method_verifier.cc revision 590fee9e8972f872301c2d16a575d579ee564bee
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "verifier/dex_gc_map.h"
44
45namespace art {
46namespace verifier {
47
48static const bool gDebugVerify = false;
49// TODO: Add a constant to method_verifier to turn on verbose logging?
50
51void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
52                                 uint32_t insns_size, uint16_t registers_size,
53                                 MethodVerifier* verifier) {
54  DCHECK_GT(insns_size, 0U);
55  register_lines_.reset(new RegisterLine*[insns_size]());
56  size_ = insns_size;
57  for (uint32_t i = 0; i < insns_size; i++) {
58    bool interesting = false;
59    switch (mode) {
60      case kTrackRegsAll:
61        interesting = flags[i].IsOpcode();
62        break;
63      case kTrackCompilerInterestPoints:
64        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
65        break;
66      case kTrackRegsBranches:
67        interesting = flags[i].IsBranchTarget();
68        break;
69      default:
70        break;
71    }
72    if (interesting) {
73      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
74    }
75  }
76}
77
78PcToRegisterLineTable::~PcToRegisterLineTable() {
79  for (size_t i = 0; i < size_; i++) {
80    delete register_lines_[i];
81    if (kIsDebugBuild) {
82      register_lines_[i] = nullptr;
83    }
84  }
85}
86
87MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
88                                                        bool allow_soft_failures,
89                                                        std::string* error) {
90  if (klass->IsVerified()) {
91    return kNoFailure;
92  }
93  mirror::Class* super = klass->GetSuperClass();
94  if (super == NULL && strcmp("Ljava/lang/Object;", ClassHelper(klass).GetDescriptor()) != 0) {
95    *error = "Verifier rejected class ";
96    *error += PrettyDescriptor(klass);
97    *error += " that has no super class";
98    return kHardFailure;
99  }
100  if (super != NULL && super->IsFinal()) {
101    *error = "Verifier rejected class ";
102    *error += PrettyDescriptor(klass);
103    *error += " that attempts to sub-class final class ";
104    *error += PrettyDescriptor(super);
105    return kHardFailure;
106  }
107  ClassHelper kh(klass);
108  const DexFile& dex_file = kh.GetDexFile();
109  const DexFile::ClassDef* class_def = kh.GetClassDef();
110  if (class_def == NULL) {
111    *error = "Verifier rejected class ";
112    *error += PrettyDescriptor(klass);
113    *error += " that isn't present in dex file ";
114    *error += dex_file.GetLocation();
115    return kHardFailure;
116  }
117  Thread* self = Thread::Current();
118  SirtRef<mirror::DexCache> dex_cache(self, kh.GetDexCache());
119  SirtRef<mirror::ClassLoader> class_loader(self, klass->GetClassLoader());
120  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
121}
122
123MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
124                                                        SirtRef<mirror::DexCache>& dex_cache,
125                                                        SirtRef<mirror::ClassLoader>& class_loader,
126                                                        const DexFile::ClassDef* class_def,
127                                                        bool allow_soft_failures,
128                                                        std::string* error) {
129  DCHECK(class_def != nullptr);
130  const byte* class_data = dex_file->GetClassData(*class_def);
131  if (class_data == NULL) {
132    // empty class, probably a marker interface
133    return kNoFailure;
134  }
135  ClassDataItemIterator it(*dex_file, class_data);
136  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
137    it.Next();
138  }
139  size_t error_count = 0;
140  bool hard_fail = false;
141  ClassLinker* linker = Runtime::Current()->GetClassLinker();
142  int64_t previous_direct_method_idx = -1;
143  while (it.HasNextDirectMethod()) {
144    uint32_t method_idx = it.GetMemberIndex();
145    if (method_idx == previous_direct_method_idx) {
146      // smali can create dex files with two encoded_methods sharing the same method_idx
147      // http://code.google.com/p/smali/issues/detail?id=119
148      it.Next();
149      continue;
150    }
151    previous_direct_method_idx = method_idx;
152    InvokeType type = it.GetMethodInvokeType(*class_def);
153    mirror::ArtMethod* method =
154        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
155    if (method == NULL) {
156      DCHECK(Thread::Current()->IsExceptionPending());
157      // We couldn't resolve the method, but continue regardless.
158      Thread::Current()->ClearException();
159    }
160    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
161                                                      dex_file,
162                                                      dex_cache,
163                                                      class_loader,
164                                                      class_def,
165                                                      it.GetMethodCodeItem(),
166                                                      method,
167                                                      it.GetMemberAccessFlags(),
168                                                      allow_soft_failures);
169    if (result != kNoFailure) {
170      if (result == kHardFailure) {
171        hard_fail = true;
172        if (error_count > 0) {
173          *error += "\n";
174        }
175        *error = "Verifier rejected class ";
176        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
177        *error += " due to bad method ";
178        *error += PrettyMethod(method_idx, *dex_file);
179      }
180      ++error_count;
181    }
182    it.Next();
183  }
184  int64_t previous_virtual_method_idx = -1;
185  while (it.HasNextVirtualMethod()) {
186    uint32_t method_idx = it.GetMemberIndex();
187    if (method_idx == previous_virtual_method_idx) {
188      // smali can create dex files with two encoded_methods sharing the same method_idx
189      // http://code.google.com/p/smali/issues/detail?id=119
190      it.Next();
191      continue;
192    }
193    previous_virtual_method_idx = method_idx;
194    InvokeType type = it.GetMethodInvokeType(*class_def);
195    mirror::ArtMethod* method =
196        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
197    if (method == NULL) {
198      DCHECK(Thread::Current()->IsExceptionPending());
199      // We couldn't resolve the method, but continue regardless.
200      Thread::Current()->ClearException();
201    }
202    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
203                                                      dex_file,
204                                                      dex_cache,
205                                                      class_loader,
206                                                      class_def,
207                                                      it.GetMethodCodeItem(),
208                                                      method,
209                                                      it.GetMemberAccessFlags(),
210                                                      allow_soft_failures);
211    if (result != kNoFailure) {
212      if (result == kHardFailure) {
213        hard_fail = true;
214        if (error_count > 0) {
215          *error += "\n";
216        }
217        *error = "Verifier rejected class ";
218        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
219        *error += " due to bad method ";
220        *error += PrettyMethod(method_idx, *dex_file);
221      }
222      ++error_count;
223    }
224    it.Next();
225  }
226  if (error_count == 0) {
227    return kNoFailure;
228  } else {
229    return hard_fail ? kHardFailure : kSoftFailure;
230  }
231}
232
233MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
234                                                         const DexFile* dex_file,
235                                                         SirtRef<mirror::DexCache>& dex_cache,
236                                                         SirtRef<mirror::ClassLoader>& class_loader,
237                                                         const DexFile::ClassDef* class_def,
238                                                         const DexFile::CodeItem* code_item,
239                                                         mirror::ArtMethod* method,
240                                                         uint32_t method_access_flags,
241                                                         bool allow_soft_failures) {
242  MethodVerifier::FailureKind result = kNoFailure;
243  uint64_t start_ns = NanoTime();
244
245  MethodVerifier verifier_(dex_file, &dex_cache, &class_loader, class_def, code_item,
246                           method_idx, method, method_access_flags, true, allow_soft_failures);
247  if (verifier_.Verify()) {
248    // Verification completed, however failures may be pending that didn't cause the verification
249    // to hard fail.
250    CHECK(!verifier_.have_pending_hard_failure_);
251    if (verifier_.failures_.size() != 0) {
252      if (VLOG_IS_ON(verifier)) {
253          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
254                                << PrettyMethod(method_idx, *dex_file) << "\n");
255      }
256      result = kSoftFailure;
257    }
258  } else {
259    // Bad method data.
260    CHECK_NE(verifier_.failures_.size(), 0U);
261    CHECK(verifier_.have_pending_hard_failure_);
262    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
263                                    << PrettyMethod(method_idx, *dex_file) << "\n");
264    if (gDebugVerify) {
265      std::cout << "\n" << verifier_.info_messages_.str();
266      verifier_.Dump(std::cout);
267    }
268    result = kHardFailure;
269  }
270  uint64_t duration_ns = NanoTime() - start_ns;
271  if (duration_ns > MsToNs(100)) {
272    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
273                 << " took " << PrettyDuration(duration_ns);
274  }
275  return result;
276}
277
278void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
279                                         const DexFile* dex_file,
280                                         SirtRef<mirror::DexCache>& dex_cache,
281                                         SirtRef<mirror::ClassLoader>& class_loader,
282                                         const DexFile::ClassDef* class_def,
283                                         const DexFile::CodeItem* code_item,
284                                         mirror::ArtMethod* method,
285                                         uint32_t method_access_flags) {
286  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
287                          dex_method_idx, method, method_access_flags, true, true);
288  verifier.Verify();
289  verifier.DumpFailures(os);
290  os << verifier.info_messages_.str();
291  verifier.Dump(os);
292}
293
294MethodVerifier::MethodVerifier(const DexFile* dex_file, SirtRef<mirror::DexCache>* dex_cache,
295                               SirtRef<mirror::ClassLoader>* class_loader,
296                               const DexFile::ClassDef* class_def,
297                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
298                               mirror::ArtMethod* method, uint32_t method_access_flags,
299                               bool can_load_classes, bool allow_soft_failures)
300    : reg_types_(can_load_classes),
301      work_insn_idx_(-1),
302      dex_method_idx_(dex_method_idx),
303      mirror_method_(method),
304      method_access_flags_(method_access_flags),
305      return_type_(nullptr),
306      dex_file_(dex_file),
307      dex_cache_(dex_cache),
308      class_loader_(class_loader),
309      class_def_(class_def),
310      code_item_(code_item),
311      declaring_class_(NULL),
312      interesting_dex_pc_(-1),
313      monitor_enter_dex_pcs_(nullptr),
314      have_pending_hard_failure_(false),
315      have_pending_runtime_throw_failure_(false),
316      new_instance_count_(0),
317      monitor_enter_count_(0),
318      can_load_classes_(can_load_classes),
319      allow_soft_failures_(allow_soft_failures),
320      has_check_casts_(false),
321      has_virtual_or_interface_invokes_(false) {
322  DCHECK(class_def != nullptr);
323}
324
325MethodVerifier::~MethodVerifier() {
326  STLDeleteElements(&failure_messages_);
327}
328
329void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
330                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
331  MethodHelper mh(m);
332  Thread* self = Thread::Current();
333  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
334  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
335  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
336                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
337                          true);
338  verifier.interesting_dex_pc_ = dex_pc;
339  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
340  verifier.FindLocksAtDexPc();
341}
342
343void MethodVerifier::FindLocksAtDexPc() {
344  CHECK(monitor_enter_dex_pcs_ != NULL);
345  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
346
347  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
348  // verification. In practice, the phase we want relies on data structures set up by all the
349  // earlier passes, so we just run the full method verification and bail out early when we've
350  // got what we wanted.
351  Verify();
352}
353
354mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
355                                                        uint32_t dex_pc) {
356  MethodHelper mh(m);
357  Thread* self = Thread::Current();
358  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
359  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
360  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
361                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
362                          true);
363  return verifier.FindAccessedFieldAtDexPc(dex_pc);
364}
365
366mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
367  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
368
369  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
370  // verification. In practice, the phase we want relies on data structures set up by all the
371  // earlier passes, so we just run the full method verification and bail out early when we've
372  // got what we wanted.
373  bool success = Verify();
374  if (!success) {
375    return NULL;
376  }
377  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
378  if (register_line == NULL) {
379    return NULL;
380  }
381  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
382  return GetQuickFieldAccess(inst, register_line);
383}
384
385mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
386                                                            uint32_t dex_pc) {
387  MethodHelper mh(m);
388  Thread* self = Thread::Current();
389  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
390  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
391  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
392                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
393                          true);
394  return verifier.FindInvokedMethodAtDexPc(dex_pc);
395}
396
397mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
398  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
399
400  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
401  // verification. In practice, the phase we want relies on data structures set up by all the
402  // earlier passes, so we just run the full method verification and bail out early when we've
403  // got what we wanted.
404  bool success = Verify();
405  if (!success) {
406    return NULL;
407  }
408  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
409  if (register_line == NULL) {
410    return NULL;
411  }
412  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
413  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
414  return GetQuickInvokedMethod(inst, register_line, is_range);
415}
416
417bool MethodVerifier::Verify() {
418  // If there aren't any instructions, make sure that's expected, then exit successfully.
419  if (code_item_ == NULL) {
420    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
421      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
422      return false;
423    } else {
424      return true;
425    }
426  }
427  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
428  if (code_item_->ins_size_ > code_item_->registers_size_) {
429    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
430                                      << " regs=" << code_item_->registers_size_;
431    return false;
432  }
433  // Allocate and initialize an array to hold instruction data.
434  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
435  // Run through the instructions and see if the width checks out.
436  bool result = ComputeWidthsAndCountOps();
437  // Flag instructions guarded by a "try" block and check exception handlers.
438  result = result && ScanTryCatchBlocks();
439  // Perform static instruction verification.
440  result = result && VerifyInstructions();
441  // Perform code-flow analysis and return.
442  return result && VerifyCodeFlow();
443}
444
445std::ostream& MethodVerifier::Fail(VerifyError error) {
446  switch (error) {
447    case VERIFY_ERROR_NO_CLASS:
448    case VERIFY_ERROR_NO_FIELD:
449    case VERIFY_ERROR_NO_METHOD:
450    case VERIFY_ERROR_ACCESS_CLASS:
451    case VERIFY_ERROR_ACCESS_FIELD:
452    case VERIFY_ERROR_ACCESS_METHOD:
453    case VERIFY_ERROR_INSTANTIATION:
454    case VERIFY_ERROR_CLASS_CHANGE:
455      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
456        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
457        // class change and instantiation errors into soft verification errors so that we re-verify
458        // at runtime. We may fail to find or to agree on access because of not yet available class
459        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
460        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
461        // paths" that dynamically perform the verification and cause the behavior to be that akin
462        // to an interpreter.
463        error = VERIFY_ERROR_BAD_CLASS_SOFT;
464      } else {
465        // If we fail again at runtime, mark that this instruction would throw and force this
466        // method to be executed using the interpreter with checks.
467        have_pending_runtime_throw_failure_ = true;
468      }
469      break;
470      // Indication that verification should be retried at runtime.
471    case VERIFY_ERROR_BAD_CLASS_SOFT:
472      if (!allow_soft_failures_) {
473        have_pending_hard_failure_ = true;
474      }
475      break;
476      // Hard verification failures at compile time will still fail at runtime, so the class is
477      // marked as rejected to prevent it from being compiled.
478    case VERIFY_ERROR_BAD_CLASS_HARD: {
479      if (Runtime::Current()->IsCompiler()) {
480        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
481        AddRejectedClass(ref);
482      }
483      have_pending_hard_failure_ = true;
484      break;
485    }
486  }
487  failures_.push_back(error);
488  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
489                                    work_insn_idx_));
490  std::ostringstream* failure_message = new std::ostringstream(location);
491  failure_messages_.push_back(failure_message);
492  return *failure_message;
493}
494
495void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
496  size_t failure_num = failure_messages_.size();
497  DCHECK_NE(failure_num, 0U);
498  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
499  prepend += last_fail_message->str();
500  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
501  delete last_fail_message;
502}
503
504void MethodVerifier::AppendToLastFailMessage(std::string append) {
505  size_t failure_num = failure_messages_.size();
506  DCHECK_NE(failure_num, 0U);
507  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
508  (*last_fail_message) << append;
509}
510
511bool MethodVerifier::ComputeWidthsAndCountOps() {
512  const uint16_t* insns = code_item_->insns_;
513  size_t insns_size = code_item_->insns_size_in_code_units_;
514  const Instruction* inst = Instruction::At(insns);
515  size_t new_instance_count = 0;
516  size_t monitor_enter_count = 0;
517  size_t dex_pc = 0;
518
519  while (dex_pc < insns_size) {
520    Instruction::Code opcode = inst->Opcode();
521    switch (opcode) {
522      case Instruction::APUT_OBJECT:
523      case Instruction::CHECK_CAST:
524        has_check_casts_ = true;
525        break;
526      case Instruction::INVOKE_VIRTUAL:
527      case Instruction::INVOKE_VIRTUAL_RANGE:
528      case Instruction::INVOKE_INTERFACE:
529      case Instruction::INVOKE_INTERFACE_RANGE:
530        has_virtual_or_interface_invokes_ = true;
531        break;
532      case Instruction::MONITOR_ENTER:
533        monitor_enter_count++;
534        break;
535      case Instruction::NEW_INSTANCE:
536        new_instance_count++;
537        break;
538      default:
539        break;
540    }
541    size_t inst_size = inst->SizeInCodeUnits();
542    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
543    dex_pc += inst_size;
544    inst = inst->Next();
545  }
546
547  if (dex_pc != insns_size) {
548    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
549                                      << dex_pc << " vs. " << insns_size << ")";
550    return false;
551  }
552
553  new_instance_count_ = new_instance_count;
554  monitor_enter_count_ = monitor_enter_count;
555  return true;
556}
557
558bool MethodVerifier::ScanTryCatchBlocks() {
559  uint32_t tries_size = code_item_->tries_size_;
560  if (tries_size == 0) {
561    return true;
562  }
563  uint32_t insns_size = code_item_->insns_size_in_code_units_;
564  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
565
566  for (uint32_t idx = 0; idx < tries_size; idx++) {
567    const DexFile::TryItem* try_item = &tries[idx];
568    uint32_t start = try_item->start_addr_;
569    uint32_t end = start + try_item->insn_count_;
570    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
571      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
572                                        << " endAddr=" << end << " (size=" << insns_size << ")";
573      return false;
574    }
575    if (!insn_flags_[start].IsOpcode()) {
576      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
577          << "'try' block starts inside an instruction (" << start << ")";
578      return false;
579    }
580    for (uint32_t dex_pc = start; dex_pc < end;
581        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
582      insn_flags_[dex_pc].SetInTry();
583    }
584  }
585  // Iterate over each of the handlers to verify target addresses.
586  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
587  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
588  ClassLinker* linker = Runtime::Current()->GetClassLinker();
589  for (uint32_t idx = 0; idx < handlers_size; idx++) {
590    CatchHandlerIterator iterator(handlers_ptr);
591    for (; iterator.HasNext(); iterator.Next()) {
592      uint32_t dex_pc= iterator.GetHandlerAddress();
593      if (!insn_flags_[dex_pc].IsOpcode()) {
594        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
595            << "exception handler starts at bad address (" << dex_pc << ")";
596        return false;
597      }
598      insn_flags_[dex_pc].SetBranchTarget();
599      // Ensure exception types are resolved so that they don't need resolution to be delivered,
600      // unresolved exception types will be ignored by exception delivery
601      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
602        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
603                                                            iterator.GetHandlerTypeIndex(),
604                                                            *dex_cache_, *class_loader_);
605        if (exception_type == NULL) {
606          DCHECK(Thread::Current()->IsExceptionPending());
607          Thread::Current()->ClearException();
608        }
609      }
610    }
611    handlers_ptr = iterator.EndDataPointer();
612  }
613  return true;
614}
615
616bool MethodVerifier::VerifyInstructions() {
617  const Instruction* inst = Instruction::At(code_item_->insns_);
618
619  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
620  insn_flags_[0].SetBranchTarget();
621  insn_flags_[0].SetCompileTimeInfoPoint();
622
623  uint32_t insns_size = code_item_->insns_size_in_code_units_;
624  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
625    if (!VerifyInstruction(inst, dex_pc)) {
626      DCHECK_NE(failures_.size(), 0U);
627      return false;
628    }
629    /* Flag instructions that are garbage collection points */
630    // All invoke points are marked as "Throw" points already.
631    // We are relying on this to also count all the invokes as interesting.
632    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
633      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
634    } else if (inst->IsReturn()) {
635      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
636    }
637    dex_pc += inst->SizeInCodeUnits();
638    inst = inst->Next();
639  }
640  return true;
641}
642
643bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
644  DecodedInstruction dec_insn(inst);
645  bool result = true;
646  switch (inst->GetVerifyTypeArgumentA()) {
647    case Instruction::kVerifyRegA:
648      result = result && CheckRegisterIndex(dec_insn.vA);
649      break;
650    case Instruction::kVerifyRegAWide:
651      result = result && CheckWideRegisterIndex(dec_insn.vA);
652      break;
653  }
654  switch (inst->GetVerifyTypeArgumentB()) {
655    case Instruction::kVerifyRegB:
656      result = result && CheckRegisterIndex(dec_insn.vB);
657      break;
658    case Instruction::kVerifyRegBField:
659      result = result && CheckFieldIndex(dec_insn.vB);
660      break;
661    case Instruction::kVerifyRegBMethod:
662      result = result && CheckMethodIndex(dec_insn.vB);
663      break;
664    case Instruction::kVerifyRegBNewInstance:
665      result = result && CheckNewInstance(dec_insn.vB);
666      break;
667    case Instruction::kVerifyRegBString:
668      result = result && CheckStringIndex(dec_insn.vB);
669      break;
670    case Instruction::kVerifyRegBType:
671      result = result && CheckTypeIndex(dec_insn.vB);
672      break;
673    case Instruction::kVerifyRegBWide:
674      result = result && CheckWideRegisterIndex(dec_insn.vB);
675      break;
676  }
677  switch (inst->GetVerifyTypeArgumentC()) {
678    case Instruction::kVerifyRegC:
679      result = result && CheckRegisterIndex(dec_insn.vC);
680      break;
681    case Instruction::kVerifyRegCField:
682      result = result && CheckFieldIndex(dec_insn.vC);
683      break;
684    case Instruction::kVerifyRegCNewArray:
685      result = result && CheckNewArray(dec_insn.vC);
686      break;
687    case Instruction::kVerifyRegCType:
688      result = result && CheckTypeIndex(dec_insn.vC);
689      break;
690    case Instruction::kVerifyRegCWide:
691      result = result && CheckWideRegisterIndex(dec_insn.vC);
692      break;
693  }
694  switch (inst->GetVerifyExtraFlags()) {
695    case Instruction::kVerifyArrayData:
696      result = result && CheckArrayData(code_offset);
697      break;
698    case Instruction::kVerifyBranchTarget:
699      result = result && CheckBranchTarget(code_offset);
700      break;
701    case Instruction::kVerifySwitchTargets:
702      result = result && CheckSwitchTargets(code_offset);
703      break;
704    case Instruction::kVerifyVarArg:
705      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
706      break;
707    case Instruction::kVerifyVarArgRange:
708      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
709      break;
710    case Instruction::kVerifyError:
711      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
712      result = false;
713      break;
714  }
715  return result;
716}
717
718bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
719  if (idx >= code_item_->registers_size_) {
720    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
721                                      << code_item_->registers_size_ << ")";
722    return false;
723  }
724  return true;
725}
726
727bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
728  if (idx + 1 >= code_item_->registers_size_) {
729    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
730                                      << "+1 >= " << code_item_->registers_size_ << ")";
731    return false;
732  }
733  return true;
734}
735
736bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
737  if (idx >= dex_file_->GetHeader().field_ids_size_) {
738    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
739                                      << dex_file_->GetHeader().field_ids_size_ << ")";
740    return false;
741  }
742  return true;
743}
744
745bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
746  if (idx >= dex_file_->GetHeader().method_ids_size_) {
747    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
748                                      << dex_file_->GetHeader().method_ids_size_ << ")";
749    return false;
750  }
751  return true;
752}
753
754bool MethodVerifier::CheckNewInstance(uint32_t idx) {
755  if (idx >= dex_file_->GetHeader().type_ids_size_) {
756    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
757                                      << dex_file_->GetHeader().type_ids_size_ << ")";
758    return false;
759  }
760  // We don't need the actual class, just a pointer to the class name.
761  const char* descriptor = dex_file_->StringByTypeIdx(idx);
762  if (descriptor[0] != 'L') {
763    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
764    return false;
765  }
766  return true;
767}
768
769bool MethodVerifier::CheckStringIndex(uint32_t idx) {
770  if (idx >= dex_file_->GetHeader().string_ids_size_) {
771    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
772                                      << dex_file_->GetHeader().string_ids_size_ << ")";
773    return false;
774  }
775  return true;
776}
777
778bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
779  if (idx >= dex_file_->GetHeader().type_ids_size_) {
780    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
781                                      << dex_file_->GetHeader().type_ids_size_ << ")";
782    return false;
783  }
784  return true;
785}
786
787bool MethodVerifier::CheckNewArray(uint32_t idx) {
788  if (idx >= dex_file_->GetHeader().type_ids_size_) {
789    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
790                                      << dex_file_->GetHeader().type_ids_size_ << ")";
791    return false;
792  }
793  int bracket_count = 0;
794  const char* descriptor = dex_file_->StringByTypeIdx(idx);
795  const char* cp = descriptor;
796  while (*cp++ == '[') {
797    bracket_count++;
798  }
799  if (bracket_count == 0) {
800    /* The given class must be an array type. */
801    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
802        << "can't new-array class '" << descriptor << "' (not an array)";
803    return false;
804  } else if (bracket_count > 255) {
805    /* It is illegal to create an array of more than 255 dimensions. */
806    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
807        << "can't new-array class '" << descriptor << "' (exceeds limit)";
808    return false;
809  }
810  return true;
811}
812
813bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
814  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
815  const uint16_t* insns = code_item_->insns_ + cur_offset;
816  const uint16_t* array_data;
817  int32_t array_data_offset;
818
819  DCHECK_LT(cur_offset, insn_count);
820  /* make sure the start of the array data table is in range */
821  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
822  if ((int32_t) cur_offset + array_data_offset < 0 ||
823      cur_offset + array_data_offset + 2 >= insn_count) {
824    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
825                                      << ", data offset " << array_data_offset
826                                      << ", count " << insn_count;
827    return false;
828  }
829  /* offset to array data table is a relative branch-style offset */
830  array_data = insns + array_data_offset;
831  /* make sure the table is 32-bit aligned */
832  if ((((uint32_t) array_data) & 0x03) != 0) {
833    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
834                                      << ", data offset " << array_data_offset;
835    return false;
836  }
837  uint32_t value_width = array_data[1];
838  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
839  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
840  /* make sure the end of the switch is in range */
841  if (cur_offset + array_data_offset + table_size > insn_count) {
842    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
843                                      << ", data offset " << array_data_offset << ", end "
844                                      << cur_offset + array_data_offset + table_size
845                                      << ", count " << insn_count;
846    return false;
847  }
848  return true;
849}
850
851bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
852  int32_t offset;
853  bool isConditional, selfOkay;
854  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
855    return false;
856  }
857  if (!selfOkay && offset == 0) {
858    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
859                                      << reinterpret_cast<void*>(cur_offset);
860    return false;
861  }
862  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
863  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
864  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
865    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
866                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
867    return false;
868  }
869  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
870  int32_t abs_offset = cur_offset + offset;
871  if (abs_offset < 0 ||
872      (uint32_t) abs_offset >= insn_count ||
873      !insn_flags_[abs_offset].IsOpcode()) {
874    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
875                                      << reinterpret_cast<void*>(abs_offset) << ") at "
876                                      << reinterpret_cast<void*>(cur_offset);
877    return false;
878  }
879  insn_flags_[abs_offset].SetBranchTarget();
880  return true;
881}
882
883bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
884                                  bool* selfOkay) {
885  const uint16_t* insns = code_item_->insns_ + cur_offset;
886  *pConditional = false;
887  *selfOkay = false;
888  switch (*insns & 0xff) {
889    case Instruction::GOTO:
890      *pOffset = ((int16_t) *insns) >> 8;
891      break;
892    case Instruction::GOTO_32:
893      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
894      *selfOkay = true;
895      break;
896    case Instruction::GOTO_16:
897      *pOffset = (int16_t) insns[1];
898      break;
899    case Instruction::IF_EQ:
900    case Instruction::IF_NE:
901    case Instruction::IF_LT:
902    case Instruction::IF_GE:
903    case Instruction::IF_GT:
904    case Instruction::IF_LE:
905    case Instruction::IF_EQZ:
906    case Instruction::IF_NEZ:
907    case Instruction::IF_LTZ:
908    case Instruction::IF_GEZ:
909    case Instruction::IF_GTZ:
910    case Instruction::IF_LEZ:
911      *pOffset = (int16_t) insns[1];
912      *pConditional = true;
913      break;
914    default:
915      return false;
916      break;
917  }
918  return true;
919}
920
921bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
922  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
923  DCHECK_LT(cur_offset, insn_count);
924  const uint16_t* insns = code_item_->insns_ + cur_offset;
925  /* make sure the start of the switch is in range */
926  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
927  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
928    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
929                                      << ", switch offset " << switch_offset
930                                      << ", count " << insn_count;
931    return false;
932  }
933  /* offset to switch table is a relative branch-style offset */
934  const uint16_t* switch_insns = insns + switch_offset;
935  /* make sure the table is 32-bit aligned */
936  if ((((uint32_t) switch_insns) & 0x03) != 0) {
937    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
938                                      << ", switch offset " << switch_offset;
939    return false;
940  }
941  uint32_t switch_count = switch_insns[1];
942  int32_t keys_offset, targets_offset;
943  uint16_t expected_signature;
944  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
945    /* 0=sig, 1=count, 2/3=firstKey */
946    targets_offset = 4;
947    keys_offset = -1;
948    expected_signature = Instruction::kPackedSwitchSignature;
949  } else {
950    /* 0=sig, 1=count, 2..count*2 = keys */
951    keys_offset = 2;
952    targets_offset = 2 + 2 * switch_count;
953    expected_signature = Instruction::kSparseSwitchSignature;
954  }
955  uint32_t table_size = targets_offset + switch_count * 2;
956  if (switch_insns[0] != expected_signature) {
957    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
958        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
959                        switch_insns[0], expected_signature);
960    return false;
961  }
962  /* make sure the end of the switch is in range */
963  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
964    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
965                                      << ", switch offset " << switch_offset
966                                      << ", end " << (cur_offset + switch_offset + table_size)
967                                      << ", count " << insn_count;
968    return false;
969  }
970  /* for a sparse switch, verify the keys are in ascending order */
971  if (keys_offset > 0 && switch_count > 1) {
972    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
973    for (uint32_t targ = 1; targ < switch_count; targ++) {
974      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
975                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
976      if (key <= last_key) {
977        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
978                                          << ", this=" << key;
979        return false;
980      }
981      last_key = key;
982    }
983  }
984  /* verify each switch target */
985  for (uint32_t targ = 0; targ < switch_count; targ++) {
986    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
987                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
988    int32_t abs_offset = cur_offset + offset;
989    if (abs_offset < 0 ||
990        abs_offset >= (int32_t) insn_count ||
991        !insn_flags_[abs_offset].IsOpcode()) {
992      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
993                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
994                                        << reinterpret_cast<void*>(cur_offset)
995                                        << "[" << targ << "]";
996      return false;
997    }
998    insn_flags_[abs_offset].SetBranchTarget();
999  }
1000  return true;
1001}
1002
1003bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1004  if (vA > 5) {
1005    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1006    return false;
1007  }
1008  uint16_t registers_size = code_item_->registers_size_;
1009  for (uint32_t idx = 0; idx < vA; idx++) {
1010    if (arg[idx] >= registers_size) {
1011      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1012                                        << ") in non-range invoke (>= " << registers_size << ")";
1013      return false;
1014    }
1015  }
1016
1017  return true;
1018}
1019
1020bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1021  uint16_t registers_size = code_item_->registers_size_;
1022  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1023  // integer overflow when adding them here.
1024  if (vA + vC > registers_size) {
1025    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1026                                      << " in range invoke (> " << registers_size << ")";
1027    return false;
1028  }
1029  return true;
1030}
1031
1032static const std::vector<uint8_t>* CreateLengthPrefixedDexGcMap(
1033    const std::vector<uint8_t>& gc_map) {
1034  std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>;
1035  length_prefixed_gc_map->reserve(gc_map.size() + 4);
1036  length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24);
1037  length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16);
1038  length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8);
1039  length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0);
1040  length_prefixed_gc_map->insert(length_prefixed_gc_map->end(),
1041                                 gc_map.begin(),
1042                                 gc_map.end());
1043  DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size());
1044  DCHECK_EQ(gc_map.size(),
1045            static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) |
1046                                (length_prefixed_gc_map->at(1) << 16) |
1047                                (length_prefixed_gc_map->at(2) << 8) |
1048                                (length_prefixed_gc_map->at(3) << 0)));
1049  return length_prefixed_gc_map;
1050}
1051
1052bool MethodVerifier::VerifyCodeFlow() {
1053  uint16_t registers_size = code_item_->registers_size_;
1054  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1055
1056  if (registers_size * insns_size > 4*1024*1024) {
1057    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1058                 << " insns_size=" << insns_size << ")";
1059  }
1060  /* Create and initialize table holding register status */
1061  reg_table_.Init(kTrackCompilerInterestPoints,
1062                  insn_flags_.get(),
1063                  insns_size,
1064                  registers_size,
1065                  this);
1066
1067
1068  work_line_.reset(RegisterLine::Create(registers_size, this));
1069  saved_line_.reset(RegisterLine::Create(registers_size, this));
1070
1071  /* Initialize register types of method arguments. */
1072  if (!SetTypesFromSignature()) {
1073    DCHECK_NE(failures_.size(), 0U);
1074    std::string prepend("Bad signature in ");
1075    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1076    PrependToLastFailMessage(prepend);
1077    return false;
1078  }
1079  /* Perform code flow verification. */
1080  if (!CodeFlowVerifyMethod()) {
1081    DCHECK_NE(failures_.size(), 0U);
1082    return false;
1083  }
1084
1085  // Compute information for compiler.
1086  if (Runtime::Current()->IsCompiler()) {
1087    MethodReference ref(dex_file_, dex_method_idx_);
1088    bool compile = IsCandidateForCompilation(ref, method_access_flags_);
1089    if (compile) {
1090      /* Generate a register map and add it to the method. */
1091      UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap());
1092      if (map.get() == NULL) {
1093        DCHECK_NE(failures_.size(), 0U);
1094        return false;  // Not a real failure, but a failure to encode
1095      }
1096      if (kIsDebugBuild) {
1097        VerifyGcMap(*map);
1098      }
1099      const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
1100      verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
1101    }
1102
1103    if (has_check_casts_) {
1104      MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1105      if (method_to_safe_casts != NULL) {
1106        SetSafeCastMap(ref, method_to_safe_casts);
1107      }
1108    }
1109
1110    if (has_virtual_or_interface_invokes_) {
1111      MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1112      if (pc_to_concrete_method != NULL) {
1113        SetDevirtMap(ref, pc_to_concrete_method);
1114      }
1115    }
1116  }
1117  return true;
1118}
1119
1120std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1121  DCHECK_EQ(failures_.size(), failure_messages_.size());
1122  if (VLOG_IS_ON(verifier)) {
1123      for (size_t i = 0; i < failures_.size(); ++i) {
1124          os << failure_messages_[i]->str() << "\n";
1125      }
1126  }
1127  return os;
1128}
1129
1130extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1131    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1132  v->Dump(std::cerr);
1133}
1134
1135void MethodVerifier::Dump(std::ostream& os) {
1136  if (code_item_ == NULL) {
1137    os << "Native method\n";
1138    return;
1139  }
1140  {
1141    os << "Register Types:\n";
1142    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1143    std::ostream indent_os(&indent_filter);
1144    reg_types_.Dump(indent_os);
1145  }
1146  os << "Dumping instructions and register lines:\n";
1147  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1148  std::ostream indent_os(&indent_filter);
1149  const Instruction* inst = Instruction::At(code_item_->insns_);
1150  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1151      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1152    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1153    if (reg_line != NULL) {
1154      indent_os << reg_line->Dump() << "\n";
1155    }
1156    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1157    const bool kDumpHexOfInstruction = false;
1158    if (kDumpHexOfInstruction) {
1159      indent_os << inst->DumpHex(5) << " ";
1160    }
1161    indent_os << inst->DumpString(dex_file_) << "\n";
1162    inst = inst->Next();
1163  }
1164}
1165
1166static bool IsPrimitiveDescriptor(char descriptor) {
1167  switch (descriptor) {
1168    case 'I':
1169    case 'C':
1170    case 'S':
1171    case 'B':
1172    case 'Z':
1173    case 'F':
1174    case 'D':
1175    case 'J':
1176      return true;
1177    default:
1178      return false;
1179  }
1180}
1181
1182bool MethodVerifier::SetTypesFromSignature() {
1183  RegisterLine* reg_line = reg_table_.GetLine(0);
1184  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1185  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1186
1187  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1188  // Include the "this" pointer.
1189  size_t cur_arg = 0;
1190  if (!IsStatic()) {
1191    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1192    // argument as uninitialized. This restricts field access until the superclass constructor is
1193    // called.
1194    const RegType& declaring_class = GetDeclaringClass();
1195    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1196      reg_line->SetRegisterType(arg_start + cur_arg,
1197                                reg_types_.UninitializedThisArgument(declaring_class));
1198    } else {
1199      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1200    }
1201    cur_arg++;
1202  }
1203
1204  const DexFile::ProtoId& proto_id =
1205      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1206  DexFileParameterIterator iterator(*dex_file_, proto_id);
1207
1208  for (; iterator.HasNext(); iterator.Next()) {
1209    const char* descriptor = iterator.GetDescriptor();
1210    if (descriptor == NULL) {
1211      LOG(FATAL) << "Null descriptor";
1212    }
1213    if (cur_arg >= expected_args) {
1214      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1215                                        << " args, found more (" << descriptor << ")";
1216      return false;
1217    }
1218    switch (descriptor[0]) {
1219      case 'L':
1220      case '[':
1221        // We assume that reference arguments are initialized. The only way it could be otherwise
1222        // (assuming the caller was verified) is if the current method is <init>, but in that case
1223        // it's effectively considered initialized the instant we reach here (in the sense that we
1224        // can return without doing anything or call virtual methods).
1225        {
1226          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
1227                                                              false);
1228          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1229        }
1230        break;
1231      case 'Z':
1232        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1233        break;
1234      case 'C':
1235        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1236        break;
1237      case 'B':
1238        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1239        break;
1240      case 'I':
1241        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1242        break;
1243      case 'S':
1244        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1245        break;
1246      case 'F':
1247        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1248        break;
1249      case 'J':
1250      case 'D': {
1251        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1252        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1253        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1254        cur_arg++;
1255        break;
1256      }
1257      default:
1258        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1259                                          << descriptor << "'";
1260        return false;
1261    }
1262    cur_arg++;
1263  }
1264  if (cur_arg != expected_args) {
1265    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1266                                      << " arguments, found " << cur_arg;
1267    return false;
1268  }
1269  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1270  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1271  // format. Only major difference from the method argument format is that 'V' is supported.
1272  bool result;
1273  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1274    result = descriptor[1] == '\0';
1275  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1276    size_t i = 0;
1277    do {
1278      i++;
1279    } while (descriptor[i] == '[');  // process leading [
1280    if (descriptor[i] == 'L') {  // object array
1281      do {
1282        i++;  // find closing ;
1283      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1284      result = descriptor[i] == ';';
1285    } else {  // primitive array
1286      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1287    }
1288  } else if (descriptor[0] == 'L') {
1289    // could be more thorough here, but shouldn't be required
1290    size_t i = 0;
1291    do {
1292      i++;
1293    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1294    result = descriptor[i] == ';';
1295  } else {
1296    result = false;
1297  }
1298  if (!result) {
1299    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1300                                      << descriptor << "'";
1301  }
1302  return result;
1303}
1304
1305bool MethodVerifier::CodeFlowVerifyMethod() {
1306  const uint16_t* insns = code_item_->insns_;
1307  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1308
1309  /* Begin by marking the first instruction as "changed". */
1310  insn_flags_[0].SetChanged();
1311  uint32_t start_guess = 0;
1312
1313  /* Continue until no instructions are marked "changed". */
1314  while (true) {
1315    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1316    uint32_t insn_idx = start_guess;
1317    for (; insn_idx < insns_size; insn_idx++) {
1318      if (insn_flags_[insn_idx].IsChanged())
1319        break;
1320    }
1321    if (insn_idx == insns_size) {
1322      if (start_guess != 0) {
1323        /* try again, starting from the top */
1324        start_guess = 0;
1325        continue;
1326      } else {
1327        /* all flags are clear */
1328        break;
1329      }
1330    }
1331    // We carry the working set of registers from instruction to instruction. If this address can
1332    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1333    // "changed" flags, we need to load the set of registers from the table.
1334    // Because we always prefer to continue on to the next instruction, we should never have a
1335    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1336    // target.
1337    work_insn_idx_ = insn_idx;
1338    if (insn_flags_[insn_idx].IsBranchTarget()) {
1339      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1340    } else {
1341#ifndef NDEBUG
1342      /*
1343       * Sanity check: retrieve the stored register line (assuming
1344       * a full table) and make sure it actually matches.
1345       */
1346      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1347      if (register_line != NULL) {
1348        if (work_line_->CompareLine(register_line) != 0) {
1349          Dump(std::cout);
1350          std::cout << info_messages_.str();
1351          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1352                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1353                     << " work_line=" << *work_line_ << "\n"
1354                     << "  expected=" << *register_line;
1355        }
1356      }
1357#endif
1358    }
1359    if (!CodeFlowVerifyInstruction(&start_guess)) {
1360      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1361      prepend += " failed to verify: ";
1362      PrependToLastFailMessage(prepend);
1363      return false;
1364    }
1365    /* Clear "changed" and mark as visited. */
1366    insn_flags_[insn_idx].SetVisited();
1367    insn_flags_[insn_idx].ClearChanged();
1368  }
1369
1370  if (gDebugVerify) {
1371    /*
1372     * Scan for dead code. There's nothing "evil" about dead code
1373     * (besides the wasted space), but it indicates a flaw somewhere
1374     * down the line, possibly in the verifier.
1375     *
1376     * If we've substituted "always throw" instructions into the stream,
1377     * we are almost certainly going to have some dead code.
1378     */
1379    int dead_start = -1;
1380    uint32_t insn_idx = 0;
1381    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1382      /*
1383       * Switch-statement data doesn't get "visited" by scanner. It
1384       * may or may not be preceded by a padding NOP (for alignment).
1385       */
1386      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1387          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1388          insns[insn_idx] == Instruction::kArrayDataSignature ||
1389          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1390           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1391            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1392            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1393        insn_flags_[insn_idx].SetVisited();
1394      }
1395
1396      if (!insn_flags_[insn_idx].IsVisited()) {
1397        if (dead_start < 0)
1398          dead_start = insn_idx;
1399      } else if (dead_start >= 0) {
1400        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1401                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1402        dead_start = -1;
1403      }
1404    }
1405    if (dead_start >= 0) {
1406      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1407                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1408    }
1409    // To dump the state of the verify after a method, do something like:
1410    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1411    //     "boolean java.lang.String.equals(java.lang.Object)") {
1412    //   LOG(INFO) << info_messages_.str();
1413    // }
1414  }
1415  return true;
1416}
1417
1418bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1419  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1420  // We want the state _before_ the instruction, for the case where the dex pc we're
1421  // interested in is itself a monitor-enter instruction (which is a likely place
1422  // for a thread to be suspended).
1423  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1424    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1425    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1426      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1427    }
1428  }
1429
1430  /*
1431   * Once we finish decoding the instruction, we need to figure out where
1432   * we can go from here. There are three possible ways to transfer
1433   * control to another statement:
1434   *
1435   * (1) Continue to the next instruction. Applies to all but
1436   *     unconditional branches, method returns, and exception throws.
1437   * (2) Branch to one or more possible locations. Applies to branches
1438   *     and switch statements.
1439   * (3) Exception handlers. Applies to any instruction that can
1440   *     throw an exception that is handled by an encompassing "try"
1441   *     block.
1442   *
1443   * We can also return, in which case there is no successor instruction
1444   * from this point.
1445   *
1446   * The behavior can be determined from the opcode flags.
1447   */
1448  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1449  const Instruction* inst = Instruction::At(insns);
1450  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1451
1452  int32_t branch_target = 0;
1453  bool just_set_result = false;
1454  if (gDebugVerify) {
1455    // Generate processing back trace to debug verifier
1456    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1457                    << *work_line_.get() << "\n";
1458  }
1459
1460  /*
1461   * Make a copy of the previous register state. If the instruction
1462   * can throw an exception, we will copy/merge this into the "catch"
1463   * address rather than work_line, because we don't want the result
1464   * from the "successful" code path (e.g. a check-cast that "improves"
1465   * a type) to be visible to the exception handler.
1466   */
1467  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1468    saved_line_->CopyFromLine(work_line_.get());
1469  } else {
1470#ifndef NDEBUG
1471    saved_line_->FillWithGarbage();
1472#endif
1473  }
1474
1475
1476  // We need to ensure the work line is consistent while performing validation. When we spot a
1477  // peephole pattern we compute a new line for either the fallthrough instruction or the
1478  // branch target.
1479  UniquePtr<RegisterLine> branch_line;
1480  UniquePtr<RegisterLine> fallthrough_line;
1481
1482  switch (inst->Opcode()) {
1483    case Instruction::NOP:
1484      /*
1485       * A "pure" NOP has no effect on anything. Data tables start with
1486       * a signature that looks like a NOP; if we see one of these in
1487       * the course of executing code then we have a problem.
1488       */
1489      if (inst->VRegA_10x() != 0) {
1490        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1491      }
1492      break;
1493
1494    case Instruction::MOVE:
1495      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1496      break;
1497    case Instruction::MOVE_FROM16:
1498      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1499      break;
1500    case Instruction::MOVE_16:
1501      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1502      break;
1503    case Instruction::MOVE_WIDE:
1504      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1505      break;
1506    case Instruction::MOVE_WIDE_FROM16:
1507      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1508      break;
1509    case Instruction::MOVE_WIDE_16:
1510      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1511      break;
1512    case Instruction::MOVE_OBJECT:
1513      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1514      break;
1515    case Instruction::MOVE_OBJECT_FROM16:
1516      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1517      break;
1518    case Instruction::MOVE_OBJECT_16:
1519      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1520      break;
1521
1522    /*
1523     * The move-result instructions copy data out of a "pseudo-register"
1524     * with the results from the last method invocation. In practice we
1525     * might want to hold the result in an actual CPU register, so the
1526     * Dalvik spec requires that these only appear immediately after an
1527     * invoke or filled-new-array.
1528     *
1529     * These calls invalidate the "result" register. (This is now
1530     * redundant with the reset done below, but it can make the debug info
1531     * easier to read in some cases.)
1532     */
1533    case Instruction::MOVE_RESULT:
1534      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1535      break;
1536    case Instruction::MOVE_RESULT_WIDE:
1537      work_line_->CopyResultRegister2(inst->VRegA_11x());
1538      break;
1539    case Instruction::MOVE_RESULT_OBJECT:
1540      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1541      break;
1542
1543    case Instruction::MOVE_EXCEPTION: {
1544      /*
1545       * This statement can only appear as the first instruction in an exception handler. We verify
1546       * that as part of extracting the exception type from the catch block list.
1547       */
1548      const RegType& res_type = GetCaughtExceptionType();
1549      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1550      break;
1551    }
1552    case Instruction::RETURN_VOID:
1553      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1554        if (!GetMethodReturnType().IsConflict()) {
1555          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1556        }
1557      }
1558      break;
1559    case Instruction::RETURN:
1560      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1561        /* check the method signature */
1562        const RegType& return_type = GetMethodReturnType();
1563        if (!return_type.IsCategory1Types()) {
1564          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1565                                            << return_type;
1566        } else {
1567          // Compilers may generate synthetic functions that write byte values into boolean fields.
1568          // Also, it may use integer values for boolean, byte, short, and character return types.
1569          const uint32_t vregA = inst->VRegA_11x();
1570          const RegType& src_type = work_line_->GetRegisterType(vregA);
1571          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1572                          ((return_type.IsBoolean() || return_type.IsByte() ||
1573                           return_type.IsShort() || return_type.IsChar()) &&
1574                           src_type.IsInteger()));
1575          /* check the register contents */
1576          bool success =
1577              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1578          if (!success) {
1579            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1580          }
1581        }
1582      }
1583      break;
1584    case Instruction::RETURN_WIDE:
1585      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1586        /* check the method signature */
1587        const RegType& return_type = GetMethodReturnType();
1588        if (!return_type.IsCategory2Types()) {
1589          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1590        } else {
1591          /* check the register contents */
1592          const uint32_t vregA = inst->VRegA_11x();
1593          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1594          if (!success) {
1595            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1596          }
1597        }
1598      }
1599      break;
1600    case Instruction::RETURN_OBJECT:
1601      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1602        const RegType& return_type = GetMethodReturnType();
1603        if (!return_type.IsReferenceTypes()) {
1604          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1605        } else {
1606          /* return_type is the *expected* return type, not register value */
1607          DCHECK(!return_type.IsZero());
1608          DCHECK(!return_type.IsUninitializedReference());
1609          const uint32_t vregA = inst->VRegA_11x();
1610          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1611          // Disallow returning uninitialized values and verify that the reference in vAA is an
1612          // instance of the "return_type"
1613          if (reg_type.IsUninitializedTypes()) {
1614            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1615                                              << reg_type << "'";
1616          } else if (!return_type.IsAssignableFrom(reg_type)) {
1617            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1618              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1619                  << "' or '" << reg_type << "'";
1620            } else {
1621              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1622                  << "', but expected from declaration '" << return_type << "'";
1623            }
1624          }
1625        }
1626      }
1627      break;
1628
1629      /* could be boolean, int, float, or a null reference */
1630    case Instruction::CONST_4: {
1631      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1632      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1633      break;
1634    }
1635    case Instruction::CONST_16: {
1636      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1637      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1638      break;
1639    }
1640    case Instruction::CONST:
1641      work_line_->SetRegisterType(inst->VRegA_31i(),
1642                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1643      break;
1644    case Instruction::CONST_HIGH16:
1645      work_line_->SetRegisterType(inst->VRegA_21h(),
1646                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1647      break;
1648      /* could be long or double; resolved upon use */
1649    case Instruction::CONST_WIDE_16: {
1650      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1651      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1652      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1653      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1654      break;
1655    }
1656    case Instruction::CONST_WIDE_32: {
1657      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1658      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1659      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1660      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1661      break;
1662    }
1663    case Instruction::CONST_WIDE: {
1664      int64_t val = inst->VRegB_51l();
1665      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1666      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1667      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1668      break;
1669    }
1670    case Instruction::CONST_WIDE_HIGH16: {
1671      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1672      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1673      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1674      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1675      break;
1676    }
1677    case Instruction::CONST_STRING:
1678      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1679      break;
1680    case Instruction::CONST_STRING_JUMBO:
1681      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1682      break;
1683    case Instruction::CONST_CLASS: {
1684      // Get type from instruction if unresolved then we need an access check
1685      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1686      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1687      // Register holds class, ie its type is class, on error it will hold Conflict.
1688      work_line_->SetRegisterType(inst->VRegA_21c(),
1689                                  res_type.IsConflict() ? res_type
1690                                                        : reg_types_.JavaLangClass(true));
1691      break;
1692    }
1693    case Instruction::MONITOR_ENTER:
1694      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1695      break;
1696    case Instruction::MONITOR_EXIT:
1697      /*
1698       * monitor-exit instructions are odd. They can throw exceptions,
1699       * but when they do they act as if they succeeded and the PC is
1700       * pointing to the following instruction. (This behavior goes back
1701       * to the need to handle asynchronous exceptions, a now-deprecated
1702       * feature that Dalvik doesn't support.)
1703       *
1704       * In practice we don't need to worry about this. The only
1705       * exceptions that can be thrown from monitor-exit are for a
1706       * null reference and -exit without a matching -enter. If the
1707       * structured locking checks are working, the former would have
1708       * failed on the -enter instruction, and the latter is impossible.
1709       *
1710       * This is fortunate, because issue 3221411 prevents us from
1711       * chasing the "can throw" path when monitor verification is
1712       * enabled. If we can fully verify the locking we can ignore
1713       * some catch blocks (which will show up as "dead" code when
1714       * we skip them here); if we can't, then the code path could be
1715       * "live" so we still need to check it.
1716       */
1717      opcode_flags &= ~Instruction::kThrow;
1718      work_line_->PopMonitor(inst->VRegA_11x());
1719      break;
1720
1721    case Instruction::CHECK_CAST:
1722    case Instruction::INSTANCE_OF: {
1723      /*
1724       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1725       * could be a "upcast" -- not expected, so we don't try to address it.)
1726       *
1727       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1728       * dec_insn.vA when branching to a handler.
1729       */
1730      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1731      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1732      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1733      if (res_type.IsConflict()) {
1734        DCHECK_NE(failures_.size(), 0U);
1735        if (!is_checkcast) {
1736          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1737        }
1738        break;  // bad class
1739      }
1740      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1741      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1742      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1743      if (!res_type.IsNonZeroReferenceTypes()) {
1744        if (is_checkcast) {
1745          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1746        } else {
1747          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1748        }
1749      } else if (!orig_type.IsReferenceTypes()) {
1750        if (is_checkcast) {
1751          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1752        } else {
1753          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1754        }
1755      } else {
1756        if (is_checkcast) {
1757          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1758        } else {
1759          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1760        }
1761      }
1762      break;
1763    }
1764    case Instruction::ARRAY_LENGTH: {
1765      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1766      if (res_type.IsReferenceTypes()) {
1767        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1768          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1769        } else {
1770          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1771        }
1772      }
1773      break;
1774    }
1775    case Instruction::NEW_INSTANCE: {
1776      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1777      if (res_type.IsConflict()) {
1778        DCHECK_NE(failures_.size(), 0U);
1779        break;  // bad class
1780      }
1781      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1782      // can't create an instance of an interface or abstract class */
1783      if (!res_type.IsInstantiableTypes()) {
1784        Fail(VERIFY_ERROR_INSTANTIATION)
1785            << "new-instance on primitive, interface or abstract class" << res_type;
1786        // Soft failure so carry on to set register type.
1787      }
1788      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1789      // Any registers holding previous allocations from this address that have not yet been
1790      // initialized must be marked invalid.
1791      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1792      // add the new uninitialized reference to the register state
1793      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1794      break;
1795    }
1796    case Instruction::NEW_ARRAY:
1797      VerifyNewArray(inst, false, false);
1798      break;
1799    case Instruction::FILLED_NEW_ARRAY:
1800      VerifyNewArray(inst, true, false);
1801      just_set_result = true;  // Filled new array sets result register
1802      break;
1803    case Instruction::FILLED_NEW_ARRAY_RANGE:
1804      VerifyNewArray(inst, true, true);
1805      just_set_result = true;  // Filled new array range sets result register
1806      break;
1807    case Instruction::CMPL_FLOAT:
1808    case Instruction::CMPG_FLOAT:
1809      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1810        break;
1811      }
1812      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1813        break;
1814      }
1815      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1816      break;
1817    case Instruction::CMPL_DOUBLE:
1818    case Instruction::CMPG_DOUBLE:
1819      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1820                                              reg_types_.DoubleHi())) {
1821        break;
1822      }
1823      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1824                                              reg_types_.DoubleHi())) {
1825        break;
1826      }
1827      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1828      break;
1829    case Instruction::CMP_LONG:
1830      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1831                                              reg_types_.LongHi())) {
1832        break;
1833      }
1834      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1835                                              reg_types_.LongHi())) {
1836        break;
1837      }
1838      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1839      break;
1840    case Instruction::THROW: {
1841      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1842      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1843        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1844            << "thrown class " << res_type << " not instanceof Throwable";
1845      }
1846      break;
1847    }
1848    case Instruction::GOTO:
1849    case Instruction::GOTO_16:
1850    case Instruction::GOTO_32:
1851      /* no effect on or use of registers */
1852      break;
1853
1854    case Instruction::PACKED_SWITCH:
1855    case Instruction::SPARSE_SWITCH:
1856      /* verify that vAA is an integer, or can be converted to one */
1857      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1858      break;
1859
1860    case Instruction::FILL_ARRAY_DATA: {
1861      /* Similar to the verification done for APUT */
1862      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1863      /* array_type can be null if the reg type is Zero */
1864      if (!array_type.IsZero()) {
1865        if (!array_type.IsArrayTypes()) {
1866          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1867                                            << array_type;
1868        } else {
1869          const RegType& component_type = reg_types_.GetComponentType(array_type,
1870                                                                      class_loader_->get());
1871          DCHECK(!component_type.IsConflict());
1872          if (component_type.IsNonZeroReferenceTypes()) {
1873            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1874                                              << component_type;
1875          } else {
1876            // Now verify if the element width in the table matches the element width declared in
1877            // the array
1878            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1879            if (array_data[0] != Instruction::kArrayDataSignature) {
1880              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1881            } else {
1882              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1883              // Since we don't compress the data in Dex, expect to see equal width of data stored
1884              // in the table and expected from the array class.
1885              if (array_data[1] != elem_width) {
1886                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1887                                                  << " vs " << elem_width << ")";
1888              }
1889            }
1890          }
1891        }
1892      }
1893      break;
1894    }
1895    case Instruction::IF_EQ:
1896    case Instruction::IF_NE: {
1897      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1898      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1899      bool mismatch = false;
1900      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1901        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1902      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1903        mismatch = !reg_type2.IsReferenceTypes();
1904      } else {  // both integral?
1905        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1906      }
1907      if (mismatch) {
1908        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1909                                          << reg_type2 << ") must both be references or integral";
1910      }
1911      break;
1912    }
1913    case Instruction::IF_LT:
1914    case Instruction::IF_GE:
1915    case Instruction::IF_GT:
1916    case Instruction::IF_LE: {
1917      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1918      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1919      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1920        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1921                                          << reg_type2 << ") must be integral";
1922      }
1923      break;
1924    }
1925    case Instruction::IF_EQZ:
1926    case Instruction::IF_NEZ: {
1927      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1928      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1929        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1930                                          << " unexpected as arg to if-eqz/if-nez";
1931      }
1932
1933      // Find previous instruction - its existence is a precondition to peephole optimization.
1934      uint32_t instance_of_idx = 0;
1935      if (0 != work_insn_idx_) {
1936        instance_of_idx = work_insn_idx_ - 1;
1937        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1938          instance_of_idx--;
1939        }
1940        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1941      } else {
1942        break;
1943      }
1944
1945      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1946
1947      /* Check for peep-hole pattern of:
1948       *    ...;
1949       *    instance-of vX, vY, T;
1950       *    ifXXX vX, label ;
1951       *    ...;
1952       * label:
1953       *    ...;
1954       * and sharpen the type of vY to be type T.
1955       * Note, this pattern can't be if:
1956       *  - if there are other branches to this branch,
1957       *  - when vX == vY.
1958       */
1959      if (!CurrentInsnFlags()->IsBranchTarget() &&
1960          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1961          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1962          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1963        // Check that the we are not attempting conversion to interface types,
1964        // which is not done because of the multiple inheritance implications.
1965        // Also don't change the type if it would result in an upcast.
1966        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1967        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1968
1969        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1970            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1971          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1972          if (inst->Opcode() == Instruction::IF_EQZ) {
1973            fallthrough_line.reset(update_line);
1974          } else {
1975            branch_line.reset(update_line);
1976          }
1977          update_line->CopyFromLine(work_line_.get());
1978          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1979          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1980            // See if instance-of was preceded by a move-object operation, common due to the small
1981            // register encoding space of instance-of, and propagate type information to the source
1982            // of the move-object.
1983            uint32_t move_idx = instance_of_idx - 1;
1984            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1985              move_idx--;
1986            }
1987            CHECK(insn_flags_[move_idx].IsOpcode());
1988            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1989            switch (move_inst->Opcode()) {
1990              case Instruction::MOVE_OBJECT:
1991                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1992                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1993                }
1994                break;
1995              case Instruction::MOVE_OBJECT_FROM16:
1996                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1997                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1998                }
1999                break;
2000              case Instruction::MOVE_OBJECT_16:
2001                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2002                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2003                }
2004                break;
2005              default:
2006                break;
2007            }
2008          }
2009        }
2010      }
2011
2012      break;
2013    }
2014    case Instruction::IF_LTZ:
2015    case Instruction::IF_GEZ:
2016    case Instruction::IF_GTZ:
2017    case Instruction::IF_LEZ: {
2018      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2019      if (!reg_type.IsIntegralTypes()) {
2020        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2021                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2022      }
2023      break;
2024    }
2025    case Instruction::AGET_BOOLEAN:
2026      VerifyAGet(inst, reg_types_.Boolean(), true);
2027      break;
2028    case Instruction::AGET_BYTE:
2029      VerifyAGet(inst, reg_types_.Byte(), true);
2030      break;
2031    case Instruction::AGET_CHAR:
2032      VerifyAGet(inst, reg_types_.Char(), true);
2033      break;
2034    case Instruction::AGET_SHORT:
2035      VerifyAGet(inst, reg_types_.Short(), true);
2036      break;
2037    case Instruction::AGET:
2038      VerifyAGet(inst, reg_types_.Integer(), true);
2039      break;
2040    case Instruction::AGET_WIDE:
2041      VerifyAGet(inst, reg_types_.LongLo(), true);
2042      break;
2043    case Instruction::AGET_OBJECT:
2044      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2045      break;
2046
2047    case Instruction::APUT_BOOLEAN:
2048      VerifyAPut(inst, reg_types_.Boolean(), true);
2049      break;
2050    case Instruction::APUT_BYTE:
2051      VerifyAPut(inst, reg_types_.Byte(), true);
2052      break;
2053    case Instruction::APUT_CHAR:
2054      VerifyAPut(inst, reg_types_.Char(), true);
2055      break;
2056    case Instruction::APUT_SHORT:
2057      VerifyAPut(inst, reg_types_.Short(), true);
2058      break;
2059    case Instruction::APUT:
2060      VerifyAPut(inst, reg_types_.Integer(), true);
2061      break;
2062    case Instruction::APUT_WIDE:
2063      VerifyAPut(inst, reg_types_.LongLo(), true);
2064      break;
2065    case Instruction::APUT_OBJECT:
2066      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2067      break;
2068
2069    case Instruction::IGET_BOOLEAN:
2070      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2071      break;
2072    case Instruction::IGET_BYTE:
2073      VerifyISGet(inst, reg_types_.Byte(), true, false);
2074      break;
2075    case Instruction::IGET_CHAR:
2076      VerifyISGet(inst, reg_types_.Char(), true, false);
2077      break;
2078    case Instruction::IGET_SHORT:
2079      VerifyISGet(inst, reg_types_.Short(), true, false);
2080      break;
2081    case Instruction::IGET:
2082      VerifyISGet(inst, reg_types_.Integer(), true, false);
2083      break;
2084    case Instruction::IGET_WIDE:
2085      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2086      break;
2087    case Instruction::IGET_OBJECT:
2088      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2089      break;
2090
2091    case Instruction::IPUT_BOOLEAN:
2092      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2093      break;
2094    case Instruction::IPUT_BYTE:
2095      VerifyISPut(inst, reg_types_.Byte(), true, false);
2096      break;
2097    case Instruction::IPUT_CHAR:
2098      VerifyISPut(inst, reg_types_.Char(), true, false);
2099      break;
2100    case Instruction::IPUT_SHORT:
2101      VerifyISPut(inst, reg_types_.Short(), true, false);
2102      break;
2103    case Instruction::IPUT:
2104      VerifyISPut(inst, reg_types_.Integer(), true, false);
2105      break;
2106    case Instruction::IPUT_WIDE:
2107      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2108      break;
2109    case Instruction::IPUT_OBJECT:
2110      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2111      break;
2112
2113    case Instruction::SGET_BOOLEAN:
2114      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2115      break;
2116    case Instruction::SGET_BYTE:
2117      VerifyISGet(inst, reg_types_.Byte(), true, true);
2118      break;
2119    case Instruction::SGET_CHAR:
2120      VerifyISGet(inst, reg_types_.Char(), true, true);
2121      break;
2122    case Instruction::SGET_SHORT:
2123      VerifyISGet(inst, reg_types_.Short(), true, true);
2124      break;
2125    case Instruction::SGET:
2126      VerifyISGet(inst, reg_types_.Integer(), true, true);
2127      break;
2128    case Instruction::SGET_WIDE:
2129      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2130      break;
2131    case Instruction::SGET_OBJECT:
2132      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2133      break;
2134
2135    case Instruction::SPUT_BOOLEAN:
2136      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2137      break;
2138    case Instruction::SPUT_BYTE:
2139      VerifyISPut(inst, reg_types_.Byte(), true, true);
2140      break;
2141    case Instruction::SPUT_CHAR:
2142      VerifyISPut(inst, reg_types_.Char(), true, true);
2143      break;
2144    case Instruction::SPUT_SHORT:
2145      VerifyISPut(inst, reg_types_.Short(), true, true);
2146      break;
2147    case Instruction::SPUT:
2148      VerifyISPut(inst, reg_types_.Integer(), true, true);
2149      break;
2150    case Instruction::SPUT_WIDE:
2151      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2152      break;
2153    case Instruction::SPUT_OBJECT:
2154      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2155      break;
2156
2157    case Instruction::INVOKE_VIRTUAL:
2158    case Instruction::INVOKE_VIRTUAL_RANGE:
2159    case Instruction::INVOKE_SUPER:
2160    case Instruction::INVOKE_SUPER_RANGE: {
2161      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2162                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2163      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2164                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2165      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2166                                                                   is_range, is_super);
2167      const RegType* return_type = nullptr;
2168      if (called_method != nullptr) {
2169        MethodHelper mh(called_method);
2170        mirror::Class* return_type_class = mh.GetReturnType();
2171        if (return_type_class != nullptr) {
2172          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2173                                              return_type_class->CannotBeAssignedFromOtherTypes());
2174        } else {
2175          Thread* self = Thread::Current();
2176          DCHECK(self->IsExceptionPending());
2177          self->ClearException();
2178        }
2179      }
2180      if (return_type == nullptr) {
2181        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2182        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2183        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2184        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2185        return_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2186      }
2187      if (!return_type->IsLowHalf()) {
2188        work_line_->SetResultRegisterType(*return_type);
2189      } else {
2190        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2191      }
2192      just_set_result = true;
2193      break;
2194    }
2195    case Instruction::INVOKE_DIRECT:
2196    case Instruction::INVOKE_DIRECT_RANGE: {
2197      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2198      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2199                                                                   is_range, false);
2200      const char* return_type_descriptor;
2201      bool is_constructor;
2202      if (called_method == NULL) {
2203        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2204        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2205        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2206        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2207        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2208      } else {
2209        is_constructor = called_method->IsConstructor();
2210        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2211      }
2212      if (is_constructor) {
2213        /*
2214         * Some additional checks when calling a constructor. We know from the invocation arg check
2215         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2216         * that to require that called_method->klass is the same as this->klass or this->super,
2217         * allowing the latter only if the "this" argument is the same as the "this" argument to
2218         * this method (which implies that we're in a constructor ourselves).
2219         */
2220        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2221        if (this_type.IsConflict())  // failure.
2222          break;
2223
2224        /* no null refs allowed (?) */
2225        if (this_type.IsZero()) {
2226          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2227          break;
2228        }
2229
2230        /* must be in same class or in superclass */
2231        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2232        // TODO: re-enable constructor type verification
2233        // if (this_super_klass.IsConflict()) {
2234          // Unknown super class, fail so we re-check at runtime.
2235          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2236          // break;
2237        // }
2238
2239        /* arg must be an uninitialized reference */
2240        if (!this_type.IsUninitializedTypes()) {
2241          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2242              << this_type;
2243          break;
2244        }
2245
2246        /*
2247         * Replace the uninitialized reference with an initialized one. We need to do this for all
2248         * registers that have the same object instance in them, not just the "this" register.
2249         */
2250        work_line_->MarkRefsAsInitialized(this_type);
2251      }
2252      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(),
2253                                                             return_type_descriptor, false);
2254      if (!return_type.IsLowHalf()) {
2255        work_line_->SetResultRegisterType(return_type);
2256      } else {
2257        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2258      }
2259      just_set_result = true;
2260      break;
2261    }
2262    case Instruction::INVOKE_STATIC:
2263    case Instruction::INVOKE_STATIC_RANGE: {
2264        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2265        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2266                                                                     METHOD_STATIC,
2267                                                                     is_range,
2268                                                                     false);
2269        const char* descriptor;
2270        if (called_method == NULL) {
2271          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2272          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2273          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2274          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2275        } else {
2276          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2277        }
2278        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2279                                                                false);
2280        if (!return_type.IsLowHalf()) {
2281          work_line_->SetResultRegisterType(return_type);
2282        } else {
2283          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2284        }
2285        just_set_result = true;
2286      }
2287      break;
2288    case Instruction::INVOKE_INTERFACE:
2289    case Instruction::INVOKE_INTERFACE_RANGE: {
2290      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2291      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2292                                                                METHOD_INTERFACE,
2293                                                                is_range,
2294                                                                false);
2295      if (abs_method != NULL) {
2296        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2297        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2298          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2299              << PrettyMethod(abs_method) << "'";
2300          break;
2301        }
2302      }
2303      /* Get the type of the "this" arg, which should either be a sub-interface of called
2304       * interface or Object (see comments in RegType::JoinClass).
2305       */
2306      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2307      if (this_type.IsZero()) {
2308        /* null pointer always passes (and always fails at runtime) */
2309      } else {
2310        if (this_type.IsUninitializedTypes()) {
2311          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2312              << this_type;
2313          break;
2314        }
2315        // In the past we have tried to assert that "called_interface" is assignable
2316        // from "this_type.GetClass()", however, as we do an imprecise Join
2317        // (RegType::JoinClass) we don't have full information on what interfaces are
2318        // implemented by "this_type". For example, two classes may implement the same
2319        // interfaces and have a common parent that doesn't implement the interface. The
2320        // join will set "this_type" to the parent class and a test that this implements
2321        // the interface will incorrectly fail.
2322      }
2323      /*
2324       * We don't have an object instance, so we can't find the concrete method. However, all of
2325       * the type information is in the abstract method, so we're good.
2326       */
2327      const char* descriptor;
2328      if (abs_method == NULL) {
2329        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2330        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2331        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2332        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2333      } else {
2334        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2335      }
2336      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2337                                                             false);
2338      if (!return_type.IsLowHalf()) {
2339        work_line_->SetResultRegisterType(return_type);
2340      } else {
2341        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2342      }
2343      just_set_result = true;
2344      break;
2345    }
2346    case Instruction::NEG_INT:
2347    case Instruction::NOT_INT:
2348      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2349      break;
2350    case Instruction::NEG_LONG:
2351    case Instruction::NOT_LONG:
2352      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2353                                   reg_types_.LongLo(), reg_types_.LongHi());
2354      break;
2355    case Instruction::NEG_FLOAT:
2356      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2357      break;
2358    case Instruction::NEG_DOUBLE:
2359      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2360                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2361      break;
2362    case Instruction::INT_TO_LONG:
2363      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2364                                     reg_types_.Integer());
2365      break;
2366    case Instruction::INT_TO_FLOAT:
2367      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2368      break;
2369    case Instruction::INT_TO_DOUBLE:
2370      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2371                                     reg_types_.Integer());
2372      break;
2373    case Instruction::LONG_TO_INT:
2374      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2375                                       reg_types_.LongLo(), reg_types_.LongHi());
2376      break;
2377    case Instruction::LONG_TO_FLOAT:
2378      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2379                                       reg_types_.LongLo(), reg_types_.LongHi());
2380      break;
2381    case Instruction::LONG_TO_DOUBLE:
2382      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2383                                   reg_types_.LongLo(), reg_types_.LongHi());
2384      break;
2385    case Instruction::FLOAT_TO_INT:
2386      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2387      break;
2388    case Instruction::FLOAT_TO_LONG:
2389      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2390                                     reg_types_.Float());
2391      break;
2392    case Instruction::FLOAT_TO_DOUBLE:
2393      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2394                                     reg_types_.Float());
2395      break;
2396    case Instruction::DOUBLE_TO_INT:
2397      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2398                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2399      break;
2400    case Instruction::DOUBLE_TO_LONG:
2401      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2402                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2403      break;
2404    case Instruction::DOUBLE_TO_FLOAT:
2405      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2406                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2407      break;
2408    case Instruction::INT_TO_BYTE:
2409      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2410      break;
2411    case Instruction::INT_TO_CHAR:
2412      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2413      break;
2414    case Instruction::INT_TO_SHORT:
2415      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2416      break;
2417
2418    case Instruction::ADD_INT:
2419    case Instruction::SUB_INT:
2420    case Instruction::MUL_INT:
2421    case Instruction::REM_INT:
2422    case Instruction::DIV_INT:
2423    case Instruction::SHL_INT:
2424    case Instruction::SHR_INT:
2425    case Instruction::USHR_INT:
2426      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2427                                reg_types_.Integer(), false);
2428      break;
2429    case Instruction::AND_INT:
2430    case Instruction::OR_INT:
2431    case Instruction::XOR_INT:
2432      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2433                                reg_types_.Integer(), true);
2434      break;
2435    case Instruction::ADD_LONG:
2436    case Instruction::SUB_LONG:
2437    case Instruction::MUL_LONG:
2438    case Instruction::DIV_LONG:
2439    case Instruction::REM_LONG:
2440    case Instruction::AND_LONG:
2441    case Instruction::OR_LONG:
2442    case Instruction::XOR_LONG:
2443      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2444                                    reg_types_.LongLo(), reg_types_.LongHi(),
2445                                    reg_types_.LongLo(), reg_types_.LongHi());
2446      break;
2447    case Instruction::SHL_LONG:
2448    case Instruction::SHR_LONG:
2449    case Instruction::USHR_LONG:
2450      /* shift distance is Int, making these different from other binary operations */
2451      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2452                                         reg_types_.Integer());
2453      break;
2454    case Instruction::ADD_FLOAT:
2455    case Instruction::SUB_FLOAT:
2456    case Instruction::MUL_FLOAT:
2457    case Instruction::DIV_FLOAT:
2458    case Instruction::REM_FLOAT:
2459      work_line_->CheckBinaryOp(inst,
2460                                reg_types_.Float(),
2461                                reg_types_.Float(),
2462                                reg_types_.Float(),
2463                                false);
2464      break;
2465    case Instruction::ADD_DOUBLE:
2466    case Instruction::SUB_DOUBLE:
2467    case Instruction::MUL_DOUBLE:
2468    case Instruction::DIV_DOUBLE:
2469    case Instruction::REM_DOUBLE:
2470      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2471                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2472                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2473      break;
2474    case Instruction::ADD_INT_2ADDR:
2475    case Instruction::SUB_INT_2ADDR:
2476    case Instruction::MUL_INT_2ADDR:
2477    case Instruction::REM_INT_2ADDR:
2478    case Instruction::SHL_INT_2ADDR:
2479    case Instruction::SHR_INT_2ADDR:
2480    case Instruction::USHR_INT_2ADDR:
2481      work_line_->CheckBinaryOp2addr(inst,
2482                                     reg_types_.Integer(),
2483                                     reg_types_.Integer(),
2484                                     reg_types_.Integer(),
2485                                     false);
2486      break;
2487    case Instruction::AND_INT_2ADDR:
2488    case Instruction::OR_INT_2ADDR:
2489    case Instruction::XOR_INT_2ADDR:
2490      work_line_->CheckBinaryOp2addr(inst,
2491                                     reg_types_.Integer(),
2492                                     reg_types_.Integer(),
2493                                     reg_types_.Integer(),
2494                                     true);
2495      break;
2496    case Instruction::DIV_INT_2ADDR:
2497      work_line_->CheckBinaryOp2addr(inst,
2498                                     reg_types_.Integer(),
2499                                     reg_types_.Integer(),
2500                                     reg_types_.Integer(),
2501                                     false);
2502      break;
2503    case Instruction::ADD_LONG_2ADDR:
2504    case Instruction::SUB_LONG_2ADDR:
2505    case Instruction::MUL_LONG_2ADDR:
2506    case Instruction::DIV_LONG_2ADDR:
2507    case Instruction::REM_LONG_2ADDR:
2508    case Instruction::AND_LONG_2ADDR:
2509    case Instruction::OR_LONG_2ADDR:
2510    case Instruction::XOR_LONG_2ADDR:
2511      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2512                                         reg_types_.LongLo(), reg_types_.LongHi(),
2513                                         reg_types_.LongLo(), reg_types_.LongHi());
2514      break;
2515    case Instruction::SHL_LONG_2ADDR:
2516    case Instruction::SHR_LONG_2ADDR:
2517    case Instruction::USHR_LONG_2ADDR:
2518      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2519                                              reg_types_.Integer());
2520      break;
2521    case Instruction::ADD_FLOAT_2ADDR:
2522    case Instruction::SUB_FLOAT_2ADDR:
2523    case Instruction::MUL_FLOAT_2ADDR:
2524    case Instruction::DIV_FLOAT_2ADDR:
2525    case Instruction::REM_FLOAT_2ADDR:
2526      work_line_->CheckBinaryOp2addr(inst,
2527                                     reg_types_.Float(),
2528                                     reg_types_.Float(),
2529                                     reg_types_.Float(),
2530                                     false);
2531      break;
2532    case Instruction::ADD_DOUBLE_2ADDR:
2533    case Instruction::SUB_DOUBLE_2ADDR:
2534    case Instruction::MUL_DOUBLE_2ADDR:
2535    case Instruction::DIV_DOUBLE_2ADDR:
2536    case Instruction::REM_DOUBLE_2ADDR:
2537      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2538                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2539                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2540      break;
2541    case Instruction::ADD_INT_LIT16:
2542    case Instruction::RSUB_INT:
2543    case Instruction::MUL_INT_LIT16:
2544    case Instruction::DIV_INT_LIT16:
2545    case Instruction::REM_INT_LIT16:
2546      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2547      break;
2548    case Instruction::AND_INT_LIT16:
2549    case Instruction::OR_INT_LIT16:
2550    case Instruction::XOR_INT_LIT16:
2551      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2552      break;
2553    case Instruction::ADD_INT_LIT8:
2554    case Instruction::RSUB_INT_LIT8:
2555    case Instruction::MUL_INT_LIT8:
2556    case Instruction::DIV_INT_LIT8:
2557    case Instruction::REM_INT_LIT8:
2558    case Instruction::SHL_INT_LIT8:
2559    case Instruction::SHR_INT_LIT8:
2560    case Instruction::USHR_INT_LIT8:
2561      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2562      break;
2563    case Instruction::AND_INT_LIT8:
2564    case Instruction::OR_INT_LIT8:
2565    case Instruction::XOR_INT_LIT8:
2566      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2567      break;
2568
2569    // Special instructions.
2570    case Instruction::RETURN_VOID_BARRIER:
2571      DCHECK(Runtime::Current()->IsStarted()) << PrettyMethod(dex_method_idx_, *dex_file_);
2572      if (!IsConstructor() || IsStatic()) {
2573          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2574      }
2575      break;
2576    // Note: the following instructions encode offsets derived from class linking.
2577    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2578    // meaning if the class linking and resolution were successful.
2579    case Instruction::IGET_QUICK:
2580      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2581      break;
2582    case Instruction::IGET_WIDE_QUICK:
2583      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2584      break;
2585    case Instruction::IGET_OBJECT_QUICK:
2586      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2587      break;
2588    case Instruction::IPUT_QUICK:
2589      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2590      break;
2591    case Instruction::IPUT_WIDE_QUICK:
2592      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2593      break;
2594    case Instruction::IPUT_OBJECT_QUICK:
2595      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2596      break;
2597    case Instruction::INVOKE_VIRTUAL_QUICK:
2598    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2599      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2600      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2601      if (called_method != NULL) {
2602        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2603        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2604                                                               false);
2605        if (!return_type.IsLowHalf()) {
2606          work_line_->SetResultRegisterType(return_type);
2607        } else {
2608          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2609        }
2610        just_set_result = true;
2611      }
2612      break;
2613    }
2614
2615    /* These should never appear during verification. */
2616    case Instruction::UNUSED_3E:
2617    case Instruction::UNUSED_3F:
2618    case Instruction::UNUSED_40:
2619    case Instruction::UNUSED_41:
2620    case Instruction::UNUSED_42:
2621    case Instruction::UNUSED_43:
2622    case Instruction::UNUSED_79:
2623    case Instruction::UNUSED_7A:
2624    case Instruction::UNUSED_EB:
2625    case Instruction::UNUSED_EC:
2626    case Instruction::UNUSED_ED:
2627    case Instruction::UNUSED_EE:
2628    case Instruction::UNUSED_EF:
2629    case Instruction::UNUSED_F0:
2630    case Instruction::UNUSED_F1:
2631    case Instruction::UNUSED_F2:
2632    case Instruction::UNUSED_F3:
2633    case Instruction::UNUSED_F4:
2634    case Instruction::UNUSED_F5:
2635    case Instruction::UNUSED_F6:
2636    case Instruction::UNUSED_F7:
2637    case Instruction::UNUSED_F8:
2638    case Instruction::UNUSED_F9:
2639    case Instruction::UNUSED_FA:
2640    case Instruction::UNUSED_FB:
2641    case Instruction::UNUSED_FC:
2642    case Instruction::UNUSED_FD:
2643    case Instruction::UNUSED_FE:
2644    case Instruction::UNUSED_FF:
2645      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2646      break;
2647
2648    /*
2649     * DO NOT add a "default" clause here. Without it the compiler will
2650     * complain if an instruction is missing (which is desirable).
2651     */
2652  }  // end - switch (dec_insn.opcode)
2653
2654  if (have_pending_hard_failure_) {
2655    if (Runtime::Current()->IsCompiler()) {
2656      /* When compiling, check that the last failure is a hard failure */
2657      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2658    }
2659    /* immediate failure, reject class */
2660    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2661    return false;
2662  } else if (have_pending_runtime_throw_failure_) {
2663    /* checking interpreter will throw, mark following code as unreachable */
2664    opcode_flags = Instruction::kThrow;
2665  }
2666  /*
2667   * If we didn't just set the result register, clear it out. This ensures that you can only use
2668   * "move-result" immediately after the result is set. (We could check this statically, but it's
2669   * not expensive and it makes our debugging output cleaner.)
2670   */
2671  if (!just_set_result) {
2672    work_line_->SetResultTypeToUnknown();
2673  }
2674
2675
2676
2677  /*
2678   * Handle "branch". Tag the branch target.
2679   *
2680   * NOTE: instructions like Instruction::EQZ provide information about the
2681   * state of the register when the branch is taken or not taken. For example,
2682   * somebody could get a reference field, check it for zero, and if the
2683   * branch is taken immediately store that register in a boolean field
2684   * since the value is known to be zero. We do not currently account for
2685   * that, and will reject the code.
2686   *
2687   * TODO: avoid re-fetching the branch target
2688   */
2689  if ((opcode_flags & Instruction::kBranch) != 0) {
2690    bool isConditional, selfOkay;
2691    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2692      /* should never happen after static verification */
2693      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2694      return false;
2695    }
2696    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2697    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2698      return false;
2699    }
2700    /* update branch target, set "changed" if appropriate */
2701    if (NULL != branch_line.get()) {
2702      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2703        return false;
2704      }
2705    } else {
2706      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2707        return false;
2708      }
2709    }
2710  }
2711
2712  /*
2713   * Handle "switch". Tag all possible branch targets.
2714   *
2715   * We've already verified that the table is structurally sound, so we
2716   * just need to walk through and tag the targets.
2717   */
2718  if ((opcode_flags & Instruction::kSwitch) != 0) {
2719    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2720    const uint16_t* switch_insns = insns + offset_to_switch;
2721    int switch_count = switch_insns[1];
2722    int offset_to_targets, targ;
2723
2724    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2725      /* 0 = sig, 1 = count, 2/3 = first key */
2726      offset_to_targets = 4;
2727    } else {
2728      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2729      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2730      offset_to_targets = 2 + 2 * switch_count;
2731    }
2732
2733    /* verify each switch target */
2734    for (targ = 0; targ < switch_count; targ++) {
2735      int offset;
2736      uint32_t abs_offset;
2737
2738      /* offsets are 32-bit, and only partly endian-swapped */
2739      offset = switch_insns[offset_to_targets + targ * 2] |
2740         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2741      abs_offset = work_insn_idx_ + offset;
2742      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2743      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2744        return false;
2745      }
2746      if (!UpdateRegisters(abs_offset, work_line_.get()))
2747        return false;
2748    }
2749  }
2750
2751  /*
2752   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2753   * "try" block when they throw, control transfers out of the method.)
2754   */
2755  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2756    bool within_catch_all = false;
2757    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2758
2759    for (; iterator.HasNext(); iterator.Next()) {
2760      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2761        within_catch_all = true;
2762      }
2763      /*
2764       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2765       * "work_regs", because at runtime the exception will be thrown before the instruction
2766       * modifies any registers.
2767       */
2768      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2769        return false;
2770      }
2771    }
2772
2773    /*
2774     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2775     * instruction. This does apply to monitor-exit because of async exception handling.
2776     */
2777    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2778      /*
2779       * The state in work_line reflects the post-execution state. If the current instruction is a
2780       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2781       * it will do so before grabbing the lock).
2782       */
2783      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2784        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2785            << "expected to be within a catch-all for an instruction where a monitor is held";
2786        return false;
2787      }
2788    }
2789  }
2790
2791  /* Handle "continue". Tag the next consecutive instruction.
2792   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2793   *        because it changes work_line_ when performing peephole optimization
2794   *        and this change should not be used in those cases.
2795   */
2796  if ((opcode_flags & Instruction::kContinue) != 0) {
2797    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2798    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2799      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2800      return false;
2801    }
2802    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2803    // next instruction isn't one.
2804    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2805      return false;
2806    }
2807    if (NULL != fallthrough_line.get()) {
2808      // Make workline consistent with fallthrough computed from peephole optimization.
2809      work_line_->CopyFromLine(fallthrough_line.get());
2810    }
2811    if (insn_flags_[next_insn_idx].IsReturn()) {
2812      // For returns we only care about the operand to the return, all other registers are dead.
2813      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2814      Instruction::Code opcode = ret_inst->Opcode();
2815      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2816        work_line_->MarkAllRegistersAsConflicts();
2817      } else {
2818        if (opcode == Instruction::RETURN_WIDE) {
2819          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2820        } else {
2821          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2822        }
2823      }
2824    }
2825    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2826    if (next_line != NULL) {
2827      // Merge registers into what we have for the next instruction,
2828      // and set the "changed" flag if needed.
2829      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2830        return false;
2831      }
2832    } else {
2833      /*
2834       * We're not recording register data for the next instruction, so we don't know what the
2835       * prior state was. We have to assume that something has changed and re-evaluate it.
2836       */
2837      insn_flags_[next_insn_idx].SetChanged();
2838    }
2839  }
2840
2841  /* If we're returning from the method, make sure monitor stack is empty. */
2842  if ((opcode_flags & Instruction::kReturn) != 0) {
2843    if (!work_line_->VerifyMonitorStackEmpty()) {
2844      return false;
2845    }
2846  }
2847
2848  /*
2849   * Update start_guess. Advance to the next instruction of that's
2850   * possible, otherwise use the branch target if one was found. If
2851   * neither of those exists we're in a return or throw; leave start_guess
2852   * alone and let the caller sort it out.
2853   */
2854  if ((opcode_flags & Instruction::kContinue) != 0) {
2855    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2856  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2857    /* we're still okay if branch_target is zero */
2858    *start_guess = work_insn_idx_ + branch_target;
2859  }
2860
2861  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2862  DCHECK(insn_flags_[*start_guess].IsOpcode());
2863
2864  return true;
2865}  // NOLINT(readability/fn_size)
2866
2867const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2868  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2869  const RegType& referrer = GetDeclaringClass();
2870  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2871  const RegType& result =
2872      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2873                                           klass->CannotBeAssignedFromOtherTypes())
2874                    : reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2875  if (result.IsConflict()) {
2876    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2877        << "' in " << referrer;
2878    return result;
2879  }
2880  if (klass == NULL && !result.IsUnresolvedTypes()) {
2881    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2882  }
2883  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2884  // check at runtime if access is allowed and so pass here. If result is
2885  // primitive, skip the access check.
2886  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2887      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2888    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2889                                    << referrer << "' -> '" << result << "'";
2890  }
2891  return result;
2892}
2893
2894const RegType& MethodVerifier::GetCaughtExceptionType() {
2895  const RegType* common_super = NULL;
2896  if (code_item_->tries_size_ != 0) {
2897    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2898    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2899    for (uint32_t i = 0; i < handlers_size; i++) {
2900      CatchHandlerIterator iterator(handlers_ptr);
2901      for (; iterator.HasNext(); iterator.Next()) {
2902        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2903          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2904            common_super = &reg_types_.JavaLangThrowable(false);
2905          } else {
2906            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2907            if (common_super == NULL) {
2908              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2909              // as that is caught at runtime
2910              common_super = &exception;
2911            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2912              if (exception.IsUnresolvedTypes()) {
2913                // We don't know enough about the type. Fail here and let runtime handle it.
2914                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2915                return exception;
2916              } else {
2917                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2918                return reg_types_.Conflict();
2919              }
2920            } else if (common_super->Equals(exception)) {
2921              // odd case, but nothing to do
2922            } else {
2923              common_super = &common_super->Merge(exception, &reg_types_);
2924              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2925            }
2926          }
2927        }
2928      }
2929      handlers_ptr = iterator.EndDataPointer();
2930    }
2931  }
2932  if (common_super == NULL) {
2933    /* no catch blocks, or no catches with classes we can find */
2934    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2935    return reg_types_.Conflict();
2936  }
2937  return *common_super;
2938}
2939
2940mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2941                                                               MethodType method_type) {
2942  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2943  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2944  if (klass_type.IsConflict()) {
2945    std::string append(" in attempt to access method ");
2946    append += dex_file_->GetMethodName(method_id);
2947    AppendToLastFailMessage(append);
2948    return NULL;
2949  }
2950  if (klass_type.IsUnresolvedTypes()) {
2951    return NULL;  // Can't resolve Class so no more to do here
2952  }
2953  mirror::Class* klass = klass_type.GetClass();
2954  const RegType& referrer = GetDeclaringClass();
2955  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2956  if (res_method == NULL) {
2957    const char* name = dex_file_->GetMethodName(method_id);
2958    const Signature signature = dex_file_->GetMethodSignature(method_id);
2959
2960    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2961      res_method = klass->FindDirectMethod(name, signature);
2962    } else if (method_type == METHOD_INTERFACE) {
2963      res_method = klass->FindInterfaceMethod(name, signature);
2964    } else {
2965      res_method = klass->FindVirtualMethod(name, signature);
2966    }
2967    if (res_method != NULL) {
2968      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2969    } else {
2970      // If a virtual or interface method wasn't found with the expected type, look in
2971      // the direct methods. This can happen when the wrong invoke type is used or when
2972      // a class has changed, and will be flagged as an error in later checks.
2973      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2974        res_method = klass->FindDirectMethod(name, signature);
2975      }
2976      if (res_method == NULL) {
2977        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2978                                     << PrettyDescriptor(klass) << "." << name
2979                                     << " " << signature;
2980        return NULL;
2981      }
2982    }
2983  }
2984  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2985  // enforce them here.
2986  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2987    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2988                                      << PrettyMethod(res_method);
2989    return NULL;
2990  }
2991  // Disallow any calls to class initializers.
2992  if (MethodHelper(res_method).IsClassInitializer()) {
2993    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2994                                      << PrettyMethod(res_method);
2995    return NULL;
2996  }
2997  // Check if access is allowed.
2998  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2999    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3000                                     << " from " << referrer << ")";
3001    return res_method;
3002  }
3003  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3004  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3005    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3006                                      << PrettyMethod(res_method);
3007    return NULL;
3008  }
3009  // Check that interface methods match interface classes.
3010  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3011    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3012                                    << " is in an interface class " << PrettyClass(klass);
3013    return NULL;
3014  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3015    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3016                                    << " is in a non-interface class " << PrettyClass(klass);
3017    return NULL;
3018  }
3019  // See if the method type implied by the invoke instruction matches the access flags for the
3020  // target method.
3021  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3022      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3023      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3024      ) {
3025    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3026                                       " type of " << PrettyMethod(res_method);
3027    return NULL;
3028  }
3029  return res_method;
3030}
3031
3032mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3033                                                             MethodType method_type,
3034                                                             bool is_range,
3035                                                             bool is_super) {
3036  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3037  // we're making.
3038  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3039  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3040  if (res_method == NULL) {  // error or class is unresolved
3041    return NULL;
3042  }
3043
3044  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3045  // has a vtable entry for the target method.
3046  if (is_super) {
3047    DCHECK(method_type == METHOD_VIRTUAL);
3048    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3049    if (super.IsUnresolvedTypes()) {
3050      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3051                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3052                                   << " to super " << PrettyMethod(res_method);
3053      return NULL;
3054    }
3055    mirror::Class* super_klass = super.GetClass();
3056    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3057      MethodHelper mh(res_method);
3058      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3059                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3060                                   << " to super " << super
3061                                   << "." << mh.GetName()
3062                                   << mh.GetSignature();
3063      return NULL;
3064    }
3065  }
3066  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3067  // match the call to the signature. Also, we might be calling through an abstract method
3068  // definition (which doesn't have register count values).
3069  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3070  /* caught by static verifier */
3071  DCHECK(is_range || expected_args <= 5);
3072  if (expected_args > code_item_->outs_size_) {
3073    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3074        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3075    return NULL;
3076  }
3077
3078  /*
3079   * Check the "this" argument, which must be an instance of the class that declared the method.
3080   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3081   * rigorous check here (which is okay since we have to do it at runtime).
3082   */
3083  size_t actual_args = 0;
3084  if (!res_method->IsStatic()) {
3085    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3086    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3087      return NULL;
3088    }
3089    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3090      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3091      return NULL;
3092    }
3093    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3094      mirror::Class* klass = res_method->GetDeclaringClass();
3095      const RegType& res_method_class =
3096          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3097                               klass->CannotBeAssignedFromOtherTypes());
3098      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3099        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3100            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3101            << "' not instance of '" << res_method_class << "'";
3102        return NULL;
3103      }
3104    }
3105    actual_args++;
3106  }
3107  /*
3108   * Process the target method's signature. This signature may or may not
3109   * have been verified, so we can't assume it's properly formed.
3110   */
3111  MethodHelper mh(res_method);
3112  const DexFile::TypeList* params = mh.GetParameterTypeList();
3113  size_t params_size = params == NULL ? 0 : params->Size();
3114  uint32_t arg[5];
3115  if (!is_range) {
3116    inst->GetArgs(arg);
3117  }
3118  for (size_t param_index = 0; param_index < params_size; param_index++) {
3119    if (actual_args >= expected_args) {
3120      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3121          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3122          << " (where longs/doubles count twice).";
3123      return NULL;
3124    }
3125    const char* descriptor =
3126        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3127    if (descriptor == NULL) {
3128      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3129          << " missing signature component";
3130      return NULL;
3131    }
3132    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3133    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3134    if (reg_type.IsIntegralTypes()) {
3135      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3136      if (!src_type.IsIntegralTypes()) {
3137        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3138                                          << " but expected " << reg_type;
3139        return res_method;
3140      }
3141    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3142      return res_method;
3143    }
3144    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3145  }
3146  if (actual_args != expected_args) {
3147    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3148        << " expected " << expected_args << " arguments, found " << actual_args;
3149    return NULL;
3150  } else {
3151    return res_method;
3152  }
3153}
3154
3155mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3156                                                         RegisterLine* reg_line, bool is_range) {
3157  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3158         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3159  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3160  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3161    return NULL;
3162  } else if (actual_arg_type.IsZero()) {  // Invoke on "null" instance: we can't go further.
3163    return NULL;
3164  }
3165  mirror::Class* this_class = NULL;
3166  if (!actual_arg_type.IsUnresolvedTypes()) {
3167    this_class = actual_arg_type.GetClass();
3168  } else {
3169    const std::string& descriptor(actual_arg_type.GetDescriptor());
3170    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3171    this_class = class_linker->FindClass(descriptor.c_str(), *class_loader_);
3172    if (this_class == NULL) {
3173      Thread* self = Thread::Current();
3174      self->ClearException();
3175      // Look for a system class
3176      SirtRef<mirror::ClassLoader> null_class_loader(self, nullptr);
3177      this_class = class_linker->FindClass(descriptor.c_str(), null_class_loader);
3178    }
3179  }
3180  if (this_class == NULL) {
3181    return NULL;
3182  }
3183  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3184  CHECK(vtable != NULL);
3185  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3186  CHECK(vtable_index < vtable->GetLength());
3187  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3188  CHECK(!Thread::Current()->IsExceptionPending());
3189  return res_method;
3190}
3191
3192mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3193                                                                     bool is_range) {
3194  DCHECK(Runtime::Current()->IsStarted());
3195  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3196                                                             is_range);
3197  if (res_method == NULL) {
3198    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3199    return NULL;
3200  }
3201  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3202
3203  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3204  // match the call to the signature. Also, we might be calling through an abstract method
3205  // definition (which doesn't have register count values).
3206  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3207  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3208    return NULL;
3209  }
3210  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3211  /* caught by static verifier */
3212  DCHECK(is_range || expected_args <= 5);
3213  if (expected_args > code_item_->outs_size_) {
3214    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3215        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3216    return NULL;
3217  }
3218
3219  /*
3220   * Check the "this" argument, which must be an instance of the class that declared the method.
3221   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3222   * rigorous check here (which is okay since we have to do it at runtime).
3223   */
3224  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3225    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3226    return NULL;
3227  }
3228  if (!actual_arg_type.IsZero()) {
3229    mirror::Class* klass = res_method->GetDeclaringClass();
3230    const RegType& res_method_class =
3231        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3232                             klass->CannotBeAssignedFromOtherTypes());
3233    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3234      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3235          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3236          << "' not instance of '" << res_method_class << "'";
3237      return NULL;
3238    }
3239  }
3240  /*
3241   * Process the target method's signature. This signature may or may not
3242   * have been verified, so we can't assume it's properly formed.
3243   */
3244  MethodHelper mh(res_method);
3245  const DexFile::TypeList* params = mh.GetParameterTypeList();
3246  size_t params_size = params == NULL ? 0 : params->Size();
3247  uint32_t arg[5];
3248  if (!is_range) {
3249    inst->GetArgs(arg);
3250  }
3251  size_t actual_args = 1;
3252  for (size_t param_index = 0; param_index < params_size; param_index++) {
3253    if (actual_args >= expected_args) {
3254      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3255                                        << "'. Expected " << expected_args
3256                                         << " arguments, processing argument " << actual_args
3257                                        << " (where longs/doubles count twice).";
3258      return NULL;
3259    }
3260    const char* descriptor =
3261        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3262    if (descriptor == NULL) {
3263      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3264                                        << " missing signature component";
3265      return NULL;
3266    }
3267    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3268    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3269    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3270      return res_method;
3271    }
3272    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3273  }
3274  if (actual_args != expected_args) {
3275    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3276              << " expected " << expected_args << " arguments, found " << actual_args;
3277    return NULL;
3278  } else {
3279    return res_method;
3280  }
3281}
3282
3283void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3284  uint32_t type_idx;
3285  if (!is_filled) {
3286    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3287    type_idx = inst->VRegC_22c();
3288  } else if (!is_range) {
3289    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3290    type_idx = inst->VRegB_35c();
3291  } else {
3292    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3293    type_idx = inst->VRegB_3rc();
3294  }
3295  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3296  if (res_type.IsConflict()) {  // bad class
3297    DCHECK_NE(failures_.size(), 0U);
3298  } else {
3299    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3300    if (!res_type.IsArrayTypes()) {
3301      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3302    } else if (!is_filled) {
3303      /* make sure "size" register is valid type */
3304      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3305      /* set register type to array class */
3306      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3307      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3308    } else {
3309      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3310      // the list and fail. It's legal, if silly, for arg_count to be zero.
3311      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->get());
3312      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3313      uint32_t arg[5];
3314      if (!is_range) {
3315        inst->GetArgs(arg);
3316      }
3317      for (size_t ui = 0; ui < arg_count; ui++) {
3318        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3319        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3320          work_line_->SetResultRegisterType(reg_types_.Conflict());
3321          return;
3322        }
3323      }
3324      // filled-array result goes into "result" register
3325      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3326      work_line_->SetResultRegisterType(precise_type);
3327    }
3328  }
3329}
3330
3331void MethodVerifier::VerifyAGet(const Instruction* inst,
3332                                const RegType& insn_type, bool is_primitive) {
3333  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3334  if (!index_type.IsArrayIndexTypes()) {
3335    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3336  } else {
3337    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3338    if (array_type.IsZero()) {
3339      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3340      // instruction type. TODO: have a proper notion of bottom here.
3341      if (!is_primitive || insn_type.IsCategory1Types()) {
3342        // Reference or category 1
3343        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3344      } else {
3345        // Category 2
3346        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3347                                        reg_types_.FromCat2ConstHi(0, false));
3348      }
3349    } else if (!array_type.IsArrayTypes()) {
3350      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3351    } else {
3352      /* verify the class */
3353      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3354      if (!component_type.IsReferenceTypes() && !is_primitive) {
3355        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3356            << " source for aget-object";
3357      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3358        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3359            << " source for category 1 aget";
3360      } else if (is_primitive && !insn_type.Equals(component_type) &&
3361                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3362                 (insn_type.IsLong() && component_type.IsDouble()))) {
3363        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3364            << " incompatible with aget of type " << insn_type;
3365      } else {
3366        // Use knowledge of the field type which is stronger than the type inferred from the
3367        // instruction, which can't differentiate object types and ints from floats, longs from
3368        // doubles.
3369        if (!component_type.IsLowHalf()) {
3370          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3371        } else {
3372          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3373                                          component_type.HighHalf(&reg_types_));
3374        }
3375      }
3376    }
3377  }
3378}
3379
3380void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3381                                        const uint32_t vregA) {
3382  // Primitive assignability rules are weaker than regular assignability rules.
3383  bool instruction_compatible;
3384  bool value_compatible;
3385  const RegType& value_type = work_line_->GetRegisterType(vregA);
3386  if (target_type.IsIntegralTypes()) {
3387    instruction_compatible = target_type.Equals(insn_type);
3388    value_compatible = value_type.IsIntegralTypes();
3389  } else if (target_type.IsFloat()) {
3390    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3391    value_compatible = value_type.IsFloatTypes();
3392  } else if (target_type.IsLong()) {
3393    instruction_compatible = insn_type.IsLong();
3394    value_compatible = value_type.IsLongTypes();
3395  } else if (target_type.IsDouble()) {
3396    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3397    value_compatible = value_type.IsDoubleTypes();
3398  } else {
3399    instruction_compatible = false;  // reference with primitive store
3400    value_compatible = false;  // unused
3401  }
3402  if (!instruction_compatible) {
3403    // This is a global failure rather than a class change failure as the instructions and
3404    // the descriptors for the type should have been consistent within the same file at
3405    // compile time.
3406    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3407        << "' but expected type '" << target_type << "'";
3408    return;
3409  }
3410  if (!value_compatible) {
3411    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3412        << " of type " << value_type << " but expected " << target_type << " for put";
3413    return;
3414  }
3415}
3416
3417void MethodVerifier::VerifyAPut(const Instruction* inst,
3418                             const RegType& insn_type, bool is_primitive) {
3419  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3420  if (!index_type.IsArrayIndexTypes()) {
3421    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3422  } else {
3423    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3424    if (array_type.IsZero()) {
3425      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3426      // instruction type.
3427    } else if (!array_type.IsArrayTypes()) {
3428      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3429    } else {
3430      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3431      const uint32_t vregA = inst->VRegA_23x();
3432      if (is_primitive) {
3433        VerifyPrimitivePut(component_type, insn_type, vregA);
3434      } else {
3435        if (!component_type.IsReferenceTypes()) {
3436          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3437              << " source for aput-object";
3438        } else {
3439          // The instruction agrees with the type of array, confirm the value to be stored does too
3440          // Note: we use the instruction type (rather than the component type) for aput-object as
3441          // incompatible classes will be caught at runtime as an array store exception
3442          work_line_->VerifyRegisterType(vregA, insn_type);
3443        }
3444      }
3445    }
3446  }
3447}
3448
3449mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3450  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3451  // Check access to class
3452  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3453  if (klass_type.IsConflict()) {  // bad class
3454    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3455                                         field_idx, dex_file_->GetFieldName(field_id),
3456                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3457    return NULL;
3458  }
3459  if (klass_type.IsUnresolvedTypes()) {
3460    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3461  }
3462  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3463  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3464                                                          *class_loader_);
3465  if (field == NULL) {
3466    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3467              << dex_file_->GetFieldName(field_id) << ") in "
3468              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3469    DCHECK(Thread::Current()->IsExceptionPending());
3470    Thread::Current()->ClearException();
3471    return NULL;
3472  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3473                                                  field->GetAccessFlags())) {
3474    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3475                                    << " from " << GetDeclaringClass();
3476    return NULL;
3477  } else if (!field->IsStatic()) {
3478    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3479    return NULL;
3480  }
3481  return field;
3482}
3483
3484mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3485  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3486  // Check access to class
3487  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3488  if (klass_type.IsConflict()) {
3489    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3490                                         field_idx, dex_file_->GetFieldName(field_id),
3491                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3492    return NULL;
3493  }
3494  if (klass_type.IsUnresolvedTypes()) {
3495    return NULL;  // Can't resolve Class so no more to do here
3496  }
3497  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3498  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3499                                                          *class_loader_);
3500  if (field == NULL) {
3501    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3502              << dex_file_->GetFieldName(field_id) << ") in "
3503              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3504    DCHECK(Thread::Current()->IsExceptionPending());
3505    Thread::Current()->ClearException();
3506    return NULL;
3507  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3508                                                  field->GetAccessFlags())) {
3509    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3510                                    << " from " << GetDeclaringClass();
3511    return NULL;
3512  } else if (field->IsStatic()) {
3513    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3514                                    << " to not be static";
3515    return NULL;
3516  } else if (obj_type.IsZero()) {
3517    // Cannot infer and check type, however, access will cause null pointer exception
3518    return field;
3519  } else {
3520    mirror::Class* klass = field->GetDeclaringClass();
3521    const RegType& field_klass =
3522        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3523                             klass, klass->CannotBeAssignedFromOtherTypes());
3524    if (obj_type.IsUninitializedTypes() &&
3525        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3526            !field_klass.Equals(GetDeclaringClass()))) {
3527      // Field accesses through uninitialized references are only allowable for constructors where
3528      // the field is declared in this class
3529      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3530                                        << " of a not fully initialized object within the context"
3531                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3532      return NULL;
3533    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3534      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3535      // of C1. For resolution to occur the declared class of the field must be compatible with
3536      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3537      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3538                                  << " from object of type " << obj_type;
3539      return NULL;
3540    } else {
3541      return field;
3542    }
3543  }
3544}
3545
3546void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3547                                 bool is_primitive, bool is_static) {
3548  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3549  mirror::ArtField* field;
3550  if (is_static) {
3551    field = GetStaticField(field_idx);
3552  } else {
3553    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3554    field = GetInstanceField(object_type, field_idx);
3555  }
3556  const RegType* field_type = nullptr;
3557  if (field != NULL) {
3558    FieldHelper fh(field);
3559    mirror::Class* field_type_class = fh.GetType(false);
3560    if (field_type_class != nullptr) {
3561      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3562                                         field_type_class->CannotBeAssignedFromOtherTypes());
3563    }
3564  }
3565  if (field_type == nullptr) {
3566    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3567    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3568    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3569  }
3570  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3571  if (is_primitive) {
3572    if (field_type->Equals(insn_type) ||
3573        (field_type->IsFloat() && insn_type.IsInteger()) ||
3574        (field_type->IsDouble() && insn_type.IsLong())) {
3575      // expected that read is of the correct primitive type or that int reads are reading
3576      // floats or long reads are reading doubles
3577    } else {
3578      // This is a global failure rather than a class change failure as the instructions and
3579      // the descriptors for the type should have been consistent within the same file at
3580      // compile time
3581      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3582                                        << " to be of type '" << insn_type
3583                                        << "' but found type '" << field_type << "' in get";
3584      return;
3585    }
3586  } else {
3587    if (!insn_type.IsAssignableFrom(*field_type)) {
3588      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3589                                        << " to be compatible with type '" << insn_type
3590                                        << "' but found type '" << field_type
3591                                        << "' in get-object";
3592      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3593      return;
3594    }
3595  }
3596  if (!field_type->IsLowHalf()) {
3597    work_line_->SetRegisterType(vregA, *field_type);
3598  } else {
3599    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3600  }
3601}
3602
3603void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3604                                 bool is_primitive, bool is_static) {
3605  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3606  mirror::ArtField* field;
3607  if (is_static) {
3608    field = GetStaticField(field_idx);
3609  } else {
3610    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3611    field = GetInstanceField(object_type, field_idx);
3612  }
3613  const RegType* field_type = nullptr;
3614  if (field != NULL) {
3615    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3616      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3617                                      << " from other class " << GetDeclaringClass();
3618      return;
3619    }
3620    FieldHelper fh(field);
3621    mirror::Class* field_type_class = fh.GetType(false);
3622    if (field_type_class != nullptr) {
3623      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3624                                         field_type_class->CannotBeAssignedFromOtherTypes());
3625    }
3626  }
3627  if (field_type == nullptr) {
3628    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3629    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3630    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3631  }
3632  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3633  if (is_primitive) {
3634    VerifyPrimitivePut(*field_type, insn_type, vregA);
3635  } else {
3636    if (!insn_type.IsAssignableFrom(*field_type)) {
3637      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3638                                        << " to be compatible with type '" << insn_type
3639                                        << "' but found type '" << field_type
3640                                        << "' in put-object";
3641      return;
3642    }
3643    work_line_->VerifyRegisterType(vregA, *field_type);
3644  }
3645}
3646
3647// Look for an instance field with this offset.
3648// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3649static mirror::ArtField* FindInstanceFieldWithOffset(const mirror::Class* klass,
3650                                                  uint32_t field_offset)
3651    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3652  const mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3653  if (instance_fields != NULL) {
3654    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3655      mirror::ArtField* field = instance_fields->Get(i);
3656      if (field->GetOffset().Uint32Value() == field_offset) {
3657        return field;
3658      }
3659    }
3660  }
3661  // We did not find field in class: look into superclass.
3662  if (klass->GetSuperClass() != NULL) {
3663    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3664  } else {
3665    return NULL;
3666  }
3667}
3668
3669// Returns the access field of a quick field access (iget/iput-quick) or NULL
3670// if it cannot be found.
3671mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3672                                                   RegisterLine* reg_line) {
3673  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3674         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3675         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3676         inst->Opcode() == Instruction::IPUT_QUICK ||
3677         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3678         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3679  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3680  mirror::Class* object_class = NULL;
3681  if (!object_type.IsUnresolvedTypes()) {
3682    object_class = object_type.GetClass();
3683  } else {
3684    // We need to resolve the class from its descriptor.
3685    const std::string& descriptor(object_type.GetDescriptor());
3686    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3687    Thread* self = Thread::Current();
3688    object_class = class_linker->FindClass(descriptor.c_str(), *class_loader_);
3689    if (object_class == NULL) {
3690      self->ClearException();
3691      // Look for a system class
3692      SirtRef<mirror::ClassLoader> null_class_loader(self, nullptr);
3693      object_class = class_linker->FindClass(descriptor.c_str(), null_class_loader);
3694    }
3695  }
3696  if (object_class == NULL) {
3697    // Failed to get the Class* from reg type.
3698    LOG(WARNING) << "Failed to get Class* from " << object_type;
3699    return NULL;
3700  }
3701  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3702  return FindInstanceFieldWithOffset(object_class, field_offset);
3703}
3704
3705void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3706                                     bool is_primitive) {
3707  DCHECK(Runtime::Current()->IsStarted());
3708  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3709  if (field == NULL) {
3710    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3711    return;
3712  }
3713  FieldHelper fh(field);
3714  mirror::Class* field_type_class = fh.GetType(false);
3715  const RegType* field_type;
3716  if (field_type_class != nullptr) {
3717    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3718                                       field_type_class->CannotBeAssignedFromOtherTypes());
3719  } else {
3720    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3721                                            fh.GetTypeDescriptor(), false);
3722  }
3723  const uint32_t vregA = inst->VRegA_22c();
3724  if (is_primitive) {
3725    if (field_type->Equals(insn_type) ||
3726        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3727        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3728      // expected that read is of the correct primitive type or that int reads are reading
3729      // floats or long reads are reading doubles
3730    } else {
3731      // This is a global failure rather than a class change failure as the instructions and
3732      // the descriptors for the type should have been consistent within the same file at
3733      // compile time
3734      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3735                                        << " to be of type '" << insn_type
3736                                        << "' but found type '" << field_type << "' in get";
3737      return;
3738    }
3739  } else {
3740    if (!insn_type.IsAssignableFrom(*field_type)) {
3741      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3742                                        << " to be compatible with type '" << insn_type
3743                                        << "' but found type '" << field_type
3744                                        << "' in get-object";
3745      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3746      return;
3747    }
3748  }
3749  if (!field_type->IsLowHalf()) {
3750    work_line_->SetRegisterType(vregA, *field_type);
3751  } else {
3752    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3753  }
3754}
3755
3756void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3757                                     bool is_primitive) {
3758  DCHECK(Runtime::Current()->IsStarted());
3759  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3760  if (field == NULL) {
3761    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3762    return;
3763  }
3764  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3765  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3766  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3767  if (field != NULL) {
3768    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3769      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3770                                      << " from other class " << GetDeclaringClass();
3771      return;
3772    }
3773  }
3774  const uint32_t vregA = inst->VRegA_22c();
3775  if (is_primitive) {
3776    // Primitive field assignability rules are weaker than regular assignability rules
3777    bool instruction_compatible;
3778    bool value_compatible;
3779    const RegType& value_type = work_line_->GetRegisterType(vregA);
3780    if (field_type.IsIntegralTypes()) {
3781      instruction_compatible = insn_type.IsIntegralTypes();
3782      value_compatible = value_type.IsIntegralTypes();
3783    } else if (field_type.IsFloat()) {
3784      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3785      value_compatible = value_type.IsFloatTypes();
3786    } else if (field_type.IsLong()) {
3787      instruction_compatible = insn_type.IsLong();
3788      value_compatible = value_type.IsLongTypes();
3789    } else if (field_type.IsDouble()) {
3790      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3791      value_compatible = value_type.IsDoubleTypes();
3792    } else {
3793      instruction_compatible = false;  // reference field with primitive store
3794      value_compatible = false;  // unused
3795    }
3796    if (!instruction_compatible) {
3797      // This is a global failure rather than a class change failure as the instructions and
3798      // the descriptors for the type should have been consistent within the same file at
3799      // compile time
3800      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3801                                        << " to be of type '" << insn_type
3802                                        << "' but found type '" << field_type
3803                                        << "' in put";
3804      return;
3805    }
3806    if (!value_compatible) {
3807      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3808          << " of type " << value_type
3809          << " but expected " << field_type
3810          << " for store to " << PrettyField(field) << " in put";
3811      return;
3812    }
3813  } else {
3814    if (!insn_type.IsAssignableFrom(field_type)) {
3815      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3816                                        << " to be compatible with type '" << insn_type
3817                                        << "' but found type '" << field_type
3818                                        << "' in put-object";
3819      return;
3820    }
3821    work_line_->VerifyRegisterType(vregA, field_type);
3822  }
3823}
3824
3825bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3826  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3827    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3828    return false;
3829  }
3830  return true;
3831}
3832
3833bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3834  bool changed = true;
3835  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3836  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3837    /*
3838     * We haven't processed this instruction before, and we haven't touched the registers here, so
3839     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3840     * only way a register can transition out of "unknown", so this is not just an optimization.)
3841     */
3842    if (!insn_flags_[next_insn].IsReturn()) {
3843      target_line->CopyFromLine(merge_line);
3844    } else {
3845      // Verify that the monitor stack is empty on return.
3846      if (!merge_line->VerifyMonitorStackEmpty()) {
3847        return false;
3848      }
3849      // For returns we only care about the operand to the return, all other registers are dead.
3850      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3851      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3852      Instruction::Code opcode = ret_inst->Opcode();
3853      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3854        target_line->MarkAllRegistersAsConflicts();
3855      } else {
3856        target_line->CopyFromLine(merge_line);
3857        if (opcode == Instruction::RETURN_WIDE) {
3858          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3859        } else {
3860          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3861        }
3862      }
3863    }
3864  } else {
3865    UniquePtr<RegisterLine> copy(gDebugVerify ?
3866                                 RegisterLine::Create(target_line->NumRegs(), this) :
3867                                 NULL);
3868    if (gDebugVerify) {
3869      copy->CopyFromLine(target_line);
3870    }
3871    changed = target_line->MergeRegisters(merge_line);
3872    if (have_pending_hard_failure_) {
3873      return false;
3874    }
3875    if (gDebugVerify && changed) {
3876      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3877                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3878                      << *copy.get() << "  MERGE\n"
3879                      << *merge_line << "  ==\n"
3880                      << *target_line << "\n";
3881    }
3882  }
3883  if (changed) {
3884    insn_flags_[next_insn].SetChanged();
3885  }
3886  return true;
3887}
3888
3889InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3890  return &insn_flags_[work_insn_idx_];
3891}
3892
3893const RegType& MethodVerifier::GetMethodReturnType() {
3894  if (return_type_ == nullptr) {
3895    if (mirror_method_ != NULL) {
3896      MethodHelper mh(mirror_method_);
3897      mirror::Class* return_type_class = mh.GetReturnType();
3898      if (return_type_class != nullptr) {
3899        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3900                                             return_type_class->CannotBeAssignedFromOtherTypes());
3901      } else {
3902        Thread* self = Thread::Current();
3903        DCHECK(self->IsExceptionPending());
3904        self->ClearException();
3905      }
3906    }
3907    if (return_type_ == nullptr) {
3908      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3909      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3910      uint16_t return_type_idx = proto_id.return_type_idx_;
3911      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3912      return_type_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3913    }
3914  }
3915  return *return_type_;
3916}
3917
3918const RegType& MethodVerifier::GetDeclaringClass() {
3919  if (declaring_class_ == NULL) {
3920    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3921    const char* descriptor
3922        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3923    if (mirror_method_ != NULL) {
3924      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3925      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3926                                               klass->CannotBeAssignedFromOtherTypes());
3927    } else {
3928      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3929    }
3930  }
3931  return *declaring_class_;
3932}
3933
3934void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3935                                       size_t* log2_max_gc_pc) {
3936  size_t local_gc_points = 0;
3937  size_t max_insn = 0;
3938  size_t max_ref_reg = -1;
3939  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3940    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3941      local_gc_points++;
3942      max_insn = i;
3943      RegisterLine* line = reg_table_.GetLine(i);
3944      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3945    }
3946  }
3947  *gc_points = local_gc_points;
3948  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3949  size_t i = 0;
3950  while ((1U << i) <= max_insn) {
3951    i++;
3952  }
3953  *log2_max_gc_pc = i;
3954}
3955
3956MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3957  /*
3958   * Walks over the method code and adds any cast instructions in which
3959   * the type cast is implicit to a set, which is used in the code generation
3960   * to elide these casts.
3961   */
3962  if (!failure_messages_.empty()) {
3963    return NULL;
3964  }
3965  UniquePtr<MethodSafeCastSet> mscs;
3966  const Instruction* inst = Instruction::At(code_item_->insns_);
3967  const Instruction* end = Instruction::At(code_item_->insns_ +
3968                                           code_item_->insns_size_in_code_units_);
3969
3970  for (; inst < end; inst = inst->Next()) {
3971    Instruction::Code code = inst->Opcode();
3972    if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) {
3973      uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3974      RegisterLine* line = reg_table_.GetLine(dex_pc);
3975      bool is_safe_cast = false;
3976      if (code == Instruction::CHECK_CAST) {
3977        const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3978        const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3979        is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type);
3980      } else {
3981        const RegType& array_type(line->GetRegisterType(inst->VRegB_23x()));
3982        // We only know its safe to assign to an array if the array type is precise. For example,
3983        // an Object[] can have any type of object stored in it, but it may also be assigned a
3984        // String[] in which case the stores need to be of Strings.
3985        if (array_type.IsPreciseReference()) {
3986          const RegType& value_type(line->GetRegisterType(inst->VRegA_23x()));
3987          const RegType& component_type(reg_types_.GetComponentType(array_type,
3988                                                                    class_loader_->get()));
3989          is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type);
3990        }
3991      }
3992      if (is_safe_cast) {
3993        if (mscs.get() == NULL) {
3994          mscs.reset(new MethodSafeCastSet());
3995        }
3996        mscs->insert(dex_pc);
3997      }
3998    }
3999  }
4000  return mscs.release();
4001}
4002
4003MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
4004  // It is risky to rely on reg_types for sharpening in cases of soft
4005  // verification, we might end up sharpening to a wrong implementation. Just abort.
4006  if (!failure_messages_.empty()) {
4007    return NULL;
4008  }
4009
4010  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
4011  const uint16_t* insns = code_item_->insns_;
4012  const Instruction* inst = Instruction::At(insns);
4013  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
4014
4015  for (; inst < end; inst = inst->Next()) {
4016    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
4017        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
4018    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
4019        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
4020
4021    if (!is_interface && !is_virtual) {
4022      continue;
4023    }
4024    // Get reg type for register holding the reference to the object that will be dispatched upon.
4025    uint32_t dex_pc = inst->GetDexPc(insns);
4026    RegisterLine* line = reg_table_.GetLine(dex_pc);
4027    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
4028        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
4029    const RegType&
4030        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
4031
4032    if (!reg_type.HasClass()) {
4033      // We will compute devirtualization information only when we know the Class of the reg type.
4034      continue;
4035    }
4036    mirror::Class* reg_class = reg_type.GetClass();
4037    if (reg_class->IsInterface()) {
4038      // We can't devirtualize when the known type of the register is an interface.
4039      continue;
4040    }
4041    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
4042      // We can't devirtualize abstract classes except on arrays of abstract classes.
4043      continue;
4044    }
4045    mirror::ArtMethod* abstract_method = (*dex_cache_)->GetResolvedMethod(
4046        is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
4047    if (abstract_method == NULL) {
4048      // If the method is not found in the cache this means that it was never found
4049      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
4050      continue;
4051    }
4052    // Find the concrete method.
4053    mirror::ArtMethod* concrete_method = NULL;
4054    if (is_interface) {
4055      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
4056    }
4057    if (is_virtual) {
4058      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
4059    }
4060    if (concrete_method == NULL || concrete_method->IsAbstract()) {
4061      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
4062      continue;
4063    }
4064    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
4065        concrete_method->GetDeclaringClass()->IsFinal()) {
4066      // If we knew exactly the class being dispatched upon, or if the target method cannot be
4067      // overridden record the target to be used in the compiler driver.
4068      if (pc_to_concrete_method_map.get() == NULL) {
4069        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
4070      }
4071      MethodReference concrete_ref(
4072          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
4073          concrete_method->GetDexMethodIndex());
4074      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
4075    }
4076  }
4077  return pc_to_concrete_method_map.release();
4078}
4079
4080const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
4081  size_t num_entries, ref_bitmap_bits, pc_bits;
4082  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
4083  // There's a single byte to encode the size of each bitmap
4084  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
4085    // TODO: either a better GC map format or per method failures
4086    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4087       << ref_bitmap_bits << " registers";
4088    return NULL;
4089  }
4090  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
4091  // There are 2 bytes to encode the number of entries
4092  if (num_entries >= 65536) {
4093    // TODO: either a better GC map format or per method failures
4094    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4095       << num_entries << " entries";
4096    return NULL;
4097  }
4098  size_t pc_bytes;
4099  RegisterMapFormat format;
4100  if (pc_bits <= 8) {
4101    format = kRegMapFormatCompact8;
4102    pc_bytes = 1;
4103  } else if (pc_bits <= 16) {
4104    format = kRegMapFormatCompact16;
4105    pc_bytes = 2;
4106  } else {
4107    // TODO: either a better GC map format or per method failures
4108    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4109       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
4110    return NULL;
4111  }
4112  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
4113  std::vector<uint8_t>* table = new std::vector<uint8_t>;
4114  if (table == NULL) {
4115    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
4116    return NULL;
4117  }
4118  table->reserve(table_size);
4119  // Write table header
4120  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
4121                             ~DexPcToReferenceMap::kRegMapFormatMask));
4122  table->push_back(ref_bitmap_bytes & 0xFF);
4123  table->push_back(num_entries & 0xFF);
4124  table->push_back((num_entries >> 8) & 0xFF);
4125  // Write table data
4126  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4127    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4128      table->push_back(i & 0xFF);
4129      if (pc_bytes == 2) {
4130        table->push_back((i >> 8) & 0xFF);
4131      }
4132      RegisterLine* line = reg_table_.GetLine(i);
4133      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
4134    }
4135  }
4136  DCHECK_EQ(table->size(), table_size);
4137  return table;
4138}
4139
4140void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
4141  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
4142  // that the table data is well formed and all references are marked (or not) in the bitmap
4143  DexPcToReferenceMap map(&data[0], data.size());
4144  size_t map_index = 0;
4145  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4146    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
4147    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4148      CHECK_LT(map_index, map.NumEntries());
4149      CHECK_EQ(map.GetDexPc(map_index), i);
4150      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
4151      map_index++;
4152      RegisterLine* line = reg_table_.GetLine(i);
4153      for (size_t j = 0; j < code_item_->registers_size_; j++) {
4154        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
4155          CHECK_LT(j / 8, map.RegWidth());
4156          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
4157        } else if ((j / 8) < map.RegWidth()) {
4158          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
4159        } else {
4160          // If a register doesn't contain a reference then the bitmap may be shorter than the line
4161        }
4162      }
4163    } else {
4164      CHECK(reg_bitmap == NULL);
4165    }
4166  }
4167}
4168
4169void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>& gc_map) {
4170  DCHECK(Runtime::Current()->IsCompiler());
4171  {
4172    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4173    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
4174    if (it != dex_gc_maps_->end()) {
4175      delete it->second;
4176      dex_gc_maps_->erase(it);
4177    }
4178    dex_gc_maps_->Put(ref, &gc_map);
4179  }
4180  DCHECK(GetDexGcMap(ref) != NULL);
4181}
4182
4183
4184void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
4185  DCHECK(Runtime::Current()->IsCompiler());
4186  WriterMutexLock mu(Thread::Current(), *safecast_map_lock_);
4187  SafeCastMap::iterator it = safecast_map_->find(ref);
4188  if (it != safecast_map_->end()) {
4189    delete it->second;
4190    safecast_map_->erase(it);
4191  }
4192  safecast_map_->Put(ref, cast_set);
4193  DCHECK(safecast_map_->find(ref) != safecast_map_->end());
4194}
4195
4196bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
4197  DCHECK(Runtime::Current()->IsCompiler());
4198  ReaderMutexLock mu(Thread::Current(), *safecast_map_lock_);
4199  SafeCastMap::const_iterator it = safecast_map_->find(ref);
4200  if (it == safecast_map_->end()) {
4201    return false;
4202  }
4203
4204  // Look up the cast address in the set of safe casts
4205  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
4206  return cast_it != it->second->end();
4207}
4208
4209const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
4210  DCHECK(Runtime::Current()->IsCompiler());
4211  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4212  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
4213  CHECK(it != dex_gc_maps_->end())
4214    << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
4215  CHECK(it->second != NULL);
4216  return it->second;
4217}
4218
4219void  MethodVerifier::SetDevirtMap(MethodReference ref,
4220                                   const PcToConcreteMethodMap* devirt_map) {
4221  DCHECK(Runtime::Current()->IsCompiler());
4222  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4223  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
4224  if (it != devirt_maps_->end()) {
4225    delete it->second;
4226    devirt_maps_->erase(it);
4227  }
4228
4229  devirt_maps_->Put(ref, devirt_map);
4230  DCHECK(devirt_maps_->find(ref) != devirt_maps_->end());
4231}
4232
4233const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
4234                                                                    uint32_t dex_pc) {
4235  DCHECK(Runtime::Current()->IsCompiler());
4236  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4237  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
4238  if (it == devirt_maps_->end()) {
4239    return NULL;
4240  }
4241
4242  // Look up the PC in the map, get the concrete method to execute and return its reference.
4243  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method
4244      = it->second->find(dex_pc);
4245  if (pc_to_concrete_method != it->second->end()) {
4246    return &(pc_to_concrete_method->second);
4247  } else {
4248    return NULL;
4249  }
4250}
4251
4252std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4253  RegisterLine* line = reg_table_.GetLine(dex_pc);
4254  std::vector<int32_t> result;
4255  for (size_t i = 0; i < line->NumRegs(); ++i) {
4256    const RegType& type = line->GetRegisterType(i);
4257    if (type.IsConstant()) {
4258      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4259      result.push_back(type.ConstantValue());
4260    } else if (type.IsConstantLo()) {
4261      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4262      result.push_back(type.ConstantValueLo());
4263    } else if (type.IsConstantHi()) {
4264      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4265      result.push_back(type.ConstantValueHi());
4266    } else if (type.IsIntegralTypes()) {
4267      result.push_back(kIntVReg);
4268      result.push_back(0);
4269    } else if (type.IsFloat()) {
4270      result.push_back(kFloatVReg);
4271      result.push_back(0);
4272    } else if (type.IsLong()) {
4273      result.push_back(kLongLoVReg);
4274      result.push_back(0);
4275      result.push_back(kLongHiVReg);
4276      result.push_back(0);
4277      ++i;
4278    } else if (type.IsDouble()) {
4279      result.push_back(kDoubleLoVReg);
4280      result.push_back(0);
4281      result.push_back(kDoubleHiVReg);
4282      result.push_back(0);
4283      ++i;
4284    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4285      result.push_back(kUndefined);
4286      result.push_back(0);
4287    } else {
4288      CHECK(type.IsNonZeroReferenceTypes());
4289      result.push_back(kReferenceVReg);
4290      result.push_back(0);
4291    }
4292  }
4293  return result;
4294}
4295
4296bool MethodVerifier::IsCandidateForCompilation(MethodReference& method_ref,
4297                                               const uint32_t access_flags) {
4298#ifdef ART_SEA_IR_MODE
4299    bool use_sea = Runtime::Current()->IsSeaIRMode();
4300    use_sea = use_sea && (std::string::npos != PrettyMethod(
4301                          method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci"));
4302    if (use_sea) return true;
4303#endif
4304  // Don't compile class initializers, ever.
4305  if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) {
4306    return false;
4307  }
4308  return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly);
4309}
4310
4311ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4312MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4313
4314ReaderWriterMutex* MethodVerifier::safecast_map_lock_ = NULL;
4315MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4316
4317ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4318MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4319
4320ReaderWriterMutex* MethodVerifier::rejected_classes_lock_ = NULL;
4321MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4322
4323void MethodVerifier::Init() {
4324  if (Runtime::Current()->IsCompiler()) {
4325    dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4326    Thread* self = Thread::Current();
4327    {
4328      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4329      dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4330    }
4331
4332    safecast_map_lock_ = new ReaderWriterMutex("verifier Cast Elision lock");
4333    {
4334      WriterMutexLock mu(self, *safecast_map_lock_);
4335      safecast_map_ = new MethodVerifier::SafeCastMap();
4336    }
4337
4338    devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4339
4340    {
4341      WriterMutexLock mu(self, *devirt_maps_lock_);
4342      devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4343    }
4344
4345    rejected_classes_lock_ = new ReaderWriterMutex("verifier rejected classes lock");
4346    {
4347      WriterMutexLock mu(self, *rejected_classes_lock_);
4348      rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4349    }
4350  }
4351  art::verifier::RegTypeCache::Init();
4352}
4353
4354void MethodVerifier::Shutdown() {
4355  if (Runtime::Current()->IsCompiler()) {
4356    Thread* self = Thread::Current();
4357    {
4358      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4359      STLDeleteValues(dex_gc_maps_);
4360      delete dex_gc_maps_;
4361      dex_gc_maps_ = NULL;
4362    }
4363    delete dex_gc_maps_lock_;
4364    dex_gc_maps_lock_ = NULL;
4365
4366    {
4367      WriterMutexLock mu(self, *safecast_map_lock_);
4368      STLDeleteValues(safecast_map_);
4369      delete safecast_map_;
4370      safecast_map_ = NULL;
4371    }
4372    delete safecast_map_lock_;
4373    safecast_map_lock_ = NULL;
4374
4375    {
4376      WriterMutexLock mu(self, *devirt_maps_lock_);
4377      STLDeleteValues(devirt_maps_);
4378      delete devirt_maps_;
4379      devirt_maps_ = NULL;
4380    }
4381    delete devirt_maps_lock_;
4382    devirt_maps_lock_ = NULL;
4383
4384    {
4385      WriterMutexLock mu(self, *rejected_classes_lock_);
4386      delete rejected_classes_;
4387      rejected_classes_ = NULL;
4388    }
4389    delete rejected_classes_lock_;
4390    rejected_classes_lock_ = NULL;
4391  }
4392  verifier::RegTypeCache::ShutDown();
4393}
4394
4395void MethodVerifier::AddRejectedClass(ClassReference ref) {
4396  DCHECK(Runtime::Current()->IsCompiler());
4397  {
4398    WriterMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4399    rejected_classes_->insert(ref);
4400  }
4401  CHECK(IsClassRejected(ref));
4402}
4403
4404bool MethodVerifier::IsClassRejected(ClassReference ref) {
4405  DCHECK(Runtime::Current()->IsCompiler());
4406  ReaderMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4407  return (rejected_classes_->find(ref) != rejected_classes_->end());
4408}
4409
4410}  // namespace verifier
4411}  // namespace art
4412