok;
798      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
799      DCHECK(target_ok);
800      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
801    } else if (inst->IsSwitch() || inst->IsThrow()) {
802      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
803    } else if (inst->IsReturn()) {
804      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
805    }
806    dex_pc += inst->SizeInCodeUnits();
807    inst = inst->Next();
808  }
809  return true;
810}
811
812bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
813  bool result = true;
814  switch (inst->GetVerifyTypeArgumentA()) {
815    case Instruction::kVerifyRegA:
816      result = result && CheckRegisterIndex(inst->VRegA());
817      break;
818    case Instruction::kVerifyRegAWide:
819      result = result && CheckWideRegisterIndex(inst->VRegA());
820      break;
821  }
822  switch (inst->GetVerifyTypeArgumentB()) {
823    case Instruction::kVerifyRegB:
824      result = result && CheckRegisterIndex(inst->VRegB());
825      break;
826    case Instruction::kVerifyRegBField:
827      result = result && CheckFieldIndex(inst->VRegB());
828      break;
829    case Instruction::kVerifyRegBMethod:
830      result = result && CheckMethodIndex(inst->VRegB());
831      break;
832    case Instruction::kVerifyRegBNewInstance:
833      result = result && CheckNewInstance(inst->VRegB());
834      break;
835    case Instruction::kVerifyRegBString:
836      result = result && CheckStringIndex(inst->VRegB());
837      break;
838    case Instruction::kVerifyRegBType:
839      result = result && CheckTypeIndex(inst->VRegB());
840      break;
841    case Instruction::kVerifyRegBWide:
842      result = result && CheckWideRegisterIndex(inst->VRegB());
843      break;
844  }
845  switch (inst->GetVerifyTypeArgumentC()) {
846    case Instruction::kVerifyRegC:
847      result = result && CheckRegisterIndex(inst->VRegC());
848      break;
849    case Instruction::kVerifyRegCField:
850      result = result && CheckFieldIndex(inst->VRegC());
851      break;
852    case Instruction::kVerifyRegCNewArray:
853      result = result && CheckNewArray(inst->VRegC());
854      break;
855    case Instruction::kVerifyRegCType:
856      result = result && CheckTypeIndex(inst->VRegC());
857      break;
858    case Instruction::kVerifyRegCWide:
859      result = result && CheckWideRegisterIndex(inst->VRegC());
860      break;
861  }
862  switch (inst->GetVerifyExtraFlags()) {
863    case Instruction::kVerifyArrayData:
864      result = result && CheckArrayData(code_offset);
865      break;
866    case Instruction::kVerifyBranchTarget:
867      result = result && CheckBranchTarget(code_offset);
868      break;
869    case Instruction::kVerifySwitchTargets:
870      result = result && CheckSwitchTargets(code_offset);
871      break;
872    case Instruction::kVerifyVarArgNonZero:
873      // Fall-through.
874    case Instruction::kVerifyVarArg: {
875      // Instructions that can actually return a negative value shouldn't have this flag.
876      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
877      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
878          v_a > Instruction::kMaxVarArgRegs) {
879        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
880                                             "non-range invoke";
881        return false;
882      }
883
884      uint32_t args[Instruction::kMaxVarArgRegs];
885      inst->GetVarArgs(args);
886      result = result && CheckVarArgRegs(v_a, args);
887      break;
888    }
889    case Instruction::kVerifyVarArgRangeNonZero:
890      // Fall-through.
891    case Instruction::kVerifyVarArgRange:
892      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
893          inst->VRegA() <= 0) {
894        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
895                                             "range invoke";
896        return false;
897      }
898      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
899      break;
900    case Instruction::kVerifyError:
901      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
902      result = false;
903      break;
904  }
905  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
906    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
907    result = false;
908  }
909  return result;
910}
911
912inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
913  if (idx >= code_item_->registers_size_) {
914    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
915                                      << code_item_->registers_size_ << ")";
916    return false;
917  }
918  return true;
919}
920
921inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
922  if (idx + 1 >= code_item_->registers_size_) {
923    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
924                                      << "+1 >= " << code_item_->registers_size_ << ")";
925    return false;
926  }
927  return true;
928}
929
930inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
931  if (idx >= dex_file_->GetHeader().field_ids_size_) {
932    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
933                                      << dex_file_->GetHeader().field_ids_size_ << ")";
934    return false;
935  }
936  return true;
937}
938
939inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
940  if (idx >= dex_file_->GetHeader().method_ids_size_) {
941    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
942                                      << dex_file_->GetHeader().method_ids_size_ << ")";
943    return false;
944  }
945  return true;
946}
947
948inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
949  if (idx >= dex_file_->GetHeader().type_ids_size_) {
950    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
951                                      << dex_file_->GetHeader().type_ids_size_ << ")";
952    return false;
953  }
954  // We don't need the actual class, just a pointer to the class name.
955  const char* descriptor = dex_file_->StringByTypeIdx(idx);
956  if (descriptor[0] != 'L') {
957    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
958    return false;
959  }
960  return true;
961}
962
963inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
964  if (idx >= dex_file_->GetHeader().string_ids_size_) {
965    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
966                                      << dex_file_->GetHeader().string_ids_size_ << ")";
967    return false;
968  }
969  return true;
970}
971
972inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
973  if (idx >= dex_file_->GetHeader().type_ids_size_) {
974    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
975                                      << dex_file_->GetHeader().type_ids_size_ << ")";
976    return false;
977  }
978  return true;
979}
980
981bool MethodVerifier::CheckNewArray(uint32_t idx) {
982  if (idx >= dex_file_->GetHeader().type_ids_size_) {
983    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
984                                      << dex_file_->GetHeader().type_ids_size_ << ")";
985    return false;
986  }
987  int bracket_count = 0;
988  const char* descriptor = dex_file_->StringByTypeIdx(idx);
989  const char* cp = descriptor;
990  while (*cp++ == '[') {
991    bracket_count++;
992  }
993  if (bracket_count == 0) {
994    /* The given class must be an array type. */
995    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
996        << "can't new-array class '" << descriptor << "' (not an array)";
997    return false;
998  } else if (bracket_count > 255) {
999    /* It is illegal to create an array of more than 255 dimensions. */
1000    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1001        << "can't new-array class '" << descriptor << "' (exceeds limit)";
1002    return false;
1003  }
1004  return true;
1005}
1006
1007bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1008  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1009  const uint16_t* insns = code_item_->insns_ + cur_offset;
1010  const uint16_t* array_data;
1011  int32_t array_data_offset;
1012
1013  DCHECK_LT(cur_offset, insn_count);
1014  /* make sure the start of the array data table is in range */
1015  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
1016  if ((int32_t) cur_offset + array_data_offset < 0 ||
1017      cur_offset + array_data_offset + 2 >= insn_count) {
1018    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1019                                      << ", data offset " << array_data_offset
1020                                      << ", count " << insn_count;
1021    return false;
1022  }
1023  /* offset to array data table is a relative branch-style offset */
1024  array_data = insns + array_data_offset;
1025  /* make sure the table is 32-bit aligned */
1026  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1027    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1028                                      << ", data offset " << array_data_offset;
1029    return false;
1030  }
1031  uint32_t value_width = array_data[1];
1032  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1033  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1034  /* make sure the end of the switch is in range */
1035  if (cur_offset + array_data_offset + table_size > insn_count) {
1036    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1037                                      << ", data offset " << array_data_offset << ", end "
1038                                      << cur_offset + array_data_offset + table_size
1039                                      << ", count " << insn_count;
1040    return false;
1041  }
1042  return true;
1043}
1044
1045bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1046  int32_t offset;
1047  bool isConditional, selfOkay;
1048  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1049    return false;
1050  }
1051  if (!selfOkay && offset == 0) {
1052    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1053                                      << reinterpret_cast<void*>(cur_offset);
1054    return false;
1055  }
1056  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1057  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1058  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1059    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1060                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1061    return false;
1062  }
1063  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1064  int32_t abs_offset = cur_offset + offset;
1065  if (abs_offset < 0 ||
1066      (uint32_t) abs_offset >= insn_count ||
1067      !insn_flags_[abs_offset].IsOpcode()) {
1068    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1069                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1070                                      << reinterpret_cast<void*>(cur_offset);
1071    return false;
1072  }
1073  insn_flags_[abs_offset].SetBranchTarget();
1074  return true;
1075}
1076
1077bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1078                                  bool* selfOkay) {
1079  const uint16_t* insns = code_item_->insns_ + cur_offset;
1080  *pConditional = false;
1081  *selfOkay = false;
1082  switch (*insns & 0xff) {
1083    case Instruction::GOTO:
1084      *pOffset = ((int16_t) *insns) >> 8;
1085      break;
1086    case Instruction::GOTO_32:
1087      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1088      *selfOkay = true;
1089      break;
1090    case Instruction::GOTO_16:
1091      *pOffset = (int16_t) insns[1];
1092      break;
1093    case Instruction::IF_EQ:
1094    case Instruction::IF_NE:
1095    case Instruction::IF_LT:
1096    case Instruction::IF_GE:
1097    case Instruction::IF_GT:
1098    case Instruction::IF_LE:
1099    case Instruction::IF_EQZ:
1100    case Instruction::IF_NEZ:
1101    case Instruction::IF_LTZ:
1102    case Instruction::IF_GEZ:
1103    case Instruction::IF_GTZ:
1104    case Instruction::IF_LEZ:
1105      *pOffset = (int16_t) insns[1];
1106      *pConditional = true;
1107      break;
1108    default:
1109      return false;
1110  }
1111  return true;
1112}
1113
1114bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1115  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1116  DCHECK_LT(cur_offset, insn_count);
1117  const uint16_t* insns = code_item_->insns_ + cur_offset;
1118  /* make sure the start of the switch is in range */
1119  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1120  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1121    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1122                                      << ", switch offset " << switch_offset
1123                                      << ", count " << insn_count;
1124    return false;
1125  }
1126  /* offset to switch table is a relative branch-style offset */
1127  const uint16_t* switch_insns = insns + switch_offset;
1128  /* make sure the table is 32-bit aligned */
1129  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1130    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1131                                      << ", switch offset " << switch_offset;
1132    return false;
1133  }
1134  uint32_t switch_count = switch_insns[1];
1135  int32_t keys_offset, targets_offset;
1136  uint16_t expected_signature;
1137  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1138    /* 0=sig, 1=count, 2/3=firstKey */
1139    targets_offset = 4;
1140    keys_offset = -1;
1141    expected_signature = Instruction::kPackedSwitchSignature;
1142  } else {
1143    /* 0=sig, 1=count, 2..count*2 = keys */
1144    keys_offset = 2;
1145    targets_offset = 2 + 2 * switch_count;
1146    expected_signature = Instruction::kSparseSwitchSignature;
1147  }
1148  uint32_t table_size = targets_offset + switch_count * 2;
1149  if (switch_insns[0] != expected_signature) {
1150    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1151        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1152                        switch_insns[0], expected_signature);
1153    return false;
1154  }
1155  /* make sure the end of the switch is in range */
1156  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1157    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1158                                      << ", switch offset " << switch_offset
1159                                      << ", end " << (cur_offset + switch_offset + table_size)
1160                                      << ", count " << insn_count;
1161    return false;
1162  }
1163  /* for a sparse switch, verify the keys are in ascending order */
1164  if (keys_offset > 0 && switch_count > 1) {
1165    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1166    for (uint32_t targ = 1; targ < switch_count; targ++) {
1167      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1168                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1169      if (key <= last_key) {
1170        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1171                                          << ", this=" << key;
1172        return false;
1173      }
1174      last_key = key;
1175    }
1176  }
1177  /* verify each switch target */
1178  for (uint32_t targ = 0; targ < switch_count; targ++) {
1179    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1180                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1181    int32_t abs_offset = cur_offset + offset;
1182    if (abs_offset < 0 ||
1183        abs_offset >= (int32_t) insn_count ||
1184        !insn_flags_[abs_offset].IsOpcode()) {
1185      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1186                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1187                                        << reinterpret_cast<void*>(cur_offset)
1188                                        << "[" << targ << "]";
1189      return false;
1190    }
1191    insn_flags_[abs_offset].SetBranchTarget();
1192  }
1193  return true;
1194}
1195
1196bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1197  uint16_t registers_size = code_item_->registers_size_;
1198  for (uint32_t idx = 0; idx < vA; idx++) {
1199    if (arg[idx] >= registers_size) {
1200      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1201                                        << ") in non-range invoke (>= " << registers_size << ")";
1202      return false;
1203    }
1204  }
1205
1206  return true;
1207}
1208
1209bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1210  uint16_t registers_size = code_item_->registers_size_;
1211  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1212  // integer overflow when adding them here.
1213  if (vA + vC > registers_size) {
1214    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1215                                      << " in range invoke (> " << registers_size << ")";
1216    return false;
1217  }
1218  return true;
1219}
1220
1221bool MethodVerifier::VerifyCodeFlow() {
1222  uint16_t registers_size = code_item_->registers_size_;
1223  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1224
1225  /* Create and initialize table holding register status */
1226  reg_table_.Init(kTrackCompilerInterestPoints,
1227                  insn_flags_.get(),
1228                  insns_size,
1229                  registers_size,
1230                  this);
1231
1232
1233  work_line_.reset(RegisterLine::Create(registers_size, this));
1234  saved_line_.reset(RegisterLine::Create(registers_size, this));
1235
1236  /* Initialize register types of method arguments. */
1237  if (!SetTypesFromSignature()) {
1238    DCHECK_NE(failures_.size(), 0U);
1239    std::string prepend("Bad signature in ");
1240    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1241    PrependToLastFailMessage(prepend);
1242    return false;
1243  }
1244  // We may have a runtime failure here, clear.
1245  have_pending_runtime_throw_failure_ = false;
1246
1247  /* Perform code flow verification. */
1248  if (!CodeFlowVerifyMethod()) {
1249    DCHECK_NE(failures_.size(), 0U);
1250    return false;
1251  }
1252  return true;
1253}
1254
1255std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1256  DCHECK_EQ(failures_.size(), failure_messages_.size());
1257  for (size_t i = 0; i < failures_.size(); ++i) {
1258      os << failure_messages_[i]->str() << "\n";
1259  }
1260  return os;
1261}
1262
1263void MethodVerifier::Dump(std::ostream& os) {
1264  if (code_item_ == nullptr) {
1265    os << "Native method\n";
1266    return;
1267  }
1268  {
1269    os << "Register Types:\n";
1270    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1271    std::ostream indent_os(&indent_filter);
1272    reg_types_.Dump(indent_os);
1273  }
1274  os << "Dumping instructions and register lines:\n";
1275  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1276  std::ostream indent_os(&indent_filter);
1277  const Instruction* inst = Instruction::At(code_item_->insns_);
1278  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1279      dex_pc += inst->SizeInCodeUnits()) {
1280    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1281    if (reg_line != nullptr) {
1282      indent_os << reg_line->Dump(this) << "\n";
1283    }
1284    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1285    const bool kDumpHexOfInstruction = false;
1286    if (kDumpHexOfInstruction) {
1287      indent_os << inst->DumpHex(5) << " ";
1288    }
1289    indent_os << inst->DumpString(dex_file_) << "\n";
1290    inst = inst->Next();
1291  }
1292}
1293
1294static bool IsPrimitiveDescriptor(char descriptor) {
1295  switch (descriptor) {
1296    case 'I':
1297    case 'C':
1298    case 'S':
1299    case 'B':
1300    case 'Z':
1301    case 'F':
1302    case 'D':
1303    case 'J':
1304      return true;
1305    default:
1306      return false;
1307  }
1308}
1309
1310bool MethodVerifier::SetTypesFromSignature() {
1311  RegisterLine* reg_line = reg_table_.GetLine(0);
1312
1313  // Should have been verified earlier.
1314  DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1315
1316  uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1317  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1318
1319  // Include the "this" pointer.
1320  size_t cur_arg = 0;
1321  if (!IsStatic()) {
1322    if (expected_args == 0) {
1323      // Expect at least a receiver.
1324      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1325      return false;
1326    }
1327
1328    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1329    // argument as uninitialized. This restricts field access until the superclass constructor is
1330    // called.
1331    const RegType& declaring_class = GetDeclaringClass();
1332    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1333      reg_line->SetRegisterType(this, arg_start + cur_arg,
1334                                reg_types_.UninitializedThisArgument(declaring_class));
1335    } else {
1336      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1337    }
1338    cur_arg++;
1339  }
1340
1341  const DexFile::ProtoId& proto_id =
1342      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1343  DexFileParameterIterator iterator(*dex_file_, proto_id);
1344
1345  for (; iterator.HasNext(); iterator.Next()) {
1346    const char* descriptor = iterator.GetDescriptor();
1347    if (descriptor == nullptr) {
1348      LOG(FATAL) << "Null descriptor";
1349    }
1350    if (cur_arg >= expected_args) {
1351      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1352                                        << " args, found more (" << descriptor << ")";
1353      return false;
1354    }
1355    switch (descriptor[0]) {
1356      case 'L':
1357      case '[':
1358        // We assume that reference arguments are initialized. The only way it could be otherwise
1359        // (assuming the caller was verified) is if the current method is <init>, but in that case
1360        // it's effectively considered initialized the instant we reach here (in the sense that we
1361        // can return without doing anything or call virtual methods).
1362        {
1363          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1364          if (!reg_type.IsNonZeroReferenceTypes()) {
1365            DCHECK(HasFailures());
1366            return false;
1367          }
1368          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1369        }
1370        break;
1371      case 'Z':
1372        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1373        break;
1374      case 'C':
1375        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1376        break;
1377      case 'B':
1378        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1379        break;
1380      case 'I':
1381        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1382        break;
1383      case 'S':
1384        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1385        break;
1386      case 'F':
1387        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1388        break;
1389      case 'J':
1390      case 'D': {
1391        if (cur_arg + 1 >= expected_args) {
1392          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1393              << " args, found more (" << descriptor << ")";
1394          return false;
1395        }
1396
1397        const RegType* lo_half;
1398        const RegType* hi_half;
1399        if (descriptor[0] == 'J') {
1400          lo_half = &reg_types_.LongLo();
1401          hi_half = &reg_types_.LongHi();
1402        } else {
1403          lo_half = &reg_types_.DoubleLo();
1404          hi_half = &reg_types_.DoubleHi();
1405        }
1406        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1407        cur_arg++;
1408        break;
1409      }
1410      default:
1411        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1412                                          << descriptor << "'";
1413        return false;
1414    }
1415    cur_arg++;
1416  }
1417  if (cur_arg != expected_args) {
1418    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1419                                      << " arguments, found " << cur_arg;
1420    return false;
1421  }
1422  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1423  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1424  // format. Only major difference from the method argument format is that 'V' is supported.
1425  bool result;
1426  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1427    result = descriptor[1] == '\0';
1428  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1429    size_t i = 0;
1430    do {
1431      i++;
1432    } while (descriptor[i] == '[');  // process leading [
1433    if (descriptor[i] == 'L') {  // object array
1434      do {
1435        i++;  // find closing ;
1436      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1437      result = descriptor[i] == ';';
1438    } else {  // primitive array
1439      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1440    }
1441  } else if (descriptor[0] == 'L') {
1442    // could be more thorough here, but shouldn't be required
1443    size_t i = 0;
1444    do {
1445      i++;
1446    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1447    result = descriptor[i] == ';';
1448  } else {
1449    result = false;
1450  }
1451  if (!result) {
1452    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1453                                      << descriptor << "'";
1454  }
1455  return result;
1456}
1457
1458bool MethodVerifier::CodeFlowVerifyMethod() {
1459  const uint16_t* insns = code_item_->insns_;
1460  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1461
1462  /* Begin by marking the first instruction as "changed". */
1463  insn_flags_[0].SetChanged();
1464  uint32_t start_guess = 0;
1465
1466  /* Continue until no instructions are marked "changed". */
1467  while (true) {
1468    if (allow_thread_suspension_) {
1469      self_->AllowThreadSuspension();
1470    }
1471    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1472    uint32_t insn_idx = start_guess;
1473    for (; insn_idx < insns_size; insn_idx++) {
1474      if (insn_flags_[insn_idx].IsChanged())
1475        break;
1476    }
1477    if (insn_idx == insns_size) {
1478      if (start_guess != 0) {
1479        /* try again, starting from the top */
1480        start_guess = 0;
1481        continue;
1482      } else {
1483        /* all flags are clear */
1484        break;
1485      }
1486    }
1487    // We carry the working set of registers from instruction to instruction. If this address can
1488    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1489    // "changed" flags, we need to load the set of registers from the table.
1490    // Because we always prefer to continue on to the next instruction, we should never have a
1491    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1492    // target.
1493    work_insn_idx_ = insn_idx;
1494    if (insn_flags_[insn_idx].IsBranchTarget()) {
1495      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1496    } else if (kIsDebugBuild) {
1497      /*
1498       * Sanity check: retrieve the stored register line (assuming
1499       * a full table) and make sure it actually matches.
1500       */
1501      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1502      if (register_line != nullptr) {
1503        if (work_line_->CompareLine(register_line) != 0) {
1504          Dump(std::cout);
1505          std::cout << info_messages_.str();
1506          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1507                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1508                     << " work_line=" << work_line_->Dump(this) << "\n"
1509                     << "  expected=" << register_line->Dump(this);
1510        }
1511      }
1512    }
1513    if (!CodeFlowVerifyInstruction(&start_guess)) {
1514      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1515      prepend += " failed to verify: ";
1516      PrependToLastFailMessage(prepend);
1517      return false;
1518    }
1519    /* Clear "changed" and mark as visited. */
1520    insn_flags_[insn_idx].SetVisited();
1521    insn_flags_[insn_idx].ClearChanged();
1522  }
1523
1524  if (gDebugVerify) {
1525    /*
1526     * Scan for dead code. There's nothing "evil" about dead code
1527     * (besides the wasted space), but it indicates a flaw somewhere
1528     * down the line, possibly in the verifier.
1529     *
1530     * If we've substituted "always throw" instructions into the stream,
1531     * we are almost certainly going to have some dead code.
1532     */
1533    int dead_start = -1;
1534    uint32_t insn_idx = 0;
1535    for (; insn_idx < insns_size;
1536         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1537      /*
1538       * Switch-statement data doesn't get "visited" by scanner. It
1539       * may or may not be preceded by a padding NOP (for alignment).
1540       */
1541      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1542          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1543          insns[insn_idx] == Instruction::kArrayDataSignature ||
1544          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1545           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1546            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1547            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1548        insn_flags_[insn_idx].SetVisited();
1549      }
1550
1551      if (!insn_flags_[insn_idx].IsVisited()) {
1552        if (dead_start < 0)
1553          dead_start = insn_idx;
1554      } else if (dead_start >= 0) {
1555        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1556                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1557        dead_start = -1;
1558      }
1559    }
1560    if (dead_start >= 0) {
1561      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1562                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1563    }
1564    // To dump the state of the verify after a method, do something like:
1565    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1566    //     "boolean java.lang.String.equals(java.lang.Object)") {
1567    //   LOG(INFO) << info_messages_.str();
1568    // }
1569  }
1570  return true;
1571}
1572
1573// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1574// is no such field.
1575static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
1576  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1577  DCHECK(class_def != nullptr);
1578  const uint8_t* class_data = dex_file.GetClassData(*class_def);
1579  DCHECK(class_data != nullptr);
1580  ClassDataItemIterator it(dex_file, class_data);
1581  // Skip static fields.
1582  while (it.HasNextStaticField()) {
1583    it.Next();
1584  }
1585  while (it.HasNextInstanceField()) {
1586    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1587      return it.GetMemberIndex();
1588    }
1589    it.Next();
1590  }
1591  return DexFile::kDexNoIndex;
1592}
1593
1594bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1595  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1596  // We want the state _before_ the instruction, for the case where the dex pc we're
1597  // interested in is itself a monitor-enter instruction (which is a likely place
1598  // for a thread to be suspended).
1599  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1600    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1601    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1602      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1603    }
1604  }
1605
1606  /*
1607   * Once we finish decoding the instruction, we need to figure out where
1608   * we can go from here. There are three possible ways to transfer
1609   * control to another statement:
1610   *
1611   * (1) Continue to the next instruction. Applies to all but
1612   *     unconditional branches, method returns, and exception throws.
1613   * (2) Branch to one or more possible locations. Applies to branches
1614   *     and switch statements.
1615   * (3) Exception handlers. Applies to any instruction that can
1616   *     throw an exception that is handled by an encompassing "try"
1617   *     block.
1618   *
1619   * We can also return, in which case there is no successor instruction
1620   * from this point.
1621   *
1622   * The behavior can be determined from the opcode flags.
1623   */
1624  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1625  const Instruction* inst = Instruction::At(insns);
1626  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1627
1628  int32_t branch_target = 0;
1629  bool just_set_result = false;
1630  if (gDebugVerify) {
1631    // Generate processing back trace to debug verifier
1632    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1633                    << work_line_->Dump(this) << "\n";
1634  }
1635
1636  /*
1637   * Make a copy of the previous register state. If the instruction
1638   * can throw an exception, we will copy/merge this into the "catch"
1639   * address rather than work_line, because we don't want the result
1640   * from the "successful" code path (e.g. a check-cast that "improves"
1641   * a type) to be visible to the exception handler.
1642   */
1643  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1644    saved_line_->CopyFromLine(work_line_.get());
1645  } else if (kIsDebugBuild) {
1646    saved_line_->FillWithGarbage();
1647  }
1648  DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
1649
1650
1651  // We need to ensure the work line is consistent while performing validation. When we spot a
1652  // peephole pattern we compute a new line for either the fallthrough instruction or the
1653  // branch target.
1654  std::unique_ptr<RegisterLine> branch_line;
1655  std::unique_ptr<RegisterLine> fallthrough_line;
1656
1657  /*
1658   * If we are in a constructor, and we currently have an UninitializedThis type
1659   * in a register somewhere, we need to make sure it isn't overwritten.
1660   */
1661  bool track_uninitialized_this = false;
1662  size_t uninitialized_this_loc = 0;
1663  if (IsConstructor()) {
1664    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1665  }
1666
1667  switch (inst->Opcode()) {
1668    case Instruction::NOP:
1669      /*
1670       * A "pure" NOP has no effect on anything. Data tables start with
1671       * a signature that looks like a NOP; if we see one of these in
1672       * the course of executing code then we have a problem.
1673       */
1674      if (inst->VRegA_10x() != 0) {
1675        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1676      }
1677      break;
1678
1679    case Instruction::MOVE:
1680      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1681      break;
1682    case Instruction::MOVE_FROM16:
1683      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1684      break;
1685    case Instruction::MOVE_16:
1686      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1687      break;
1688    case Instruction::MOVE_WIDE:
1689      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1690      break;
1691    case Instruction::MOVE_WIDE_FROM16:
1692      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1693      break;
1694    case Instruction::MOVE_WIDE_16:
1695      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1696      break;
1697    case Instruction::MOVE_OBJECT:
1698      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1699      break;
1700    case Instruction::MOVE_OBJECT_FROM16:
1701      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1702      break;
1703    case Instruction::MOVE_OBJECT_16:
1704      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1705      break;
1706
1707    /*
1708     * The move-result instructions copy data out of a "pseudo-register"
1709     * with the results from the last method invocation. In practice we
1710     * might want to hold the result in an actual CPU register, so the
1711     * Dalvik spec requires that these only appear immediately after an
1712     * invoke or filled-new-array.
1713     *
1714     * These calls invalidate the "result" register. (This is now
1715     * redundant with the reset done below, but it can make the debug info
1716     * easier to read in some cases.)
1717     */
1718    case Instruction::MOVE_RESULT:
1719      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1720      break;
1721    case Instruction::MOVE_RESULT_WIDE:
1722      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1723      break;
1724    case Instruction::MOVE_RESULT_OBJECT:
1725      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1726      break;
1727
1728    case Instruction::MOVE_EXCEPTION: {
1729      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1730      // where one entrypoint to the catch block is not actually an exception path.
1731      if (work_insn_idx_ == 0) {
1732        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1733        break;
1734      }
1735      /*
1736       * This statement can only appear as the first instruction in an exception handler. We verify
1737       * that as part of extracting the exception type from the catch block list.
1738       */
1739      const RegType& res_type = GetCaughtExceptionType();
1740      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1741      break;
1742    }
1743    case Instruction::RETURN_VOID:
1744      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1745        if (!GetMethodReturnType().IsConflict()) {
1746          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1747        }
1748      }
1749      break;
1750    case Instruction::RETURN:
1751      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1752        /* check the method signature */
1753        const RegType& return_type = GetMethodReturnType();
1754        if (!return_type.IsCategory1Types()) {
1755          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1756                                            << return_type;
1757        } else {
1758          // Compilers may generate synthetic functions that write byte values into boolean fields.
1759          // Also, it may use integer values for boolean, byte, short, and character return types.
1760          const uint32_t vregA = inst->VRegA_11x();
1761          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1762          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1763                          ((return_type.IsBoolean() || return_type.IsByte() ||
1764                           return_type.IsShort() || return_type.IsChar()) &&
1765                           src_type.IsInteger()));
1766          /* check the register contents */
1767          bool success =
1768              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1769          if (!success) {
1770            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1771          }
1772        }
1773      }
1774      break;
1775    case Instruction::RETURN_WIDE:
1776      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1777        /* check the method signature */
1778        const RegType& return_type = GetMethodReturnType();
1779        if (!return_type.IsCategory2Types()) {
1780          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1781        } else {
1782          /* check the register contents */
1783          const uint32_t vregA = inst->VRegA_11x();
1784          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1785          if (!success) {
1786            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1787          }
1788        }
1789      }
1790      break;
1791    case Instruction::RETURN_OBJECT:
1792      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1793        const RegType& return_type = GetMethodReturnType();
1794        if (!return_type.IsReferenceTypes()) {
1795          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1796        } else {
1797          /* return_type is the *expected* return type, not register value */
1798          DCHECK(!return_type.IsZero());
1799          DCHECK(!return_type.IsUninitializedReference());
1800          const uint32_t vregA = inst->VRegA_11x();
1801          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1802          // Disallow returning uninitialized values and verify that the reference in vAA is an
1803          // instance of the "return_type"
1804          if (reg_type.IsUninitializedTypes()) {
1805            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1806                                              << reg_type << "'";
1807          } else if (!return_type.IsAssignableFrom(reg_type)) {
1808            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1809              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1810                  << "' or '" << reg_type << "'";
1811            } else {
1812              bool soft_error = false;
1813              // Check whether arrays are involved. They will show a valid class status, even
1814              // if their components are erroneous.
1815              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1816                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1817                if (soft_error) {
1818                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1819                        << reg_type << " vs " << return_type;
1820                }
1821              }
1822
1823              if (!soft_error) {
1824                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1825                    << "', but expected from declaration '" << return_type << "'";
1826              }
1827            }
1828          }
1829        }
1830      }
1831      break;
1832
1833      /* could be boolean, int, float, or a null reference */
1834    case Instruction::CONST_4: {
1835      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1836      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1837                                  DetermineCat1Constant(val, need_precise_constants_));
1838      break;
1839    }
1840    case Instruction::CONST_16: {
1841      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1842      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1843                                  DetermineCat1Constant(val, need_precise_constants_));
1844      break;
1845    }
1846    case Instruction::CONST: {
1847      int32_t val = inst->VRegB_31i();
1848      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1849                                  DetermineCat1Constant(val, need_precise_constants_));
1850      break;
1851    }
1852    case Instruction::CONST_HIGH16: {
1853      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1854      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1855                                  DetermineCat1Constant(val, need_precise_constants_));
1856      break;
1857    }
1858      /* could be long or double; resolved upon use */
1859    case Instruction::CONST_WIDE_16: {
1860      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1861      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1862      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1863      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1864      break;
1865    }
1866    case Instruction::CONST_WIDE_32: {
1867      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1868      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1869      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1870      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1871      break;
1872    }
1873    case Instruction::CONST_WIDE: {
1874      int64_t val = inst->VRegB_51l();
1875      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1876      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1877      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1878      break;
1879    }
1880    case Instruction::CONST_WIDE_HIGH16: {
1881      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1882      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1883      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1884      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1885      break;
1886    }
1887    case Instruction::CONST_STRING:
1888      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1889      break;
1890    case Instruction::CONST_STRING_JUMBO:
1891      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1892      break;
1893    case Instruction::CONST_CLASS: {
1894      // Get type from instruction if unresolved then we need an access check
1895      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1896      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1897      // Register holds class, ie its type is class, on error it will hold Conflict.
1898      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1899                                  res_type.IsConflict() ? res_type
1900                                                        : reg_types_.JavaLangClass());
1901      break;
1902    }
1903    case Instruction::MONITOR_ENTER:
1904      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1905      break;
1906    case Instruction::MONITOR_EXIT:
1907      /*
1908       * monitor-exit instructions are odd. They can throw exceptions,
1909       * but when they do they act as if they succeeded and the PC is
1910       * pointing to the following instruction. (This behavior goes back
1911       * to the need to handle asynchronous exceptions, a now-deprecated
1912       * feature that Dalvik doesn't support.)
1913       *
1914       * In practice we don't need to worry about this. The only
1915       * exceptions that can be thrown from monitor-exit are for a
1916       * null reference and -exit without a matching -enter. If the
1917       * structured locking checks are working, the former would have
1918       * failed on the -enter instruction, and the latter is impossible.
1919       *
1920       * This is fortunate, because issue 3221411 prevents us from
1921       * chasing the "can throw" path when monitor verification is
1922       * enabled. If we can fully verify the locking we can ignore
1923       * some catch blocks (which will show up as "dead" code when
1924       * we skip them here); if we can't, then the code path could be
1925       * "live" so we still need to check it.
1926       */
1927      opcode_flags &= ~Instruction::kThrow;
1928      work_line_->PopMonitor(this, inst->VRegA_11x());
1929      break;
1930
1931    case Instruction::CHECK_CAST:
1932    case Instruction::INSTANCE_OF: {
1933      /*
1934       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1935       * could be a "upcast" -- not expected, so we don't try to address it.)
1936       *
1937       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1938       * dec_insn.vA when branching to a handler.
1939       */
1940      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1941      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1942      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1943      if (res_type.IsConflict()) {
1944        // If this is a primitive type, fail HARD.
1945        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1946        if (klass != nullptr && klass->IsPrimitive()) {
1947          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1948              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1949              << GetDeclaringClass();
1950          break;
1951        }
1952
1953        DCHECK_NE(failures_.size(), 0U);
1954        if (!is_checkcast) {
1955          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1956        }
1957        break;  // bad class
1958      }
1959      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1960      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1961      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1962      if (!res_type.IsNonZeroReferenceTypes()) {
1963        if (is_checkcast) {
1964          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1965        } else {
1966          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1967        }
1968      } else if (!orig_type.IsReferenceTypes()) {
1969        if (is_checkcast) {
1970          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1971        } else {
1972          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1973        }
1974      } else {
1975        if (is_checkcast) {
1976          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1977        } else {
1978          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1979        }
1980      }
1981      break;
1982    }
1983    case Instruction::ARRAY_LENGTH: {
1984      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1985      if (res_type.IsReferenceTypes()) {
1986        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1987          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1988        } else {
1989          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1990        }
1991      } else {
1992        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1993      }
1994      break;
1995    }
1996    case Instruction::NEW_INSTANCE: {
1997      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1998      if (res_type.IsConflict()) {
1999        DCHECK_NE(failures_.size(), 0U);
2000        break;  // bad class
2001      }
2002      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2003      // can't create an instance of an interface or abstract class */
2004      if (!res_type.IsInstantiableTypes()) {
2005        Fail(VERIFY_ERROR_INSTANTIATION)
2006            << "new-instance on primitive, interface or abstract class" << res_type;
2007        // Soft failure so carry on to set register type.
2008      }
2009      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2010      // Any registers holding previous allocations from this address that have not yet been
2011      // initialized must be marked invalid.
2012      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2013      // add the new uninitialized reference to the register state
2014      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
2015      break;
2016    }
2017    case Instruction::NEW_ARRAY:
2018      VerifyNewArray(inst, false, false);
2019      break;
2020    case Instruction::FILLED_NEW_ARRAY:
2021      VerifyNewArray(inst, true, false);
2022      just_set_result = true;  // Filled new array sets result register
2023      break;
2024    case Instruction::FILLED_NEW_ARRAY_RANGE:
2025      VerifyNewArray(inst, true, true);
2026      just_set_result = true;  // Filled new array range sets result register
2027      break;
2028    case Instruction::CMPL_FLOAT:
2029    case Instruction::CMPG_FLOAT:
2030      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2031        break;
2032      }
2033      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2034        break;
2035      }
2036      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2037      break;
2038    case Instruction::CMPL_DOUBLE:
2039    case Instruction::CMPG_DOUBLE:
2040      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2041                                              reg_types_.DoubleHi())) {
2042        break;
2043      }
2044      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2045                                              reg_types_.DoubleHi())) {
2046        break;
2047      }
2048      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2049      break;
2050    case Instruction::CMP_LONG:
2051      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2052                                              reg_types_.LongHi())) {
2053        break;
2054      }
2055      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2056                                              reg_types_.LongHi())) {
2057        break;
2058      }
2059      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2060      break;
2061    case Instruction::THROW: {
2062      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2063      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2064        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2065            << "thrown class " << res_type << " not instanceof Throwable";
2066      }
2067      break;
2068    }
2069    case Instruction::GOTO:
2070    case Instruction::GOTO_16:
2071    case Instruction::GOTO_32:
2072      /* no effect on or use of registers */
2073      break;
2074
2075    case Instruction::PACKED_SWITCH:
2076    case Instruction::SPARSE_SWITCH:
2077      /* verify that vAA is an integer, or can be converted to one */
2078      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2079      break;
2080
2081    case Instruction::FILL_ARRAY_DATA: {
2082      /* Similar to the verification done for APUT */
2083      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2084      /* array_type can be null if the reg type is Zero */
2085      if (!array_type.IsZero()) {
2086        if (!array_type.IsArrayTypes()) {
2087          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2088                                            << array_type;
2089        } else {
2090          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2091          DCHECK(!component_type.IsConflict());
2092          if (component_type.IsNonZeroReferenceTypes()) {
2093            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2094                                              << component_type;
2095          } else {
2096            // Now verify if the element width in the table matches the element width declared in
2097            // the array
2098            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2099            if (array_data[0] != Instruction::kArrayDataSignature) {
2100              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2101            } else {
2102              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2103              // Since we don't compress the data in Dex, expect to see equal width of data stored
2104              // in the table and expected from the array class.
2105              if (array_data[1] != elem_width) {
2106                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2107                                                  << " vs " << elem_width << ")";
2108              }
2109            }
2110          }
2111        }
2112      }
2113      break;
2114    }
2115    case Instruction::IF_EQ:
2116    case Instruction::IF_NE: {
2117      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2118      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2119      bool mismatch = false;
2120      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2121        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2122      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2123        mismatch = !reg_type2.IsReferenceTypes();
2124      } else {  // both integral?
2125        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2126      }
2127      if (mismatch) {
2128        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2129                                          << reg_type2 << ") must both be references or integral";
2130      }
2131      break;
2132    }
2133    case Instruction::IF_LT:
2134    case Instruction::IF_GE:
2135    case Instruction::IF_GT:
2136    case Instruction::IF_LE: {
2137      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2138      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2139      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2140        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2141                                          << reg_type2 << ") must be integral";
2142      }
2143      break;
2144    }
2145    case Instruction::IF_EQZ:
2146    case Instruction::IF_NEZ: {
2147      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2148      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2149        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2150                                          << " unexpected as arg to if-eqz/if-nez";
2151      }
2152
2153      // Find previous instruction - its existence is a precondition to peephole optimization.
2154      uint32_t instance_of_idx = 0;
2155      if (0 != work_insn_idx_) {
2156        instance_of_idx = work_insn_idx_ - 1;
2157        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2158          instance_of_idx--;
2159        }
2160        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2161                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2162                        work_insn_idx_)) {
2163          break;
2164        }
2165      } else {
2166        break;
2167      }
2168
2169      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2170
2171      /* Check for peep-hole pattern of:
2172       *    ...;
2173       *    instance-of vX, vY, T;
2174       *    ifXXX vX, label ;
2175       *    ...;
2176       * label:
2177       *    ...;
2178       * and sharpen the type of vY to be type T.
2179       * Note, this pattern can't be if:
2180       *  - if there are other branches to this branch,
2181       *  - when vX == vY.
2182       */
2183      if (!CurrentInsnFlags()->IsBranchTarget() &&
2184          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2185          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2186          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2187        // Check the type of the instance-of is different than that of registers type, as if they
2188        // are the same there is no work to be done here. Check that the conversion is not to or
2189        // from an unresolved type as type information is imprecise. If the instance-of is to an
2190        // interface then ignore the type information as interfaces can only be treated as Objects
2191        // and we don't want to disallow field and other operations on the object. If the value
2192        // being instance-of checked against is known null (zero) then allow the optimization as
2193        // we didn't have type information. If the merge of the instance-of type with the original
2194        // type is assignable to the original then allow optimization. This check is performed to
2195        // ensure that subsequent merges don't lose type information - such as becoming an
2196        // interface from a class that would lose information relevant to field checks.
2197        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2198        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2199
2200        if (!orig_type.Equals(cast_type) &&
2201            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2202            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2203            !cast_type.GetClass()->IsInterface() &&
2204            (orig_type.IsZero() ||
2205                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2206          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2207          if (inst->Opcode() == Instruction::IF_EQZ) {
2208            fallthrough_line.reset(update_line);
2209          } else {
2210            branch_line.reset(update_line);
2211          }
2212          update_line->CopyFromLine(work_line_.get());
2213          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2214          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2215            // See if instance-of was preceded by a move-object operation, common due to the small
2216            // register encoding space of instance-of, and propagate type information to the source
2217            // of the move-object.
2218            uint32_t move_idx = instance_of_idx - 1;
2219            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2220              move_idx--;
2221            }
2222            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2223                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2224                            work_insn_idx_)) {
2225              break;
2226            }
2227            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2228            switch (move_inst->Opcode()) {
2229              case Instruction::MOVE_OBJECT:
2230                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2231                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2232                }
2233                break;
2234              case Instruction::MOVE_OBJECT_FROM16:
2235                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2236                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2237                }
2238                break;
2239              case Instruction::MOVE_OBJECT_16:
2240                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2241                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2242                }
2243                break;
2244              default:
2245                break;
2246            }
2247          }
2248        }
2249      }
2250
2251      break;
2252    }
2253    case Instruction::IF_LTZ:
2254    case Instruction::IF_GEZ:
2255    case Instruction::IF_GTZ:
2256    case Instruction::IF_LEZ: {
2257      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2258      if (!reg_type.IsIntegralTypes()) {
2259        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2260                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2261      }
2262      break;
2263    }
2264    case Instruction::AGET_BOOLEAN:
2265      VerifyAGet(inst, reg_types_.Boolean(), true);
2266      break;
2267    case Instruction::AGET_BYTE:
2268      VerifyAGet(inst, reg_types_.Byte(), true);
2269      break;
2270    case Instruction::AGET_CHAR:
2271      VerifyAGet(inst, reg_types_.Char(), true);
2272      break;
2273    case Instruction::AGET_SHORT:
2274      VerifyAGet(inst, reg_types_.Short(), true);
2275      break;
2276    case Instruction::AGET:
2277      VerifyAGet(inst, reg_types_.Integer(), true);
2278      break;
2279    case Instruction::AGET_WIDE:
2280      VerifyAGet(inst, reg_types_.LongLo(), true);
2281      break;
2282    case Instruction::AGET_OBJECT:
2283      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2284      break;
2285
2286    case Instruction::APUT_BOOLEAN:
2287      VerifyAPut(inst, reg_types_.Boolean(), true);
2288      break;
2289    case Instruction::APUT_BYTE:
2290      VerifyAPut(inst, reg_types_.Byte(), true);
2291      break;
2292    case Instruction::APUT_CHAR:
2293      VerifyAPut(inst, reg_types_.Char(), true);
2294      break;
2295    case Instruction::APUT_SHORT:
2296      VerifyAPut(inst, reg_types_.Short(), true);
2297      break;
2298    case Instruction::APUT:
2299      VerifyAPut(inst, reg_types_.Integer(), true);
2300      break;
2301    case Instruction::APUT_WIDE:
2302      VerifyAPut(inst, reg_types_.LongLo(), true);
2303      break;
2304    case Instruction::APUT_OBJECT:
2305      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2306      break;
2307
2308    case Instruction::IGET_BOOLEAN:
2309      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2310      break;
2311    case Instruction::IGET_BYTE:
2312      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2313      break;
2314    case Instruction::IGET_CHAR:
2315      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2316      break;
2317    case Instruction::IGET_SHORT:
2318      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2319      break;
2320    case Instruction::IGET:
2321      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2322      break;
2323    case Instruction::IGET_WIDE:
2324      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2325      break;
2326    case Instruction::IGET_OBJECT:
2327      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2328                                                    false);
2329      break;
2330
2331    case Instruction::IPUT_BOOLEAN:
2332      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2333      break;
2334    case Instruction::IPUT_BYTE:
2335      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2336      break;
2337    case Instruction::IPUT_CHAR:
2338      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2339      break;
2340    case Instruction::IPUT_SHORT:
2341      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2342      break;
2343    case Instruction::IPUT:
2344      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2345      break;
2346    case Instruction::IPUT_WIDE:
2347      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2348      break;
2349    case Instruction::IPUT_OBJECT:
2350      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2351                                                    false);
2352      break;
2353
2354    case Instruction::SGET_BOOLEAN:
2355      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2356      break;
2357    case Instruction::SGET_BYTE:
2358      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2359      break;
2360    case Instruction::SGET_CHAR:
2361      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2362      break;
2363    case Instruction::SGET_SHORT:
2364      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2365      break;
2366    case Instruction::SGET:
2367      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2368      break;
2369    case Instruction::SGET_WIDE:
2370      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2371      break;
2372    case Instruction::SGET_OBJECT:
2373      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2374                                                    true);
2375      break;
2376
2377    case Instruction::SPUT_BOOLEAN:
2378      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2379      break;
2380    case Instruction::SPUT_BYTE:
2381      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2382      break;
2383    case Instruction::SPUT_CHAR:
2384      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2385      break;
2386    case Instruction::SPUT_SHORT:
2387      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2388      break;
2389    case Instruction::SPUT:
2390      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2391      break;
2392    case Instruction::SPUT_WIDE:
2393      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2394      break;
2395    case Instruction::SPUT_OBJECT:
2396      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2397                                                    true);
2398      break;
2399
2400    case Instruction::INVOKE_VIRTUAL:
2401    case Instruction::INVOKE_VIRTUAL_RANGE:
2402    case Instruction::INVOKE_SUPER:
2403    case Instruction::INVOKE_SUPER_RANGE: {
2404      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2405                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2406      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2407                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2408      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
2409      const RegType* return_type = nullptr;
2410      if (called_method != nullptr) {
2411        StackHandleScope<1> hs(self_);
2412        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2413        if (return_type_class != nullptr) {
2414          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2415                                   return_type_class,
2416                                   return_type_class->CannotBeAssignedFromOtherTypes());
2417        } else {
2418          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2419          self_->ClearException();
2420        }
2421      }
2422      if (return_type == nullptr) {
2423        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2424        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2425        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2426        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2427        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2428      }
2429      if (!return_type->IsLowHalf()) {
2430        work_line_->SetResultRegisterType(this, *return_type);
2431      } else {
2432        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2433      }
2434      just_set_result = true;
2435      break;
2436    }
2437    case Instruction::INVOKE_DIRECT:
2438    case Instruction::INVOKE_DIRECT_RANGE: {
2439      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2440      ArtMethod* called_method = VerifyInvocationArgs(inst,
2441                                                      METHOD_DIRECT,
2442                                                      is_range,
2443                                                      false);
2444      const char* return_type_descriptor;
2445      bool is_constructor;
2446      const RegType* return_type = nullptr;
2447      if (called_method == nullptr) {
2448        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2449        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2450        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2451        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2452        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2453      } else {
2454        is_constructor = called_method->IsConstructor();
2455        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2456        StackHandleScope<1> hs(self_);
2457        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2458        if (return_type_class != nullptr) {
2459          return_type = &FromClass(return_type_descriptor,
2460                                   return_type_class,
2461                                   return_type_class->CannotBeAssignedFromOtherTypes());
2462        } else {
2463          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2464          self_->ClearException();
2465        }
2466      }
2467      if (is_constructor) {
2468        /*
2469         * Some additional checks when calling a constructor. We know from the invocation arg check
2470         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2471         * that to require that called_method->klass is the same as this->klass or this->super,
2472         * allowing the latter only if the "this" argument is the same as the "this" argument to
2473         * this method (which implies that we're in a constructor ourselves).
2474         */
2475        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2476        if (this_type.IsConflict())  // failure.
2477          break;
2478
2479        /* no null refs allowed (?) */
2480        if (this_type.IsZero()) {
2481          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2482          break;
2483        }
2484
2485        /* must be in same class or in superclass */
2486        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2487        // TODO: re-enable constructor type verification
2488        // if (this_super_klass.IsConflict()) {
2489          // Unknown super class, fail so we re-check at runtime.
2490          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2491          // break;
2492        // }
2493
2494        /* arg must be an uninitialized reference */
2495        if (!this_type.IsUninitializedTypes()) {
2496          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2497              << this_type;
2498          break;
2499        }
2500
2501        /*
2502         * Replace the uninitialized reference with an initialized one. We need to do this for all
2503         * registers that have the same object instance in them, not just the "this" register.
2504         */
2505        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2506        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2507      }
2508      if (return_type == nullptr) {
2509        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2510                                                 false);
2511      }
2512      if (!return_type->IsLowHalf()) {
2513        work_line_->SetResultRegisterType(this, *return_type);
2514      } else {
2515        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2516      }
2517      just_set_result = true;
2518      break;
2519    }
2520    case Instruction::INVOKE_STATIC:
2521    case Instruction::INVOKE_STATIC_RANGE: {
2522        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2523        ArtMethod* called_method = VerifyInvocationArgs(inst,
2524                                                        METHOD_STATIC,
2525                                                        is_range,
2526                                                        false);
2527        const char* descriptor;
2528        if (called_method == nullptr) {
2529          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2530          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2531          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2532          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2533        } else {
2534          descriptor = called_method->GetReturnTypeDescriptor();
2535        }
2536        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2537        if (!return_type.IsLowHalf()) {
2538          work_line_->SetResultRegisterType(this, return_type);
2539        } else {
2540          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2541        }
2542        just_set_result = true;
2543      }
2544      break;
2545    case Instruction::INVOKE_INTERFACE:
2546    case Instruction::INVOKE_INTERFACE_RANGE: {
2547      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2548      ArtMethod* abs_method = VerifyInvocationArgs(inst,
2549                                                   METHOD_INTERFACE,
2550                                                   is_range,
2551                                                   false);
2552      if (abs_method != nullptr) {
2553        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2554        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2555          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2556              << PrettyMethod(abs_method) << "'";
2557          break;
2558        }
2559      }
2560      /* Get the type of the "this" arg, which should either be a sub-interface of called
2561       * interface or Object (see comments in RegType::JoinClass).
2562       */
2563      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2564      if (this_type.IsZero()) {
2565        /* null pointer always passes (and always fails at runtime) */
2566      } else {
2567        if (this_type.IsUninitializedTypes()) {
2568          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2569              << this_type;
2570          break;
2571        }
2572        // In the past we have tried to assert that "called_interface" is assignable
2573        // from "this_type.GetClass()", however, as we do an imprecise Join
2574        // (RegType::JoinClass) we don't have full information on what interfaces are
2575        // implemented by "this_type". For example, two classes may implement the same
2576        // interfaces and have a common parent that doesn't implement the interface. The
2577        // join will set "this_type" to the parent class and a test that this implements
2578        // the interface will incorrectly fail.
2579      }
2580      /*
2581       * We don't have an object instance, so we can't find the concrete method. However, all of
2582       * the type information is in the abstract method, so we're good.
2583       */
2584      const char* descriptor;
2585      if (abs_method == nullptr) {
2586        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2587        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2588        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2589        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2590      } else {
2591        descriptor = abs_method->GetReturnTypeDescriptor();
2592      }
2593      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2594      if (!return_type.IsLowHalf()) {
2595        work_line_->SetResultRegisterType(this, return_type);
2596      } else {
2597        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2598      }
2599      just_set_result = true;
2600      break;
2601    }
2602    case Instruction::NEG_INT:
2603    case Instruction::NOT_INT:
2604      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2605      break;
2606    case Instruction::NEG_LONG:
2607    case Instruction::NOT_LONG:
2608      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2609                                   reg_types_.LongLo(), reg_types_.LongHi());
2610      break;
2611    case Instruction::NEG_FLOAT:
2612      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2613      break;
2614    case Instruction::NEG_DOUBLE:
2615      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2616                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2617      break;
2618    case Instruction::INT_TO_LONG:
2619      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2620                                     reg_types_.Integer());
2621      break;
2622    case Instruction::INT_TO_FLOAT:
2623      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2624      break;
2625    case Instruction::INT_TO_DOUBLE:
2626      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2627                                     reg_types_.Integer());
2628      break;
2629    case Instruction::LONG_TO_INT:
2630      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2631                                       reg_types_.LongLo(), reg_types_.LongHi());
2632      break;
2633    case Instruction::LONG_TO_FLOAT:
2634      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2635                                       reg_types_.LongLo(), reg_types_.LongHi());
2636      break;
2637    case Instruction::LONG_TO_DOUBLE:
2638      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2639                                   reg_types_.LongLo(), reg_types_.LongHi());
2640      break;
2641    case Instruction::FLOAT_TO_INT:
2642      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2643      break;
2644    case Instruction::FLOAT_TO_LONG:
2645      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2646                                     reg_types_.Float());
2647      break;
2648    case Instruction::FLOAT_TO_DOUBLE:
2649      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2650                                     reg_types_.Float());
2651      break;
2652    case Instruction::DOUBLE_TO_INT:
2653      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2654                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2655      break;
2656    case Instruction::DOUBLE_TO_LONG:
2657      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2658                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2659      break;
2660    case Instruction::DOUBLE_TO_FLOAT:
2661      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2662                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2663      break;
2664    case Instruction::INT_TO_BYTE:
2665      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2666      break;
2667    case Instruction::INT_TO_CHAR:
2668      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2669      break;
2670    case Instruction::INT_TO_SHORT:
2671      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2672      break;
2673
2674    case Instruction::ADD_INT:
2675    case Instruction::SUB_INT:
2676    case Instruction::MUL_INT:
2677    case Instruction::REM_INT:
2678    case Instruction::DIV_INT:
2679    case Instruction::SHL_INT:
2680    case Instruction::SHR_INT:
2681    case Instruction::USHR_INT:
2682      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2683                                reg_types_.Integer(), false);
2684      break;
2685    case Instruction::AND_INT:
2686    case Instruction::OR_INT:
2687    case Instruction::XOR_INT:
2688      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2689                                reg_types_.Integer(), true);
2690      break;
2691    case Instruction::ADD_LONG:
2692    case Instruction::SUB_LONG:
2693    case Instruction::MUL_LONG:
2694    case Instruction::DIV_LONG:
2695    case Instruction::REM_LONG:
2696    case Instruction::AND_LONG:
2697    case Instruction::OR_LONG:
2698    case Instruction::XOR_LONG:
2699      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2700                                    reg_types_.LongLo(), reg_types_.LongHi(),
2701                                    reg_types_.LongLo(), reg_types_.LongHi());
2702      break;
2703    case Instruction::SHL_LONG:
2704    case Instruction::SHR_LONG:
2705    case Instruction::USHR_LONG:
2706      /* shift distance is Int, making these different from other binary operations */
2707      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2708                                         reg_types_.Integer());
2709      break;
2710    case Instruction::ADD_FLOAT:
2711    case Instruction::SUB_FLOAT:
2712    case Instruction::MUL_FLOAT:
2713    case Instruction::DIV_FLOAT:
2714    case Instruction::REM_FLOAT:
2715      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2716                                reg_types_.Float(), false);
2717      break;
2718    case Instruction::ADD_DOUBLE:
2719    case Instruction::SUB_DOUBLE:
2720    case Instruction::MUL_DOUBLE:
2721    case Instruction::DIV_DOUBLE:
2722    case Instruction::REM_DOUBLE:
2723      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2724                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2725                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2726      break;
2727    case Instruction::ADD_INT_2ADDR:
2728    case Instruction::SUB_INT_2ADDR:
2729    case Instruction::MUL_INT_2ADDR:
2730    case Instruction::REM_INT_2ADDR:
2731    case Instruction::SHL_INT_2ADDR:
2732    case Instruction::SHR_INT_2ADDR:
2733    case Instruction::USHR_INT_2ADDR:
2734      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2735                                     reg_types_.Integer(), false);
2736      break;
2737    case Instruction::AND_INT_2ADDR:
2738    case Instruction::OR_INT_2ADDR:
2739    case Instruction::XOR_INT_2ADDR:
2740      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2741                                     reg_types_.Integer(), true);
2742      break;
2743    case Instruction::DIV_INT_2ADDR:
2744      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2745                                     reg_types_.Integer(), false);
2746      break;
2747    case Instruction::ADD_LONG_2ADDR:
2748    case Instruction::SUB_LONG_2ADDR:
2749    case Instruction::MUL_LONG_2ADDR:
2750    case Instruction::DIV_LONG_2ADDR:
2751    case Instruction::REM_LONG_2ADDR:
2752    case Instruction::AND_LONG_2ADDR:
2753    case Instruction::OR_LONG_2ADDR:
2754    case Instruction::XOR_LONG_2ADDR:
2755      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2756                                         reg_types_.LongLo(), reg_types_.LongHi(),
2757                                         reg_types_.LongLo(), reg_types_.LongHi());
2758      break;
2759    case Instruction::SHL_LONG_2ADDR:
2760    case Instruction::SHR_LONG_2ADDR:
2761    case Instruction::USHR_LONG_2ADDR:
2762      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2763                                              reg_types_.Integer());
2764      break;
2765    case Instruction::ADD_FLOAT_2ADDR:
2766    case Instruction::SUB_FLOAT_2ADDR:
2767    case Instruction::MUL_FLOAT_2ADDR:
2768    case Instruction::DIV_FLOAT_2ADDR:
2769    case Instruction::REM_FLOAT_2ADDR:
2770      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2771                                     reg_types_.Float(), false);
2772      break;
2773    case Instruction::ADD_DOUBLE_2ADDR:
2774    case Instruction::SUB_DOUBLE_2ADDR:
2775    case Instruction::MUL_DOUBLE_2ADDR:
2776    case Instruction::DIV_DOUBLE_2ADDR:
2777    case Instruction::REM_DOUBLE_2ADDR:
2778      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2779                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2780                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2781      break;
2782    case Instruction::ADD_INT_LIT16:
2783    case Instruction::RSUB_INT_LIT16:
2784    case Instruction::MUL_INT_LIT16:
2785    case Instruction::DIV_INT_LIT16:
2786    case Instruction::REM_INT_LIT16:
2787      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2788                                 true);
2789      break;
2790    case Instruction::AND_INT_LIT16:
2791    case Instruction::OR_INT_LIT16:
2792    case Instruction::XOR_INT_LIT16:
2793      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2794                                 true);
2795      break;
2796    case Instruction::ADD_INT_LIT8:
2797    case Instruction::RSUB_INT_LIT8:
2798    case Instruction::MUL_INT_LIT8:
2799    case Instruction::DIV_INT_LIT8:
2800    case Instruction::REM_INT_LIT8:
2801    case Instruction::SHL_INT_LIT8:
2802    case Instruction::SHR_INT_LIT8:
2803    case Instruction::USHR_INT_LIT8:
2804      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2805                                 false);
2806      break;
2807    case Instruction::AND_INT_LIT8:
2808    case Instruction::OR_INT_LIT8:
2809    case Instruction::XOR_INT_LIT8:
2810      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2811                                 false);
2812      break;
2813
2814    // Special instructions.
2815    case Instruction::RETURN_VOID_NO_BARRIER:
2816      if (IsConstructor() && !IsStatic()) {
2817        auto& declaring_class = GetDeclaringClass();
2818        if (declaring_class.IsUnresolvedReference()) {
2819          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
2820          // manually over the underlying dex file.
2821          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
2822              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
2823          if (first_index != DexFile::kDexNoIndex) {
2824            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
2825                              << first_index;
2826          }
2827          break;
2828        }
2829        auto* klass = declaring_class.GetClass();
2830        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2831          if (klass->GetInstanceField(i)->IsFinal()) {
2832            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2833                << PrettyField(klass->GetInstanceField(i));
2834            break;
2835          }
2836        }
2837      }
2838      break;
2839    // Note: the following instructions encode offsets derived from class linking.
2840    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2841    // meaning if the class linking and resolution were successful.
2842    case Instruction::IGET_QUICK:
2843      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2844      break;
2845    case Instruction::IGET_WIDE_QUICK:
2846      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2847      break;
2848    case Instruction::IGET_OBJECT_QUICK:
2849      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2850      break;
2851    case Instruction::IGET_BOOLEAN_QUICK:
2852      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2853      break;
2854    case Instruction::IGET_BYTE_QUICK:
2855      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2856      break;
2857    case Instruction::IGET_CHAR_QUICK:
2858      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2859      break;
2860    case Instruction::IGET_SHORT_QUICK:
2861      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2862      break;
2863    case Instruction::IPUT_QUICK:
2864      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2865      break;
2866    case Instruction::IPUT_BOOLEAN_QUICK:
2867      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2868      break;
2869    case Instruction::IPUT_BYTE_QUICK:
2870      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2871      break;
2872    case Instruction::IPUT_CHAR_QUICK:
2873      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2874      break;
2875    case Instruction::IPUT_SHORT_QUICK:
2876      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2877      break;
2878    case Instruction::IPUT_WIDE_QUICK:
2879      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2880      break;
2881    case Instruction::IPUT_OBJECT_QUICK:
2882      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2883      break;
2884    case Instruction::INVOKE_VIRTUAL_QUICK:
2885    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2886      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2887      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2888      if (called_method != nullptr) {
2889        const char* descriptor = called_method->GetReturnTypeDescriptor();
2890        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2891        if (!return_type.IsLowHalf()) {
2892          work_line_->SetResultRegisterType(this, return_type);
2893        } else {
2894          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2895        }
2896        just_set_result = true;
2897      }
2898      break;
2899    }
2900
2901    /* These should never appear during verification. */
2902    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2903    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2904    case Instruction::UNUSED_79:
2905    case Instruction::UNUSED_7A:
2906      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2907      break;
2908
2909    /*
2910     * DO NOT add a "default" clause here. Without it the compiler will
2911     * complain if an instruction is missing (which is desirable).
2912     */
2913  }  // end - switch (dec_insn.opcode)
2914
2915  /*
2916   * If we are in a constructor, and we had an UninitializedThis type
2917   * in a register somewhere, we need to make sure it wasn't overwritten.
2918   */
2919  if (track_uninitialized_this) {
2920    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2921                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2922    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2923                                                    was_invoke_direct)) {
2924      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2925          << "Constructor failed to initialize this object";
2926    }
2927  }
2928
2929  if (have_pending_hard_failure_) {
2930    if (Runtime::Current()->IsAotCompiler()) {
2931      /* When AOT compiling, check that the last failure is a hard failure */
2932      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
2933        LOG(ERROR) << "Pending failures:";
2934        for (auto& error : failures_) {
2935          LOG(ERROR) << error;
2936        }
2937        for (auto& error_msg : failure_messages_) {
2938          LOG(ERROR) << error_msg->str();
2939        }
2940        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
2941      }
2942    }
2943    /* immediate failure, reject class */
2944    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2945    return false;
2946  } else if (have_pending_runtime_throw_failure_) {
2947    /* checking interpreter will throw, mark following code as unreachable */
2948    opcode_flags = Instruction::kThrow;
2949    have_any_pending_runtime_throw_failure_ = true;
2950    // Reset the pending_runtime_throw flag. The flag is a global to decouple Fail and is per
2951    // instruction.
2952    have_pending_runtime_throw_failure_ = false;
2953  }
2954  /*
2955   * If we didn't just set the result register, clear it out. This ensures that you can only use
2956   * "move-result" immediately after the result is set. (We could check this statically, but it's
2957   * not expensive and it makes our debugging output cleaner.)
2958   */
2959  if (!just_set_result) {
2960    work_line_->SetResultTypeToUnknown(this);
2961  }
2962
2963
2964
2965  /*
2966   * Handle "branch". Tag the branch target.
2967   *
2968   * NOTE: instructions like Instruction::EQZ provide information about the
2969   * state of the register when the branch is taken or not taken. For example,
2970   * somebody could get a reference field, check it for zero, and if the
2971   * branch is taken immediately store that register in a boolean field
2972   * since the value is known to be zero. We do not currently account for
2973   * that, and will reject the code.
2974   *
2975   * TODO: avoid re-fetching the branch target
2976   */
2977  if ((opcode_flags & Instruction::kBranch) != 0) {
2978    bool isConditional, selfOkay;
2979    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2980      /* should never happen after static verification */
2981      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2982      return false;
2983    }
2984    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2985    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2986      return false;
2987    }
2988    /* update branch target, set "changed" if appropriate */
2989    if (nullptr != branch_line.get()) {
2990      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2991        return false;
2992      }
2993    } else {
2994      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2995        return false;
2996      }
2997    }
2998  }
2999
3000  /*
3001   * Handle "switch". Tag all possible branch targets.
3002   *
3003   * We've already verified that the table is structurally sound, so we
3004   * just need to walk through and tag the targets.
3005   */
3006  if ((opcode_flags & Instruction::kSwitch) != 0) {
3007    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
3008    const uint16_t* switch_insns = insns + offset_to_switch;
3009    int switch_count = switch_insns[1];
3010    int offset_to_targets, targ;
3011
3012    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3013      /* 0 = sig, 1 = count, 2/3 = first key */
3014      offset_to_targets = 4;
3015    } else {
3016      /* 0 = sig, 1 = count, 2..count * 2 = keys */
3017      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3018      offset_to_targets = 2 + 2 * switch_count;
3019    }
3020
3021    /* verify each switch target */
3022    for (targ = 0; targ < switch_count; targ++) {
3023      int offset;
3024      uint32_t abs_offset;
3025
3026      /* offsets are 32-bit, and only partly endian-swapped */
3027      offset = switch_insns[offset_to_targets + targ * 2] |
3028         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3029      abs_offset = work_insn_idx_ + offset;
3030      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3031      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3032        return false;
3033      }
3034      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3035        return false;
3036      }
3037    }
3038  }
3039
3040  /*
3041   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3042   * "try" block when they throw, control transfers out of the method.)
3043   */
3044  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
3045    bool has_catch_all_handler = false;
3046    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3047
3048    // Need the linker to try and resolve the handled class to check if it's Throwable.
3049    ClassLinker* linker = Runtime::Current()->GetClassLinker();
3050
3051    for (; iterator.HasNext(); iterator.Next()) {
3052      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
3053      if (handler_type_idx == DexFile::kDexNoIndex16) {
3054        has_catch_all_handler = true;
3055      } else {
3056        // It is also a catch-all if it is java.lang.Throwable.
3057        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3058                                                   class_loader_);
3059        if (klass != nullptr) {
3060          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3061            has_catch_all_handler = true;
3062          }
3063        } else {
3064          // Clear exception.
3065          DCHECK(self_->IsExceptionPending());
3066          self_->ClearException();
3067        }
3068      }
3069      /*
3070       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3071       * "work_regs", because at runtime the exception will be thrown before the instruction
3072       * modifies any registers.
3073       */
3074      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3075        return false;
3076      }
3077    }
3078
3079    /*
3080     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3081     * instruction. This does apply to monitor-exit because of async exception handling.
3082     */
3083    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3084      /*
3085       * The state in work_line reflects the post-execution state. If the current instruction is a
3086       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3087       * it will do so before grabbing the lock).
3088       */
3089      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3090        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3091            << "expected to be within a catch-all for an instruction where a monitor is held";
3092        return false;
3093      }
3094    }
3095  }
3096
3097  /* Handle "continue". Tag the next consecutive instruction.
3098   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3099   *        because it changes work_line_ when performing peephole optimization
3100   *        and this change should not be used in those cases.
3101   */
3102  if ((opcode_flags & Instruction::kContinue) != 0) {
3103    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3104    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3105    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3106      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3107      return false;
3108    }
3109    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3110    // next instruction isn't one.
3111    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3112      return false;
3113    }
3114    if (nullptr != fallthrough_line.get()) {
3115      // Make workline consistent with fallthrough computed from peephole optimization.
3116      work_line_->CopyFromLine(fallthrough_line.get());
3117    }
3118    if (insn_flags_[next_insn_idx].IsReturn()) {
3119      // For returns we only care about the operand to the return, all other registers are dead.
3120      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3121      Instruction::Code opcode = ret_inst->Opcode();
3122      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3123        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3124      } else {
3125        if (opcode == Instruction::RETURN_WIDE) {
3126          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3127        } else {
3128          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3129        }
3130      }
3131    }
3132    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3133    if (next_line != nullptr) {
3134      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3135      // needed. If the merge changes the state of the registers then the work line will be
3136      // updated.
3137      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3138        return false;
3139      }
3140    } else {
3141      /*
3142       * We're not recording register data for the next instruction, so we don't know what the
3143       * prior state was. We have to assume that something has changed and re-evaluate it.
3144       */
3145      insn_flags_[next_insn_idx].SetChanged();
3146    }
3147  }
3148
3149  /* If we're returning from the method, make sure monitor stack is empty. */
3150  if ((opcode_flags & Instruction::kReturn) != 0) {
3151    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3152      return false;
3153    }
3154  }
3155
3156  /*
3157   * Update start_guess. Advance to the next instruction of that's
3158   * possible, otherwise use the branch target if one was found. If
3159   * neither of those exists we're in a return or throw; leave start_guess
3160   * alone and let the caller sort it out.
3161   */
3162  if ((opcode_flags & Instruction::kContinue) != 0) {
3163    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3164    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3165  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3166    /* we're still okay if branch_target is zero */
3167    *start_guess = work_insn_idx_ + branch_target;
3168  }
3169
3170  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3171  DCHECK(insn_flags_[*start_guess].IsOpcode());
3172
3173  return true;
3174}  // NOLINT(readability/fn_size)
3175
3176const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3177  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3178  const RegType& referrer = GetDeclaringClass();
3179  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3180  const RegType& result = klass != nullptr ?
3181      FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3182      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3183  if (result.IsConflict()) {
3184    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3185        << "' in " << referrer;
3186    return result;
3187  }
3188  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3189    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3190  }
3191  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3192  // check at runtime if access is allowed and so pass here. If result is
3193  // primitive, skip the access check.
3194  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3195      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3196    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3197                                    << referrer << "' -> '" << result << "'";
3198  }
3199  return result;
3200}
3201
3202const RegType& MethodVerifier::GetCaughtExceptionType() {
3203  const RegType* common_super = nullptr;
3204  if (code_item_->tries_size_ != 0) {
3205    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3206    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3207    for (uint32_t i = 0; i < handlers_size; i++) {
3208      CatchHandlerIterator iterator(handlers_ptr);
3209      for (; iterator.HasNext(); iterator.Next()) {
3210        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3211          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3212            common_super = &reg_types_.JavaLangThrowable(false);
3213          } else {
3214            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3215            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3216              if (exception.IsUnresolvedTypes()) {
3217                // We don't know enough about the type. Fail here and let runtime handle it.
3218                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3219                return exception;
3220              } else {
3221                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3222                return reg_types_.Conflict();
3223              }
3224            } else if (common_super == nullptr) {
3225              common_super = &exception;
3226            } else if (common_super->Equals(exception)) {
3227              // odd case, but nothing to do
3228            } else {
3229              common_super = &common_super->Merge(exception, &reg_types_);
3230              if (FailOrAbort(this,
3231                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3232                              "java.lang.Throwable is not assignable-from common_super at ",
3233                              work_insn_idx_)) {
3234                break;
3235              }
3236            }
3237          }
3238        }
3239      }
3240      handlers_ptr = iterator.EndDataPointer();
3241    }
3242  }
3243  if (common_super == nullptr) {
3244    /* no catch blocks, or no catches with classes we can find */
3245    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3246    return reg_types_.Conflict();
3247  }
3248  return *common_super;
3249}
3250
3251ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3252    uint32_t dex_method_idx, MethodType method_type) {
3253  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3254  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3255  if (klass_type.IsConflict()) {
3256    std::string append(" in attempt to access method ");
3257    append += dex_file_->GetMethodName(method_id);
3258    AppendToLastFailMessage(append);
3259    return nullptr;
3260  }
3261  if (klass_type.IsUnresolvedTypes()) {
3262    return nullptr;  // Can't resolve Class so no more to do here
3263  }
3264  mirror::Class* klass = klass_type.GetClass();
3265  const RegType& referrer = GetDeclaringClass();
3266  auto* cl = Runtime::Current()->GetClassLinker();
3267  auto pointer_size = cl->GetImagePointerSize();
3268  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3269  if (res_method == nullptr) {
3270    const char* name = dex_file_->GetMethodName(method_id);
3271    const Signature signature = dex_file_->GetMethodSignature(method_id);
3272
3273    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3274      res_method = klass->FindDirectMethod(name, signature, pointer_size);
3275    } else if (method_type == METHOD_INTERFACE) {
3276      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3277    } else {
3278      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3279    }
3280    if (res_method != nullptr) {
3281      dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3282    } else {
3283      // If a virtual or interface method wasn't found with the expected type, look in
3284      // the direct methods. This can happen when the wrong invoke type is used or when
3285      // a class has changed, and will be flagged as an error in later checks.
3286      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3287        res_method = klass->FindDirectMethod(name, signature, pointer_size);
3288      }
3289      if (res_method == nullptr) {
3290        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3291                                     << PrettyDescriptor(klass) << "." << name
3292                                     << " " << signature;
3293        return nullptr;
3294      }
3295    }
3296  }
3297  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3298  // enforce them here.
3299  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3300    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3301                                      << PrettyMethod(res_method);
3302    return nullptr;
3303  }
3304  // Disallow any calls to class initializers.
3305  if (res_method->IsClassInitializer()) {
3306    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3307                                      << PrettyMethod(res_method);
3308    return nullptr;
3309  }
3310  // Check if access is allowed.
3311  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3312    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3313                                     << " from " << referrer << ")";
3314    return res_method;
3315  }
3316  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3317  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3318    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3319                                      << PrettyMethod(res_method);
3320    return nullptr;
3321  }
3322  // Check that interface methods match interface classes.
3323  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3324    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3325                                    << " is in an interface class " << PrettyClass(klass);
3326    return nullptr;
3327  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3328    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3329                                    << " is in a non-interface class " << PrettyClass(klass);
3330    return nullptr;
3331  }
3332  // See if the method type implied by the invoke instruction matches the access flags for the
3333  // target method.
3334  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3335      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3336      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3337      ) {
3338    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3339                                       " type of " << PrettyMethod(res_method);
3340    return nullptr;
3341  }
3342  return res_method;
3343}
3344
3345template <class T>
3346ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3347    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3348  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3349  // match the call to the signature. Also, we might be calling through an abstract method
3350  // definition (which doesn't have register count values).
3351  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3352  /* caught by static verifier */
3353  DCHECK(is_range || expected_args <= 5);
3354  if (expected_args > code_item_->outs_size_) {
3355    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3356        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3357    return nullptr;
3358  }
3359
3360  uint32_t arg[5];
3361  if (!is_range) {
3362    inst->GetVarArgs(arg);
3363  }
3364  uint32_t sig_registers = 0;
3365
3366  /*
3367   * Check the "this" argument, which must be an instance of the class that declared the method.
3368   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3369   * rigorous check here (which is okay since we have to do it at runtime).
3370   */
3371  if (method_type != METHOD_STATIC) {
3372    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3373    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3374      CHECK(have_pending_hard_failure_);
3375      return nullptr;
3376    }
3377    if (actual_arg_type.IsUninitializedReference()) {
3378      if (res_method) {
3379        if (!res_method->IsConstructor()) {
3380          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3381          return nullptr;
3382        }
3383      } else {
3384        // Check whether the name of the called method is "<init>"
3385        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3386        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3387          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3388          return nullptr;
3389        }
3390      }
3391    }
3392    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3393      const RegType* res_method_class;
3394      if (res_method != nullptr) {
3395        mirror::Class* klass = res_method->GetDeclaringClass();
3396        std::string temp;
3397        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3398                                      klass->CannotBeAssignedFromOtherTypes());
3399      } else {
3400        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3401        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3402        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3403                                                      dex_file_->StringByTypeIdx(class_idx),
3404                                                      false);
3405      }
3406      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3407        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3408            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3409                << "' not instance of '" << *res_method_class << "'";
3410        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3411        // the compiler.
3412        if (have_pending_hard_failure_) {
3413          return nullptr;
3414        }
3415      }
3416    }
3417    sig_registers = 1;
3418  }
3419
3420  for ( ; it->HasNext(); it->Next()) {
3421    if (sig_registers >= expected_args) {
3422      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3423          " arguments, found " << sig_registers << " or more.";
3424      return nullptr;
3425    }
3426
3427    const char* param_descriptor = it->GetDescriptor();
3428
3429    if (param_descriptor == nullptr) {
3430      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3431          "component";
3432      return nullptr;
3433    }
3434
3435    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3436    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3437        arg[sig_registers];
3438    if (reg_type.IsIntegralTypes()) {
3439      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3440      if (!src_type.IsIntegralTypes()) {
3441        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3442            << " but expected " << reg_type;
3443        return nullptr;
3444      }
3445    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3446      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3447      // compiler.
3448      if (have_pending_hard_failure_) {
3449        return nullptr;
3450      }
3451    }
3452    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3453  }
3454  if (expected_args != sig_registers) {
3455    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3456        " arguments, found " << sig_registers;
3457    return nullptr;
3458  }
3459  return res_method;
3460}
3461
3462void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3463                                                          MethodType method_type,
3464                                                          bool is_range) {
3465  // As the method may not have been resolved, make this static check against what we expect.
3466  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3467  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3468  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3469  DexFileParameterIterator it(*dex_file_,
3470                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3471  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3472                                                             nullptr);
3473}
3474
3475class MethodParamListDescriptorIterator {
3476 public:
3477  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
3478      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3479      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3480  }
3481
3482  bool HasNext() {
3483    return pos_ < params_size_;
3484  }
3485
3486  void Next() {
3487    ++pos_;
3488  }
3489
3490  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3491    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3492  }
3493
3494 private:
3495  ArtMethod* res_method_;
3496  size_t pos_;
3497  const DexFile::TypeList* params_;
3498  const size_t params_size_;
3499};
3500
3501ArtMethod* MethodVerifier::VerifyInvocationArgs(
3502    const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
3503  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3504  // we're making.
3505  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3506
3507  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3508  if (res_method == nullptr) {  // error or class is unresolved
3509    // Check what we can statically.
3510    if (!have_pending_hard_failure_) {
3511      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3512    }
3513    return nullptr;
3514  }
3515
3516  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3517  // has a vtable entry for the target method.
3518  if (is_super) {
3519    DCHECK(method_type == METHOD_VIRTUAL);
3520    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3521    if (super.IsUnresolvedTypes()) {
3522      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3523                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3524                                   << " to super " << PrettyMethod(res_method);
3525      return nullptr;
3526    }
3527    mirror::Class* super_klass = super.GetClass();
3528    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3529      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3530                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3531                                   << " to super " << super
3532                                   << "." << res_method->GetName()
3533                                   << res_method->GetSignature();
3534      return nullptr;
3535    }
3536  }
3537
3538  // Process the target method's signature. This signature may or may not
3539  MethodParamListDescriptorIterator it(res_method);
3540  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3541                                                                             is_range, res_method);
3542}
3543
3544ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
3545                                                 bool is_range, bool allow_failure) {
3546  if (is_range) {
3547    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3548  } else {
3549    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3550  }
3551  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3552  if (!actual_arg_type.HasClass()) {
3553    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3554    return nullptr;
3555  }
3556  mirror::Class* klass = actual_arg_type.GetClass();
3557  mirror::Class* dispatch_class;
3558  if (klass->IsInterface()) {
3559    // Derive Object.class from Class.class.getSuperclass().
3560    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3561    if (FailOrAbort(this, object_klass->IsObjectClass(),
3562                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3563      return nullptr;
3564    }
3565    dispatch_class = object_klass;
3566  } else {
3567    dispatch_class = klass;
3568  }
3569  if (!dispatch_class->HasVTable()) {
3570    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3571                work_insn_idx_);
3572    return nullptr;
3573  }
3574  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3575  auto* cl = Runtime::Current()->GetClassLinker();
3576  auto pointer_size = cl->GetImagePointerSize();
3577  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3578    FailOrAbort(this, allow_failure,
3579                "Receiver class has not enough vtable slots for quickened invoke at ",
3580                work_insn_idx_);
3581    return nullptr;
3582  }
3583  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
3584  if (self_->IsExceptionPending()) {
3585    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3586                work_insn_idx_);
3587    return nullptr;
3588  }
3589  return res_method;
3590}
3591
3592ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
3593  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3594      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3595
3596  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3597  if (res_method == nullptr) {
3598    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3599    return nullptr;
3600  }
3601  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3602                  work_insn_idx_)) {
3603    return nullptr;
3604  }
3605  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3606                  work_insn_idx_)) {
3607    return nullptr;
3608  }
3609
3610  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3611  // match the call to the signature. Also, we might be calling through an abstract method
3612  // definition (which doesn't have register count values).
3613  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3614  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3615    return nullptr;
3616  }
3617  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3618  /* caught by static verifier */
3619  DCHECK(is_range || expected_args <= 5);
3620  if (expected_args > code_item_->outs_size_) {
3621    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3622        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3623    return nullptr;
3624  }
3625
3626  /*
3627   * Check the "this" argument, which must be an instance of the class that declared the method.
3628   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3629   * rigorous check here (which is okay since we have to do it at runtime).
3630   */
3631  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3632    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3633    return nullptr;
3634  }
3635  if (!actual_arg_type.IsZero()) {
3636    mirror::Class* klass = res_method->GetDeclaringClass();
3637    std::string temp;
3638    const RegType& res_method_class =
3639        FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
3640    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3641      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3642          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3643          << "' not instance of '" << res_method_class << "'";
3644      return nullptr;
3645    }
3646  }
3647  /*
3648   * Process the target method's signature. This signature may or may not
3649   * have been verified, so we can't assume it's properly formed.
3650   */
3651  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3652  size_t params_size = params == nullptr ? 0 : params->Size();
3653  uint32_t arg[5];
3654  if (!is_range) {
3655    inst->GetVarArgs(arg);
3656  }
3657  size_t actual_args = 1;
3658  for (size_t param_index = 0; param_index < params_size; param_index++) {
3659    if (actual_args >= expected_args) {
3660      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3661                                        << "'. Expected " << expected_args
3662                                         << " arguments, processing argument " << actual_args
3663                                        << " (where longs/doubles count twice).";
3664      return nullptr;
3665    }
3666    const char* descriptor =
3667        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3668    if (descriptor == nullptr) {
3669      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3670                                        << " missing signature component";
3671      return nullptr;
3672    }
3673    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3674    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3675    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3676      return res_method;
3677    }
3678    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3679  }
3680  if (actual_args != expected_args) {
3681    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3682              << " expected " << expected_args << " arguments, found " << actual_args;
3683    return nullptr;
3684  } else {
3685    return res_method;
3686  }
3687}
3688
3689void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3690  uint32_t type_idx;
3691  if (!is_filled) {
3692    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3693    type_idx = inst->VRegC_22c();
3694  } else if (!is_range) {
3695    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3696    type_idx = inst->VRegB_35c();
3697  } else {
3698    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3699    type_idx = inst->VRegB_3rc();
3700  }
3701  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3702  if (res_type.IsConflict()) {  // bad class
3703    DCHECK_NE(failures_.size(), 0U);
3704  } else {
3705    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3706    if (!res_type.IsArrayTypes()) {
3707      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3708    } else if (!is_filled) {
3709      /* make sure "size" register is valid type */
3710      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3711      /* set register type to array class */
3712      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3713      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3714    } else {
3715      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3716      // the list and fail. It's legal, if silly, for arg_count to be zero.
3717      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3718      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3719      uint32_t arg[5];
3720      if (!is_range) {
3721        inst->GetVarArgs(arg);
3722      }
3723      for (size_t ui = 0; ui < arg_count; ui++) {
3724        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3725        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3726          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3727          return;
3728        }
3729      }
3730      // filled-array result goes into "result" register
3731      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3732      work_line_->SetResultRegisterType(this, precise_type);
3733    }
3734  }
3735}
3736
3737void MethodVerifier::VerifyAGet(const Instruction* inst,
3738                                const RegType& insn_type, bool is_primitive) {
3739  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3740  if (!index_type.IsArrayIndexTypes()) {
3741    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3742  } else {
3743    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3744    if (array_type.IsZero()) {
3745      have_pending_runtime_throw_failure_ = true;
3746      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3747      // instruction type. TODO: have a proper notion of bottom here.
3748      if (!is_primitive || insn_type.IsCategory1Types()) {
3749        // Reference or category 1
3750        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3751      } else {
3752        // Category 2
3753        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3754                                        reg_types_.FromCat2ConstLo(0, false),
3755                                        reg_types_.FromCat2ConstHi(0, false));
3756      }
3757    } else if (!array_type.IsArrayTypes()) {
3758      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3759    } else {
3760      /* verify the class */
3761      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3762      if (!component_type.IsReferenceTypes() && !is_primitive) {
3763        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3764            << " source for aget-object";
3765      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3766        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3767            << " source for category 1 aget";
3768      } else if (is_primitive && !insn_type.Equals(component_type) &&
3769                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3770                 (insn_type.IsLong() && component_type.IsDouble()))) {
3771        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3772            << " incompatible with aget of type " << insn_type;
3773      } else {
3774        // Use knowledge of the field type which is stronger than the type inferred from the
3775        // instruction, which can't differentiate object types and ints from floats, longs from
3776        // doubles.
3777        if (!component_type.IsLowHalf()) {
3778          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3779        } else {
3780          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3781                                          component_type.HighHalf(&reg_types_));
3782        }
3783      }
3784    }
3785  }
3786}
3787
3788void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3789                                        const uint32_t vregA) {
3790  // Primitive assignability rules are weaker than regular assignability rules.
3791  bool instruction_compatible;
3792  bool value_compatible;
3793  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3794  if (target_type.IsIntegralTypes()) {
3795    instruction_compatible = target_type.Equals(insn_type);
3796    value_compatible = value_type.IsIntegralTypes();
3797  } else if (target_type.IsFloat()) {
3798    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3799    value_compatible = value_type.IsFloatTypes();
3800  } else if (target_type.IsLong()) {
3801    instruction_compatible = insn_type.IsLong();
3802    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3803    // as target_type depends on the resolved type of the field.
3804    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3805      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3806      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3807    } else {
3808      value_compatible = false;
3809    }
3810  } else if (target_type.IsDouble()) {
3811    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3812    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3813    // as target_type depends on the resolved type of the field.
3814    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3815      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3816      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3817    } else {
3818      value_compatible = false;
3819    }
3820  } else {
3821    instruction_compatible = false;  // reference with primitive store
3822    value_compatible = false;  // unused
3823  }
3824  if (!instruction_compatible) {
3825    // This is a global failure rather than a class change failure as the instructions and
3826    // the descriptors for the type should have been consistent within the same file at
3827    // compile time.
3828    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3829        << "' but expected type '" << target_type << "'";
3830    return;
3831  }
3832  if (!value_compatible) {
3833    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3834        << " of type " << value_type << " but expected " << target_type << " for put";
3835    return;
3836  }
3837}
3838
3839void MethodVerifier::VerifyAPut(const Instruction* inst,
3840                                const RegType& insn_type, bool is_primitive) {
3841  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3842  if (!index_type.IsArrayIndexTypes()) {
3843    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3844  } else {
3845    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3846    if (array_type.IsZero()) {
3847      // Null array type; this code path will fail at runtime.
3848      // Still check that the given value matches the instruction's type.
3849      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), insn_type);
3850    } else if (!array_type.IsArrayTypes()) {
3851      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3852    } else {
3853      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3854      const uint32_t vregA = inst->VRegA_23x();
3855      if (is_primitive) {
3856        VerifyPrimitivePut(component_type, insn_type, vregA);
3857      } else {
3858        if (!component_type.IsReferenceTypes()) {
3859          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3860              << " source for aput-object";
3861        } else {
3862          // The instruction agrees with the type of array, confirm the value to be stored does too
3863          // Note: we use the instruction type (rather than the component type) for aput-object as
3864          // incompatible classes will be caught at runtime as an array store exception
3865          work_line_->VerifyRegisterType(this, vregA, insn_type);
3866        }
3867      }
3868    }
3869  }
3870}
3871
3872ArtField* MethodVerifier::GetStaticField(int field_idx) {
3873  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3874  // Check access to class
3875  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3876  if (klass_type.IsConflict()) {  // bad class
3877    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3878                                         field_idx, dex_file_->GetFieldName(field_id),
3879                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3880    return nullptr;
3881  }
3882  if (klass_type.IsUnresolvedTypes()) {
3883    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3884  }
3885  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3886  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3887                                                  class_loader_);
3888  if (field == nullptr) {
3889    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3890              << dex_file_->GetFieldName(field_id) << ") in "
3891              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3892    DCHECK(self_->IsExceptionPending());
3893    self_->ClearException();
3894    return nullptr;
3895  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3896                                                  field->GetAccessFlags())) {
3897    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3898                                    << " from " << GetDeclaringClass();
3899    return nullptr;
3900  } else if (!field->IsStatic()) {
3901    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3902    return nullptr;
3903  }
3904  return field;
3905}
3906
3907ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3908  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3909  // Check access to class
3910  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3911  if (klass_type.IsConflict()) {
3912    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3913                                         field_idx, dex_file_->GetFieldName(field_id),
3914                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3915    return nullptr;
3916  }
3917  if (klass_type.IsUnresolvedTypes()) {
3918    return nullptr;  // Can't resolve Class so no more to do here
3919  }
3920  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3921  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3922                                                  class_loader_);
3923  if (field == nullptr) {
3924    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3925              << dex_file_->GetFieldName(field_id) << ") in "
3926              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3927    DCHECK(self_->IsExceptionPending());
3928    self_->ClearException();
3929    return nullptr;
3930  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3931                                                  field->GetAccessFlags())) {
3932    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3933                                    << " from " << GetDeclaringClass();
3934    return nullptr;
3935  } else if (field->IsStatic()) {
3936    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3937                                    << " to not be static";
3938    return nullptr;
3939  } else if (obj_type.IsZero()) {
3940    // Cannot infer and check type, however, access will cause null pointer exception
3941    return field;
3942  } else if (!obj_type.IsReferenceTypes()) {
3943    // Trying to read a field from something that isn't a reference
3944    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3945                                      << "non-reference type " << obj_type;
3946    return nullptr;
3947  } else {
3948    mirror::Class* klass = field->GetDeclaringClass();
3949    const RegType& field_klass =
3950        FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3951                  klass, klass->CannotBeAssignedFromOtherTypes());
3952    if (obj_type.IsUninitializedTypes() &&
3953        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3954            !field_klass.Equals(GetDeclaringClass()))) {
3955      // Field accesses through uninitialized references are only allowable for constructors where
3956      // the field is declared in this class
3957      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3958                                        << " of a not fully initialized object within the context"
3959                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3960      return nullptr;
3961    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3962      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3963      // of C1. For resolution to occur the declared class of the field must be compatible with
3964      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3965      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3966                                  << " from object of type " << obj_type;
3967      return nullptr;
3968    } else {
3969      return field;
3970    }
3971  }
3972}
3973
3974template <MethodVerifier::FieldAccessType kAccType>
3975void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3976                                         bool is_primitive, bool is_static) {
3977  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3978  ArtField* field;
3979  if (is_static) {
3980    field = GetStaticField(field_idx);
3981  } else {
3982    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3983    field = GetInstanceField(object_type, field_idx);
3984    if (UNLIKELY(have_pending_hard_failure_)) {
3985      return;
3986    }
3987  }
3988  const RegType* field_type = nullptr;
3989  if (field != nullptr) {
3990    if (kAccType == FieldAccessType::kAccPut) {
3991      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3992        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3993                                        << " from other class " << GetDeclaringClass();
3994        return;
3995      }
3996    }
3997
3998    mirror::Class* field_type_class =
3999        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
4000    if (field_type_class != nullptr) {
4001      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4002                              field_type_class->CannotBeAssignedFromOtherTypes());
4003    } else {
4004      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4005      self_->ClearException();
4006    }
4007  }
4008  if (field_type == nullptr) {
4009    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4010    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4011    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4012  }
4013  DCHECK(field_type != nullptr);
4014  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4015  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4016                "Unexpected third access type");
4017  if (kAccType == FieldAccessType::kAccPut) {
4018    // sput or iput.
4019    if (is_primitive) {
4020      VerifyPrimitivePut(*field_type, insn_type, vregA);
4021    } else {
4022      if (!insn_type.IsAssignableFrom(*field_type)) {
4023        // If the field type is not a reference, this is a global failure rather than
4024        // a class change failure as the instructions and the descriptors for the type
4025        // should have been consistent within the same file at compile time.
4026        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4027                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4028        Fail(error) << "expected field " << PrettyField(field)
4029                    << " to be compatible with type '" << insn_type
4030                    << "' but found type '" << *field_type
4031                    << "' in put-object";
4032        return;
4033      }
4034      work_line_->VerifyRegisterType(this, vregA, *field_type);
4035    }
4036  } else if (kAccType == FieldAccessType::kAccGet) {
4037    // sget or iget.
4038    if (is_primitive) {
4039      if (field_type->Equals(insn_type) ||
4040          (field_type->IsFloat() && insn_type.IsInteger()) ||
4041          (field_type->IsDouble() && insn_type.IsLong())) {
4042        // expected that read is of the correct primitive type or that int reads are reading
4043        // floats or long reads are reading doubles
4044      } else {
4045        // This is a global failure rather than a class change failure as the instructions and
4046        // the descriptors for the type should have been consistent within the same file at
4047        // compile time
4048        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4049                                          << " to be of type '" << insn_type
4050                                          << "' but found type '" << *field_type << "' in get";
4051        return;
4052      }
4053    } else {
4054      if (!insn_type.IsAssignableFrom(*field_type)) {
4055        // If the field type is not a reference, this is a global failure rather than
4056        // a class change failure as the instructions and the descriptors for the type
4057        // should have been consistent within the same file at compile time.
4058        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4059                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4060        Fail(error) << "expected field " << PrettyField(field)
4061                    << " to be compatible with type '" << insn_type
4062                    << "' but found type '" << *field_type
4063                    << "' in get-object";
4064        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4065        return;
4066      }
4067    }
4068    if (!field_type->IsLowHalf()) {
4069      work_line_->SetRegisterType(this, vregA, *field_type);
4070    } else {
4071      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4072    }
4073  } else {
4074    LOG(FATAL) << "Unexpected case.";
4075  }
4076}
4077
4078ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4079                                                      RegisterLine* reg_line) {
4080  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4081  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4082  if (!object_type.HasClass()) {
4083    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4084    return nullptr;
4085  }
4086  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4087  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4088  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4089  if (f == nullptr) {
4090    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4091                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4092  }
4093  return f;
4094}
4095
4096template <MethodVerifier::FieldAccessType kAccType>
4097void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4098                                            bool is_primitive) {
4099  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4100
4101  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4102  if (field == nullptr) {
4103    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4104    return;
4105  }
4106
4107  // For an IPUT_QUICK, we now test for final flag of the field.
4108  if (kAccType == FieldAccessType::kAccPut) {
4109    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4110      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4111                                      << " from other class " << GetDeclaringClass();
4112      return;
4113    }
4114  }
4115
4116  // Get the field type.
4117  const RegType* field_type;
4118  {
4119    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4120        field->GetType<false>();
4121
4122    if (field_type_class != nullptr) {
4123      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4124                              field_type_class->CannotBeAssignedFromOtherTypes());
4125    } else {
4126      Thread* self = Thread::Current();
4127      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4128      self->ClearException();
4129      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4130                                              field->GetTypeDescriptor(), false);
4131    }
4132    if (field_type == nullptr) {
4133      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4134      return;
4135    }
4136  }
4137
4138  const uint32_t vregA = inst->VRegA_22c();
4139  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4140                "Unexpected third access type");
4141  if (kAccType == FieldAccessType::kAccPut) {
4142    if (is_primitive) {
4143      // Primitive field assignability rules are weaker than regular assignability rules
4144      bool instruction_compatible;
4145      bool value_compatible;
4146      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4147      if (field_type->IsIntegralTypes()) {
4148        instruction_compatible = insn_type.IsIntegralTypes();
4149        value_compatible = value_type.IsIntegralTypes();
4150      } else if (field_type->IsFloat()) {
4151        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4152        value_compatible = value_type.IsFloatTypes();
4153      } else if (field_type->IsLong()) {
4154        instruction_compatible = insn_type.IsLong();
4155        value_compatible = value_type.IsLongTypes();
4156      } else if (field_type->IsDouble()) {
4157        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4158        value_compatible = value_type.IsDoubleTypes();
4159      } else {
4160        instruction_compatible = false;  // reference field with primitive store
4161        value_compatible = false;  // unused
4162      }
4163      if (!instruction_compatible) {
4164        // This is a global failure rather than a class change failure as the instructions and
4165        // the descriptors for the type should have been consistent within the same file at
4166        // compile time
4167        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4168                                          << " to be of type '" << insn_type
4169                                          << "' but found type '" << *field_type
4170                                          << "' in put";
4171        return;
4172      }
4173      if (!value_compatible) {
4174        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4175            << " of type " << value_type
4176            << " but expected " << *field_type
4177            << " for store to " << PrettyField(field) << " in put";
4178        return;
4179      }
4180    } else {
4181      if (!insn_type.IsAssignableFrom(*field_type)) {
4182        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4183                                          << " to be compatible with type '" << insn_type
4184                                          << "' but found type '" << *field_type
4185                                          << "' in put-object";
4186        return;
4187      }
4188      work_line_->VerifyRegisterType(this, vregA, *field_type);
4189    }
4190  } else if (kAccType == FieldAccessType::kAccGet) {
4191    if (is_primitive) {
4192      if (field_type->Equals(insn_type) ||
4193          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4194          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4195        // expected that read is of the correct primitive type or that int reads are reading
4196        // floats or long reads are reading doubles
4197      } else {
4198        // This is a global failure rather than a class change failure as the instructions and
4199        // the descriptors for the type should have been consistent within the same file at
4200        // compile time
4201        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4202                                          << " to be of type '" << insn_type
4203                                          << "' but found type '" << *field_type << "' in Get";
4204        return;
4205      }
4206    } else {
4207      if (!insn_type.IsAssignableFrom(*field_type)) {
4208        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4209                                          << " to be compatible with type '" << insn_type
4210                                          << "' but found type '" << *field_type
4211                                          << "' in get-object";
4212        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4213        return;
4214      }
4215    }
4216    if (!field_type->IsLowHalf()) {
4217      work_line_->SetRegisterType(this, vregA, *field_type);
4218    } else {
4219      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4220    }
4221  } else {
4222    LOG(FATAL) << "Unexpected case.";
4223  }
4224}
4225
4226bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4227  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4228    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4229    return false;
4230  }
4231  return true;
4232}
4233
4234bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4235  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4236      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4237    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4238    return false;
4239  }
4240  return true;
4241}
4242
4243bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4244  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4245}
4246
4247bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4248                                     bool update_merge_line) {
4249  bool changed = true;
4250  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4251  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4252    /*
4253     * We haven't processed this instruction before, and we haven't touched the registers here, so
4254     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4255     * only way a register can transition out of "unknown", so this is not just an optimization.)
4256     */
4257    if (!insn_flags_[next_insn].IsReturn()) {
4258      target_line->CopyFromLine(merge_line);
4259    } else {
4260      // Verify that the monitor stack is empty on return.
4261      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4262        return false;
4263      }
4264      // For returns we only care about the operand to the return, all other registers are dead.
4265      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4266      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4267      Instruction::Code opcode = ret_inst->Opcode();
4268      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4269        SafelyMarkAllRegistersAsConflicts(this, target_line);
4270      } else {
4271        target_line->CopyFromLine(merge_line);
4272        if (opcode == Instruction::RETURN_WIDE) {
4273          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4274        } else {
4275          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4276        }
4277      }
4278    }
4279  } else {
4280    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4281                                 RegisterLine::Create(target_line->NumRegs(), this) :
4282                                 nullptr);
4283    if (gDebugVerify) {
4284      copy->CopyFromLine(target_line);
4285    }
4286    changed = target_line->MergeRegisters(this, merge_line);
4287    if (have_pending_hard_failure_) {
4288      return false;
4289    }
4290    if (gDebugVerify && changed) {
4291      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4292                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4293                      << copy->Dump(this) << "  MERGE\n"
4294                      << merge_line->Dump(this) << "  ==\n"
4295                      << target_line->Dump(this) << "\n";
4296    }
4297    if (update_merge_line && changed) {
4298      merge_line->CopyFromLine(target_line);
4299    }
4300  }
4301  if (changed) {
4302    insn_flags_[next_insn].SetChanged();
4303  }
4304  return true;
4305}
4306
4307InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4308  return &insn_flags_[work_insn_idx_];
4309}
4310
4311const RegType& MethodVerifier::GetMethodReturnType() {
4312  if (return_type_ == nullptr) {
4313    if (mirror_method_ != nullptr) {
4314      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4315      if (return_type_class != nullptr) {
4316        return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
4317                                  return_type_class,
4318                                  return_type_class->CannotBeAssignedFromOtherTypes());
4319      } else {
4320        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4321        self_->ClearException();
4322      }
4323    }
4324    if (return_type_ == nullptr) {
4325      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4326      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4327      uint16_t return_type_idx = proto_id.return_type_idx_;
4328      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4329      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4330    }
4331  }
4332  return *return_type_;
4333}
4334
4335const RegType& MethodVerifier::GetDeclaringClass() {
4336  if (declaring_class_ == nullptr) {
4337    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4338    const char* descriptor
4339        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4340    if (mirror_method_ != nullptr) {
4341      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4342      declaring_class_ = &FromClass(descriptor, klass,
4343                                    klass->CannotBeAssignedFromOtherTypes());
4344    } else {
4345      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4346    }
4347  }
4348  return *declaring_class_;
4349}
4350
4351std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4352  RegisterLine* line = reg_table_.GetLine(dex_pc);
4353  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4354  std::vector<int32_t> result;
4355  for (size_t i = 0; i < line->NumRegs(); ++i) {
4356    const RegType& type = line->GetRegisterType(this, i);
4357    if (type.IsConstant()) {
4358      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4359      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4360      result.push_back(const_val->ConstantValue());
4361    } else if (type.IsConstantLo()) {
4362      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4363      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4364      result.push_back(const_val->ConstantValueLo());
4365    } else if (type.IsConstantHi()) {
4366      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4367      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4368      result.push_back(const_val->ConstantValueHi());
4369    } else if (type.IsIntegralTypes()) {
4370      result.push_back(kIntVReg);
4371      result.push_back(0);
4372    } else if (type.IsFloat()) {
4373      result.push_back(kFloatVReg);
4374      result.push_back(0);
4375    } else if (type.IsLong()) {
4376      result.push_back(kLongLoVReg);
4377      result.push_back(0);
4378      result.push_back(kLongHiVReg);
4379      result.push_back(0);
4380      ++i;
4381    } else if (type.IsDouble()) {
4382      result.push_back(kDoubleLoVReg);
4383      result.push_back(0);
4384      result.push_back(kDoubleHiVReg);
4385      result.push_back(0);
4386      ++i;
4387    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4388      result.push_back(kUndefined);
4389      result.push_back(0);
4390    } else {
4391      CHECK(type.IsNonZeroReferenceTypes());
4392      result.push_back(kReferenceVReg);
4393      result.push_back(0);
4394    }
4395  }
4396  return result;
4397}
4398
4399const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4400  if (precise) {
4401    // Precise constant type.
4402    return reg_types_.FromCat1Const(value, true);
4403  } else {
4404    // Imprecise constant type.
4405    if (value < -32768) {
4406      return reg_types_.IntConstant();
4407    } else if (value < -128) {
4408      return reg_types_.ShortConstant();
4409    } else if (value < 0) {
4410      return reg_types_.ByteConstant();
4411    } else if (value == 0) {
4412      return reg_types_.Zero();
4413    } else if (value == 1) {
4414      return reg_types_.One();
4415    } else if (value < 128) {
4416      return reg_types_.PosByteConstant();
4417    } else if (value < 32768) {
4418      return reg_types_.PosShortConstant();
4419    } else if (value < 65536) {
4420      return reg_types_.CharConstant();
4421    } else {
4422      return reg_types_.IntConstant();
4423    }
4424  }
4425}
4426
4427void MethodVerifier::Init() {
4428  art::verifier::RegTypeCache::Init();
4429}
4430
4431void MethodVerifier::Shutdown() {
4432  verifier::RegTypeCache::ShutDown();
4433}
4434
4435void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4436  RegTypeCache::VisitStaticRoots(visitor);
4437}
4438
4439void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4440  reg_types_.VisitRoots(visitor, root_info);
4441}
4442
4443const RegType& MethodVerifier::FromClass(const char* descriptor,
4444                                         mirror::Class* klass,
4445                                         bool precise) {
4446  DCHECK(klass != nullptr);
4447  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
4448    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
4449        << "non-instantiable klass " << descriptor;
4450    precise = false;
4451  }
4452  return reg_types_.FromClass(descriptor, klass, precise);
4453}
4454
4455}  // namespace verifier
4456}  // namespace art
4457