method_verifier.cc revision 3d21bdf8894e780d349c481e5c9e29fe1556051c
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "art_method-inl.h"
23#include "base/logging.h"
24#include "base/mutex-inl.h"
25#include "base/time_utils.h"
26#include "class_linker.h"
27#include "compiler_callbacks.h"
28#include "dex_file-inl.h"
29#include "dex_instruction-inl.h"
30#include "dex_instruction_utils.h"
31#include "dex_instruction_visitor.h"
32#include "gc/accounting/card_table-inl.h"
33#include "indenter.h"
34#include "intern_table.h"
35#include "leb128.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "utils.h"
46#include "handle_scope-inl.h"
47#include "verifier/dex_gc_map.h"
48
49namespace art {
50namespace verifier {
51
52static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
53static constexpr bool gDebugVerify = false;
54// TODO: Add a constant to method_verifier to turn on verbose logging?
55
56void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
57                                 uint32_t insns_size, uint16_t registers_size,
58                                 MethodVerifier* verifier) {
59  DCHECK_GT(insns_size, 0U);
60  register_lines_.reset(new RegisterLine*[insns_size]());
61  size_ = insns_size;
62  for (uint32_t i = 0; i < insns_size; i++) {
63    bool interesting = false;
64    switch (mode) {
65      case kTrackRegsAll:
66        interesting = flags[i].IsOpcode();
67        break;
68      case kTrackCompilerInterestPoints:
69        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
70        break;
71      case kTrackRegsBranches:
72        interesting = flags[i].IsBranchTarget();
73        break;
74      default:
75        break;
76    }
77    if (interesting) {
78      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
79    }
80  }
81}
82
83PcToRegisterLineTable::~PcToRegisterLineTable() {
84  for (size_t i = 0; i < size_; i++) {
85    delete register_lines_[i];
86    if (kIsDebugBuild) {
87      register_lines_[i] = nullptr;
88    }
89  }
90}
91
92// Note: returns true on failure.
93ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
94                                             const char* error_msg, uint32_t work_insn_idx) {
95  if (kIsDebugBuild) {
96    // In a debug build, abort if the error condition is wrong.
97    DCHECK(condition) << error_msg << work_insn_idx;
98  } else {
99    // In a non-debug build, just fail the class.
100    if (!condition) {
101      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
102      return true;
103    }
104  }
105
106  return false;
107}
108
109static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
110  if (verifier->IsConstructor()) {
111    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
112    reg_line->CheckConstructorReturn(verifier);
113  }
114  reg_line->MarkAllRegistersAsConflicts(verifier);
115}
116
117MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
118    ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
119  StackHandleScope<2> hs(Thread::Current());
120  mirror::Class* klass = method->GetDeclaringClass();
121  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
122  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(
164      self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
165}
166
167MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
168                                                        const DexFile* dex_file,
169                                                        Handle<mirror::DexCache> dex_cache,
170                                                        Handle<mirror::ClassLoader> class_loader,
171                                                        const DexFile::ClassDef* class_def,
172                                                        bool allow_soft_failures,
173                                                        std::string* error) {
174  DCHECK(class_def != nullptr);
175  const uint8_t* class_data = dex_file->GetClassData(*class_def);
176  if (class_data == nullptr) {
177    // empty class, probably a marker interface
178    return kNoFailure;
179  }
180  ClassDataItemIterator it(*dex_file, class_data);
181  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
182    it.Next();
183  }
184  size_t error_count = 0;
185  bool hard_fail = false;
186  ClassLinker* linker = Runtime::Current()->GetClassLinker();
187  int64_t previous_direct_method_idx = -1;
188  while (it.HasNextDirectMethod()) {
189    self->AllowThreadSuspension();
190    uint32_t method_idx = it.GetMemberIndex();
191    if (method_idx == previous_direct_method_idx) {
192      // smali can create dex files with two encoded_methods sharing the same method_idx
193      // http://code.google.com/p/smali/issues/detail?id=119
194      it.Next();
195      continue;
196    }
197    previous_direct_method_idx = method_idx;
198    InvokeType type = it.GetMethodInvokeType(*class_def);
199    ArtMethod* method = linker->ResolveMethod(
200        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
201    if (method == nullptr) {
202      DCHECK(self->IsExceptionPending());
203      // We couldn't resolve the method, but continue regardless.
204      self->ClearException();
205    } else {
206      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
207    }
208    StackHandleScope<1> hs(self);
209    MethodVerifier::FailureKind result = VerifyMethod(self,
210                                                      method_idx,
211                                                      dex_file,
212                                                      dex_cache,
213                                                      class_loader,
214                                                      class_def,
215                                                      it.GetMethodCodeItem(),
216        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
217    if (result != kNoFailure) {
218      if (result == kHardFailure) {
219        hard_fail = true;
220        if (error_count > 0) {
221          *error += "\n";
222        }
223        *error = "Verifier rejected class ";
224        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
225        *error += " due to bad method ";
226        *error += PrettyMethod(method_idx, *dex_file);
227      }
228      ++error_count;
229    }
230    it.Next();
231  }
232  int64_t previous_virtual_method_idx = -1;
233  while (it.HasNextVirtualMethod()) {
234    self->AllowThreadSuspension();
235    uint32_t method_idx = it.GetMemberIndex();
236    if (method_idx == previous_virtual_method_idx) {
237      // smali can create dex files with two encoded_methods sharing the same method_idx
238      // http://code.google.com/p/smali/issues/detail?id=119
239      it.Next();
240      continue;
241    }
242    previous_virtual_method_idx = method_idx;
243    InvokeType type = it.GetMethodInvokeType(*class_def);
244    ArtMethod* method = linker->ResolveMethod(
245        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
246    if (method == nullptr) {
247      DCHECK(self->IsExceptionPending());
248      // We couldn't resolve the method, but continue regardless.
249      self->ClearException();
250    }
251    StackHandleScope<1> hs(self);
252    MethodVerifier::FailureKind result = VerifyMethod(self,
253                                                      method_idx,
254                                                      dex_file,
255                                                      dex_cache,
256                                                      class_loader,
257                                                      class_def,
258                                                      it.GetMethodCodeItem(),
259        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
260    if (result != kNoFailure) {
261      if (result == kHardFailure) {
262        hard_fail = true;
263        if (error_count > 0) {
264          *error += "\n";
265        }
266        *error = "Verifier rejected class ";
267        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
268        *error += " due to bad method ";
269        *error += PrettyMethod(method_idx, *dex_file);
270      }
271      ++error_count;
272    }
273    it.Next();
274  }
275  if (error_count == 0) {
276    return kNoFailure;
277  } else {
278    return hard_fail ? kHardFailure : kSoftFailure;
279  }
280}
281
282static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
283  if (code_item == nullptr) {
284    return false;
285  }
286
287  uint16_t registers_size = code_item->registers_size_;
288  uint32_t insns_size = code_item->insns_size_in_code_units_;
289
290  return registers_size * insns_size > 4*1024*1024;
291}
292
293MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
294                                                         const DexFile* dex_file,
295                                                         Handle<mirror::DexCache> dex_cache,
296                                                         Handle<mirror::ClassLoader> class_loader,
297                                                         const DexFile::ClassDef* class_def,
298                                                         const DexFile::CodeItem* code_item,
299                                                         ArtMethod* method,
300                                                         uint32_t method_access_flags,
301                                                         bool allow_soft_failures,
302                                                         bool need_precise_constants) {
303  MethodVerifier::FailureKind result = kNoFailure;
304  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
305
306  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
307                          method_idx, method, method_access_flags, true, allow_soft_failures,
308                          need_precise_constants, true);
309  if (verifier.Verify()) {
310    // Verification completed, however failures may be pending that didn't cause the verification
311    // to hard fail.
312    CHECK(!verifier.have_pending_hard_failure_);
313    if (verifier.failures_.size() != 0) {
314      if (VLOG_IS_ON(verifier)) {
315          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
316                                << PrettyMethod(method_idx, *dex_file) << "\n");
317      }
318      result = kSoftFailure;
319    }
320  } else {
321    // Bad method data.
322    CHECK_NE(verifier.failures_.size(), 0U);
323    CHECK(verifier.have_pending_hard_failure_);
324    verifier.DumpFailures(LOG(INFO) << "Verification error in "
325                                    << PrettyMethod(method_idx, *dex_file) << "\n");
326    if (gDebugVerify) {
327      std::cout << "\n" << verifier.info_messages_.str();
328      verifier.Dump(std::cout);
329    }
330    result = kHardFailure;
331  }
332  if (kTimeVerifyMethod) {
333    uint64_t duration_ns = NanoTime() - start_ns;
334    if (duration_ns > MsToNs(100)) {
335      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
336                   << " took " << PrettyDuration(duration_ns)
337                   << (IsLargeMethod(code_item) ? " (large method)" : "");
338    }
339  }
340  return result;
341}
342
343MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
344                                         const DexFile* dex_file,
345                                         Handle<mirror::DexCache> dex_cache,
346                                         Handle<mirror::ClassLoader> class_loader,
347                                         const DexFile::ClassDef* class_def,
348                                         const DexFile::CodeItem* code_item,
349                                         ArtMethod* method,
350                                         uint32_t method_access_flags) {
351  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
352                                                class_def, code_item, dex_method_idx, method,
353                                                method_access_flags, true, true, true, true);
354  verifier->Verify();
355  verifier->DumpFailures(os);
356  os << verifier->info_messages_.str();
357  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
358  // and querying any info is dangerous/can abort.
359  if (verifier->have_pending_hard_failure_) {
360    delete verifier;
361    return nullptr;
362  } else {
363    verifier->Dump(os);
364    return verifier;
365  }
366}
367
368MethodVerifier::MethodVerifier(Thread* self,
369                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
370                               Handle<mirror::ClassLoader> class_loader,
371                               const DexFile::ClassDef* class_def,
372                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
373                               ArtMethod* method, uint32_t method_access_flags,
374                               bool can_load_classes, bool allow_soft_failures,
375                               bool need_precise_constants, bool verify_to_dump,
376                               bool allow_thread_suspension)
377    : self_(self),
378      reg_types_(can_load_classes),
379      work_insn_idx_(-1),
380      dex_method_idx_(dex_method_idx),
381      mirror_method_(method),
382      method_access_flags_(method_access_flags),
383      return_type_(nullptr),
384      dex_file_(dex_file),
385      dex_cache_(dex_cache),
386      class_loader_(class_loader),
387      class_def_(class_def),
388      code_item_(code_item),
389      declaring_class_(nullptr),
390      interesting_dex_pc_(-1),
391      monitor_enter_dex_pcs_(nullptr),
392      have_pending_hard_failure_(false),
393      have_pending_runtime_throw_failure_(false),
394      new_instance_count_(0),
395      monitor_enter_count_(0),
396      can_load_classes_(can_load_classes),
397      allow_soft_failures_(allow_soft_failures),
398      need_precise_constants_(need_precise_constants),
399      has_check_casts_(false),
400      has_virtual_or_interface_invokes_(false),
401      verify_to_dump_(verify_to_dump),
402      allow_thread_suspension_(allow_thread_suspension) {
403  self->PushVerifier(this);
404  DCHECK(class_def != nullptr);
405}
406
407MethodVerifier::~MethodVerifier() {
408  Thread::Current()->PopVerifier(this);
409  STLDeleteElements(&failure_messages_);
410}
411
412void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
413                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
414  StackHandleScope<2> hs(Thread::Current());
415  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
416  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
417  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
418                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
419                          false, true, false, false);
420  verifier.interesting_dex_pc_ = dex_pc;
421  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
422  verifier.FindLocksAtDexPc();
423}
424
425static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
426  const Instruction* inst = Instruction::At(code_item->insns_);
427
428  uint32_t insns_size = code_item->insns_size_in_code_units_;
429  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
430    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
431      return true;
432    }
433
434    dex_pc += inst->SizeInCodeUnits();
435    inst = inst->Next();
436  }
437
438  return false;
439}
440
441void MethodVerifier::FindLocksAtDexPc() {
442  CHECK(monitor_enter_dex_pcs_ != nullptr);
443  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
444
445  // Quick check whether there are any monitor_enter instructions at all.
446  if (!HasMonitorEnterInstructions(code_item_)) {
447    return;
448  }
449
450  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
451  // verification. In practice, the phase we want relies on data structures set up by all the
452  // earlier passes, so we just run the full method verification and bail out early when we've
453  // got what we wanted.
454  Verify();
455}
456
457ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
458  StackHandleScope<2> hs(Thread::Current());
459  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
460  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
461  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
462                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
463                          true, false, true);
464  return verifier.FindAccessedFieldAtDexPc(dex_pc);
465}
466
467ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
468  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
469
470  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
471  // verification. In practice, the phase we want relies on data structures set up by all the
472  // earlier passes, so we just run the full method verification and bail out early when we've
473  // got what we wanted.
474  bool success = Verify();
475  if (!success) {
476    return nullptr;
477  }
478  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
479  if (register_line == nullptr) {
480    return nullptr;
481  }
482  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
483  return GetQuickFieldAccess(inst, register_line);
484}
485
486ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
487  StackHandleScope<2> hs(Thread::Current());
488  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
489  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
490  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
491                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
492                          true, false, true);
493  return verifier.FindInvokedMethodAtDexPc(dex_pc);
494}
495
496ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
497  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
498
499  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
500  // verification. In practice, the phase we want relies on data structures set up by all the
501  // earlier passes, so we just run the full method verification and bail out early when we've
502  // got what we wanted.
503  bool success = Verify();
504  if (!success) {
505    return nullptr;
506  }
507  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
508  if (register_line == nullptr) {
509    return nullptr;
510  }
511  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
512  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
513  return GetQuickInvokedMethod(inst, register_line, is_range, false);
514}
515
516SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
517  Thread* self = Thread::Current();
518  StackHandleScope<2> hs(self);
519  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
520  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
521  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
522                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
523                          true, true, false, true);
524  return verifier.FindStringInitMap();
525}
526
527SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
528  Verify();
529  return GetStringInitPcRegMap();
530}
531
532bool MethodVerifier::Verify() {
533  // If there aren't any instructions, make sure that's expected, then exit successfully.
534  if (code_item_ == nullptr) {
535    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
536      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
537      return false;
538    } else {
539      return true;
540    }
541  }
542  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
543  if (code_item_->ins_size_ > code_item_->registers_size_) {
544    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
545                                      << " regs=" << code_item_->registers_size_;
546    return false;
547  }
548  // Allocate and initialize an array to hold instruction data.
549  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
550  // Run through the instructions and see if the width checks out.
551  bool result = ComputeWidthsAndCountOps();
552  // Flag instructions guarded by a "try" block and check exception handlers.
553  result = result && ScanTryCatchBlocks();
554  // Perform static instruction verification.
555  result = result && VerifyInstructions();
556  // Perform code-flow analysis and return.
557  result = result && VerifyCodeFlow();
558  // Compute information for compiler.
559  if (result && Runtime::Current()->IsCompiler()) {
560    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
561  }
562  return result;
563}
564
565std::ostream& MethodVerifier::Fail(VerifyError error) {
566  switch (error) {
567    case VERIFY_ERROR_NO_CLASS:
568    case VERIFY_ERROR_NO_FIELD:
569    case VERIFY_ERROR_NO_METHOD:
570    case VERIFY_ERROR_ACCESS_CLASS:
571    case VERIFY_ERROR_ACCESS_FIELD:
572    case VERIFY_ERROR_ACCESS_METHOD:
573    case VERIFY_ERROR_INSTANTIATION:
574    case VERIFY_ERROR_CLASS_CHANGE:
575      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
576        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
577        // class change and instantiation errors into soft verification errors so that we re-verify
578        // at runtime. We may fail to find or to agree on access because of not yet available class
579        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
580        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
581        // paths" that dynamically perform the verification and cause the behavior to be that akin
582        // to an interpreter.
583        error = VERIFY_ERROR_BAD_CLASS_SOFT;
584      } else {
585        // If we fail again at runtime, mark that this instruction would throw and force this
586        // method to be executed using the interpreter with checks.
587        have_pending_runtime_throw_failure_ = true;
588
589        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
590        // try to merge garbage.
591        // Note: this assumes that Fail is called before we do any work_line modifications.
592        const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
593        const Instruction* inst = Instruction::At(insns);
594        int opcode_flags = Instruction::FlagsOf(inst->Opcode());
595
596        if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
597          saved_line_->CopyFromLine(work_line_.get());
598        }
599      }
600      break;
601      // Indication that verification should be retried at runtime.
602    case VERIFY_ERROR_BAD_CLASS_SOFT:
603      if (!allow_soft_failures_) {
604        have_pending_hard_failure_ = true;
605      }
606      break;
607      // Hard verification failures at compile time will still fail at runtime, so the class is
608      // marked as rejected to prevent it from being compiled.
609    case VERIFY_ERROR_BAD_CLASS_HARD: {
610      if (Runtime::Current()->IsAotCompiler()) {
611        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
612        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
613      }
614      have_pending_hard_failure_ = true;
615      break;
616    }
617  }
618  failures_.push_back(error);
619  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
620                                    work_insn_idx_));
621  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
622  failure_messages_.push_back(failure_message);
623  return *failure_message;
624}
625
626std::ostream& MethodVerifier::LogVerifyInfo() {
627  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
628                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
629}
630
631void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
632  size_t failure_num = failure_messages_.size();
633  DCHECK_NE(failure_num, 0U);
634  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
635  prepend += last_fail_message->str();
636  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
637  delete last_fail_message;
638}
639
640void MethodVerifier::AppendToLastFailMessage(std::string append) {
641  size_t failure_num = failure_messages_.size();
642  DCHECK_NE(failure_num, 0U);
643  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
644  (*last_fail_message) << append;
645}
646
647bool MethodVerifier::ComputeWidthsAndCountOps() {
648  const uint16_t* insns = code_item_->insns_;
649  size_t insns_size = code_item_->insns_size_in_code_units_;
650  const Instruction* inst = Instruction::At(insns);
651  size_t new_instance_count = 0;
652  size_t monitor_enter_count = 0;
653  size_t dex_pc = 0;
654
655  while (dex_pc < insns_size) {
656    Instruction::Code opcode = inst->Opcode();
657    switch (opcode) {
658      case Instruction::APUT_OBJECT:
659      case Instruction::CHECK_CAST:
660        has_check_casts_ = true;
661        break;
662      case Instruction::INVOKE_VIRTUAL:
663      case Instruction::INVOKE_VIRTUAL_RANGE:
664      case Instruction::INVOKE_INTERFACE:
665      case Instruction::INVOKE_INTERFACE_RANGE:
666        has_virtual_or_interface_invokes_ = true;
667        break;
668      case Instruction::MONITOR_ENTER:
669        monitor_enter_count++;
670        break;
671      case Instruction::NEW_INSTANCE:
672        new_instance_count++;
673        break;
674      default:
675        break;
676    }
677    size_t inst_size = inst->SizeInCodeUnits();
678    insn_flags_[dex_pc].SetIsOpcode();
679    dex_pc += inst_size;
680    inst = inst->RelativeAt(inst_size);
681  }
682
683  if (dex_pc != insns_size) {
684    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
685                                      << dex_pc << " vs. " << insns_size << ")";
686    return false;
687  }
688
689  new_instance_count_ = new_instance_count;
690  monitor_enter_count_ = monitor_enter_count;
691  return true;
692}
693
694bool MethodVerifier::ScanTryCatchBlocks() {
695  uint32_t tries_size = code_item_->tries_size_;
696  if (tries_size == 0) {
697    return true;
698  }
699  uint32_t insns_size = code_item_->insns_size_in_code_units_;
700  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
701
702  for (uint32_t idx = 0; idx < tries_size; idx++) {
703    const DexFile::TryItem* try_item = &tries[idx];
704    uint32_t start = try_item->start_addr_;
705    uint32_t end = start + try_item->insn_count_;
706    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
707      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
708                                        << " endAddr=" << end << " (size=" << insns_size << ")";
709      return false;
710    }
711    if (!insn_flags_[start].IsOpcode()) {
712      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
713          << "'try' block starts inside an instruction (" << start << ")";
714      return false;
715    }
716    uint32_t dex_pc = start;
717    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
718    while (dex_pc < end) {
719      insn_flags_[dex_pc].SetInTry();
720      size_t insn_size = inst->SizeInCodeUnits();
721      dex_pc += insn_size;
722      inst = inst->RelativeAt(insn_size);
723    }
724  }
725  // Iterate over each of the handlers to verify target addresses.
726  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
727  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
728  ClassLinker* linker = Runtime::Current()->GetClassLinker();
729  for (uint32_t idx = 0; idx < handlers_size; idx++) {
730    CatchHandlerIterator iterator(handlers_ptr);
731    for (; iterator.HasNext(); iterator.Next()) {
732      uint32_t dex_pc= iterator.GetHandlerAddress();
733      if (!insn_flags_[dex_pc].IsOpcode()) {
734        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
735            << "exception handler starts at bad address (" << dex_pc << ")";
736        return false;
737      }
738      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
739        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
740            << "exception handler begins with move-result* (" << dex_pc << ")";
741        return false;
742      }
743      insn_flags_[dex_pc].SetBranchTarget();
744      // Ensure exception types are resolved so that they don't need resolution to be delivered,
745      // unresolved exception types will be ignored by exception delivery
746      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
747        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
748                                                            iterator.GetHandlerTypeIndex(),
749                                                            dex_cache_, class_loader_);
750        if (exception_type == nullptr) {
751          DCHECK(self_->IsExceptionPending());
752          self_->ClearException();
753        }
754      }
755    }
756    handlers_ptr = iterator.EndDataPointer();
757  }
758  return true;
759}
760
761bool MethodVerifier::VerifyInstructions() {
762  const Instruction* inst = Instruction::At(code_item_->insns_);
763
764  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
765  insn_flags_[0].SetBranchTarget();
766  insn_flags_[0].SetCompileTimeInfoPoint();
767
768  uint32_t insns_size = code_item_->insns_size_in_code_units_;
769  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
770    if (!VerifyInstruction(inst, dex_pc)) {
771      DCHECK_NE(failures_.size(), 0U);
772      return false;
773    }
774    /* Flag instructions that are garbage collection points */
775    // All invoke points are marked as "Throw" points already.
776    // We are relying on this to also count all the invokes as interesting.
777    if (inst->IsBranch()) {
778      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
779      // The compiler also needs safepoints for fall-through to loop heads.
780      // Such a loop head must be a target of a branch.
781      int32_t offset = 0;
782      bool cond, self_ok;
783      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
784      DCHECK(target_ok);
785      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
786    } else if (inst->IsSwitch() || inst->IsThrow()) {
787      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
788    } else if (inst->IsReturn()) {
789      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
790    }
791    dex_pc += inst->SizeInCodeUnits();
792    inst = inst->Next();
793  }
794  return true;
795}
796
797bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
798  bool result = true;
799  switch (inst->GetVerifyTypeArgumentA()) {
800    case Instruction::kVerifyRegA:
801      result = result && CheckRegisterIndex(inst->VRegA());
802      break;
803    case Instruction::kVerifyRegAWide:
804      result = result && CheckWideRegisterIndex(inst->VRegA());
805      break;
806  }
807  switch (inst->GetVerifyTypeArgumentB()) {
808    case Instruction::kVerifyRegB:
809      result = result && CheckRegisterIndex(inst->VRegB());
810      break;
811    case Instruction::kVerifyRegBField:
812      result = result && CheckFieldIndex(inst->VRegB());
813      break;
814    case Instruction::kVerifyRegBMethod:
815      result = result && CheckMethodIndex(inst->VRegB());
816      break;
817    case Instruction::kVerifyRegBNewInstance:
818      result = result && CheckNewInstance(inst->VRegB());
819      break;
820    case Instruction::kVerifyRegBString:
821      result = result && CheckStringIndex(inst->VRegB());
822      break;
823    case Instruction::kVerifyRegBType:
824      result = result && CheckTypeIndex(inst->VRegB());
825      break;
826    case Instruction::kVerifyRegBWide:
827      result = result && CheckWideRegisterIndex(inst->VRegB());
828      break;
829  }
830  switch (inst->GetVerifyTypeArgumentC()) {
831    case Instruction::kVerifyRegC:
832      result = result && CheckRegisterIndex(inst->VRegC());
833      break;
834    case Instruction::kVerifyRegCField:
835      result = result && CheckFieldIndex(inst->VRegC());
836      break;
837    case Instruction::kVerifyRegCNewArray:
838      result = result && CheckNewArray(inst->VRegC());
839      break;
840    case Instruction::kVerifyRegCType:
841      result = result && CheckTypeIndex(inst->VRegC());
842      break;
843    case Instruction::kVerifyRegCWide:
844      result = result && CheckWideRegisterIndex(inst->VRegC());
845      break;
846  }
847  switch (inst->GetVerifyExtraFlags()) {
848    case Instruction::kVerifyArrayData:
849      result = result && CheckArrayData(code_offset);
850      break;
851    case Instruction::kVerifyBranchTarget:
852      result = result && CheckBranchTarget(code_offset);
853      break;
854    case Instruction::kVerifySwitchTargets:
855      result = result && CheckSwitchTargets(code_offset);
856      break;
857    case Instruction::kVerifyVarArgNonZero:
858      // Fall-through.
859    case Instruction::kVerifyVarArg: {
860      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
861        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
862                                             "non-range invoke";
863        return false;
864      }
865      uint32_t args[Instruction::kMaxVarArgRegs];
866      inst->GetVarArgs(args);
867      result = result && CheckVarArgRegs(inst->VRegA(), args);
868      break;
869    }
870    case Instruction::kVerifyVarArgRangeNonZero:
871      // Fall-through.
872    case Instruction::kVerifyVarArgRange:
873      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
874          inst->VRegA() <= 0) {
875        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
876                                             "range invoke";
877        return false;
878      }
879      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
880      break;
881    case Instruction::kVerifyError:
882      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
883      result = false;
884      break;
885  }
886  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
887    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
888    result = false;
889  }
890  return result;
891}
892
893inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
894  if (idx >= code_item_->registers_size_) {
895    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
896                                      << code_item_->registers_size_ << ")";
897    return false;
898  }
899  return true;
900}
901
902inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
903  if (idx + 1 >= code_item_->registers_size_) {
904    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
905                                      << "+1 >= " << code_item_->registers_size_ << ")";
906    return false;
907  }
908  return true;
909}
910
911inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
912  if (idx >= dex_file_->GetHeader().field_ids_size_) {
913    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
914                                      << dex_file_->GetHeader().field_ids_size_ << ")";
915    return false;
916  }
917  return true;
918}
919
920inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
921  if (idx >= dex_file_->GetHeader().method_ids_size_) {
922    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
923                                      << dex_file_->GetHeader().method_ids_size_ << ")";
924    return false;
925  }
926  return true;
927}
928
929inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
930  if (idx >= dex_file_->GetHeader().type_ids_size_) {
931    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
932                                      << dex_file_->GetHeader().type_ids_size_ << ")";
933    return false;
934  }
935  // We don't need the actual class, just a pointer to the class name.
936  const char* descriptor = dex_file_->StringByTypeIdx(idx);
937  if (descriptor[0] != 'L') {
938    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
939    return false;
940  }
941  return true;
942}
943
944inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
945  if (idx >= dex_file_->GetHeader().string_ids_size_) {
946    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
947                                      << dex_file_->GetHeader().string_ids_size_ << ")";
948    return false;
949  }
950  return true;
951}
952
953inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
954  if (idx >= dex_file_->GetHeader().type_ids_size_) {
955    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
956                                      << dex_file_->GetHeader().type_ids_size_ << ")";
957    return false;
958  }
959  return true;
960}
961
962bool MethodVerifier::CheckNewArray(uint32_t idx) {
963  if (idx >= dex_file_->GetHeader().type_ids_size_) {
964    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
965                                      << dex_file_->GetHeader().type_ids_size_ << ")";
966    return false;
967  }
968  int bracket_count = 0;
969  const char* descriptor = dex_file_->StringByTypeIdx(idx);
970  const char* cp = descriptor;
971  while (*cp++ == '[') {
972    bracket_count++;
973  }
974  if (bracket_count == 0) {
975    /* The given class must be an array type. */
976    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
977        << "can't new-array class '" << descriptor << "' (not an array)";
978    return false;
979  } else if (bracket_count > 255) {
980    /* It is illegal to create an array of more than 255 dimensions. */
981    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
982        << "can't new-array class '" << descriptor << "' (exceeds limit)";
983    return false;
984  }
985  return true;
986}
987
988bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
989  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
990  const uint16_t* insns = code_item_->insns_ + cur_offset;
991  const uint16_t* array_data;
992  int32_t array_data_offset;
993
994  DCHECK_LT(cur_offset, insn_count);
995  /* make sure the start of the array data table is in range */
996  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
997  if ((int32_t) cur_offset + array_data_offset < 0 ||
998      cur_offset + array_data_offset + 2 >= insn_count) {
999    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1000                                      << ", data offset " << array_data_offset
1001                                      << ", count " << insn_count;
1002    return false;
1003  }
1004  /* offset to array data table is a relative branch-style offset */
1005  array_data = insns + array_data_offset;
1006  /* make sure the table is 32-bit aligned */
1007  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1008    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1009                                      << ", data offset " << array_data_offset;
1010    return false;
1011  }
1012  uint32_t value_width = array_data[1];
1013  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1014  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1015  /* make sure the end of the switch is in range */
1016  if (cur_offset + array_data_offset + table_size > insn_count) {
1017    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1018                                      << ", data offset " << array_data_offset << ", end "
1019                                      << cur_offset + array_data_offset + table_size
1020                                      << ", count " << insn_count;
1021    return false;
1022  }
1023  return true;
1024}
1025
1026bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1027  int32_t offset;
1028  bool isConditional, selfOkay;
1029  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1030    return false;
1031  }
1032  if (!selfOkay && offset == 0) {
1033    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1034                                      << reinterpret_cast<void*>(cur_offset);
1035    return false;
1036  }
1037  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1038  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1039  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1040    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1041                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1042    return false;
1043  }
1044  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1045  int32_t abs_offset = cur_offset + offset;
1046  if (abs_offset < 0 ||
1047      (uint32_t) abs_offset >= insn_count ||
1048      !insn_flags_[abs_offset].IsOpcode()) {
1049    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1050                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1051                                      << reinterpret_cast<void*>(cur_offset);
1052    return false;
1053  }
1054  insn_flags_[abs_offset].SetBranchTarget();
1055  return true;
1056}
1057
1058bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1059                                  bool* selfOkay) {
1060  const uint16_t* insns = code_item_->insns_ + cur_offset;
1061  *pConditional = false;
1062  *selfOkay = false;
1063  switch (*insns & 0xff) {
1064    case Instruction::GOTO:
1065      *pOffset = ((int16_t) *insns) >> 8;
1066      break;
1067    case Instruction::GOTO_32:
1068      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1069      *selfOkay = true;
1070      break;
1071    case Instruction::GOTO_16:
1072      *pOffset = (int16_t) insns[1];
1073      break;
1074    case Instruction::IF_EQ:
1075    case Instruction::IF_NE:
1076    case Instruction::IF_LT:
1077    case Instruction::IF_GE:
1078    case Instruction::IF_GT:
1079    case Instruction::IF_LE:
1080    case Instruction::IF_EQZ:
1081    case Instruction::IF_NEZ:
1082    case Instruction::IF_LTZ:
1083    case Instruction::IF_GEZ:
1084    case Instruction::IF_GTZ:
1085    case Instruction::IF_LEZ:
1086      *pOffset = (int16_t) insns[1];
1087      *pConditional = true;
1088      break;
1089    default:
1090      return false;
1091  }
1092  return true;
1093}
1094
1095bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1096  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1097  DCHECK_LT(cur_offset, insn_count);
1098  const uint16_t* insns = code_item_->insns_ + cur_offset;
1099  /* make sure the start of the switch is in range */
1100  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1101  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1102    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1103                                      << ", switch offset " << switch_offset
1104                                      << ", count " << insn_count;
1105    return false;
1106  }
1107  /* offset to switch table is a relative branch-style offset */
1108  const uint16_t* switch_insns = insns + switch_offset;
1109  /* make sure the table is 32-bit aligned */
1110  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1111    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1112                                      << ", switch offset " << switch_offset;
1113    return false;
1114  }
1115  uint32_t switch_count = switch_insns[1];
1116  int32_t keys_offset, targets_offset;
1117  uint16_t expected_signature;
1118  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1119    /* 0=sig, 1=count, 2/3=firstKey */
1120    targets_offset = 4;
1121    keys_offset = -1;
1122    expected_signature = Instruction::kPackedSwitchSignature;
1123  } else {
1124    /* 0=sig, 1=count, 2..count*2 = keys */
1125    keys_offset = 2;
1126    targets_offset = 2 + 2 * switch_count;
1127    expected_signature = Instruction::kSparseSwitchSignature;
1128  }
1129  uint32_t table_size = targets_offset + switch_count * 2;
1130  if (switch_insns[0] != expected_signature) {
1131    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1132        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1133                        switch_insns[0], expected_signature);
1134    return false;
1135  }
1136  /* make sure the end of the switch is in range */
1137  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1138    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1139                                      << ", switch offset " << switch_offset
1140                                      << ", end " << (cur_offset + switch_offset + table_size)
1141                                      << ", count " << insn_count;
1142    return false;
1143  }
1144  /* for a sparse switch, verify the keys are in ascending order */
1145  if (keys_offset > 0 && switch_count > 1) {
1146    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1147    for (uint32_t targ = 1; targ < switch_count; targ++) {
1148      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1149                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1150      if (key <= last_key) {
1151        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1152                                          << ", this=" << key;
1153        return false;
1154      }
1155      last_key = key;
1156    }
1157  }
1158  /* verify each switch target */
1159  for (uint32_t targ = 0; targ < switch_count; targ++) {
1160    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1161                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1162    int32_t abs_offset = cur_offset + offset;
1163    if (abs_offset < 0 ||
1164        abs_offset >= (int32_t) insn_count ||
1165        !insn_flags_[abs_offset].IsOpcode()) {
1166      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1167                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1168                                        << reinterpret_cast<void*>(cur_offset)
1169                                        << "[" << targ << "]";
1170      return false;
1171    }
1172    insn_flags_[abs_offset].SetBranchTarget();
1173  }
1174  return true;
1175}
1176
1177bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1178  if (vA > Instruction::kMaxVarArgRegs) {
1179    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1180    return false;
1181  }
1182  uint16_t registers_size = code_item_->registers_size_;
1183  for (uint32_t idx = 0; idx < vA; idx++) {
1184    if (arg[idx] >= registers_size) {
1185      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1186                                        << ") in non-range invoke (>= " << registers_size << ")";
1187      return false;
1188    }
1189  }
1190
1191  return true;
1192}
1193
1194bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1195  uint16_t registers_size = code_item_->registers_size_;
1196  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1197  // integer overflow when adding them here.
1198  if (vA + vC > registers_size) {
1199    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1200                                      << " in range invoke (> " << registers_size << ")";
1201    return false;
1202  }
1203  return true;
1204}
1205
1206bool MethodVerifier::VerifyCodeFlow() {
1207  uint16_t registers_size = code_item_->registers_size_;
1208  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1209
1210  /* Create and initialize table holding register status */
1211  reg_table_.Init(kTrackCompilerInterestPoints,
1212                  insn_flags_.get(),
1213                  insns_size,
1214                  registers_size,
1215                  this);
1216
1217
1218  work_line_.reset(RegisterLine::Create(registers_size, this));
1219  saved_line_.reset(RegisterLine::Create(registers_size, this));
1220
1221  /* Initialize register types of method arguments. */
1222  if (!SetTypesFromSignature()) {
1223    DCHECK_NE(failures_.size(), 0U);
1224    std::string prepend("Bad signature in ");
1225    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1226    PrependToLastFailMessage(prepend);
1227    return false;
1228  }
1229  /* Perform code flow verification. */
1230  if (!CodeFlowVerifyMethod()) {
1231    DCHECK_NE(failures_.size(), 0U);
1232    return false;
1233  }
1234  return true;
1235}
1236
1237std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1238  DCHECK_EQ(failures_.size(), failure_messages_.size());
1239  for (size_t i = 0; i < failures_.size(); ++i) {
1240      os << failure_messages_[i]->str() << "\n";
1241  }
1242  return os;
1243}
1244
1245void MethodVerifier::Dump(std::ostream& os) {
1246  if (code_item_ == nullptr) {
1247    os << "Native method\n";
1248    return;
1249  }
1250  {
1251    os << "Register Types:\n";
1252    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1253    std::ostream indent_os(&indent_filter);
1254    reg_types_.Dump(indent_os);
1255  }
1256  os << "Dumping instructions and register lines:\n";
1257  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1258  std::ostream indent_os(&indent_filter);
1259  const Instruction* inst = Instruction::At(code_item_->insns_);
1260  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1261      dex_pc += inst->SizeInCodeUnits()) {
1262    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1263    if (reg_line != nullptr) {
1264      indent_os << reg_line->Dump(this) << "\n";
1265    }
1266    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1267    const bool kDumpHexOfInstruction = false;
1268    if (kDumpHexOfInstruction) {
1269      indent_os << inst->DumpHex(5) << " ";
1270    }
1271    indent_os << inst->DumpString(dex_file_) << "\n";
1272    inst = inst->Next();
1273  }
1274}
1275
1276static bool IsPrimitiveDescriptor(char descriptor) {
1277  switch (descriptor) {
1278    case 'I':
1279    case 'C':
1280    case 'S':
1281    case 'B':
1282    case 'Z':
1283    case 'F':
1284    case 'D':
1285    case 'J':
1286      return true;
1287    default:
1288      return false;
1289  }
1290}
1291
1292bool MethodVerifier::SetTypesFromSignature() {
1293  RegisterLine* reg_line = reg_table_.GetLine(0);
1294  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1295  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1296
1297  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1298  // Include the "this" pointer.
1299  size_t cur_arg = 0;
1300  if (!IsStatic()) {
1301    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1302    // argument as uninitialized. This restricts field access until the superclass constructor is
1303    // called.
1304    const RegType& declaring_class = GetDeclaringClass();
1305    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1306      reg_line->SetRegisterType(this, arg_start + cur_arg,
1307                                reg_types_.UninitializedThisArgument(declaring_class));
1308    } else {
1309      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1310    }
1311    cur_arg++;
1312  }
1313
1314  const DexFile::ProtoId& proto_id =
1315      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1316  DexFileParameterIterator iterator(*dex_file_, proto_id);
1317
1318  for (; iterator.HasNext(); iterator.Next()) {
1319    const char* descriptor = iterator.GetDescriptor();
1320    if (descriptor == nullptr) {
1321      LOG(FATAL) << "Null descriptor";
1322    }
1323    if (cur_arg >= expected_args) {
1324      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1325                                        << " args, found more (" << descriptor << ")";
1326      return false;
1327    }
1328    switch (descriptor[0]) {
1329      case 'L':
1330      case '[':
1331        // We assume that reference arguments are initialized. The only way it could be otherwise
1332        // (assuming the caller was verified) is if the current method is <init>, but in that case
1333        // it's effectively considered initialized the instant we reach here (in the sense that we
1334        // can return without doing anything or call virtual methods).
1335        {
1336          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1337          if (!reg_type.IsNonZeroReferenceTypes()) {
1338            DCHECK(HasFailures());
1339            return false;
1340          }
1341          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1342        }
1343        break;
1344      case 'Z':
1345        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1346        break;
1347      case 'C':
1348        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1349        break;
1350      case 'B':
1351        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1352        break;
1353      case 'I':
1354        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1355        break;
1356      case 'S':
1357        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1358        break;
1359      case 'F':
1360        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1361        break;
1362      case 'J':
1363      case 'D': {
1364        if (cur_arg + 1 >= expected_args) {
1365          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1366              << " args, found more (" << descriptor << ")";
1367          return false;
1368        }
1369
1370        const RegType* lo_half;
1371        const RegType* hi_half;
1372        if (descriptor[0] == 'J') {
1373          lo_half = &reg_types_.LongLo();
1374          hi_half = &reg_types_.LongHi();
1375        } else {
1376          lo_half = &reg_types_.DoubleLo();
1377          hi_half = &reg_types_.DoubleHi();
1378        }
1379        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1380        cur_arg++;
1381        break;
1382      }
1383      default:
1384        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1385                                          << descriptor << "'";
1386        return false;
1387    }
1388    cur_arg++;
1389  }
1390  if (cur_arg != expected_args) {
1391    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1392                                      << " arguments, found " << cur_arg;
1393    return false;
1394  }
1395  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1396  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1397  // format. Only major difference from the method argument format is that 'V' is supported.
1398  bool result;
1399  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1400    result = descriptor[1] == '\0';
1401  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1402    size_t i = 0;
1403    do {
1404      i++;
1405    } while (descriptor[i] == '[');  // process leading [
1406    if (descriptor[i] == 'L') {  // object array
1407      do {
1408        i++;  // find closing ;
1409      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1410      result = descriptor[i] == ';';
1411    } else {  // primitive array
1412      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1413    }
1414  } else if (descriptor[0] == 'L') {
1415    // could be more thorough here, but shouldn't be required
1416    size_t i = 0;
1417    do {
1418      i++;
1419    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1420    result = descriptor[i] == ';';
1421  } else {
1422    result = false;
1423  }
1424  if (!result) {
1425    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1426                                      << descriptor << "'";
1427  }
1428  return result;
1429}
1430
1431bool MethodVerifier::CodeFlowVerifyMethod() {
1432  const uint16_t* insns = code_item_->insns_;
1433  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1434
1435  /* Begin by marking the first instruction as "changed". */
1436  insn_flags_[0].SetChanged();
1437  uint32_t start_guess = 0;
1438
1439  /* Continue until no instructions are marked "changed". */
1440  while (true) {
1441    if (allow_thread_suspension_) {
1442      self_->AllowThreadSuspension();
1443    }
1444    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1445    uint32_t insn_idx = start_guess;
1446    for (; insn_idx < insns_size; insn_idx++) {
1447      if (insn_flags_[insn_idx].IsChanged())
1448        break;
1449    }
1450    if (insn_idx == insns_size) {
1451      if (start_guess != 0) {
1452        /* try again, starting from the top */
1453        start_guess = 0;
1454        continue;
1455      } else {
1456        /* all flags are clear */
1457        break;
1458      }
1459    }
1460    // We carry the working set of registers from instruction to instruction. If this address can
1461    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1462    // "changed" flags, we need to load the set of registers from the table.
1463    // Because we always prefer to continue on to the next instruction, we should never have a
1464    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1465    // target.
1466    work_insn_idx_ = insn_idx;
1467    if (insn_flags_[insn_idx].IsBranchTarget()) {
1468      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1469    } else if (kIsDebugBuild) {
1470      /*
1471       * Sanity check: retrieve the stored register line (assuming
1472       * a full table) and make sure it actually matches.
1473       */
1474      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1475      if (register_line != nullptr) {
1476        if (work_line_->CompareLine(register_line) != 0) {
1477          Dump(std::cout);
1478          std::cout << info_messages_.str();
1479          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1480                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1481                     << " work_line=" << work_line_->Dump(this) << "\n"
1482                     << "  expected=" << register_line->Dump(this);
1483        }
1484      }
1485    }
1486    if (!CodeFlowVerifyInstruction(&start_guess)) {
1487      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1488      prepend += " failed to verify: ";
1489      PrependToLastFailMessage(prepend);
1490      return false;
1491    }
1492    /* Clear "changed" and mark as visited. */
1493    insn_flags_[insn_idx].SetVisited();
1494    insn_flags_[insn_idx].ClearChanged();
1495  }
1496
1497  if (gDebugVerify) {
1498    /*
1499     * Scan for dead code. There's nothing "evil" about dead code
1500     * (besides the wasted space), but it indicates a flaw somewhere
1501     * down the line, possibly in the verifier.
1502     *
1503     * If we've substituted "always throw" instructions into the stream,
1504     * we are almost certainly going to have some dead code.
1505     */
1506    int dead_start = -1;
1507    uint32_t insn_idx = 0;
1508    for (; insn_idx < insns_size;
1509         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1510      /*
1511       * Switch-statement data doesn't get "visited" by scanner. It
1512       * may or may not be preceded by a padding NOP (for alignment).
1513       */
1514      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1515          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1516          insns[insn_idx] == Instruction::kArrayDataSignature ||
1517          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1518           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1519            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1520            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1521        insn_flags_[insn_idx].SetVisited();
1522      }
1523
1524      if (!insn_flags_[insn_idx].IsVisited()) {
1525        if (dead_start < 0)
1526          dead_start = insn_idx;
1527      } else if (dead_start >= 0) {
1528        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1529                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1530        dead_start = -1;
1531      }
1532    }
1533    if (dead_start >= 0) {
1534      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1535                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1536    }
1537    // To dump the state of the verify after a method, do something like:
1538    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1539    //     "boolean java.lang.String.equals(java.lang.Object)") {
1540    //   LOG(INFO) << info_messages_.str();
1541    // }
1542  }
1543  return true;
1544}
1545
1546bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1547  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1548  // We want the state _before_ the instruction, for the case where the dex pc we're
1549  // interested in is itself a monitor-enter instruction (which is a likely place
1550  // for a thread to be suspended).
1551  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1552    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1553    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1554      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1555    }
1556  }
1557
1558  /*
1559   * Once we finish decoding the instruction, we need to figure out where
1560   * we can go from here. There are three possible ways to transfer
1561   * control to another statement:
1562   *
1563   * (1) Continue to the next instruction. Applies to all but
1564   *     unconditional branches, method returns, and exception throws.
1565   * (2) Branch to one or more possible locations. Applies to branches
1566   *     and switch statements.
1567   * (3) Exception handlers. Applies to any instruction that can
1568   *     throw an exception that is handled by an encompassing "try"
1569   *     block.
1570   *
1571   * We can also return, in which case there is no successor instruction
1572   * from this point.
1573   *
1574   * The behavior can be determined from the opcode flags.
1575   */
1576  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1577  const Instruction* inst = Instruction::At(insns);
1578  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1579
1580  int32_t branch_target = 0;
1581  bool just_set_result = false;
1582  if (gDebugVerify) {
1583    // Generate processing back trace to debug verifier
1584    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1585                    << work_line_->Dump(this) << "\n";
1586  }
1587
1588  /*
1589   * Make a copy of the previous register state. If the instruction
1590   * can throw an exception, we will copy/merge this into the "catch"
1591   * address rather than work_line, because we don't want the result
1592   * from the "successful" code path (e.g. a check-cast that "improves"
1593   * a type) to be visible to the exception handler.
1594   */
1595  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1596    saved_line_->CopyFromLine(work_line_.get());
1597  } else if (kIsDebugBuild) {
1598    saved_line_->FillWithGarbage();
1599  }
1600
1601
1602  // We need to ensure the work line is consistent while performing validation. When we spot a
1603  // peephole pattern we compute a new line for either the fallthrough instruction or the
1604  // branch target.
1605  std::unique_ptr<RegisterLine> branch_line;
1606  std::unique_ptr<RegisterLine> fallthrough_line;
1607
1608  /*
1609   * If we are in a constructor, and we currently have an UninitializedThis type
1610   * in a register somewhere, we need to make sure it isn't overwritten.
1611   */
1612  bool track_uninitialized_this = false;
1613  size_t uninitialized_this_loc = 0;
1614  if (IsConstructor()) {
1615    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1616  }
1617
1618  switch (inst->Opcode()) {
1619    case Instruction::NOP:
1620      /*
1621       * A "pure" NOP has no effect on anything. Data tables start with
1622       * a signature that looks like a NOP; if we see one of these in
1623       * the course of executing code then we have a problem.
1624       */
1625      if (inst->VRegA_10x() != 0) {
1626        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1627      }
1628      break;
1629
1630    case Instruction::MOVE:
1631      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1632      break;
1633    case Instruction::MOVE_FROM16:
1634      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1635      break;
1636    case Instruction::MOVE_16:
1637      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1638      break;
1639    case Instruction::MOVE_WIDE:
1640      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1641      break;
1642    case Instruction::MOVE_WIDE_FROM16:
1643      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1644      break;
1645    case Instruction::MOVE_WIDE_16:
1646      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1647      break;
1648    case Instruction::MOVE_OBJECT:
1649      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1650      break;
1651    case Instruction::MOVE_OBJECT_FROM16:
1652      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1653      break;
1654    case Instruction::MOVE_OBJECT_16:
1655      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1656      break;
1657
1658    /*
1659     * The move-result instructions copy data out of a "pseudo-register"
1660     * with the results from the last method invocation. In practice we
1661     * might want to hold the result in an actual CPU register, so the
1662     * Dalvik spec requires that these only appear immediately after an
1663     * invoke or filled-new-array.
1664     *
1665     * These calls invalidate the "result" register. (This is now
1666     * redundant with the reset done below, but it can make the debug info
1667     * easier to read in some cases.)
1668     */
1669    case Instruction::MOVE_RESULT:
1670      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1671      break;
1672    case Instruction::MOVE_RESULT_WIDE:
1673      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1674      break;
1675    case Instruction::MOVE_RESULT_OBJECT:
1676      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1677      break;
1678
1679    case Instruction::MOVE_EXCEPTION: {
1680      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1681      // where one entrypoint to the catch block is not actually an exception path.
1682      if (work_insn_idx_ == 0) {
1683        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1684        break;
1685      }
1686      /*
1687       * This statement can only appear as the first instruction in an exception handler. We verify
1688       * that as part of extracting the exception type from the catch block list.
1689       */
1690      const RegType& res_type = GetCaughtExceptionType();
1691      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1692      break;
1693    }
1694    case Instruction::RETURN_VOID:
1695      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1696        if (!GetMethodReturnType().IsConflict()) {
1697          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1698        }
1699      }
1700      break;
1701    case Instruction::RETURN:
1702      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1703        /* check the method signature */
1704        const RegType& return_type = GetMethodReturnType();
1705        if (!return_type.IsCategory1Types()) {
1706          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1707                                            << return_type;
1708        } else {
1709          // Compilers may generate synthetic functions that write byte values into boolean fields.
1710          // Also, it may use integer values for boolean, byte, short, and character return types.
1711          const uint32_t vregA = inst->VRegA_11x();
1712          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1713          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1714                          ((return_type.IsBoolean() || return_type.IsByte() ||
1715                           return_type.IsShort() || return_type.IsChar()) &&
1716                           src_type.IsInteger()));
1717          /* check the register contents */
1718          bool success =
1719              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1720          if (!success) {
1721            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1722          }
1723        }
1724      }
1725      break;
1726    case Instruction::RETURN_WIDE:
1727      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1728        /* check the method signature */
1729        const RegType& return_type = GetMethodReturnType();
1730        if (!return_type.IsCategory2Types()) {
1731          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1732        } else {
1733          /* check the register contents */
1734          const uint32_t vregA = inst->VRegA_11x();
1735          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1736          if (!success) {
1737            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1738          }
1739        }
1740      }
1741      break;
1742    case Instruction::RETURN_OBJECT:
1743      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1744        const RegType& return_type = GetMethodReturnType();
1745        if (!return_type.IsReferenceTypes()) {
1746          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1747        } else {
1748          /* return_type is the *expected* return type, not register value */
1749          DCHECK(!return_type.IsZero());
1750          DCHECK(!return_type.IsUninitializedReference());
1751          const uint32_t vregA = inst->VRegA_11x();
1752          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1753          // Disallow returning uninitialized values and verify that the reference in vAA is an
1754          // instance of the "return_type"
1755          if (reg_type.IsUninitializedTypes()) {
1756            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1757                                              << reg_type << "'";
1758          } else if (!return_type.IsAssignableFrom(reg_type)) {
1759            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1760              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1761                  << "' or '" << reg_type << "'";
1762            } else {
1763              bool soft_error = false;
1764              // Check whether arrays are involved. They will show a valid class status, even
1765              // if their components are erroneous.
1766              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1767                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1768                if (soft_error) {
1769                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1770                        << reg_type << " vs " << return_type;
1771                }
1772              }
1773
1774              if (!soft_error) {
1775                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1776                    << "', but expected from declaration '" << return_type << "'";
1777              }
1778            }
1779          }
1780        }
1781      }
1782      break;
1783
1784      /* could be boolean, int, float, or a null reference */
1785    case Instruction::CONST_4: {
1786      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1787      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1788                                  DetermineCat1Constant(val, need_precise_constants_));
1789      break;
1790    }
1791    case Instruction::CONST_16: {
1792      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1793      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1794                                  DetermineCat1Constant(val, need_precise_constants_));
1795      break;
1796    }
1797    case Instruction::CONST: {
1798      int32_t val = inst->VRegB_31i();
1799      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1800                                  DetermineCat1Constant(val, need_precise_constants_));
1801      break;
1802    }
1803    case Instruction::CONST_HIGH16: {
1804      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1805      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1806                                  DetermineCat1Constant(val, need_precise_constants_));
1807      break;
1808    }
1809      /* could be long or double; resolved upon use */
1810    case Instruction::CONST_WIDE_16: {
1811      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1812      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1813      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1814      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1815      break;
1816    }
1817    case Instruction::CONST_WIDE_32: {
1818      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1819      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1820      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1821      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1822      break;
1823    }
1824    case Instruction::CONST_WIDE: {
1825      int64_t val = inst->VRegB_51l();
1826      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1827      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1828      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1829      break;
1830    }
1831    case Instruction::CONST_WIDE_HIGH16: {
1832      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1833      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1834      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1835      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1836      break;
1837    }
1838    case Instruction::CONST_STRING:
1839      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1840      break;
1841    case Instruction::CONST_STRING_JUMBO:
1842      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1843      break;
1844    case Instruction::CONST_CLASS: {
1845      // Get type from instruction if unresolved then we need an access check
1846      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1847      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1848      // Register holds class, ie its type is class, on error it will hold Conflict.
1849      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1850                                  res_type.IsConflict() ? res_type
1851                                                        : reg_types_.JavaLangClass());
1852      break;
1853    }
1854    case Instruction::MONITOR_ENTER:
1855      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1856      break;
1857    case Instruction::MONITOR_EXIT:
1858      /*
1859       * monitor-exit instructions are odd. They can throw exceptions,
1860       * but when they do they act as if they succeeded and the PC is
1861       * pointing to the following instruction. (This behavior goes back
1862       * to the need to handle asynchronous exceptions, a now-deprecated
1863       * feature that Dalvik doesn't support.)
1864       *
1865       * In practice we don't need to worry about this. The only
1866       * exceptions that can be thrown from monitor-exit are for a
1867       * null reference and -exit without a matching -enter. If the
1868       * structured locking checks are working, the former would have
1869       * failed on the -enter instruction, and the latter is impossible.
1870       *
1871       * This is fortunate, because issue 3221411 prevents us from
1872       * chasing the "can throw" path when monitor verification is
1873       * enabled. If we can fully verify the locking we can ignore
1874       * some catch blocks (which will show up as "dead" code when
1875       * we skip them here); if we can't, then the code path could be
1876       * "live" so we still need to check it.
1877       */
1878      opcode_flags &= ~Instruction::kThrow;
1879      work_line_->PopMonitor(this, inst->VRegA_11x());
1880      break;
1881
1882    case Instruction::CHECK_CAST:
1883    case Instruction::INSTANCE_OF: {
1884      /*
1885       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1886       * could be a "upcast" -- not expected, so we don't try to address it.)
1887       *
1888       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1889       * dec_insn.vA when branching to a handler.
1890       */
1891      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1892      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1893      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1894      if (res_type.IsConflict()) {
1895        // If this is a primitive type, fail HARD.
1896        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1897        if (klass != nullptr && klass->IsPrimitive()) {
1898          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1899              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1900              << GetDeclaringClass();
1901          break;
1902        }
1903
1904        DCHECK_NE(failures_.size(), 0U);
1905        if (!is_checkcast) {
1906          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1907        }
1908        break;  // bad class
1909      }
1910      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1911      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1912      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1913      if (!res_type.IsNonZeroReferenceTypes()) {
1914        if (is_checkcast) {
1915          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1916        } else {
1917          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1918        }
1919      } else if (!orig_type.IsReferenceTypes()) {
1920        if (is_checkcast) {
1921          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1922        } else {
1923          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1924        }
1925      } else {
1926        if (is_checkcast) {
1927          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1928        } else {
1929          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1930        }
1931      }
1932      break;
1933    }
1934    case Instruction::ARRAY_LENGTH: {
1935      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1936      if (res_type.IsReferenceTypes()) {
1937        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1938          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1939        } else {
1940          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1941        }
1942      } else {
1943        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1944      }
1945      break;
1946    }
1947    case Instruction::NEW_INSTANCE: {
1948      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1949      if (res_type.IsConflict()) {
1950        DCHECK_NE(failures_.size(), 0U);
1951        break;  // bad class
1952      }
1953      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1954      // can't create an instance of an interface or abstract class */
1955      if (!res_type.IsInstantiableTypes()) {
1956        Fail(VERIFY_ERROR_INSTANTIATION)
1957            << "new-instance on primitive, interface or abstract class" << res_type;
1958        // Soft failure so carry on to set register type.
1959      }
1960      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1961      // Any registers holding previous allocations from this address that have not yet been
1962      // initialized must be marked invalid.
1963      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1964      // add the new uninitialized reference to the register state
1965      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1966      break;
1967    }
1968    case Instruction::NEW_ARRAY:
1969      VerifyNewArray(inst, false, false);
1970      break;
1971    case Instruction::FILLED_NEW_ARRAY:
1972      VerifyNewArray(inst, true, false);
1973      just_set_result = true;  // Filled new array sets result register
1974      break;
1975    case Instruction::FILLED_NEW_ARRAY_RANGE:
1976      VerifyNewArray(inst, true, true);
1977      just_set_result = true;  // Filled new array range sets result register
1978      break;
1979    case Instruction::CMPL_FLOAT:
1980    case Instruction::CMPG_FLOAT:
1981      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1982        break;
1983      }
1984      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1985        break;
1986      }
1987      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1988      break;
1989    case Instruction::CMPL_DOUBLE:
1990    case Instruction::CMPG_DOUBLE:
1991      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1992                                              reg_types_.DoubleHi())) {
1993        break;
1994      }
1995      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1996                                              reg_types_.DoubleHi())) {
1997        break;
1998      }
1999      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2000      break;
2001    case Instruction::CMP_LONG:
2002      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2003                                              reg_types_.LongHi())) {
2004        break;
2005      }
2006      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2007                                              reg_types_.LongHi())) {
2008        break;
2009      }
2010      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2011      break;
2012    case Instruction::THROW: {
2013      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2014      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2015        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2016            << "thrown class " << res_type << " not instanceof Throwable";
2017      }
2018      break;
2019    }
2020    case Instruction::GOTO:
2021    case Instruction::GOTO_16:
2022    case Instruction::GOTO_32:
2023      /* no effect on or use of registers */
2024      break;
2025
2026    case Instruction::PACKED_SWITCH:
2027    case Instruction::SPARSE_SWITCH:
2028      /* verify that vAA is an integer, or can be converted to one */
2029      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2030      break;
2031
2032    case Instruction::FILL_ARRAY_DATA: {
2033      /* Similar to the verification done for APUT */
2034      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2035      /* array_type can be null if the reg type is Zero */
2036      if (!array_type.IsZero()) {
2037        if (!array_type.IsArrayTypes()) {
2038          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2039                                            << array_type;
2040        } else {
2041          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2042          DCHECK(!component_type.IsConflict());
2043          if (component_type.IsNonZeroReferenceTypes()) {
2044            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2045                                              << component_type;
2046          } else {
2047            // Now verify if the element width in the table matches the element width declared in
2048            // the array
2049            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2050            if (array_data[0] != Instruction::kArrayDataSignature) {
2051              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2052            } else {
2053              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2054              // Since we don't compress the data in Dex, expect to see equal width of data stored
2055              // in the table and expected from the array class.
2056              if (array_data[1] != elem_width) {
2057                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2058                                                  << " vs " << elem_width << ")";
2059              }
2060            }
2061          }
2062        }
2063      }
2064      break;
2065    }
2066    case Instruction::IF_EQ:
2067    case Instruction::IF_NE: {
2068      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2069      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2070      bool mismatch = false;
2071      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2072        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2073      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2074        mismatch = !reg_type2.IsReferenceTypes();
2075      } else {  // both integral?
2076        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2077      }
2078      if (mismatch) {
2079        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2080                                          << reg_type2 << ") must both be references or integral";
2081      }
2082      break;
2083    }
2084    case Instruction::IF_LT:
2085    case Instruction::IF_GE:
2086    case Instruction::IF_GT:
2087    case Instruction::IF_LE: {
2088      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2089      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2090      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2091        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2092                                          << reg_type2 << ") must be integral";
2093      }
2094      break;
2095    }
2096    case Instruction::IF_EQZ:
2097    case Instruction::IF_NEZ: {
2098      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2099      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2100        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2101                                          << " unexpected as arg to if-eqz/if-nez";
2102      }
2103
2104      // Find previous instruction - its existence is a precondition to peephole optimization.
2105      uint32_t instance_of_idx = 0;
2106      if (0 != work_insn_idx_) {
2107        instance_of_idx = work_insn_idx_ - 1;
2108        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2109          instance_of_idx--;
2110        }
2111        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2112                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2113                        work_insn_idx_)) {
2114          break;
2115        }
2116      } else {
2117        break;
2118      }
2119
2120      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2121
2122      /* Check for peep-hole pattern of:
2123       *    ...;
2124       *    instance-of vX, vY, T;
2125       *    ifXXX vX, label ;
2126       *    ...;
2127       * label:
2128       *    ...;
2129       * and sharpen the type of vY to be type T.
2130       * Note, this pattern can't be if:
2131       *  - if there are other branches to this branch,
2132       *  - when vX == vY.
2133       */
2134      if (!CurrentInsnFlags()->IsBranchTarget() &&
2135          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2136          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2137          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2138        // Check the type of the instance-of is different than that of registers type, as if they
2139        // are the same there is no work to be done here. Check that the conversion is not to or
2140        // from an unresolved type as type information is imprecise. If the instance-of is to an
2141        // interface then ignore the type information as interfaces can only be treated as Objects
2142        // and we don't want to disallow field and other operations on the object. If the value
2143        // being instance-of checked against is known null (zero) then allow the optimization as
2144        // we didn't have type information. If the merge of the instance-of type with the original
2145        // type is assignable to the original then allow optimization. This check is performed to
2146        // ensure that subsequent merges don't lose type information - such as becoming an
2147        // interface from a class that would lose information relevant to field checks.
2148        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2149        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2150
2151        if (!orig_type.Equals(cast_type) &&
2152            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2153            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2154            !cast_type.GetClass()->IsInterface() &&
2155            (orig_type.IsZero() ||
2156                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2157          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2158          if (inst->Opcode() == Instruction::IF_EQZ) {
2159            fallthrough_line.reset(update_line);
2160          } else {
2161            branch_line.reset(update_line);
2162          }
2163          update_line->CopyFromLine(work_line_.get());
2164          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2165          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2166            // See if instance-of was preceded by a move-object operation, common due to the small
2167            // register encoding space of instance-of, and propagate type information to the source
2168            // of the move-object.
2169            uint32_t move_idx = instance_of_idx - 1;
2170            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2171              move_idx--;
2172            }
2173            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2174                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2175                            work_insn_idx_)) {
2176              break;
2177            }
2178            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2179            switch (move_inst->Opcode()) {
2180              case Instruction::MOVE_OBJECT:
2181                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2182                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2183                }
2184                break;
2185              case Instruction::MOVE_OBJECT_FROM16:
2186                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2187                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2188                }
2189                break;
2190              case Instruction::MOVE_OBJECT_16:
2191                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2192                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2193                }
2194                break;
2195              default:
2196                break;
2197            }
2198          }
2199        }
2200      }
2201
2202      break;
2203    }
2204    case Instruction::IF_LTZ:
2205    case Instruction::IF_GEZ:
2206    case Instruction::IF_GTZ:
2207    case Instruction::IF_LEZ: {
2208      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2209      if (!reg_type.IsIntegralTypes()) {
2210        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2211                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2212      }
2213      break;
2214    }
2215    case Instruction::AGET_BOOLEAN:
2216      VerifyAGet(inst, reg_types_.Boolean(), true);
2217      break;
2218    case Instruction::AGET_BYTE:
2219      VerifyAGet(inst, reg_types_.Byte(), true);
2220      break;
2221    case Instruction::AGET_CHAR:
2222      VerifyAGet(inst, reg_types_.Char(), true);
2223      break;
2224    case Instruction::AGET_SHORT:
2225      VerifyAGet(inst, reg_types_.Short(), true);
2226      break;
2227    case Instruction::AGET:
2228      VerifyAGet(inst, reg_types_.Integer(), true);
2229      break;
2230    case Instruction::AGET_WIDE:
2231      VerifyAGet(inst, reg_types_.LongLo(), true);
2232      break;
2233    case Instruction::AGET_OBJECT:
2234      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2235      break;
2236
2237    case Instruction::APUT_BOOLEAN:
2238      VerifyAPut(inst, reg_types_.Boolean(), true);
2239      break;
2240    case Instruction::APUT_BYTE:
2241      VerifyAPut(inst, reg_types_.Byte(), true);
2242      break;
2243    case Instruction::APUT_CHAR:
2244      VerifyAPut(inst, reg_types_.Char(), true);
2245      break;
2246    case Instruction::APUT_SHORT:
2247      VerifyAPut(inst, reg_types_.Short(), true);
2248      break;
2249    case Instruction::APUT:
2250      VerifyAPut(inst, reg_types_.Integer(), true);
2251      break;
2252    case Instruction::APUT_WIDE:
2253      VerifyAPut(inst, reg_types_.LongLo(), true);
2254      break;
2255    case Instruction::APUT_OBJECT:
2256      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2257      break;
2258
2259    case Instruction::IGET_BOOLEAN:
2260      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2261      break;
2262    case Instruction::IGET_BYTE:
2263      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2264      break;
2265    case Instruction::IGET_CHAR:
2266      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2267      break;
2268    case Instruction::IGET_SHORT:
2269      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2270      break;
2271    case Instruction::IGET:
2272      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2273      break;
2274    case Instruction::IGET_WIDE:
2275      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2276      break;
2277    case Instruction::IGET_OBJECT:
2278      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2279                                                    false);
2280      break;
2281
2282    case Instruction::IPUT_BOOLEAN:
2283      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2284      break;
2285    case Instruction::IPUT_BYTE:
2286      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2287      break;
2288    case Instruction::IPUT_CHAR:
2289      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2290      break;
2291    case Instruction::IPUT_SHORT:
2292      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2293      break;
2294    case Instruction::IPUT:
2295      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2296      break;
2297    case Instruction::IPUT_WIDE:
2298      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2299      break;
2300    case Instruction::IPUT_OBJECT:
2301      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2302                                                    false);
2303      break;
2304
2305    case Instruction::SGET_BOOLEAN:
2306      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2307      break;
2308    case Instruction::SGET_BYTE:
2309      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2310      break;
2311    case Instruction::SGET_CHAR:
2312      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2313      break;
2314    case Instruction::SGET_SHORT:
2315      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2316      break;
2317    case Instruction::SGET:
2318      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2319      break;
2320    case Instruction::SGET_WIDE:
2321      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2322      break;
2323    case Instruction::SGET_OBJECT:
2324      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2325                                                    true);
2326      break;
2327
2328    case Instruction::SPUT_BOOLEAN:
2329      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2330      break;
2331    case Instruction::SPUT_BYTE:
2332      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2333      break;
2334    case Instruction::SPUT_CHAR:
2335      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2336      break;
2337    case Instruction::SPUT_SHORT:
2338      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2339      break;
2340    case Instruction::SPUT:
2341      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2342      break;
2343    case Instruction::SPUT_WIDE:
2344      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2345      break;
2346    case Instruction::SPUT_OBJECT:
2347      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2348                                                    true);
2349      break;
2350
2351    case Instruction::INVOKE_VIRTUAL:
2352    case Instruction::INVOKE_VIRTUAL_RANGE:
2353    case Instruction::INVOKE_SUPER:
2354    case Instruction::INVOKE_SUPER_RANGE: {
2355      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2356                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2357      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2358                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2359      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
2360      const RegType* return_type = nullptr;
2361      if (called_method != nullptr) {
2362        StackHandleScope<1> hs(self_);
2363        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2364        if (return_type_class != nullptr) {
2365          return_type = &reg_types_.FromClass(called_method->GetReturnTypeDescriptor(),
2366                                              return_type_class,
2367                                              return_type_class->CannotBeAssignedFromOtherTypes());
2368        } else {
2369          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2370          self_->ClearException();
2371        }
2372      }
2373      if (return_type == nullptr) {
2374        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2375        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2376        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2377        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2378        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2379      }
2380      if (!return_type->IsLowHalf()) {
2381        work_line_->SetResultRegisterType(this, *return_type);
2382      } else {
2383        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2384      }
2385      just_set_result = true;
2386      break;
2387    }
2388    case Instruction::INVOKE_DIRECT:
2389    case Instruction::INVOKE_DIRECT_RANGE: {
2390      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2391      ArtMethod* called_method = VerifyInvocationArgs(inst,
2392                                                      METHOD_DIRECT,
2393                                                      is_range,
2394                                                      false);
2395      const char* return_type_descriptor;
2396      bool is_constructor;
2397      const RegType* return_type = nullptr;
2398      if (called_method == nullptr) {
2399        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2400        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2401        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2402        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2403        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2404      } else {
2405        is_constructor = called_method->IsConstructor();
2406        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2407        StackHandleScope<1> hs(self_);
2408        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2409        if (return_type_class != nullptr) {
2410          return_type = &reg_types_.FromClass(return_type_descriptor,
2411                                              return_type_class,
2412                                              return_type_class->CannotBeAssignedFromOtherTypes());
2413        } else {
2414          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2415          self_->ClearException();
2416        }
2417      }
2418      if (is_constructor) {
2419        /*
2420         * Some additional checks when calling a constructor. We know from the invocation arg check
2421         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2422         * that to require that called_method->klass is the same as this->klass or this->super,
2423         * allowing the latter only if the "this" argument is the same as the "this" argument to
2424         * this method (which implies that we're in a constructor ourselves).
2425         */
2426        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2427        if (this_type.IsConflict())  // failure.
2428          break;
2429
2430        /* no null refs allowed (?) */
2431        if (this_type.IsZero()) {
2432          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2433          break;
2434        }
2435
2436        /* must be in same class or in superclass */
2437        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2438        // TODO: re-enable constructor type verification
2439        // if (this_super_klass.IsConflict()) {
2440          // Unknown super class, fail so we re-check at runtime.
2441          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2442          // break;
2443        // }
2444
2445        /* arg must be an uninitialized reference */
2446        if (!this_type.IsUninitializedTypes()) {
2447          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2448              << this_type;
2449          break;
2450        }
2451
2452        /*
2453         * Replace the uninitialized reference with an initialized one. We need to do this for all
2454         * registers that have the same object instance in them, not just the "this" register.
2455         */
2456        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2457        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2458      }
2459      if (return_type == nullptr) {
2460        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2461                                                 false);
2462      }
2463      if (!return_type->IsLowHalf()) {
2464        work_line_->SetResultRegisterType(this, *return_type);
2465      } else {
2466        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2467      }
2468      just_set_result = true;
2469      break;
2470    }
2471    case Instruction::INVOKE_STATIC:
2472    case Instruction::INVOKE_STATIC_RANGE: {
2473        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2474        ArtMethod* called_method = VerifyInvocationArgs(inst,
2475                                                        METHOD_STATIC,
2476                                                        is_range,
2477                                                        false);
2478        const char* descriptor;
2479        if (called_method == nullptr) {
2480          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2481          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2482          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2483          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2484        } else {
2485          descriptor = called_method->GetReturnTypeDescriptor();
2486        }
2487        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2488        if (!return_type.IsLowHalf()) {
2489          work_line_->SetResultRegisterType(this, return_type);
2490        } else {
2491          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2492        }
2493        just_set_result = true;
2494      }
2495      break;
2496    case Instruction::INVOKE_INTERFACE:
2497    case Instruction::INVOKE_INTERFACE_RANGE: {
2498      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2499      ArtMethod* abs_method = VerifyInvocationArgs(inst,
2500                                                   METHOD_INTERFACE,
2501                                                   is_range,
2502                                                   false);
2503      if (abs_method != nullptr) {
2504        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2505        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2506          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2507              << PrettyMethod(abs_method) << "'";
2508          break;
2509        }
2510      }
2511      /* Get the type of the "this" arg, which should either be a sub-interface of called
2512       * interface or Object (see comments in RegType::JoinClass).
2513       */
2514      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2515      if (this_type.IsZero()) {
2516        /* null pointer always passes (and always fails at runtime) */
2517      } else {
2518        if (this_type.IsUninitializedTypes()) {
2519          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2520              << this_type;
2521          break;
2522        }
2523        // In the past we have tried to assert that "called_interface" is assignable
2524        // from "this_type.GetClass()", however, as we do an imprecise Join
2525        // (RegType::JoinClass) we don't have full information on what interfaces are
2526        // implemented by "this_type". For example, two classes may implement the same
2527        // interfaces and have a common parent that doesn't implement the interface. The
2528        // join will set "this_type" to the parent class and a test that this implements
2529        // the interface will incorrectly fail.
2530      }
2531      /*
2532       * We don't have an object instance, so we can't find the concrete method. However, all of
2533       * the type information is in the abstract method, so we're good.
2534       */
2535      const char* descriptor;
2536      if (abs_method == nullptr) {
2537        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2538        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2539        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2540        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2541      } else {
2542        descriptor = abs_method->GetReturnTypeDescriptor();
2543      }
2544      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2545      if (!return_type.IsLowHalf()) {
2546        work_line_->SetResultRegisterType(this, return_type);
2547      } else {
2548        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2549      }
2550      just_set_result = true;
2551      break;
2552    }
2553    case Instruction::NEG_INT:
2554    case Instruction::NOT_INT:
2555      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2556      break;
2557    case Instruction::NEG_LONG:
2558    case Instruction::NOT_LONG:
2559      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2560                                   reg_types_.LongLo(), reg_types_.LongHi());
2561      break;
2562    case Instruction::NEG_FLOAT:
2563      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2564      break;
2565    case Instruction::NEG_DOUBLE:
2566      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2567                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2568      break;
2569    case Instruction::INT_TO_LONG:
2570      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2571                                     reg_types_.Integer());
2572      break;
2573    case Instruction::INT_TO_FLOAT:
2574      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2575      break;
2576    case Instruction::INT_TO_DOUBLE:
2577      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2578                                     reg_types_.Integer());
2579      break;
2580    case Instruction::LONG_TO_INT:
2581      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2582                                       reg_types_.LongLo(), reg_types_.LongHi());
2583      break;
2584    case Instruction::LONG_TO_FLOAT:
2585      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2586                                       reg_types_.LongLo(), reg_types_.LongHi());
2587      break;
2588    case Instruction::LONG_TO_DOUBLE:
2589      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2590                                   reg_types_.LongLo(), reg_types_.LongHi());
2591      break;
2592    case Instruction::FLOAT_TO_INT:
2593      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2594      break;
2595    case Instruction::FLOAT_TO_LONG:
2596      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2597                                     reg_types_.Float());
2598      break;
2599    case Instruction::FLOAT_TO_DOUBLE:
2600      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2601                                     reg_types_.Float());
2602      break;
2603    case Instruction::DOUBLE_TO_INT:
2604      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2605                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2606      break;
2607    case Instruction::DOUBLE_TO_LONG:
2608      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2609                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2610      break;
2611    case Instruction::DOUBLE_TO_FLOAT:
2612      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2613                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2614      break;
2615    case Instruction::INT_TO_BYTE:
2616      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2617      break;
2618    case Instruction::INT_TO_CHAR:
2619      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2620      break;
2621    case Instruction::INT_TO_SHORT:
2622      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2623      break;
2624
2625    case Instruction::ADD_INT:
2626    case Instruction::SUB_INT:
2627    case Instruction::MUL_INT:
2628    case Instruction::REM_INT:
2629    case Instruction::DIV_INT:
2630    case Instruction::SHL_INT:
2631    case Instruction::SHR_INT:
2632    case Instruction::USHR_INT:
2633      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2634                                reg_types_.Integer(), false);
2635      break;
2636    case Instruction::AND_INT:
2637    case Instruction::OR_INT:
2638    case Instruction::XOR_INT:
2639      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2640                                reg_types_.Integer(), true);
2641      break;
2642    case Instruction::ADD_LONG:
2643    case Instruction::SUB_LONG:
2644    case Instruction::MUL_LONG:
2645    case Instruction::DIV_LONG:
2646    case Instruction::REM_LONG:
2647    case Instruction::AND_LONG:
2648    case Instruction::OR_LONG:
2649    case Instruction::XOR_LONG:
2650      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2651                                    reg_types_.LongLo(), reg_types_.LongHi(),
2652                                    reg_types_.LongLo(), reg_types_.LongHi());
2653      break;
2654    case Instruction::SHL_LONG:
2655    case Instruction::SHR_LONG:
2656    case Instruction::USHR_LONG:
2657      /* shift distance is Int, making these different from other binary operations */
2658      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2659                                         reg_types_.Integer());
2660      break;
2661    case Instruction::ADD_FLOAT:
2662    case Instruction::SUB_FLOAT:
2663    case Instruction::MUL_FLOAT:
2664    case Instruction::DIV_FLOAT:
2665    case Instruction::REM_FLOAT:
2666      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2667                                reg_types_.Float(), false);
2668      break;
2669    case Instruction::ADD_DOUBLE:
2670    case Instruction::SUB_DOUBLE:
2671    case Instruction::MUL_DOUBLE:
2672    case Instruction::DIV_DOUBLE:
2673    case Instruction::REM_DOUBLE:
2674      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2675                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2676                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2677      break;
2678    case Instruction::ADD_INT_2ADDR:
2679    case Instruction::SUB_INT_2ADDR:
2680    case Instruction::MUL_INT_2ADDR:
2681    case Instruction::REM_INT_2ADDR:
2682    case Instruction::SHL_INT_2ADDR:
2683    case Instruction::SHR_INT_2ADDR:
2684    case Instruction::USHR_INT_2ADDR:
2685      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2686                                     reg_types_.Integer(), false);
2687      break;
2688    case Instruction::AND_INT_2ADDR:
2689    case Instruction::OR_INT_2ADDR:
2690    case Instruction::XOR_INT_2ADDR:
2691      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2692                                     reg_types_.Integer(), true);
2693      break;
2694    case Instruction::DIV_INT_2ADDR:
2695      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2696                                     reg_types_.Integer(), false);
2697      break;
2698    case Instruction::ADD_LONG_2ADDR:
2699    case Instruction::SUB_LONG_2ADDR:
2700    case Instruction::MUL_LONG_2ADDR:
2701    case Instruction::DIV_LONG_2ADDR:
2702    case Instruction::REM_LONG_2ADDR:
2703    case Instruction::AND_LONG_2ADDR:
2704    case Instruction::OR_LONG_2ADDR:
2705    case Instruction::XOR_LONG_2ADDR:
2706      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2707                                         reg_types_.LongLo(), reg_types_.LongHi(),
2708                                         reg_types_.LongLo(), reg_types_.LongHi());
2709      break;
2710    case Instruction::SHL_LONG_2ADDR:
2711    case Instruction::SHR_LONG_2ADDR:
2712    case Instruction::USHR_LONG_2ADDR:
2713      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2714                                              reg_types_.Integer());
2715      break;
2716    case Instruction::ADD_FLOAT_2ADDR:
2717    case Instruction::SUB_FLOAT_2ADDR:
2718    case Instruction::MUL_FLOAT_2ADDR:
2719    case Instruction::DIV_FLOAT_2ADDR:
2720    case Instruction::REM_FLOAT_2ADDR:
2721      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2722                                     reg_types_.Float(), false);
2723      break;
2724    case Instruction::ADD_DOUBLE_2ADDR:
2725    case Instruction::SUB_DOUBLE_2ADDR:
2726    case Instruction::MUL_DOUBLE_2ADDR:
2727    case Instruction::DIV_DOUBLE_2ADDR:
2728    case Instruction::REM_DOUBLE_2ADDR:
2729      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2730                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2731                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2732      break;
2733    case Instruction::ADD_INT_LIT16:
2734    case Instruction::RSUB_INT_LIT16:
2735    case Instruction::MUL_INT_LIT16:
2736    case Instruction::DIV_INT_LIT16:
2737    case Instruction::REM_INT_LIT16:
2738      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2739                                 true);
2740      break;
2741    case Instruction::AND_INT_LIT16:
2742    case Instruction::OR_INT_LIT16:
2743    case Instruction::XOR_INT_LIT16:
2744      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2745                                 true);
2746      break;
2747    case Instruction::ADD_INT_LIT8:
2748    case Instruction::RSUB_INT_LIT8:
2749    case Instruction::MUL_INT_LIT8:
2750    case Instruction::DIV_INT_LIT8:
2751    case Instruction::REM_INT_LIT8:
2752    case Instruction::SHL_INT_LIT8:
2753    case Instruction::SHR_INT_LIT8:
2754    case Instruction::USHR_INT_LIT8:
2755      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2756                                 false);
2757      break;
2758    case Instruction::AND_INT_LIT8:
2759    case Instruction::OR_INT_LIT8:
2760    case Instruction::XOR_INT_LIT8:
2761      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2762                                 false);
2763      break;
2764
2765    // Special instructions.
2766    case Instruction::RETURN_VOID_NO_BARRIER:
2767      if (IsConstructor() && !IsStatic()) {
2768        auto& declaring_class = GetDeclaringClass();
2769        auto* klass = declaring_class.GetClass();
2770        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2771          if (klass->GetInstanceField(i)->IsFinal()) {
2772            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2773                << PrettyField(klass->GetInstanceField(i));
2774            break;
2775          }
2776        }
2777      }
2778      break;
2779    // Note: the following instructions encode offsets derived from class linking.
2780    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2781    // meaning if the class linking and resolution were successful.
2782    case Instruction::IGET_QUICK:
2783      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2784      break;
2785    case Instruction::IGET_WIDE_QUICK:
2786      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2787      break;
2788    case Instruction::IGET_OBJECT_QUICK:
2789      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2790      break;
2791    case Instruction::IGET_BOOLEAN_QUICK:
2792      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2793      break;
2794    case Instruction::IGET_BYTE_QUICK:
2795      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2796      break;
2797    case Instruction::IGET_CHAR_QUICK:
2798      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2799      break;
2800    case Instruction::IGET_SHORT_QUICK:
2801      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2802      break;
2803    case Instruction::IPUT_QUICK:
2804      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2805      break;
2806    case Instruction::IPUT_BOOLEAN_QUICK:
2807      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2808      break;
2809    case Instruction::IPUT_BYTE_QUICK:
2810      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2811      break;
2812    case Instruction::IPUT_CHAR_QUICK:
2813      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2814      break;
2815    case Instruction::IPUT_SHORT_QUICK:
2816      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2817      break;
2818    case Instruction::IPUT_WIDE_QUICK:
2819      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2820      break;
2821    case Instruction::IPUT_OBJECT_QUICK:
2822      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2823      break;
2824    case Instruction::INVOKE_VIRTUAL_QUICK:
2825    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2826      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2827      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2828      if (called_method != nullptr) {
2829        const char* descriptor = called_method->GetReturnTypeDescriptor();
2830        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2831        if (!return_type.IsLowHalf()) {
2832          work_line_->SetResultRegisterType(this, return_type);
2833        } else {
2834          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2835        }
2836        just_set_result = true;
2837      }
2838      break;
2839    }
2840
2841    /* These should never appear during verification. */
2842    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2843    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2844    case Instruction::UNUSED_79:
2845    case Instruction::UNUSED_7A:
2846      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2847      break;
2848
2849    /*
2850     * DO NOT add a "default" clause here. Without it the compiler will
2851     * complain if an instruction is missing (which is desirable).
2852     */
2853  }  // end - switch (dec_insn.opcode)
2854
2855  /*
2856   * If we are in a constructor, and we had an UninitializedThis type
2857   * in a register somewhere, we need to make sure it wasn't overwritten.
2858   */
2859  if (track_uninitialized_this) {
2860    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2861                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2862    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2863                                                    was_invoke_direct)) {
2864      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2865          << "Constructor failed to initialize this object";
2866    }
2867  }
2868
2869  if (have_pending_hard_failure_) {
2870    if (Runtime::Current()->IsAotCompiler()) {
2871      /* When AOT compiling, check that the last failure is a hard failure */
2872      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
2873        LOG(ERROR) << "Pending failures:";
2874        for (auto& error : failures_) {
2875          LOG(ERROR) << error;
2876        }
2877        for (auto& error_msg : failure_messages_) {
2878          LOG(ERROR) << error_msg->str();
2879        }
2880        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
2881      }
2882    }
2883    /* immediate failure, reject class */
2884    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2885    return false;
2886  } else if (have_pending_runtime_throw_failure_) {
2887    /* checking interpreter will throw, mark following code as unreachable */
2888    opcode_flags = Instruction::kThrow;
2889  }
2890  /*
2891   * If we didn't just set the result register, clear it out. This ensures that you can only use
2892   * "move-result" immediately after the result is set. (We could check this statically, but it's
2893   * not expensive and it makes our debugging output cleaner.)
2894   */
2895  if (!just_set_result) {
2896    work_line_->SetResultTypeToUnknown(this);
2897  }
2898
2899
2900
2901  /*
2902   * Handle "branch". Tag the branch target.
2903   *
2904   * NOTE: instructions like Instruction::EQZ provide information about the
2905   * state of the register when the branch is taken or not taken. For example,
2906   * somebody could get a reference field, check it for zero, and if the
2907   * branch is taken immediately store that register in a boolean field
2908   * since the value is known to be zero. We do not currently account for
2909   * that, and will reject the code.
2910   *
2911   * TODO: avoid re-fetching the branch target
2912   */
2913  if ((opcode_flags & Instruction::kBranch) != 0) {
2914    bool isConditional, selfOkay;
2915    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2916      /* should never happen after static verification */
2917      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2918      return false;
2919    }
2920    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2921    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2922      return false;
2923    }
2924    /* update branch target, set "changed" if appropriate */
2925    if (nullptr != branch_line.get()) {
2926      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2927        return false;
2928      }
2929    } else {
2930      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2931        return false;
2932      }
2933    }
2934  }
2935
2936  /*
2937   * Handle "switch". Tag all possible branch targets.
2938   *
2939   * We've already verified that the table is structurally sound, so we
2940   * just need to walk through and tag the targets.
2941   */
2942  if ((opcode_flags & Instruction::kSwitch) != 0) {
2943    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2944    const uint16_t* switch_insns = insns + offset_to_switch;
2945    int switch_count = switch_insns[1];
2946    int offset_to_targets, targ;
2947
2948    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2949      /* 0 = sig, 1 = count, 2/3 = first key */
2950      offset_to_targets = 4;
2951    } else {
2952      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2953      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2954      offset_to_targets = 2 + 2 * switch_count;
2955    }
2956
2957    /* verify each switch target */
2958    for (targ = 0; targ < switch_count; targ++) {
2959      int offset;
2960      uint32_t abs_offset;
2961
2962      /* offsets are 32-bit, and only partly endian-swapped */
2963      offset = switch_insns[offset_to_targets + targ * 2] |
2964         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2965      abs_offset = work_insn_idx_ + offset;
2966      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2967      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2968        return false;
2969      }
2970      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2971        return false;
2972      }
2973    }
2974  }
2975
2976  /*
2977   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2978   * "try" block when they throw, control transfers out of the method.)
2979   */
2980  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2981    bool has_catch_all_handler = false;
2982    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2983
2984    // Need the linker to try and resolve the handled class to check if it's Throwable.
2985    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2986
2987    for (; iterator.HasNext(); iterator.Next()) {
2988      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2989      if (handler_type_idx == DexFile::kDexNoIndex16) {
2990        has_catch_all_handler = true;
2991      } else {
2992        // It is also a catch-all if it is java.lang.Throwable.
2993        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2994                                                   class_loader_);
2995        if (klass != nullptr) {
2996          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2997            has_catch_all_handler = true;
2998          }
2999        } else {
3000          // Clear exception.
3001          DCHECK(self_->IsExceptionPending());
3002          self_->ClearException();
3003        }
3004      }
3005      /*
3006       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3007       * "work_regs", because at runtime the exception will be thrown before the instruction
3008       * modifies any registers.
3009       */
3010      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3011        return false;
3012      }
3013    }
3014
3015    /*
3016     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3017     * instruction. This does apply to monitor-exit because of async exception handling.
3018     */
3019    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3020      /*
3021       * The state in work_line reflects the post-execution state. If the current instruction is a
3022       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3023       * it will do so before grabbing the lock).
3024       */
3025      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3026        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3027            << "expected to be within a catch-all for an instruction where a monitor is held";
3028        return false;
3029      }
3030    }
3031  }
3032
3033  /* Handle "continue". Tag the next consecutive instruction.
3034   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3035   *        because it changes work_line_ when performing peephole optimization
3036   *        and this change should not be used in those cases.
3037   */
3038  if ((opcode_flags & Instruction::kContinue) != 0) {
3039    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3040    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3041    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3042      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3043      return false;
3044    }
3045    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3046    // next instruction isn't one.
3047    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3048      return false;
3049    }
3050    if (nullptr != fallthrough_line.get()) {
3051      // Make workline consistent with fallthrough computed from peephole optimization.
3052      work_line_->CopyFromLine(fallthrough_line.get());
3053    }
3054    if (insn_flags_[next_insn_idx].IsReturn()) {
3055      // For returns we only care about the operand to the return, all other registers are dead.
3056      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3057      Instruction::Code opcode = ret_inst->Opcode();
3058      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3059        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3060      } else {
3061        if (opcode == Instruction::RETURN_WIDE) {
3062          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3063        } else {
3064          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3065        }
3066      }
3067    }
3068    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3069    if (next_line != nullptr) {
3070      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3071      // needed. If the merge changes the state of the registers then the work line will be
3072      // updated.
3073      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3074        return false;
3075      }
3076    } else {
3077      /*
3078       * We're not recording register data for the next instruction, so we don't know what the
3079       * prior state was. We have to assume that something has changed and re-evaluate it.
3080       */
3081      insn_flags_[next_insn_idx].SetChanged();
3082    }
3083  }
3084
3085  /* If we're returning from the method, make sure monitor stack is empty. */
3086  if ((opcode_flags & Instruction::kReturn) != 0) {
3087    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3088      return false;
3089    }
3090  }
3091
3092  /*
3093   * Update start_guess. Advance to the next instruction of that's
3094   * possible, otherwise use the branch target if one was found. If
3095   * neither of those exists we're in a return or throw; leave start_guess
3096   * alone and let the caller sort it out.
3097   */
3098  if ((opcode_flags & Instruction::kContinue) != 0) {
3099    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3100    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3101  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3102    /* we're still okay if branch_target is zero */
3103    *start_guess = work_insn_idx_ + branch_target;
3104  }
3105
3106  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3107  DCHECK(insn_flags_[*start_guess].IsOpcode());
3108
3109  return true;
3110}  // NOLINT(readability/fn_size)
3111
3112const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3113  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3114  const RegType& referrer = GetDeclaringClass();
3115  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3116  const RegType& result = klass != nullptr ?
3117      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3118      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3119  if (result.IsConflict()) {
3120    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3121        << "' in " << referrer;
3122    return result;
3123  }
3124  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3125    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3126  }
3127  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3128  // check at runtime if access is allowed and so pass here. If result is
3129  // primitive, skip the access check.
3130  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3131      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3132    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3133                                    << referrer << "' -> '" << result << "'";
3134  }
3135  return result;
3136}
3137
3138const RegType& MethodVerifier::GetCaughtExceptionType() {
3139  const RegType* common_super = nullptr;
3140  if (code_item_->tries_size_ != 0) {
3141    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3142    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3143    for (uint32_t i = 0; i < handlers_size; i++) {
3144      CatchHandlerIterator iterator(handlers_ptr);
3145      for (; iterator.HasNext(); iterator.Next()) {
3146        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3147          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3148            common_super = &reg_types_.JavaLangThrowable(false);
3149          } else {
3150            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3151            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3152              if (exception.IsUnresolvedTypes()) {
3153                // We don't know enough about the type. Fail here and let runtime handle it.
3154                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3155                return exception;
3156              } else {
3157                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3158                return reg_types_.Conflict();
3159              }
3160            } else if (common_super == nullptr) {
3161              common_super = &exception;
3162            } else if (common_super->Equals(exception)) {
3163              // odd case, but nothing to do
3164            } else {
3165              common_super = &common_super->Merge(exception, &reg_types_);
3166              if (FailOrAbort(this,
3167                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3168                              "java.lang.Throwable is not assignable-from common_super at ",
3169                              work_insn_idx_)) {
3170                break;
3171              }
3172            }
3173          }
3174        }
3175      }
3176      handlers_ptr = iterator.EndDataPointer();
3177    }
3178  }
3179  if (common_super == nullptr) {
3180    /* no catch blocks, or no catches with classes we can find */
3181    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3182    return reg_types_.Conflict();
3183  }
3184  return *common_super;
3185}
3186
3187ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3188    uint32_t dex_method_idx, MethodType method_type) {
3189  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3190  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3191  if (klass_type.IsConflict()) {
3192    std::string append(" in attempt to access method ");
3193    append += dex_file_->GetMethodName(method_id);
3194    AppendToLastFailMessage(append);
3195    return nullptr;
3196  }
3197  if (klass_type.IsUnresolvedTypes()) {
3198    return nullptr;  // Can't resolve Class so no more to do here
3199  }
3200  mirror::Class* klass = klass_type.GetClass();
3201  const RegType& referrer = GetDeclaringClass();
3202  auto* cl = Runtime::Current()->GetClassLinker();
3203  auto pointer_size = cl->GetImagePointerSize();
3204  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3205  if (res_method == nullptr) {
3206    const char* name = dex_file_->GetMethodName(method_id);
3207    const Signature signature = dex_file_->GetMethodSignature(method_id);
3208
3209    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3210      res_method = klass->FindDirectMethod(name, signature, pointer_size);
3211    } else if (method_type == METHOD_INTERFACE) {
3212      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3213    } else {
3214      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3215    }
3216    if (res_method != nullptr) {
3217      dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3218    } else {
3219      // If a virtual or interface method wasn't found with the expected type, look in
3220      // the direct methods. This can happen when the wrong invoke type is used or when
3221      // a class has changed, and will be flagged as an error in later checks.
3222      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3223        res_method = klass->FindDirectMethod(name, signature, pointer_size);
3224      }
3225      if (res_method == nullptr) {
3226        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3227                                     << PrettyDescriptor(klass) << "." << name
3228                                     << " " << signature;
3229        return nullptr;
3230      }
3231    }
3232  }
3233  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3234  // enforce them here.
3235  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3236    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3237                                      << PrettyMethod(res_method);
3238    return nullptr;
3239  }
3240  // Disallow any calls to class initializers.
3241  if (res_method->IsClassInitializer()) {
3242    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3243                                      << PrettyMethod(res_method);
3244    return nullptr;
3245  }
3246  // Check if access is allowed.
3247  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3248    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3249                                     << " from " << referrer << ")";
3250    return res_method;
3251  }
3252  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3253  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3254    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3255                                      << PrettyMethod(res_method);
3256    return nullptr;
3257  }
3258  // Check that interface methods match interface classes.
3259  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3260    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3261                                    << " is in an interface class " << PrettyClass(klass);
3262    return nullptr;
3263  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3264    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3265                                    << " is in a non-interface class " << PrettyClass(klass);
3266    return nullptr;
3267  }
3268  // See if the method type implied by the invoke instruction matches the access flags for the
3269  // target method.
3270  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3271      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3272      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3273      ) {
3274    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3275                                       " type of " << PrettyMethod(res_method);
3276    return nullptr;
3277  }
3278  return res_method;
3279}
3280
3281template <class T>
3282ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3283    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3284  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3285  // match the call to the signature. Also, we might be calling through an abstract method
3286  // definition (which doesn't have register count values).
3287  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3288  /* caught by static verifier */
3289  DCHECK(is_range || expected_args <= 5);
3290  if (expected_args > code_item_->outs_size_) {
3291    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3292        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3293    return nullptr;
3294  }
3295
3296  uint32_t arg[5];
3297  if (!is_range) {
3298    inst->GetVarArgs(arg);
3299  }
3300  uint32_t sig_registers = 0;
3301
3302  /*
3303   * Check the "this" argument, which must be an instance of the class that declared the method.
3304   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3305   * rigorous check here (which is okay since we have to do it at runtime).
3306   */
3307  if (method_type != METHOD_STATIC) {
3308    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3309    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3310      CHECK(have_pending_hard_failure_);
3311      return nullptr;
3312    }
3313    if (actual_arg_type.IsUninitializedReference()) {
3314      if (res_method) {
3315        if (!res_method->IsConstructor()) {
3316          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3317          return nullptr;
3318        }
3319      } else {
3320        // Check whether the name of the called method is "<init>"
3321        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3322        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3323          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3324          return nullptr;
3325        }
3326      }
3327    }
3328    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3329      const RegType* res_method_class;
3330      if (res_method != nullptr) {
3331        mirror::Class* klass = res_method->GetDeclaringClass();
3332        std::string temp;
3333        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3334                                                 klass->CannotBeAssignedFromOtherTypes());
3335      } else {
3336        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3337        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3338        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3339                                                      dex_file_->StringByTypeIdx(class_idx),
3340                                                      false);
3341      }
3342      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3343        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3344            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3345                << "' not instance of '" << *res_method_class << "'";
3346        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3347        // the compiler.
3348        if (have_pending_hard_failure_) {
3349          return nullptr;
3350        }
3351      }
3352    }
3353    sig_registers = 1;
3354  }
3355
3356  for ( ; it->HasNext(); it->Next()) {
3357    if (sig_registers >= expected_args) {
3358      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3359          " arguments, found " << sig_registers << " or more.";
3360      return nullptr;
3361    }
3362
3363    const char* param_descriptor = it->GetDescriptor();
3364
3365    if (param_descriptor == nullptr) {
3366      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3367          "component";
3368      return nullptr;
3369    }
3370
3371    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3372    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3373        arg[sig_registers];
3374    if (reg_type.IsIntegralTypes()) {
3375      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3376      if (!src_type.IsIntegralTypes()) {
3377        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3378            << " but expected " << reg_type;
3379        return nullptr;
3380      }
3381    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3382      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3383      // compiler.
3384      if (have_pending_hard_failure_) {
3385        return nullptr;
3386      }
3387    }
3388    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3389  }
3390  if (expected_args != sig_registers) {
3391    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3392        " arguments, found " << sig_registers;
3393    return nullptr;
3394  }
3395  return res_method;
3396}
3397
3398void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3399                                                          MethodType method_type,
3400                                                          bool is_range) {
3401  // As the method may not have been resolved, make this static check against what we expect.
3402  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3403  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3404  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3405  DexFileParameterIterator it(*dex_file_,
3406                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3407  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3408                                                             nullptr);
3409}
3410
3411class MethodParamListDescriptorIterator {
3412 public:
3413  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
3414      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3415      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3416  }
3417
3418  bool HasNext() {
3419    return pos_ < params_size_;
3420  }
3421
3422  void Next() {
3423    ++pos_;
3424  }
3425
3426  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3427    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3428  }
3429
3430 private:
3431  ArtMethod* res_method_;
3432  size_t pos_;
3433  const DexFile::TypeList* params_;
3434  const size_t params_size_;
3435};
3436
3437ArtMethod* MethodVerifier::VerifyInvocationArgs(
3438    const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
3439  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3440  // we're making.
3441  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3442
3443  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3444  if (res_method == nullptr) {  // error or class is unresolved
3445    // Check what we can statically.
3446    if (!have_pending_hard_failure_) {
3447      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3448    }
3449    return nullptr;
3450  }
3451
3452  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3453  // has a vtable entry for the target method.
3454  if (is_super) {
3455    DCHECK(method_type == METHOD_VIRTUAL);
3456    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3457    if (super.IsUnresolvedTypes()) {
3458      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3459                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3460                                   << " to super " << PrettyMethod(res_method);
3461      return nullptr;
3462    }
3463    mirror::Class* super_klass = super.GetClass();
3464    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3465      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3466                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3467                                   << " to super " << super
3468                                   << "." << res_method->GetName()
3469                                   << res_method->GetSignature();
3470      return nullptr;
3471    }
3472  }
3473
3474  // Process the target method's signature. This signature may or may not
3475  MethodParamListDescriptorIterator it(res_method);
3476  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3477                                                                             is_range, res_method);
3478}
3479
3480ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
3481                                                 bool is_range, bool allow_failure) {
3482  if (is_range) {
3483    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3484  } else {
3485    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3486  }
3487  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3488  if (!actual_arg_type.HasClass()) {
3489    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3490    return nullptr;
3491  }
3492  mirror::Class* klass = actual_arg_type.GetClass();
3493  mirror::Class* dispatch_class;
3494  if (klass->IsInterface()) {
3495    // Derive Object.class from Class.class.getSuperclass().
3496    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3497    if (FailOrAbort(this, object_klass->IsObjectClass(),
3498                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3499      return nullptr;
3500    }
3501    dispatch_class = object_klass;
3502  } else {
3503    dispatch_class = klass;
3504  }
3505  if (!dispatch_class->HasVTable()) {
3506    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3507                work_insn_idx_);
3508    return nullptr;
3509  }
3510  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3511  auto* cl = Runtime::Current()->GetClassLinker();
3512  auto pointer_size = cl->GetImagePointerSize();
3513  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3514    FailOrAbort(this, allow_failure,
3515                "Receiver class has not enough vtable slots for quickened invoke at ",
3516                work_insn_idx_);
3517    return nullptr;
3518  }
3519  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
3520  if (self_->IsExceptionPending()) {
3521    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3522                work_insn_idx_);
3523    return nullptr;
3524  }
3525  return res_method;
3526}
3527
3528ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
3529  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3530      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3531
3532  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3533  if (res_method == nullptr) {
3534    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3535    return nullptr;
3536  }
3537  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3538                  work_insn_idx_)) {
3539    return nullptr;
3540  }
3541  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3542                  work_insn_idx_)) {
3543    return nullptr;
3544  }
3545
3546  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3547  // match the call to the signature. Also, we might be calling through an abstract method
3548  // definition (which doesn't have register count values).
3549  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3550  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3551    return nullptr;
3552  }
3553  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3554  /* caught by static verifier */
3555  DCHECK(is_range || expected_args <= 5);
3556  if (expected_args > code_item_->outs_size_) {
3557    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3558        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3559    return nullptr;
3560  }
3561
3562  /*
3563   * Check the "this" argument, which must be an instance of the class that declared the method.
3564   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3565   * rigorous check here (which is okay since we have to do it at runtime).
3566   */
3567  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3568    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3569    return nullptr;
3570  }
3571  if (!actual_arg_type.IsZero()) {
3572    mirror::Class* klass = res_method->GetDeclaringClass();
3573    std::string temp;
3574    const RegType& res_method_class =
3575        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3576                             klass->CannotBeAssignedFromOtherTypes());
3577    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3578      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3579          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3580          << "' not instance of '" << res_method_class << "'";
3581      return nullptr;
3582    }
3583  }
3584  /*
3585   * Process the target method's signature. This signature may or may not
3586   * have been verified, so we can't assume it's properly formed.
3587   */
3588  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3589  size_t params_size = params == nullptr ? 0 : params->Size();
3590  uint32_t arg[5];
3591  if (!is_range) {
3592    inst->GetVarArgs(arg);
3593  }
3594  size_t actual_args = 1;
3595  for (size_t param_index = 0; param_index < params_size; param_index++) {
3596    if (actual_args >= expected_args) {
3597      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3598                                        << "'. Expected " << expected_args
3599                                         << " arguments, processing argument " << actual_args
3600                                        << " (where longs/doubles count twice).";
3601      return nullptr;
3602    }
3603    const char* descriptor =
3604        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3605    if (descriptor == nullptr) {
3606      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3607                                        << " missing signature component";
3608      return nullptr;
3609    }
3610    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3611    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3612    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3613      return res_method;
3614    }
3615    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3616  }
3617  if (actual_args != expected_args) {
3618    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3619              << " expected " << expected_args << " arguments, found " << actual_args;
3620    return nullptr;
3621  } else {
3622    return res_method;
3623  }
3624}
3625
3626void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3627  uint32_t type_idx;
3628  if (!is_filled) {
3629    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3630    type_idx = inst->VRegC_22c();
3631  } else if (!is_range) {
3632    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3633    type_idx = inst->VRegB_35c();
3634  } else {
3635    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3636    type_idx = inst->VRegB_3rc();
3637  }
3638  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3639  if (res_type.IsConflict()) {  // bad class
3640    DCHECK_NE(failures_.size(), 0U);
3641  } else {
3642    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3643    if (!res_type.IsArrayTypes()) {
3644      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3645    } else if (!is_filled) {
3646      /* make sure "size" register is valid type */
3647      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3648      /* set register type to array class */
3649      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3650      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3651    } else {
3652      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3653      // the list and fail. It's legal, if silly, for arg_count to be zero.
3654      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3655      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3656      uint32_t arg[5];
3657      if (!is_range) {
3658        inst->GetVarArgs(arg);
3659      }
3660      for (size_t ui = 0; ui < arg_count; ui++) {
3661        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3662        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3663          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3664          return;
3665        }
3666      }
3667      // filled-array result goes into "result" register
3668      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3669      work_line_->SetResultRegisterType(this, precise_type);
3670    }
3671  }
3672}
3673
3674void MethodVerifier::VerifyAGet(const Instruction* inst,
3675                                const RegType& insn_type, bool is_primitive) {
3676  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3677  if (!index_type.IsArrayIndexTypes()) {
3678    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3679  } else {
3680    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3681    if (array_type.IsZero()) {
3682      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3683      // instruction type. TODO: have a proper notion of bottom here.
3684      if (!is_primitive || insn_type.IsCategory1Types()) {
3685        // Reference or category 1
3686        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3687      } else {
3688        // Category 2
3689        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3690                                        reg_types_.FromCat2ConstLo(0, false),
3691                                        reg_types_.FromCat2ConstHi(0, false));
3692      }
3693    } else if (!array_type.IsArrayTypes()) {
3694      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3695    } else {
3696      /* verify the class */
3697      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3698      if (!component_type.IsReferenceTypes() && !is_primitive) {
3699        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3700            << " source for aget-object";
3701      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3702        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3703            << " source for category 1 aget";
3704      } else if (is_primitive && !insn_type.Equals(component_type) &&
3705                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3706                 (insn_type.IsLong() && component_type.IsDouble()))) {
3707        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3708            << " incompatible with aget of type " << insn_type;
3709      } else {
3710        // Use knowledge of the field type which is stronger than the type inferred from the
3711        // instruction, which can't differentiate object types and ints from floats, longs from
3712        // doubles.
3713        if (!component_type.IsLowHalf()) {
3714          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3715        } else {
3716          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3717                                          component_type.HighHalf(&reg_types_));
3718        }
3719      }
3720    }
3721  }
3722}
3723
3724void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3725                                        const uint32_t vregA) {
3726  // Primitive assignability rules are weaker than regular assignability rules.
3727  bool instruction_compatible;
3728  bool value_compatible;
3729  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3730  if (target_type.IsIntegralTypes()) {
3731    instruction_compatible = target_type.Equals(insn_type);
3732    value_compatible = value_type.IsIntegralTypes();
3733  } else if (target_type.IsFloat()) {
3734    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3735    value_compatible = value_type.IsFloatTypes();
3736  } else if (target_type.IsLong()) {
3737    instruction_compatible = insn_type.IsLong();
3738    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3739    // as target_type depends on the resolved type of the field.
3740    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3741      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3742      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3743    } else {
3744      value_compatible = false;
3745    }
3746  } else if (target_type.IsDouble()) {
3747    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3748    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3749    // as target_type depends on the resolved type of the field.
3750    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3751      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3752      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3753    } else {
3754      value_compatible = false;
3755    }
3756  } else {
3757    instruction_compatible = false;  // reference with primitive store
3758    value_compatible = false;  // unused
3759  }
3760  if (!instruction_compatible) {
3761    // This is a global failure rather than a class change failure as the instructions and
3762    // the descriptors for the type should have been consistent within the same file at
3763    // compile time.
3764    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3765        << "' but expected type '" << target_type << "'";
3766    return;
3767  }
3768  if (!value_compatible) {
3769    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3770        << " of type " << value_type << " but expected " << target_type << " for put";
3771    return;
3772  }
3773}
3774
3775void MethodVerifier::VerifyAPut(const Instruction* inst,
3776                                const RegType& insn_type, bool is_primitive) {
3777  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3778  if (!index_type.IsArrayIndexTypes()) {
3779    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3780  } else {
3781    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3782    if (array_type.IsZero()) {
3783      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3784      // instruction type.
3785    } else if (!array_type.IsArrayTypes()) {
3786      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3787    } else {
3788      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3789      const uint32_t vregA = inst->VRegA_23x();
3790      if (is_primitive) {
3791        VerifyPrimitivePut(component_type, insn_type, vregA);
3792      } else {
3793        if (!component_type.IsReferenceTypes()) {
3794          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3795              << " source for aput-object";
3796        } else {
3797          // The instruction agrees with the type of array, confirm the value to be stored does too
3798          // Note: we use the instruction type (rather than the component type) for aput-object as
3799          // incompatible classes will be caught at runtime as an array store exception
3800          work_line_->VerifyRegisterType(this, vregA, insn_type);
3801        }
3802      }
3803    }
3804  }
3805}
3806
3807ArtField* MethodVerifier::GetStaticField(int field_idx) {
3808  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3809  // Check access to class
3810  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3811  if (klass_type.IsConflict()) {  // bad class
3812    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3813                                         field_idx, dex_file_->GetFieldName(field_id),
3814                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3815    return nullptr;
3816  }
3817  if (klass_type.IsUnresolvedTypes()) {
3818    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3819  }
3820  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3821  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3822                                                  class_loader_);
3823  if (field == nullptr) {
3824    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3825              << dex_file_->GetFieldName(field_id) << ") in "
3826              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3827    DCHECK(self_->IsExceptionPending());
3828    self_->ClearException();
3829    return nullptr;
3830  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3831                                                  field->GetAccessFlags())) {
3832    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3833                                    << " from " << GetDeclaringClass();
3834    return nullptr;
3835  } else if (!field->IsStatic()) {
3836    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3837    return nullptr;
3838  }
3839  return field;
3840}
3841
3842ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3843  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3844  // Check access to class
3845  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3846  if (klass_type.IsConflict()) {
3847    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3848                                         field_idx, dex_file_->GetFieldName(field_id),
3849                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3850    return nullptr;
3851  }
3852  if (klass_type.IsUnresolvedTypes()) {
3853    return nullptr;  // Can't resolve Class so no more to do here
3854  }
3855  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3856  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3857                                                  class_loader_);
3858  if (field == nullptr) {
3859    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3860              << dex_file_->GetFieldName(field_id) << ") in "
3861              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3862    DCHECK(self_->IsExceptionPending());
3863    self_->ClearException();
3864    return nullptr;
3865  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3866                                                  field->GetAccessFlags())) {
3867    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3868                                    << " from " << GetDeclaringClass();
3869    return nullptr;
3870  } else if (field->IsStatic()) {
3871    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3872                                    << " to not be static";
3873    return nullptr;
3874  } else if (obj_type.IsZero()) {
3875    // Cannot infer and check type, however, access will cause null pointer exception
3876    return field;
3877  } else if (!obj_type.IsReferenceTypes()) {
3878    // Trying to read a field from something that isn't a reference
3879    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3880                                      << "non-reference type " << obj_type;
3881    return nullptr;
3882  } else {
3883    mirror::Class* klass = field->GetDeclaringClass();
3884    const RegType& field_klass =
3885        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3886                             klass, klass->CannotBeAssignedFromOtherTypes());
3887    if (obj_type.IsUninitializedTypes() &&
3888        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3889            !field_klass.Equals(GetDeclaringClass()))) {
3890      // Field accesses through uninitialized references are only allowable for constructors where
3891      // the field is declared in this class
3892      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3893                                        << " of a not fully initialized object within the context"
3894                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3895      return nullptr;
3896    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3897      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3898      // of C1. For resolution to occur the declared class of the field must be compatible with
3899      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3900      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3901                                  << " from object of type " << obj_type;
3902      return nullptr;
3903    } else {
3904      return field;
3905    }
3906  }
3907}
3908
3909template <MethodVerifier::FieldAccessType kAccType>
3910void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3911                                         bool is_primitive, bool is_static) {
3912  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3913  ArtField* field;
3914  if (is_static) {
3915    field = GetStaticField(field_idx);
3916  } else {
3917    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3918    field = GetInstanceField(object_type, field_idx);
3919    if (UNLIKELY(have_pending_hard_failure_)) {
3920      return;
3921    }
3922  }
3923  const RegType* field_type = nullptr;
3924  if (field != nullptr) {
3925    if (kAccType == FieldAccessType::kAccPut) {
3926      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3927        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3928                                        << " from other class " << GetDeclaringClass();
3929        return;
3930      }
3931    }
3932
3933    mirror::Class* field_type_class =
3934        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
3935    if (field_type_class != nullptr) {
3936      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3937                                         field_type_class->CannotBeAssignedFromOtherTypes());
3938    } else {
3939      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3940      self_->ClearException();
3941    }
3942  }
3943  if (field_type == nullptr) {
3944    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3945    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3946    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3947  }
3948  DCHECK(field_type != nullptr);
3949  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3950  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3951                "Unexpected third access type");
3952  if (kAccType == FieldAccessType::kAccPut) {
3953    // sput or iput.
3954    if (is_primitive) {
3955      VerifyPrimitivePut(*field_type, insn_type, vregA);
3956    } else {
3957      if (!insn_type.IsAssignableFrom(*field_type)) {
3958        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3959                                                << " to be compatible with type '" << insn_type
3960                                                << "' but found type '" << *field_type
3961                                                << "' in put-object";
3962        return;
3963      }
3964      work_line_->VerifyRegisterType(this, vregA, *field_type);
3965    }
3966  } else if (kAccType == FieldAccessType::kAccGet) {
3967    // sget or iget.
3968    if (is_primitive) {
3969      if (field_type->Equals(insn_type) ||
3970          (field_type->IsFloat() && insn_type.IsInteger()) ||
3971          (field_type->IsDouble() && insn_type.IsLong())) {
3972        // expected that read is of the correct primitive type or that int reads are reading
3973        // floats or long reads are reading doubles
3974      } else {
3975        // This is a global failure rather than a class change failure as the instructions and
3976        // the descriptors for the type should have been consistent within the same file at
3977        // compile time
3978        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3979                                          << " to be of type '" << insn_type
3980                                          << "' but found type '" << *field_type << "' in get";
3981        return;
3982      }
3983    } else {
3984      if (!insn_type.IsAssignableFrom(*field_type)) {
3985        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3986                                          << " to be compatible with type '" << insn_type
3987                                          << "' but found type '" << *field_type
3988                                          << "' in get-object";
3989        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3990        return;
3991      }
3992    }
3993    if (!field_type->IsLowHalf()) {
3994      work_line_->SetRegisterType(this, vregA, *field_type);
3995    } else {
3996      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3997    }
3998  } else {
3999    LOG(FATAL) << "Unexpected case.";
4000  }
4001}
4002
4003ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4004                                                      RegisterLine* reg_line) {
4005  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4006  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4007  if (!object_type.HasClass()) {
4008    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4009    return nullptr;
4010  }
4011  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4012  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4013  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4014  if (f == nullptr) {
4015    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4016                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4017  }
4018  return f;
4019}
4020
4021template <MethodVerifier::FieldAccessType kAccType>
4022void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4023                                            bool is_primitive) {
4024  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4025
4026  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4027  if (field == nullptr) {
4028    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4029    return;
4030  }
4031
4032  // For an IPUT_QUICK, we now test for final flag of the field.
4033  if (kAccType == FieldAccessType::kAccPut) {
4034    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4035      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4036                                      << " from other class " << GetDeclaringClass();
4037      return;
4038    }
4039  }
4040
4041  // Get the field type.
4042  const RegType* field_type;
4043  {
4044    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4045        field->GetType<false>();
4046
4047    if (field_type_class != nullptr) {
4048      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
4049                                         field_type_class->CannotBeAssignedFromOtherTypes());
4050    } else {
4051      Thread* self = Thread::Current();
4052      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4053      self->ClearException();
4054      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4055                                              field->GetTypeDescriptor(), false);
4056    }
4057    if (field_type == nullptr) {
4058      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4059      return;
4060    }
4061  }
4062
4063  const uint32_t vregA = inst->VRegA_22c();
4064  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4065                "Unexpected third access type");
4066  if (kAccType == FieldAccessType::kAccPut) {
4067    if (is_primitive) {
4068      // Primitive field assignability rules are weaker than regular assignability rules
4069      bool instruction_compatible;
4070      bool value_compatible;
4071      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4072      if (field_type->IsIntegralTypes()) {
4073        instruction_compatible = insn_type.IsIntegralTypes();
4074        value_compatible = value_type.IsIntegralTypes();
4075      } else if (field_type->IsFloat()) {
4076        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4077        value_compatible = value_type.IsFloatTypes();
4078      } else if (field_type->IsLong()) {
4079        instruction_compatible = insn_type.IsLong();
4080        value_compatible = value_type.IsLongTypes();
4081      } else if (field_type->IsDouble()) {
4082        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4083        value_compatible = value_type.IsDoubleTypes();
4084      } else {
4085        instruction_compatible = false;  // reference field with primitive store
4086        value_compatible = false;  // unused
4087      }
4088      if (!instruction_compatible) {
4089        // This is a global failure rather than a class change failure as the instructions and
4090        // the descriptors for the type should have been consistent within the same file at
4091        // compile time
4092        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4093                                          << " to be of type '" << insn_type
4094                                          << "' but found type '" << *field_type
4095                                          << "' in put";
4096        return;
4097      }
4098      if (!value_compatible) {
4099        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4100            << " of type " << value_type
4101            << " but expected " << *field_type
4102            << " for store to " << PrettyField(field) << " in put";
4103        return;
4104      }
4105    } else {
4106      if (!insn_type.IsAssignableFrom(*field_type)) {
4107        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4108                                          << " to be compatible with type '" << insn_type
4109                                          << "' but found type '" << *field_type
4110                                          << "' in put-object";
4111        return;
4112      }
4113      work_line_->VerifyRegisterType(this, vregA, *field_type);
4114    }
4115  } else if (kAccType == FieldAccessType::kAccGet) {
4116    if (is_primitive) {
4117      if (field_type->Equals(insn_type) ||
4118          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4119          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4120        // expected that read is of the correct primitive type or that int reads are reading
4121        // floats or long reads are reading doubles
4122      } else {
4123        // This is a global failure rather than a class change failure as the instructions and
4124        // the descriptors for the type should have been consistent within the same file at
4125        // compile time
4126        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4127                                          << " to be of type '" << insn_type
4128                                          << "' but found type '" << *field_type << "' in Get";
4129        return;
4130      }
4131    } else {
4132      if (!insn_type.IsAssignableFrom(*field_type)) {
4133        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4134                                          << " to be compatible with type '" << insn_type
4135                                          << "' but found type '" << *field_type
4136                                          << "' in get-object";
4137        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4138        return;
4139      }
4140    }
4141    if (!field_type->IsLowHalf()) {
4142      work_line_->SetRegisterType(this, vregA, *field_type);
4143    } else {
4144      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4145    }
4146  } else {
4147    LOG(FATAL) << "Unexpected case.";
4148  }
4149}
4150
4151bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4152  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4153    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4154    return false;
4155  }
4156  return true;
4157}
4158
4159bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4160  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4161      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4162    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4163    return false;
4164  }
4165  return true;
4166}
4167
4168bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4169  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4170}
4171
4172bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4173                                     bool update_merge_line) {
4174  bool changed = true;
4175  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4176  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4177    /*
4178     * We haven't processed this instruction before, and we haven't touched the registers here, so
4179     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4180     * only way a register can transition out of "unknown", so this is not just an optimization.)
4181     */
4182    if (!insn_flags_[next_insn].IsReturn()) {
4183      target_line->CopyFromLine(merge_line);
4184    } else {
4185      // Verify that the monitor stack is empty on return.
4186      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4187        return false;
4188      }
4189      // For returns we only care about the operand to the return, all other registers are dead.
4190      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4191      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4192      Instruction::Code opcode = ret_inst->Opcode();
4193      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4194        SafelyMarkAllRegistersAsConflicts(this, target_line);
4195      } else {
4196        target_line->CopyFromLine(merge_line);
4197        if (opcode == Instruction::RETURN_WIDE) {
4198          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4199        } else {
4200          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4201        }
4202      }
4203    }
4204  } else {
4205    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4206                                 RegisterLine::Create(target_line->NumRegs(), this) :
4207                                 nullptr);
4208    if (gDebugVerify) {
4209      copy->CopyFromLine(target_line);
4210    }
4211    changed = target_line->MergeRegisters(this, merge_line);
4212    if (have_pending_hard_failure_) {
4213      return false;
4214    }
4215    if (gDebugVerify && changed) {
4216      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4217                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4218                      << copy->Dump(this) << "  MERGE\n"
4219                      << merge_line->Dump(this) << "  ==\n"
4220                      << target_line->Dump(this) << "\n";
4221    }
4222    if (update_merge_line && changed) {
4223      merge_line->CopyFromLine(target_line);
4224    }
4225  }
4226  if (changed) {
4227    insn_flags_[next_insn].SetChanged();
4228  }
4229  return true;
4230}
4231
4232InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4233  return &insn_flags_[work_insn_idx_];
4234}
4235
4236const RegType& MethodVerifier::GetMethodReturnType() {
4237  if (return_type_ == nullptr) {
4238    if (mirror_method_ != nullptr) {
4239      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4240      if (return_type_class != nullptr) {
4241        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4242                                             return_type_class,
4243                                             return_type_class->CannotBeAssignedFromOtherTypes());
4244      } else {
4245        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4246        self_->ClearException();
4247      }
4248    }
4249    if (return_type_ == nullptr) {
4250      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4251      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4252      uint16_t return_type_idx = proto_id.return_type_idx_;
4253      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4254      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4255    }
4256  }
4257  return *return_type_;
4258}
4259
4260const RegType& MethodVerifier::GetDeclaringClass() {
4261  if (declaring_class_ == nullptr) {
4262    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4263    const char* descriptor
4264        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4265    if (mirror_method_ != nullptr) {
4266      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4267      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4268                                               klass->CannotBeAssignedFromOtherTypes());
4269    } else {
4270      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4271    }
4272  }
4273  return *declaring_class_;
4274}
4275
4276std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4277  RegisterLine* line = reg_table_.GetLine(dex_pc);
4278  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4279  std::vector<int32_t> result;
4280  for (size_t i = 0; i < line->NumRegs(); ++i) {
4281    const RegType& type = line->GetRegisterType(this, i);
4282    if (type.IsConstant()) {
4283      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4284      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4285      result.push_back(const_val->ConstantValue());
4286    } else if (type.IsConstantLo()) {
4287      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4288      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4289      result.push_back(const_val->ConstantValueLo());
4290    } else if (type.IsConstantHi()) {
4291      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4292      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4293      result.push_back(const_val->ConstantValueHi());
4294    } else if (type.IsIntegralTypes()) {
4295      result.push_back(kIntVReg);
4296      result.push_back(0);
4297    } else if (type.IsFloat()) {
4298      result.push_back(kFloatVReg);
4299      result.push_back(0);
4300    } else if (type.IsLong()) {
4301      result.push_back(kLongLoVReg);
4302      result.push_back(0);
4303      result.push_back(kLongHiVReg);
4304      result.push_back(0);
4305      ++i;
4306    } else if (type.IsDouble()) {
4307      result.push_back(kDoubleLoVReg);
4308      result.push_back(0);
4309      result.push_back(kDoubleHiVReg);
4310      result.push_back(0);
4311      ++i;
4312    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4313      result.push_back(kUndefined);
4314      result.push_back(0);
4315    } else {
4316      CHECK(type.IsNonZeroReferenceTypes());
4317      result.push_back(kReferenceVReg);
4318      result.push_back(0);
4319    }
4320  }
4321  return result;
4322}
4323
4324const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4325  if (precise) {
4326    // Precise constant type.
4327    return reg_types_.FromCat1Const(value, true);
4328  } else {
4329    // Imprecise constant type.
4330    if (value < -32768) {
4331      return reg_types_.IntConstant();
4332    } else if (value < -128) {
4333      return reg_types_.ShortConstant();
4334    } else if (value < 0) {
4335      return reg_types_.ByteConstant();
4336    } else if (value == 0) {
4337      return reg_types_.Zero();
4338    } else if (value == 1) {
4339      return reg_types_.One();
4340    } else if (value < 128) {
4341      return reg_types_.PosByteConstant();
4342    } else if (value < 32768) {
4343      return reg_types_.PosShortConstant();
4344    } else if (value < 65536) {
4345      return reg_types_.CharConstant();
4346    } else {
4347      return reg_types_.IntConstant();
4348    }
4349  }
4350}
4351
4352void MethodVerifier::Init() {
4353  art::verifier::RegTypeCache::Init();
4354}
4355
4356void MethodVerifier::Shutdown() {
4357  verifier::RegTypeCache::ShutDown();
4358}
4359
4360void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4361  RegTypeCache::VisitStaticRoots(visitor);
4362}
4363
4364void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4365  reg_types_.VisitRoots(visitor, root_info);
4366}
4367
4368}  // namespace verifier
4369}  // namespace art
4370