method_verifier.cc revision 6415013f0b9509fed8367871daaf66c6841223f1
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "art_method-inl.h"
23#include "base/logging.h"
24#include "base/mutex-inl.h"
25#include "base/time_utils.h"
26#include "class_linker.h"
27#include "compiler_callbacks.h"
28#include "dex_file-inl.h"
29#include "dex_instruction-inl.h"
30#include "dex_instruction_utils.h"
31#include "dex_instruction_visitor.h"
32#include "gc/accounting/card_table-inl.h"
33#include "indenter.h"
34#include "intern_table.h"
35#include "leb128.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "utils.h"
46#include "handle_scope-inl.h"
47#include "verifier/dex_gc_map.h"
48
49namespace art {
50namespace verifier {
51
52static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
53static constexpr bool gDebugVerify = false;
54// TODO: Add a constant to method_verifier to turn on verbose logging?
55
56void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
57                                 uint32_t insns_size, uint16_t registers_size,
58                                 MethodVerifier* verifier) {
59  DCHECK_GT(insns_size, 0U);
60  register_lines_.reset(new RegisterLine*[insns_size]());
61  size_ = insns_size;
62  for (uint32_t i = 0; i < insns_size; i++) {
63    bool interesting = false;
64    switch (mode) {
65      case kTrackRegsAll:
66        interesting = flags[i].IsOpcode();
67        break;
68      case kTrackCompilerInterestPoints:
69        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
70        break;
71      case kTrackRegsBranches:
72        interesting = flags[i].IsBranchTarget();
73        break;
74      default:
75        break;
76    }
77    if (interesting) {
78      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
79    }
80  }
81}
82
83PcToRegisterLineTable::~PcToRegisterLineTable() {
84  for (size_t i = 0; i < size_; i++) {
85    delete register_lines_[i];
86    if (kIsDebugBuild) {
87      register_lines_[i] = nullptr;
88    }
89  }
90}
91
92// Note: returns true on failure.
93ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
94                                             const char* error_msg, uint32_t work_insn_idx) {
95  if (kIsDebugBuild) {
96    // In a debug build, abort if the error condition is wrong.
97    DCHECK(condition) << error_msg << work_insn_idx;
98  } else {
99    // In a non-debug build, just fail the class.
100    if (!condition) {
101      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
102      return true;
103    }
104  }
105
106  return false;
107}
108
109static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
110  if (verifier->IsConstructor()) {
111    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
112    reg_line->CheckConstructorReturn(verifier);
113  }
114  reg_line->MarkAllRegistersAsConflicts(verifier);
115}
116
117MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
118    ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
119  StackHandleScope<2> hs(Thread::Current());
120  mirror::Class* klass = method->GetDeclaringClass();
121  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
122  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(
164      self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
165}
166
167MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
168                                                        const DexFile* dex_file,
169                                                        Handle<mirror::DexCache> dex_cache,
170                                                        Handle<mirror::ClassLoader> class_loader,
171                                                        const DexFile::ClassDef* class_def,
172                                                        bool allow_soft_failures,
173                                                        std::string* error) {
174  DCHECK(class_def != nullptr);
175
176  // A class must not be abstract and final.
177  if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
178    *error = "Verifier rejected class ";
179    *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
180    *error += ": class is abstract and final.";
181    return kHardFailure;
182  }
183
184  const uint8_t* class_data = dex_file->GetClassData(*class_def);
185  if (class_data == nullptr) {
186    // empty class, probably a marker interface
187    return kNoFailure;
188  }
189  ClassDataItemIterator it(*dex_file, class_data);
190  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
191    it.Next();
192  }
193  size_t error_count = 0;
194  bool hard_fail = false;
195  ClassLinker* linker = Runtime::Current()->GetClassLinker();
196  int64_t previous_direct_method_idx = -1;
197  while (it.HasNextDirectMethod()) {
198    self->AllowThreadSuspension();
199    uint32_t method_idx = it.GetMemberIndex();
200    if (method_idx == previous_direct_method_idx) {
201      // smali can create dex files with two encoded_methods sharing the same method_idx
202      // http://code.google.com/p/smali/issues/detail?id=119
203      it.Next();
204      continue;
205    }
206    previous_direct_method_idx = method_idx;
207    InvokeType type = it.GetMethodInvokeType(*class_def);
208    ArtMethod* method = linker->ResolveMethod(
209        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
210    if (method == nullptr) {
211      DCHECK(self->IsExceptionPending());
212      // We couldn't resolve the method, but continue regardless.
213      self->ClearException();
214    } else {
215      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
216    }
217    StackHandleScope<1> hs(self);
218    MethodVerifier::FailureKind result = VerifyMethod(self,
219                                                      method_idx,
220                                                      dex_file,
221                                                      dex_cache,
222                                                      class_loader,
223                                                      class_def,
224                                                      it.GetMethodCodeItem(),
225        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
226    if (result != kNoFailure) {
227      if (result == kHardFailure) {
228        hard_fail = true;
229        if (error_count > 0) {
230          *error += "\n";
231        }
232        *error = "Verifier rejected class ";
233        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
234        *error += " due to bad method ";
235        *error += PrettyMethod(method_idx, *dex_file);
236      }
237      ++error_count;
238    }
239    it.Next();
240  }
241  int64_t previous_virtual_method_idx = -1;
242  while (it.HasNextVirtualMethod()) {
243    self->AllowThreadSuspension();
244    uint32_t method_idx = it.GetMemberIndex();
245    if (method_idx == previous_virtual_method_idx) {
246      // smali can create dex files with two encoded_methods sharing the same method_idx
247      // http://code.google.com/p/smali/issues/detail?id=119
248      it.Next();
249      continue;
250    }
251    previous_virtual_method_idx = method_idx;
252    InvokeType type = it.GetMethodInvokeType(*class_def);
253    ArtMethod* method = linker->ResolveMethod(
254        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
255    if (method == nullptr) {
256      DCHECK(self->IsExceptionPending());
257      // We couldn't resolve the method, but continue regardless.
258      self->ClearException();
259    }
260    StackHandleScope<1> hs(self);
261    MethodVerifier::FailureKind result = VerifyMethod(self,
262                                                      method_idx,
263                                                      dex_file,
264                                                      dex_cache,
265                                                      class_loader,
266                                                      class_def,
267                                                      it.GetMethodCodeItem(),
268        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
269    if (result != kNoFailure) {
270      if (result == kHardFailure) {
271        hard_fail = true;
272        if (error_count > 0) {
273          *error += "\n";
274        }
275        *error = "Verifier rejected class ";
276        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
277        *error += " due to bad method ";
278        *error += PrettyMethod(method_idx, *dex_file);
279      }
280      ++error_count;
281    }
282    it.Next();
283  }
284  if (error_count == 0) {
285    return kNoFailure;
286  } else {
287    return hard_fail ? kHardFailure : kSoftFailure;
288  }
289}
290
291static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
292  if (code_item == nullptr) {
293    return false;
294  }
295
296  uint16_t registers_size = code_item->registers_size_;
297  uint32_t insns_size = code_item->insns_size_in_code_units_;
298
299  return registers_size * insns_size > 4*1024*1024;
300}
301
302MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
303                                                         const DexFile* dex_file,
304                                                         Handle<mirror::DexCache> dex_cache,
305                                                         Handle<mirror::ClassLoader> class_loader,
306                                                         const DexFile::ClassDef* class_def,
307                                                         const DexFile::CodeItem* code_item,
308                                                         ArtMethod* method,
309                                                         uint32_t method_access_flags,
310                                                         bool allow_soft_failures,
311                                                         bool need_precise_constants) {
312  MethodVerifier::FailureKind result = kNoFailure;
313  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
314
315  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
316                          method_idx, method, method_access_flags, true, allow_soft_failures,
317                          need_precise_constants, true);
318  if (verifier.Verify()) {
319    // Verification completed, however failures may be pending that didn't cause the verification
320    // to hard fail.
321    CHECK(!verifier.have_pending_hard_failure_);
322    if (verifier.failures_.size() != 0) {
323      if (VLOG_IS_ON(verifier)) {
324          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
325                                << PrettyMethod(method_idx, *dex_file) << "\n");
326      }
327      result = kSoftFailure;
328    }
329  } else {
330    // Bad method data.
331    CHECK_NE(verifier.failures_.size(), 0U);
332    CHECK(verifier.have_pending_hard_failure_);
333    verifier.DumpFailures(LOG(INFO) << "Verification error in "
334                                    << PrettyMethod(method_idx, *dex_file) << "\n");
335    if (gDebugVerify) {
336      std::cout << "\n" << verifier.info_messages_.str();
337      verifier.Dump(std::cout);
338    }
339    result = kHardFailure;
340  }
341  if (kTimeVerifyMethod) {
342    uint64_t duration_ns = NanoTime() - start_ns;
343    if (duration_ns > MsToNs(100)) {
344      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
345                   << " took " << PrettyDuration(duration_ns)
346                   << (IsLargeMethod(code_item) ? " (large method)" : "");
347    }
348  }
349  return result;
350}
351
352MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
353                                         const DexFile* dex_file,
354                                         Handle<mirror::DexCache> dex_cache,
355                                         Handle<mirror::ClassLoader> class_loader,
356                                         const DexFile::ClassDef* class_def,
357                                         const DexFile::CodeItem* code_item,
358                                         ArtMethod* method,
359                                         uint32_t method_access_flags) {
360  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
361                                                class_def, code_item, dex_method_idx, method,
362                                                method_access_flags, true, true, true, true);
363  verifier->Verify();
364  verifier->DumpFailures(os);
365  os << verifier->info_messages_.str();
366  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
367  // and querying any info is dangerous/can abort.
368  if (verifier->have_pending_hard_failure_) {
369    delete verifier;
370    return nullptr;
371  } else {
372    verifier->Dump(os);
373    return verifier;
374  }
375}
376
377MethodVerifier::MethodVerifier(Thread* self,
378                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
379                               Handle<mirror::ClassLoader> class_loader,
380                               const DexFile::ClassDef* class_def,
381                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
382                               ArtMethod* method, uint32_t method_access_flags,
383                               bool can_load_classes, bool allow_soft_failures,
384                               bool need_precise_constants, bool verify_to_dump,
385                               bool allow_thread_suspension)
386    : self_(self),
387      reg_types_(can_load_classes),
388      work_insn_idx_(-1),
389      dex_method_idx_(dex_method_idx),
390      mirror_method_(method),
391      method_access_flags_(method_access_flags),
392      return_type_(nullptr),
393      dex_file_(dex_file),
394      dex_cache_(dex_cache),
395      class_loader_(class_loader),
396      class_def_(class_def),
397      code_item_(code_item),
398      declaring_class_(nullptr),
399      interesting_dex_pc_(-1),
400      monitor_enter_dex_pcs_(nullptr),
401      have_pending_hard_failure_(false),
402      have_pending_runtime_throw_failure_(false),
403      have_any_pending_runtime_throw_failure_(false),
404      new_instance_count_(0),
405      monitor_enter_count_(0),
406      can_load_classes_(can_load_classes),
407      allow_soft_failures_(allow_soft_failures),
408      need_precise_constants_(need_precise_constants),
409      has_check_casts_(false),
410      has_virtual_or_interface_invokes_(false),
411      verify_to_dump_(verify_to_dump),
412      allow_thread_suspension_(allow_thread_suspension) {
413  self->PushVerifier(this);
414  DCHECK(class_def != nullptr);
415}
416
417MethodVerifier::~MethodVerifier() {
418  Thread::Current()->PopVerifier(this);
419  STLDeleteElements(&failure_messages_);
420}
421
422void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
423                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
424  StackHandleScope<2> hs(Thread::Current());
425  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
426  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
427  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
428                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
429                          false, true, false, false);
430  verifier.interesting_dex_pc_ = dex_pc;
431  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
432  verifier.FindLocksAtDexPc();
433}
434
435static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
436  const Instruction* inst = Instruction::At(code_item->insns_);
437
438  uint32_t insns_size = code_item->insns_size_in_code_units_;
439  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
440    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
441      return true;
442    }
443
444    dex_pc += inst->SizeInCodeUnits();
445    inst = inst->Next();
446  }
447
448  return false;
449}
450
451void MethodVerifier::FindLocksAtDexPc() {
452  CHECK(monitor_enter_dex_pcs_ != nullptr);
453  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
454
455  // Quick check whether there are any monitor_enter instructions at all.
456  if (!HasMonitorEnterInstructions(code_item_)) {
457    return;
458  }
459
460  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
461  // verification. In practice, the phase we want relies on data structures set up by all the
462  // earlier passes, so we just run the full method verification and bail out early when we've
463  // got what we wanted.
464  Verify();
465}
466
467ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
468  StackHandleScope<2> hs(Thread::Current());
469  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
470  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
471  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
472                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
473                          true, false, true);
474  return verifier.FindAccessedFieldAtDexPc(dex_pc);
475}
476
477ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
478  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
479
480  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
481  // verification. In practice, the phase we want relies on data structures set up by all the
482  // earlier passes, so we just run the full method verification and bail out early when we've
483  // got what we wanted.
484  bool success = Verify();
485  if (!success) {
486    return nullptr;
487  }
488  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
489  if (register_line == nullptr) {
490    return nullptr;
491  }
492  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
493  return GetQuickFieldAccess(inst, register_line);
494}
495
496ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
497  StackHandleScope<2> hs(Thread::Current());
498  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
499  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
500  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
501                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
502                          true, false, true);
503  return verifier.FindInvokedMethodAtDexPc(dex_pc);
504}
505
506ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
507  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
508
509  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
510  // verification. In practice, the phase we want relies on data structures set up by all the
511  // earlier passes, so we just run the full method verification and bail out early when we've
512  // got what we wanted.
513  bool success = Verify();
514  if (!success) {
515    return nullptr;
516  }
517  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
518  if (register_line == nullptr) {
519    return nullptr;
520  }
521  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
522  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
523  return GetQuickInvokedMethod(inst, register_line, is_range, false);
524}
525
526SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
527  Thread* self = Thread::Current();
528  StackHandleScope<2> hs(self);
529  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
530  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
531  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
532                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
533                          true, true, false, true);
534  return verifier.FindStringInitMap();
535}
536
537SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
538  Verify();
539  return GetStringInitPcRegMap();
540}
541
542bool MethodVerifier::Verify() {
543  // If there aren't any instructions, make sure that's expected, then exit successfully.
544  if (code_item_ == nullptr) {
545    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
546      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
547      return false;
548    } else {
549      return true;
550    }
551  }
552  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
553  if (code_item_->ins_size_ > code_item_->registers_size_) {
554    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
555                                      << " regs=" << code_item_->registers_size_;
556    return false;
557  }
558  // Allocate and initialize an array to hold instruction data.
559  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
560  // Run through the instructions and see if the width checks out.
561  bool result = ComputeWidthsAndCountOps();
562  // Flag instructions guarded by a "try" block and check exception handlers.
563  result = result && ScanTryCatchBlocks();
564  // Perform static instruction verification.
565  result = result && VerifyInstructions();
566  // Perform code-flow analysis and return.
567  result = result && VerifyCodeFlow();
568  // Compute information for compiler.
569  if (result && Runtime::Current()->IsCompiler()) {
570    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
571  }
572  return result;
573}
574
575std::ostream& MethodVerifier::Fail(VerifyError error) {
576  switch (error) {
577    case VERIFY_ERROR_NO_CLASS:
578    case VERIFY_ERROR_NO_FIELD:
579    case VERIFY_ERROR_NO_METHOD:
580    case VERIFY_ERROR_ACCESS_CLASS:
581    case VERIFY_ERROR_ACCESS_FIELD:
582    case VERIFY_ERROR_ACCESS_METHOD:
583    case VERIFY_ERROR_INSTANTIATION:
584    case VERIFY_ERROR_CLASS_CHANGE:
585      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
586        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
587        // class change and instantiation errors into soft verification errors so that we re-verify
588        // at runtime. We may fail to find or to agree on access because of not yet available class
589        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
590        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
591        // paths" that dynamically perform the verification and cause the behavior to be that akin
592        // to an interpreter.
593        error = VERIFY_ERROR_BAD_CLASS_SOFT;
594      } else {
595        // If we fail again at runtime, mark that this instruction would throw and force this
596        // method to be executed using the interpreter with checks.
597        have_pending_runtime_throw_failure_ = true;
598
599        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
600        // try to merge garbage.
601        // Note: this assumes that Fail is called before we do any work_line modifications.
602        const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
603        const Instruction* inst = Instruction::At(insns);
604        int opcode_flags = Instruction::FlagsOf(inst->Opcode());
605
606        if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
607          saved_line_->CopyFromLine(work_line_.get());
608        }
609      }
610      break;
611      // Indication that verification should be retried at runtime.
612    case VERIFY_ERROR_BAD_CLASS_SOFT:
613      if (!allow_soft_failures_) {
614        have_pending_hard_failure_ = true;
615      }
616      break;
617      // Hard verification failures at compile time will still fail at runtime, so the class is
618      // marked as rejected to prevent it from being compiled.
619    case VERIFY_ERROR_BAD_CLASS_HARD: {
620      if (Runtime::Current()->IsAotCompiler()) {
621        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
622        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
623      }
624      have_pending_hard_failure_ = true;
625      break;
626    }
627  }
628  failures_.push_back(error);
629  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
630                                    work_insn_idx_));
631  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
632  failure_messages_.push_back(failure_message);
633  return *failure_message;
634}
635
636std::ostream& MethodVerifier::LogVerifyInfo() {
637  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
638                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
639}
640
641void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
642  size_t failure_num = failure_messages_.size();
643  DCHECK_NE(failure_num, 0U);
644  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
645  prepend += last_fail_message->str();
646  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
647  delete last_fail_message;
648}
649
650void MethodVerifier::AppendToLastFailMessage(std::string append) {
651  size_t failure_num = failure_messages_.size();
652  DCHECK_NE(failure_num, 0U);
653  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
654  (*last_fail_message) << append;
655}
656
657bool MethodVerifier::ComputeWidthsAndCountOps() {
658  const uint16_t* insns = code_item_->insns_;
659  size_t insns_size = code_item_->insns_size_in_code_units_;
660  const Instruction* inst = Instruction::At(insns);
661  size_t new_instance_count = 0;
662  size_t monitor_enter_count = 0;
663  size_t dex_pc = 0;
664
665  while (dex_pc < insns_size) {
666    Instruction::Code opcode = inst->Opcode();
667    switch (opcode) {
668      case Instruction::APUT_OBJECT:
669      case Instruction::CHECK_CAST:
670        has_check_casts_ = true;
671        break;
672      case Instruction::INVOKE_VIRTUAL:
673      case Instruction::INVOKE_VIRTUAL_RANGE:
674      case Instruction::INVOKE_INTERFACE:
675      case Instruction::INVOKE_INTERFACE_RANGE:
676        has_virtual_or_interface_invokes_ = true;
677        break;
678      case Instruction::MONITOR_ENTER:
679        monitor_enter_count++;
680        break;
681      case Instruction::NEW_INSTANCE:
682        new_instance_count++;
683        break;
684      default:
685        break;
686    }
687    size_t inst_size = inst->SizeInCodeUnits();
688    insn_flags_[dex_pc].SetIsOpcode();
689    dex_pc += inst_size;
690    inst = inst->RelativeAt(inst_size);
691  }
692
693  if (dex_pc != insns_size) {
694    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
695                                      << dex_pc << " vs. " << insns_size << ")";
696    return false;
697  }
698
699  new_instance_count_ = new_instance_count;
700  monitor_enter_count_ = monitor_enter_count;
701  return true;
702}
703
704bool MethodVerifier::ScanTryCatchBlocks() {
705  uint32_t tries_size = code_item_->tries_size_;
706  if (tries_size == 0) {
707    return true;
708  }
709  uint32_t insns_size = code_item_->insns_size_in_code_units_;
710  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
711
712  for (uint32_t idx = 0; idx < tries_size; idx++) {
713    const DexFile::TryItem* try_item = &tries[idx];
714    uint32_t start = try_item->start_addr_;
715    uint32_t end = start + try_item->insn_count_;
716    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
717      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
718                                        << " endAddr=" << end << " (size=" << insns_size << ")";
719      return false;
720    }
721    if (!insn_flags_[start].IsOpcode()) {
722      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
723          << "'try' block starts inside an instruction (" << start << ")";
724      return false;
725    }
726    uint32_t dex_pc = start;
727    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
728    while (dex_pc < end) {
729      insn_flags_[dex_pc].SetInTry();
730      size_t insn_size = inst->SizeInCodeUnits();
731      dex_pc += insn_size;
732      inst = inst->RelativeAt(insn_size);
733    }
734  }
735  // Iterate over each of the handlers to verify target addresses.
736  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
737  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
738  ClassLinker* linker = Runtime::Current()->GetClassLinker();
739  for (uint32_t idx = 0; idx < handlers_size; idx++) {
740    CatchHandlerIterator iterator(handlers_ptr);
741    for (; iterator.HasNext(); iterator.Next()) {
742      uint32_t dex_pc= iterator.GetHandlerAddress();
743      if (!insn_flags_[dex_pc].IsOpcode()) {
744        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
745            << "exception handler starts at bad address (" << dex_pc << ")";
746        return false;
747      }
748      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
749        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
750            << "exception handler begins with move-result* (" << dex_pc << ")";
751        return false;
752      }
753      insn_flags_[dex_pc].SetBranchTarget();
754      // Ensure exception types are resolved so that they don't need resolution to be delivered,
755      // unresolved exception types will be ignored by exception delivery
756      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
757        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
758                                                            iterator.GetHandlerTypeIndex(),
759                                                            dex_cache_, class_loader_);
760        if (exception_type == nullptr) {
761          DCHECK(self_->IsExceptionPending());
762          self_->ClearException();
763        }
764      }
765    }
766    handlers_ptr = iterator.EndDataPointer();
767  }
768  return true;
769}
770
771bool MethodVerifier::VerifyInstructions() {
772  const Instruction* inst = Instruction::At(code_item_->insns_);
773
774  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
775  insn_flags_[0].SetBranchTarget();
776  insn_flags_[0].SetCompileTimeInfoPoint();
777
778  uint32_t insns_size = code_item_->insns_size_in_code_units_;
779  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
780    if (!VerifyInstruction(inst, dex_pc)) {
781      DCHECK_NE(failures_.size(), 0U);
782      return false;
783    }
784    /* Flag instructions that are garbage collection points */
785    // All invoke points are marked as "Throw" points already.
786    // We are relying on this to also count all the invokes as interesting.
787    if (inst->IsBranch()) {
788      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
789      // The compiler also needs safepoints for fall-through to loop heads.
790      // Such a loop head must be a target of a branch.
791      int32_t offset = 0;
792      bool cond, self_ok;
793      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
794      DCHECK(target_ok);
795      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
796    } else if (inst->IsSwitch() || inst->IsThrow()) {
797      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
798    } else if (inst->IsReturn()) {
799      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
800    }
801    dex_pc += inst->SizeInCodeUnits();
802    inst = inst->Next();
803  }
804  return true;
805}
806
807bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
808  bool result = true;
809  switch (inst->GetVerifyTypeArgumentA()) {
810    case Instruction::kVerifyRegA:
811      result = result && CheckRegisterIndex(inst->VRegA());
812      break;
813    case Instruction::kVerifyRegAWide:
814      result = result && CheckWideRegisterIndex(inst->VRegA());
815      break;
816  }
817  switch (inst->GetVerifyTypeArgumentB()) {
818    case Instruction::kVerifyRegB:
819      result = result && CheckRegisterIndex(inst->VRegB());
820      break;
821    case Instruction::kVerifyRegBField:
822      result = result && CheckFieldIndex(inst->VRegB());
823      break;
824    case Instruction::kVerifyRegBMethod:
825      result = result && CheckMethodIndex(inst->VRegB());
826      break;
827    case Instruction::kVerifyRegBNewInstance:
828      result = result && CheckNewInstance(inst->VRegB());
829      break;
830    case Instruction::kVerifyRegBString:
831      result = result && CheckStringIndex(inst->VRegB());
832      break;
833    case Instruction::kVerifyRegBType:
834      result = result && CheckTypeIndex(inst->VRegB());
835      break;
836    case Instruction::kVerifyRegBWide:
837      result = result && CheckWideRegisterIndex(inst->VRegB());
838      break;
839  }
840  switch (inst->GetVerifyTypeArgumentC()) {
841    case Instruction::kVerifyRegC:
842      result = result && CheckRegisterIndex(inst->VRegC());
843      break;
844    case Instruction::kVerifyRegCField:
845      result = result && CheckFieldIndex(inst->VRegC());
846      break;
847    case Instruction::kVerifyRegCNewArray:
848      result = result && CheckNewArray(inst->VRegC());
849      break;
850    case Instruction::kVerifyRegCType:
851      result = result && CheckTypeIndex(inst->VRegC());
852      break;
853    case Instruction::kVerifyRegCWide:
854      result = result && CheckWideRegisterIndex(inst->VRegC());
855      break;
856  }
857  switch (inst->GetVerifyExtraFlags()) {
858    case Instruction::kVerifyArrayData:
859      result = result && CheckArrayData(code_offset);
860      break;
861    case Instruction::kVerifyBranchTarget:
862      result = result && CheckBranchTarget(code_offset);
863      break;
864    case Instruction::kVerifySwitchTargets:
865      result = result && CheckSwitchTargets(code_offset);
866      break;
867    case Instruction::kVerifyVarArgNonZero:
868      // Fall-through.
869    case Instruction::kVerifyVarArg: {
870      // Instructions that can actually return a negative value shouldn't have this flag.
871      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
872      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
873          v_a > Instruction::kMaxVarArgRegs) {
874        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
875                                             "non-range invoke";
876        return false;
877      }
878
879      uint32_t args[Instruction::kMaxVarArgRegs];
880      inst->GetVarArgs(args);
881      result = result && CheckVarArgRegs(v_a, args);
882      break;
883    }
884    case Instruction::kVerifyVarArgRangeNonZero:
885      // Fall-through.
886    case Instruction::kVerifyVarArgRange:
887      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
888          inst->VRegA() <= 0) {
889        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
890                                             "range invoke";
891        return false;
892      }
893      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
894      break;
895    case Instruction::kVerifyError:
896      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
897      result = false;
898      break;
899  }
900  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
901    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
902    result = false;
903  }
904  return result;
905}
906
907inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
908  if (idx >= code_item_->registers_size_) {
909    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
910                                      << code_item_->registers_size_ << ")";
911    return false;
912  }
913  return true;
914}
915
916inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
917  if (idx + 1 >= code_item_->registers_size_) {
918    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
919                                      << "+1 >= " << code_item_->registers_size_ << ")";
920    return false;
921  }
922  return true;
923}
924
925inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
926  if (idx >= dex_file_->GetHeader().field_ids_size_) {
927    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
928                                      << dex_file_->GetHeader().field_ids_size_ << ")";
929    return false;
930  }
931  return true;
932}
933
934inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
935  if (idx >= dex_file_->GetHeader().method_ids_size_) {
936    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
937                                      << dex_file_->GetHeader().method_ids_size_ << ")";
938    return false;
939  }
940  return true;
941}
942
943inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
944  if (idx >= dex_file_->GetHeader().type_ids_size_) {
945    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
946                                      << dex_file_->GetHeader().type_ids_size_ << ")";
947    return false;
948  }
949  // We don't need the actual class, just a pointer to the class name.
950  const char* descriptor = dex_file_->StringByTypeIdx(idx);
951  if (descriptor[0] != 'L') {
952    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
953    return false;
954  }
955  return true;
956}
957
958inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
959  if (idx >= dex_file_->GetHeader().string_ids_size_) {
960    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
961                                      << dex_file_->GetHeader().string_ids_size_ << ")";
962    return false;
963  }
964  return true;
965}
966
967inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
968  if (idx >= dex_file_->GetHeader().type_ids_size_) {
969    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
970                                      << dex_file_->GetHeader().type_ids_size_ << ")";
971    return false;
972  }
973  return true;
974}
975
976bool MethodVerifier::CheckNewArray(uint32_t idx) {
977  if (idx >= dex_file_->GetHeader().type_ids_size_) {
978    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
979                                      << dex_file_->GetHeader().type_ids_size_ << ")";
980    return false;
981  }
982  int bracket_count = 0;
983  const char* descriptor = dex_file_->StringByTypeIdx(idx);
984  const char* cp = descriptor;
985  while (*cp++ == '[') {
986    bracket_count++;
987  }
988  if (bracket_count == 0) {
989    /* The given class must be an array type. */
990    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
991        << "can't new-array class '" << descriptor << "' (not an array)";
992    return false;
993  } else if (bracket_count > 255) {
994    /* It is illegal to create an array of more than 255 dimensions. */
995    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
996        << "can't new-array class '" << descriptor << "' (exceeds limit)";
997    return false;
998  }
999  return true;
1000}
1001
1002bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1003  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1004  const uint16_t* insns = code_item_->insns_ + cur_offset;
1005  const uint16_t* array_data;
1006  int32_t array_data_offset;
1007
1008  DCHECK_LT(cur_offset, insn_count);
1009  /* make sure the start of the array data table is in range */
1010  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
1011  if ((int32_t) cur_offset + array_data_offset < 0 ||
1012      cur_offset + array_data_offset + 2 >= insn_count) {
1013    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1014                                      << ", data offset " << array_data_offset
1015                                      << ", count " << insn_count;
1016    return false;
1017  }
1018  /* offset to array data table is a relative branch-style offset */
1019  array_data = insns + array_data_offset;
1020  /* make sure the table is 32-bit aligned */
1021  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1022    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1023                                      << ", data offset " << array_data_offset;
1024    return false;
1025  }
1026  uint32_t value_width = array_data[1];
1027  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1028  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1029  /* make sure the end of the switch is in range */
1030  if (cur_offset + array_data_offset + table_size > insn_count) {
1031    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1032                                      << ", data offset " << array_data_offset << ", end "
1033                                      << cur_offset + array_data_offset + table_size
1034                                      << ", count " << insn_count;
1035    return false;
1036  }
1037  return true;
1038}
1039
1040bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1041  int32_t offset;
1042  bool isConditional, selfOkay;
1043  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1044    return false;
1045  }
1046  if (!selfOkay && offset == 0) {
1047    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1048                                      << reinterpret_cast<void*>(cur_offset);
1049    return false;
1050  }
1051  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1052  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1053  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1054    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1055                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1056    return false;
1057  }
1058  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1059  int32_t abs_offset = cur_offset + offset;
1060  if (abs_offset < 0 ||
1061      (uint32_t) abs_offset >= insn_count ||
1062      !insn_flags_[abs_offset].IsOpcode()) {
1063    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1064                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1065                                      << reinterpret_cast<void*>(cur_offset);
1066    return false;
1067  }
1068  insn_flags_[abs_offset].SetBranchTarget();
1069  return true;
1070}
1071
1072bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1073                                  bool* selfOkay) {
1074  const uint16_t* insns = code_item_->insns_ + cur_offset;
1075  *pConditional = false;
1076  *selfOkay = false;
1077  switch (*insns & 0xff) {
1078    case Instruction::GOTO:
1079      *pOffset = ((int16_t) *insns) >> 8;
1080      break;
1081    case Instruction::GOTO_32:
1082      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1083      *selfOkay = true;
1084      break;
1085    case Instruction::GOTO_16:
1086      *pOffset = (int16_t) insns[1];
1087      break;
1088    case Instruction::IF_EQ:
1089    case Instruction::IF_NE:
1090    case Instruction::IF_LT:
1091    case Instruction::IF_GE:
1092    case Instruction::IF_GT:
1093    case Instruction::IF_LE:
1094    case Instruction::IF_EQZ:
1095    case Instruction::IF_NEZ:
1096    case Instruction::IF_LTZ:
1097    case Instruction::IF_GEZ:
1098    case Instruction::IF_GTZ:
1099    case Instruction::IF_LEZ:
1100      *pOffset = (int16_t) insns[1];
1101      *pConditional = true;
1102      break;
1103    default:
1104      return false;
1105  }
1106  return true;
1107}
1108
1109bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1110  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1111  DCHECK_LT(cur_offset, insn_count);
1112  const uint16_t* insns = code_item_->insns_ + cur_offset;
1113  /* make sure the start of the switch is in range */
1114  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1115  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1116    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1117                                      << ", switch offset " << switch_offset
1118                                      << ", count " << insn_count;
1119    return false;
1120  }
1121  /* offset to switch table is a relative branch-style offset */
1122  const uint16_t* switch_insns = insns + switch_offset;
1123  /* make sure the table is 32-bit aligned */
1124  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1125    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1126                                      << ", switch offset " << switch_offset;
1127    return false;
1128  }
1129  uint32_t switch_count = switch_insns[1];
1130  int32_t keys_offset, targets_offset;
1131  uint16_t expected_signature;
1132  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1133    /* 0=sig, 1=count, 2/3=firstKey */
1134    targets_offset = 4;
1135    keys_offset = -1;
1136    expected_signature = Instruction::kPackedSwitchSignature;
1137  } else {
1138    /* 0=sig, 1=count, 2..count*2 = keys */
1139    keys_offset = 2;
1140    targets_offset = 2 + 2 * switch_count;
1141    expected_signature = Instruction::kSparseSwitchSignature;
1142  }
1143  uint32_t table_size = targets_offset + switch_count * 2;
1144  if (switch_insns[0] != expected_signature) {
1145    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1146        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1147                        switch_insns[0], expected_signature);
1148    return false;
1149  }
1150  /* make sure the end of the switch is in range */
1151  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1152    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1153                                      << ", switch offset " << switch_offset
1154                                      << ", end " << (cur_offset + switch_offset + table_size)
1155                                      << ", count " << insn_count;
1156    return false;
1157  }
1158  /* for a sparse switch, verify the keys are in ascending order */
1159  if (keys_offset > 0 && switch_count > 1) {
1160    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1161    for (uint32_t targ = 1; targ < switch_count; targ++) {
1162      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1163                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1164      if (key <= last_key) {
1165        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1166                                          << ", this=" << key;
1167        return false;
1168      }
1169      last_key = key;
1170    }
1171  }
1172  /* verify each switch target */
1173  for (uint32_t targ = 0; targ < switch_count; targ++) {
1174    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1175                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1176    int32_t abs_offset = cur_offset + offset;
1177    if (abs_offset < 0 ||
1178        abs_offset >= (int32_t) insn_count ||
1179        !insn_flags_[abs_offset].IsOpcode()) {
1180      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1181                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1182                                        << reinterpret_cast<void*>(cur_offset)
1183                                        << "[" << targ << "]";
1184      return false;
1185    }
1186    insn_flags_[abs_offset].SetBranchTarget();
1187  }
1188  return true;
1189}
1190
1191bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1192  uint16_t registers_size = code_item_->registers_size_;
1193  for (uint32_t idx = 0; idx < vA; idx++) {
1194    if (arg[idx] >= registers_size) {
1195      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1196                                        << ") in non-range invoke (>= " << registers_size << ")";
1197      return false;
1198    }
1199  }
1200
1201  return true;
1202}
1203
1204bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1205  uint16_t registers_size = code_item_->registers_size_;
1206  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1207  // integer overflow when adding them here.
1208  if (vA + vC > registers_size) {
1209    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1210                                      << " in range invoke (> " << registers_size << ")";
1211    return false;
1212  }
1213  return true;
1214}
1215
1216bool MethodVerifier::VerifyCodeFlow() {
1217  uint16_t registers_size = code_item_->registers_size_;
1218  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1219
1220  /* Create and initialize table holding register status */
1221  reg_table_.Init(kTrackCompilerInterestPoints,
1222                  insn_flags_.get(),
1223                  insns_size,
1224                  registers_size,
1225                  this);
1226
1227
1228  work_line_.reset(RegisterLine::Create(registers_size, this));
1229  saved_line_.reset(RegisterLine::Create(registers_size, this));
1230
1231  /* Initialize register types of method arguments. */
1232  if (!SetTypesFromSignature()) {
1233    DCHECK_NE(failures_.size(), 0U);
1234    std::string prepend("Bad signature in ");
1235    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1236    PrependToLastFailMessage(prepend);
1237    return false;
1238  }
1239  /* Perform code flow verification. */
1240  if (!CodeFlowVerifyMethod()) {
1241    DCHECK_NE(failures_.size(), 0U);
1242    return false;
1243  }
1244  return true;
1245}
1246
1247std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1248  DCHECK_EQ(failures_.size(), failure_messages_.size());
1249  for (size_t i = 0; i < failures_.size(); ++i) {
1250      os << failure_messages_[i]->str() << "\n";
1251  }
1252  return os;
1253}
1254
1255void MethodVerifier::Dump(std::ostream& os) {
1256  if (code_item_ == nullptr) {
1257    os << "Native method\n";
1258    return;
1259  }
1260  {
1261    os << "Register Types:\n";
1262    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1263    std::ostream indent_os(&indent_filter);
1264    reg_types_.Dump(indent_os);
1265  }
1266  os << "Dumping instructions and register lines:\n";
1267  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1268  std::ostream indent_os(&indent_filter);
1269  const Instruction* inst = Instruction::At(code_item_->insns_);
1270  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1271      dex_pc += inst->SizeInCodeUnits()) {
1272    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1273    if (reg_line != nullptr) {
1274      indent_os << reg_line->Dump(this) << "\n";
1275    }
1276    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1277    const bool kDumpHexOfInstruction = false;
1278    if (kDumpHexOfInstruction) {
1279      indent_os << inst->DumpHex(5) << " ";
1280    }
1281    indent_os << inst->DumpString(dex_file_) << "\n";
1282    inst = inst->Next();
1283  }
1284}
1285
1286static bool IsPrimitiveDescriptor(char descriptor) {
1287  switch (descriptor) {
1288    case 'I':
1289    case 'C':
1290    case 'S':
1291    case 'B':
1292    case 'Z':
1293    case 'F':
1294    case 'D':
1295    case 'J':
1296      return true;
1297    default:
1298      return false;
1299  }
1300}
1301
1302bool MethodVerifier::SetTypesFromSignature() {
1303  RegisterLine* reg_line = reg_table_.GetLine(0);
1304
1305  // Should have been verified earlier.
1306  DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1307
1308  uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1309  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1310
1311  // Include the "this" pointer.
1312  size_t cur_arg = 0;
1313  if (!IsStatic()) {
1314    if (expected_args == 0) {
1315      // Expect at least a receiver.
1316      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1317      return false;
1318    }
1319
1320    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1321    // argument as uninitialized. This restricts field access until the superclass constructor is
1322    // called.
1323    const RegType& declaring_class = GetDeclaringClass();
1324    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1325      reg_line->SetRegisterType(this, arg_start + cur_arg,
1326                                reg_types_.UninitializedThisArgument(declaring_class));
1327    } else {
1328      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1329    }
1330    cur_arg++;
1331  }
1332
1333  const DexFile::ProtoId& proto_id =
1334      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1335  DexFileParameterIterator iterator(*dex_file_, proto_id);
1336
1337  for (; iterator.HasNext(); iterator.Next()) {
1338    const char* descriptor = iterator.GetDescriptor();
1339    if (descriptor == nullptr) {
1340      LOG(FATAL) << "Null descriptor";
1341    }
1342    if (cur_arg >= expected_args) {
1343      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1344                                        << " args, found more (" << descriptor << ")";
1345      return false;
1346    }
1347    switch (descriptor[0]) {
1348      case 'L':
1349      case '[':
1350        // We assume that reference arguments are initialized. The only way it could be otherwise
1351        // (assuming the caller was verified) is if the current method is <init>, but in that case
1352        // it's effectively considered initialized the instant we reach here (in the sense that we
1353        // can return without doing anything or call virtual methods).
1354        {
1355          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1356          if (!reg_type.IsNonZeroReferenceTypes()) {
1357            DCHECK(HasFailures());
1358            return false;
1359          }
1360          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1361        }
1362        break;
1363      case 'Z':
1364        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1365        break;
1366      case 'C':
1367        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1368        break;
1369      case 'B':
1370        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1371        break;
1372      case 'I':
1373        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1374        break;
1375      case 'S':
1376        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1377        break;
1378      case 'F':
1379        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1380        break;
1381      case 'J':
1382      case 'D': {
1383        if (cur_arg + 1 >= expected_args) {
1384          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1385              << " args, found more (" << descriptor << ")";
1386          return false;
1387        }
1388
1389        const RegType* lo_half;
1390        const RegType* hi_half;
1391        if (descriptor[0] == 'J') {
1392          lo_half = &reg_types_.LongLo();
1393          hi_half = &reg_types_.LongHi();
1394        } else {
1395          lo_half = &reg_types_.DoubleLo();
1396          hi_half = &reg_types_.DoubleHi();
1397        }
1398        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1399        cur_arg++;
1400        break;
1401      }
1402      default:
1403        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1404                                          << descriptor << "'";
1405        return false;
1406    }
1407    cur_arg++;
1408  }
1409  if (cur_arg != expected_args) {
1410    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1411                                      << " arguments, found " << cur_arg;
1412    return false;
1413  }
1414  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1415  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1416  // format. Only major difference from the method argument format is that 'V' is supported.
1417  bool result;
1418  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1419    result = descriptor[1] == '\0';
1420  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1421    size_t i = 0;
1422    do {
1423      i++;
1424    } while (descriptor[i] == '[');  // process leading [
1425    if (descriptor[i] == 'L') {  // object array
1426      do {
1427        i++;  // find closing ;
1428      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1429      result = descriptor[i] == ';';
1430    } else {  // primitive array
1431      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1432    }
1433  } else if (descriptor[0] == 'L') {
1434    // could be more thorough here, but shouldn't be required
1435    size_t i = 0;
1436    do {
1437      i++;
1438    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1439    result = descriptor[i] == ';';
1440  } else {
1441    result = false;
1442  }
1443  if (!result) {
1444    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1445                                      << descriptor << "'";
1446  }
1447  return result;
1448}
1449
1450bool MethodVerifier::CodeFlowVerifyMethod() {
1451  const uint16_t* insns = code_item_->insns_;
1452  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1453
1454  /* Begin by marking the first instruction as "changed". */
1455  insn_flags_[0].SetChanged();
1456  uint32_t start_guess = 0;
1457
1458  /* Continue until no instructions are marked "changed". */
1459  while (true) {
1460    if (allow_thread_suspension_) {
1461      self_->AllowThreadSuspension();
1462    }
1463    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1464    uint32_t insn_idx = start_guess;
1465    for (; insn_idx < insns_size; insn_idx++) {
1466      if (insn_flags_[insn_idx].IsChanged())
1467        break;
1468    }
1469    if (insn_idx == insns_size) {
1470      if (start_guess != 0) {
1471        /* try again, starting from the top */
1472        start_guess = 0;
1473        continue;
1474      } else {
1475        /* all flags are clear */
1476        break;
1477      }
1478    }
1479    // We carry the working set of registers from instruction to instruction. If this address can
1480    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1481    // "changed" flags, we need to load the set of registers from the table.
1482    // Because we always prefer to continue on to the next instruction, we should never have a
1483    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1484    // target.
1485    work_insn_idx_ = insn_idx;
1486    if (insn_flags_[insn_idx].IsBranchTarget()) {
1487      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1488    } else if (kIsDebugBuild) {
1489      /*
1490       * Sanity check: retrieve the stored register line (assuming
1491       * a full table) and make sure it actually matches.
1492       */
1493      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1494      if (register_line != nullptr) {
1495        if (work_line_->CompareLine(register_line) != 0) {
1496          Dump(std::cout);
1497          std::cout << info_messages_.str();
1498          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1499                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1500                     << " work_line=" << work_line_->Dump(this) << "\n"
1501                     << "  expected=" << register_line->Dump(this);
1502        }
1503      }
1504    }
1505    if (!CodeFlowVerifyInstruction(&start_guess)) {
1506      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1507      prepend += " failed to verify: ";
1508      PrependToLastFailMessage(prepend);
1509      return false;
1510    }
1511    /* Clear "changed" and mark as visited. */
1512    insn_flags_[insn_idx].SetVisited();
1513    insn_flags_[insn_idx].ClearChanged();
1514  }
1515
1516  if (gDebugVerify) {
1517    /*
1518     * Scan for dead code. There's nothing "evil" about dead code
1519     * (besides the wasted space), but it indicates a flaw somewhere
1520     * down the line, possibly in the verifier.
1521     *
1522     * If we've substituted "always throw" instructions into the stream,
1523     * we are almost certainly going to have some dead code.
1524     */
1525    int dead_start = -1;
1526    uint32_t insn_idx = 0;
1527    for (; insn_idx < insns_size;
1528         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1529      /*
1530       * Switch-statement data doesn't get "visited" by scanner. It
1531       * may or may not be preceded by a padding NOP (for alignment).
1532       */
1533      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1534          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1535          insns[insn_idx] == Instruction::kArrayDataSignature ||
1536          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1537           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1538            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1539            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1540        insn_flags_[insn_idx].SetVisited();
1541      }
1542
1543      if (!insn_flags_[insn_idx].IsVisited()) {
1544        if (dead_start < 0)
1545          dead_start = insn_idx;
1546      } else if (dead_start >= 0) {
1547        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1548                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1549        dead_start = -1;
1550      }
1551    }
1552    if (dead_start >= 0) {
1553      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1554                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1555    }
1556    // To dump the state of the verify after a method, do something like:
1557    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1558    //     "boolean java.lang.String.equals(java.lang.Object)") {
1559    //   LOG(INFO) << info_messages_.str();
1560    // }
1561  }
1562  return true;
1563}
1564
1565// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1566// is no such field.
1567static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
1568  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1569  DCHECK(class_def != nullptr);
1570  const uint8_t* class_data = dex_file.GetClassData(*class_def);
1571  DCHECK(class_data != nullptr);
1572  ClassDataItemIterator it(dex_file, class_data);
1573  // Skip static fields.
1574  while (it.HasNextStaticField()) {
1575    it.Next();
1576  }
1577  while (it.HasNextInstanceField()) {
1578    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1579      return it.GetMemberIndex();
1580    }
1581    it.Next();
1582  }
1583  return DexFile::kDexNoIndex;
1584}
1585
1586bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1587  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1588  // We want the state _before_ the instruction, for the case where the dex pc we're
1589  // interested in is itself a monitor-enter instruction (which is a likely place
1590  // for a thread to be suspended).
1591  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1592    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1593    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1594      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1595    }
1596  }
1597
1598  /*
1599   * Once we finish decoding the instruction, we need to figure out where
1600   * we can go from here. There are three possible ways to transfer
1601   * control to another statement:
1602   *
1603   * (1) Continue to the next instruction. Applies to all but
1604   *     unconditional branches, method returns, and exception throws.
1605   * (2) Branch to one or more possible locations. Applies to branches
1606   *     and switch statements.
1607   * (3) Exception handlers. Applies to any instruction that can
1608   *     throw an exception that is handled by an encompassing "try"
1609   *     block.
1610   *
1611   * We can also return, in which case there is no successor instruction
1612   * from this point.
1613   *
1614   * The behavior can be determined from the opcode flags.
1615   */
1616  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1617  const Instruction* inst = Instruction::At(insns);
1618  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1619
1620  int32_t branch_target = 0;
1621  bool just_set_result = false;
1622  if (gDebugVerify) {
1623    // Generate processing back trace to debug verifier
1624    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1625                    << work_line_->Dump(this) << "\n";
1626  }
1627
1628  /*
1629   * Make a copy of the previous register state. If the instruction
1630   * can throw an exception, we will copy/merge this into the "catch"
1631   * address rather than work_line, because we don't want the result
1632   * from the "successful" code path (e.g. a check-cast that "improves"
1633   * a type) to be visible to the exception handler.
1634   */
1635  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1636    saved_line_->CopyFromLine(work_line_.get());
1637  } else if (kIsDebugBuild) {
1638    saved_line_->FillWithGarbage();
1639  }
1640  DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
1641
1642
1643  // We need to ensure the work line is consistent while performing validation. When we spot a
1644  // peephole pattern we compute a new line for either the fallthrough instruction or the
1645  // branch target.
1646  std::unique_ptr<RegisterLine> branch_line;
1647  std::unique_ptr<RegisterLine> fallthrough_line;
1648
1649  /*
1650   * If we are in a constructor, and we currently have an UninitializedThis type
1651   * in a register somewhere, we need to make sure it isn't overwritten.
1652   */
1653  bool track_uninitialized_this = false;
1654  size_t uninitialized_this_loc = 0;
1655  if (IsConstructor()) {
1656    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1657  }
1658
1659  switch (inst->Opcode()) {
1660    case Instruction::NOP:
1661      /*
1662       * A "pure" NOP has no effect on anything. Data tables start with
1663       * a signature that looks like a NOP; if we see one of these in
1664       * the course of executing code then we have a problem.
1665       */
1666      if (inst->VRegA_10x() != 0) {
1667        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1668      }
1669      break;
1670
1671    case Instruction::MOVE:
1672      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1673      break;
1674    case Instruction::MOVE_FROM16:
1675      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1676      break;
1677    case Instruction::MOVE_16:
1678      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1679      break;
1680    case Instruction::MOVE_WIDE:
1681      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1682      break;
1683    case Instruction::MOVE_WIDE_FROM16:
1684      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1685      break;
1686    case Instruction::MOVE_WIDE_16:
1687      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1688      break;
1689    case Instruction::MOVE_OBJECT:
1690      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1691      break;
1692    case Instruction::MOVE_OBJECT_FROM16:
1693      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1694      break;
1695    case Instruction::MOVE_OBJECT_16:
1696      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1697      break;
1698
1699    /*
1700     * The move-result instructions copy data out of a "pseudo-register"
1701     * with the results from the last method invocation. In practice we
1702     * might want to hold the result in an actual CPU register, so the
1703     * Dalvik spec requires that these only appear immediately after an
1704     * invoke or filled-new-array.
1705     *
1706     * These calls invalidate the "result" register. (This is now
1707     * redundant with the reset done below, but it can make the debug info
1708     * easier to read in some cases.)
1709     */
1710    case Instruction::MOVE_RESULT:
1711      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1712      break;
1713    case Instruction::MOVE_RESULT_WIDE:
1714      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1715      break;
1716    case Instruction::MOVE_RESULT_OBJECT:
1717      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1718      break;
1719
1720    case Instruction::MOVE_EXCEPTION: {
1721      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1722      // where one entrypoint to the catch block is not actually an exception path.
1723      if (work_insn_idx_ == 0) {
1724        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1725        break;
1726      }
1727      /*
1728       * This statement can only appear as the first instruction in an exception handler. We verify
1729       * that as part of extracting the exception type from the catch block list.
1730       */
1731      const RegType& res_type = GetCaughtExceptionType();
1732      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1733      break;
1734    }
1735    case Instruction::RETURN_VOID:
1736      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1737        if (!GetMethodReturnType().IsConflict()) {
1738          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1739        }
1740      }
1741      break;
1742    case Instruction::RETURN:
1743      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1744        /* check the method signature */
1745        const RegType& return_type = GetMethodReturnType();
1746        if (!return_type.IsCategory1Types()) {
1747          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1748                                            << return_type;
1749        } else {
1750          // Compilers may generate synthetic functions that write byte values into boolean fields.
1751          // Also, it may use integer values for boolean, byte, short, and character return types.
1752          const uint32_t vregA = inst->VRegA_11x();
1753          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1754          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1755                          ((return_type.IsBoolean() || return_type.IsByte() ||
1756                           return_type.IsShort() || return_type.IsChar()) &&
1757                           src_type.IsInteger()));
1758          /* check the register contents */
1759          bool success =
1760              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1761          if (!success) {
1762            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1763          }
1764        }
1765      }
1766      break;
1767    case Instruction::RETURN_WIDE:
1768      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1769        /* check the method signature */
1770        const RegType& return_type = GetMethodReturnType();
1771        if (!return_type.IsCategory2Types()) {
1772          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1773        } else {
1774          /* check the register contents */
1775          const uint32_t vregA = inst->VRegA_11x();
1776          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1777          if (!success) {
1778            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1779          }
1780        }
1781      }
1782      break;
1783    case Instruction::RETURN_OBJECT:
1784      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1785        const RegType& return_type = GetMethodReturnType();
1786        if (!return_type.IsReferenceTypes()) {
1787          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1788        } else {
1789          /* return_type is the *expected* return type, not register value */
1790          DCHECK(!return_type.IsZero());
1791          DCHECK(!return_type.IsUninitializedReference());
1792          const uint32_t vregA = inst->VRegA_11x();
1793          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1794          // Disallow returning uninitialized values and verify that the reference in vAA is an
1795          // instance of the "return_type"
1796          if (reg_type.IsUninitializedTypes()) {
1797            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1798                                              << reg_type << "'";
1799          } else if (!return_type.IsAssignableFrom(reg_type)) {
1800            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1801              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1802                  << "' or '" << reg_type << "'";
1803            } else {
1804              bool soft_error = false;
1805              // Check whether arrays are involved. They will show a valid class status, even
1806              // if their components are erroneous.
1807              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1808                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1809                if (soft_error) {
1810                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1811                        << reg_type << " vs " << return_type;
1812                }
1813              }
1814
1815              if (!soft_error) {
1816                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1817                    << "', but expected from declaration '" << return_type << "'";
1818              }
1819            }
1820          }
1821        }
1822      }
1823      break;
1824
1825      /* could be boolean, int, float, or a null reference */
1826    case Instruction::CONST_4: {
1827      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1828      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1829                                  DetermineCat1Constant(val, need_precise_constants_));
1830      break;
1831    }
1832    case Instruction::CONST_16: {
1833      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1834      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1835                                  DetermineCat1Constant(val, need_precise_constants_));
1836      break;
1837    }
1838    case Instruction::CONST: {
1839      int32_t val = inst->VRegB_31i();
1840      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1841                                  DetermineCat1Constant(val, need_precise_constants_));
1842      break;
1843    }
1844    case Instruction::CONST_HIGH16: {
1845      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1846      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1847                                  DetermineCat1Constant(val, need_precise_constants_));
1848      break;
1849    }
1850      /* could be long or double; resolved upon use */
1851    case Instruction::CONST_WIDE_16: {
1852      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1853      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1854      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1855      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1856      break;
1857    }
1858    case Instruction::CONST_WIDE_32: {
1859      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1860      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1861      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1862      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1863      break;
1864    }
1865    case Instruction::CONST_WIDE: {
1866      int64_t val = inst->VRegB_51l();
1867      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1868      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1869      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1870      break;
1871    }
1872    case Instruction::CONST_WIDE_HIGH16: {
1873      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1874      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1875      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1876      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1877      break;
1878    }
1879    case Instruction::CONST_STRING:
1880      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1881      break;
1882    case Instruction::CONST_STRING_JUMBO:
1883      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1884      break;
1885    case Instruction::CONST_CLASS: {
1886      // Get type from instruction if unresolved then we need an access check
1887      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1888      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1889      // Register holds class, ie its type is class, on error it will hold Conflict.
1890      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1891                                  res_type.IsConflict() ? res_type
1892                                                        : reg_types_.JavaLangClass());
1893      break;
1894    }
1895    case Instruction::MONITOR_ENTER:
1896      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1897      break;
1898    case Instruction::MONITOR_EXIT:
1899      /*
1900       * monitor-exit instructions are odd. They can throw exceptions,
1901       * but when they do they act as if they succeeded and the PC is
1902       * pointing to the following instruction. (This behavior goes back
1903       * to the need to handle asynchronous exceptions, a now-deprecated
1904       * feature that Dalvik doesn't support.)
1905       *
1906       * In practice we don't need to worry about this. The only
1907       * exceptions that can be thrown from monitor-exit are for a
1908       * null reference and -exit without a matching -enter. If the
1909       * structured locking checks are working, the former would have
1910       * failed on the -enter instruction, and the latter is impossible.
1911       *
1912       * This is fortunate, because issue 3221411 prevents us from
1913       * chasing the "can throw" path when monitor verification is
1914       * enabled. If we can fully verify the locking we can ignore
1915       * some catch blocks (which will show up as "dead" code when
1916       * we skip them here); if we can't, then the code path could be
1917       * "live" so we still need to check it.
1918       */
1919      opcode_flags &= ~Instruction::kThrow;
1920      work_line_->PopMonitor(this, inst->VRegA_11x());
1921      break;
1922
1923    case Instruction::CHECK_CAST:
1924    case Instruction::INSTANCE_OF: {
1925      /*
1926       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1927       * could be a "upcast" -- not expected, so we don't try to address it.)
1928       *
1929       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1930       * dec_insn.vA when branching to a handler.
1931       */
1932      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1933      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1934      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1935      if (res_type.IsConflict()) {
1936        // If this is a primitive type, fail HARD.
1937        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1938        if (klass != nullptr && klass->IsPrimitive()) {
1939          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1940              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1941              << GetDeclaringClass();
1942          break;
1943        }
1944
1945        DCHECK_NE(failures_.size(), 0U);
1946        if (!is_checkcast) {
1947          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1948        }
1949        break;  // bad class
1950      }
1951      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1952      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1953      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1954      if (!res_type.IsNonZeroReferenceTypes()) {
1955        if (is_checkcast) {
1956          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1957        } else {
1958          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1959        }
1960      } else if (!orig_type.IsReferenceTypes()) {
1961        if (is_checkcast) {
1962          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1963        } else {
1964          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1965        }
1966      } else {
1967        if (is_checkcast) {
1968          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1969        } else {
1970          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1971        }
1972      }
1973      break;
1974    }
1975    case Instruction::ARRAY_LENGTH: {
1976      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1977      if (res_type.IsReferenceTypes()) {
1978        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1979          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1980        } else {
1981          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1982        }
1983      } else {
1984        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1985      }
1986      break;
1987    }
1988    case Instruction::NEW_INSTANCE: {
1989      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1990      if (res_type.IsConflict()) {
1991        DCHECK_NE(failures_.size(), 0U);
1992        break;  // bad class
1993      }
1994      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1995      // can't create an instance of an interface or abstract class */
1996      if (!res_type.IsInstantiableTypes()) {
1997        Fail(VERIFY_ERROR_INSTANTIATION)
1998            << "new-instance on primitive, interface or abstract class" << res_type;
1999        // Soft failure so carry on to set register type.
2000      }
2001      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2002      // Any registers holding previous allocations from this address that have not yet been
2003      // initialized must be marked invalid.
2004      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2005      // add the new uninitialized reference to the register state
2006      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
2007      break;
2008    }
2009    case Instruction::NEW_ARRAY:
2010      VerifyNewArray(inst, false, false);
2011      break;
2012    case Instruction::FILLED_NEW_ARRAY:
2013      VerifyNewArray(inst, true, false);
2014      just_set_result = true;  // Filled new array sets result register
2015      break;
2016    case Instruction::FILLED_NEW_ARRAY_RANGE:
2017      VerifyNewArray(inst, true, true);
2018      just_set_result = true;  // Filled new array range sets result register
2019      break;
2020    case Instruction::CMPL_FLOAT:
2021    case Instruction::CMPG_FLOAT:
2022      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2023        break;
2024      }
2025      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2026        break;
2027      }
2028      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2029      break;
2030    case Instruction::CMPL_DOUBLE:
2031    case Instruction::CMPG_DOUBLE:
2032      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2033                                              reg_types_.DoubleHi())) {
2034        break;
2035      }
2036      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2037                                              reg_types_.DoubleHi())) {
2038        break;
2039      }
2040      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2041      break;
2042    case Instruction::CMP_LONG:
2043      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2044                                              reg_types_.LongHi())) {
2045        break;
2046      }
2047      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2048                                              reg_types_.LongHi())) {
2049        break;
2050      }
2051      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2052      break;
2053    case Instruction::THROW: {
2054      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2055      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2056        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2057            << "thrown class " << res_type << " not instanceof Throwable";
2058      }
2059      break;
2060    }
2061    case Instruction::GOTO:
2062    case Instruction::GOTO_16:
2063    case Instruction::GOTO_32:
2064      /* no effect on or use of registers */
2065      break;
2066
2067    case Instruction::PACKED_SWITCH:
2068    case Instruction::SPARSE_SWITCH:
2069      /* verify that vAA is an integer, or can be converted to one */
2070      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2071      break;
2072
2073    case Instruction::FILL_ARRAY_DATA: {
2074      /* Similar to the verification done for APUT */
2075      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2076      /* array_type can be null if the reg type is Zero */
2077      if (!array_type.IsZero()) {
2078        if (!array_type.IsArrayTypes()) {
2079          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2080                                            << array_type;
2081        } else {
2082          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2083          DCHECK(!component_type.IsConflict());
2084          if (component_type.IsNonZeroReferenceTypes()) {
2085            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2086                                              << component_type;
2087          } else {
2088            // Now verify if the element width in the table matches the element width declared in
2089            // the array
2090            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2091            if (array_data[0] != Instruction::kArrayDataSignature) {
2092              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2093            } else {
2094              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2095              // Since we don't compress the data in Dex, expect to see equal width of data stored
2096              // in the table and expected from the array class.
2097              if (array_data[1] != elem_width) {
2098                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2099                                                  << " vs " << elem_width << ")";
2100              }
2101            }
2102          }
2103        }
2104      }
2105      break;
2106    }
2107    case Instruction::IF_EQ:
2108    case Instruction::IF_NE: {
2109      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2110      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2111      bool mismatch = false;
2112      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2113        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2114      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2115        mismatch = !reg_type2.IsReferenceTypes();
2116      } else {  // both integral?
2117        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2118      }
2119      if (mismatch) {
2120        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2121                                          << reg_type2 << ") must both be references or integral";
2122      }
2123      break;
2124    }
2125    case Instruction::IF_LT:
2126    case Instruction::IF_GE:
2127    case Instruction::IF_GT:
2128    case Instruction::IF_LE: {
2129      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2130      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2131      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2132        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2133                                          << reg_type2 << ") must be integral";
2134      }
2135      break;
2136    }
2137    case Instruction::IF_EQZ:
2138    case Instruction::IF_NEZ: {
2139      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2140      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2141        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2142                                          << " unexpected as arg to if-eqz/if-nez";
2143      }
2144
2145      // Find previous instruction - its existence is a precondition to peephole optimization.
2146      uint32_t instance_of_idx = 0;
2147      if (0 != work_insn_idx_) {
2148        instance_of_idx = work_insn_idx_ - 1;
2149        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2150          instance_of_idx--;
2151        }
2152        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2153                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2154                        work_insn_idx_)) {
2155          break;
2156        }
2157      } else {
2158        break;
2159      }
2160
2161      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2162
2163      /* Check for peep-hole pattern of:
2164       *    ...;
2165       *    instance-of vX, vY, T;
2166       *    ifXXX vX, label ;
2167       *    ...;
2168       * label:
2169       *    ...;
2170       * and sharpen the type of vY to be type T.
2171       * Note, this pattern can't be if:
2172       *  - if there are other branches to this branch,
2173       *  - when vX == vY.
2174       */
2175      if (!CurrentInsnFlags()->IsBranchTarget() &&
2176          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2177          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2178          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2179        // Check the type of the instance-of is different than that of registers type, as if they
2180        // are the same there is no work to be done here. Check that the conversion is not to or
2181        // from an unresolved type as type information is imprecise. If the instance-of is to an
2182        // interface then ignore the type information as interfaces can only be treated as Objects
2183        // and we don't want to disallow field and other operations on the object. If the value
2184        // being instance-of checked against is known null (zero) then allow the optimization as
2185        // we didn't have type information. If the merge of the instance-of type with the original
2186        // type is assignable to the original then allow optimization. This check is performed to
2187        // ensure that subsequent merges don't lose type information - such as becoming an
2188        // interface from a class that would lose information relevant to field checks.
2189        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2190        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2191
2192        if (!orig_type.Equals(cast_type) &&
2193            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2194            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2195            !cast_type.GetClass()->IsInterface() &&
2196            (orig_type.IsZero() ||
2197                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2198          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2199          if (inst->Opcode() == Instruction::IF_EQZ) {
2200            fallthrough_line.reset(update_line);
2201          } else {
2202            branch_line.reset(update_line);
2203          }
2204          update_line->CopyFromLine(work_line_.get());
2205          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2206          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2207            // See if instance-of was preceded by a move-object operation, common due to the small
2208            // register encoding space of instance-of, and propagate type information to the source
2209            // of the move-object.
2210            uint32_t move_idx = instance_of_idx - 1;
2211            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2212              move_idx--;
2213            }
2214            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2215                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2216                            work_insn_idx_)) {
2217              break;
2218            }
2219            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2220            switch (move_inst->Opcode()) {
2221              case Instruction::MOVE_OBJECT:
2222                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2223                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2224                }
2225                break;
2226              case Instruction::MOVE_OBJECT_FROM16:
2227                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2228                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2229                }
2230                break;
2231              case Instruction::MOVE_OBJECT_16:
2232                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2233                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2234                }
2235                break;
2236              default:
2237                break;
2238            }
2239          }
2240        }
2241      }
2242
2243      break;
2244    }
2245    case Instruction::IF_LTZ:
2246    case Instruction::IF_GEZ:
2247    case Instruction::IF_GTZ:
2248    case Instruction::IF_LEZ: {
2249      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2250      if (!reg_type.IsIntegralTypes()) {
2251        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2252                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2253      }
2254      break;
2255    }
2256    case Instruction::AGET_BOOLEAN:
2257      VerifyAGet(inst, reg_types_.Boolean(), true);
2258      break;
2259    case Instruction::AGET_BYTE:
2260      VerifyAGet(inst, reg_types_.Byte(), true);
2261      break;
2262    case Instruction::AGET_CHAR:
2263      VerifyAGet(inst, reg_types_.Char(), true);
2264      break;
2265    case Instruction::AGET_SHORT:
2266      VerifyAGet(inst, reg_types_.Short(), true);
2267      break;
2268    case Instruction::AGET:
2269      VerifyAGet(inst, reg_types_.Integer(), true);
2270      break;
2271    case Instruction::AGET_WIDE:
2272      VerifyAGet(inst, reg_types_.LongLo(), true);
2273      break;
2274    case Instruction::AGET_OBJECT:
2275      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2276      break;
2277
2278    case Instruction::APUT_BOOLEAN:
2279      VerifyAPut(inst, reg_types_.Boolean(), true);
2280      break;
2281    case Instruction::APUT_BYTE:
2282      VerifyAPut(inst, reg_types_.Byte(), true);
2283      break;
2284    case Instruction::APUT_CHAR:
2285      VerifyAPut(inst, reg_types_.Char(), true);
2286      break;
2287    case Instruction::APUT_SHORT:
2288      VerifyAPut(inst, reg_types_.Short(), true);
2289      break;
2290    case Instruction::APUT:
2291      VerifyAPut(inst, reg_types_.Integer(), true);
2292      break;
2293    case Instruction::APUT_WIDE:
2294      VerifyAPut(inst, reg_types_.LongLo(), true);
2295      break;
2296    case Instruction::APUT_OBJECT:
2297      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2298      break;
2299
2300    case Instruction::IGET_BOOLEAN:
2301      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2302      break;
2303    case Instruction::IGET_BYTE:
2304      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2305      break;
2306    case Instruction::IGET_CHAR:
2307      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2308      break;
2309    case Instruction::IGET_SHORT:
2310      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2311      break;
2312    case Instruction::IGET:
2313      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2314      break;
2315    case Instruction::IGET_WIDE:
2316      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2317      break;
2318    case Instruction::IGET_OBJECT:
2319      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2320                                                    false);
2321      break;
2322
2323    case Instruction::IPUT_BOOLEAN:
2324      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2325      break;
2326    case Instruction::IPUT_BYTE:
2327      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2328      break;
2329    case Instruction::IPUT_CHAR:
2330      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2331      break;
2332    case Instruction::IPUT_SHORT:
2333      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2334      break;
2335    case Instruction::IPUT:
2336      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2337      break;
2338    case Instruction::IPUT_WIDE:
2339      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2340      break;
2341    case Instruction::IPUT_OBJECT:
2342      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2343                                                    false);
2344      break;
2345
2346    case Instruction::SGET_BOOLEAN:
2347      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2348      break;
2349    case Instruction::SGET_BYTE:
2350      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2351      break;
2352    case Instruction::SGET_CHAR:
2353      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2354      break;
2355    case Instruction::SGET_SHORT:
2356      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2357      break;
2358    case Instruction::SGET:
2359      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2360      break;
2361    case Instruction::SGET_WIDE:
2362      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2363      break;
2364    case Instruction::SGET_OBJECT:
2365      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2366                                                    true);
2367      break;
2368
2369    case Instruction::SPUT_BOOLEAN:
2370      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2371      break;
2372    case Instruction::SPUT_BYTE:
2373      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2374      break;
2375    case Instruction::SPUT_CHAR:
2376      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2377      break;
2378    case Instruction::SPUT_SHORT:
2379      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2380      break;
2381    case Instruction::SPUT:
2382      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2383      break;
2384    case Instruction::SPUT_WIDE:
2385      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2386      break;
2387    case Instruction::SPUT_OBJECT:
2388      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2389                                                    true);
2390      break;
2391
2392    case Instruction::INVOKE_VIRTUAL:
2393    case Instruction::INVOKE_VIRTUAL_RANGE:
2394    case Instruction::INVOKE_SUPER:
2395    case Instruction::INVOKE_SUPER_RANGE: {
2396      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2397                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2398      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2399                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2400      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
2401      const RegType* return_type = nullptr;
2402      if (called_method != nullptr) {
2403        StackHandleScope<1> hs(self_);
2404        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2405        if (return_type_class != nullptr) {
2406          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2407                                   return_type_class,
2408                                   return_type_class->CannotBeAssignedFromOtherTypes());
2409        } else {
2410          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2411          self_->ClearException();
2412        }
2413      }
2414      if (return_type == nullptr) {
2415        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2416        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2417        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2418        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2419        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2420      }
2421      if (!return_type->IsLowHalf()) {
2422        work_line_->SetResultRegisterType(this, *return_type);
2423      } else {
2424        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2425      }
2426      just_set_result = true;
2427      break;
2428    }
2429    case Instruction::INVOKE_DIRECT:
2430    case Instruction::INVOKE_DIRECT_RANGE: {
2431      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2432      ArtMethod* called_method = VerifyInvocationArgs(inst,
2433                                                      METHOD_DIRECT,
2434                                                      is_range,
2435                                                      false);
2436      const char* return_type_descriptor;
2437      bool is_constructor;
2438      const RegType* return_type = nullptr;
2439      if (called_method == nullptr) {
2440        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2441        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2442        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2443        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2444        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2445      } else {
2446        is_constructor = called_method->IsConstructor();
2447        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2448        StackHandleScope<1> hs(self_);
2449        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2450        if (return_type_class != nullptr) {
2451          return_type = &FromClass(return_type_descriptor,
2452                                   return_type_class,
2453                                   return_type_class->CannotBeAssignedFromOtherTypes());
2454        } else {
2455          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2456          self_->ClearException();
2457        }
2458      }
2459      if (is_constructor) {
2460        /*
2461         * Some additional checks when calling a constructor. We know from the invocation arg check
2462         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2463         * that to require that called_method->klass is the same as this->klass or this->super,
2464         * allowing the latter only if the "this" argument is the same as the "this" argument to
2465         * this method (which implies that we're in a constructor ourselves).
2466         */
2467        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2468        if (this_type.IsConflict())  // failure.
2469          break;
2470
2471        /* no null refs allowed (?) */
2472        if (this_type.IsZero()) {
2473          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2474          break;
2475        }
2476
2477        /* must be in same class or in superclass */
2478        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2479        // TODO: re-enable constructor type verification
2480        // if (this_super_klass.IsConflict()) {
2481          // Unknown super class, fail so we re-check at runtime.
2482          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2483          // break;
2484        // }
2485
2486        /* arg must be an uninitialized reference */
2487        if (!this_type.IsUninitializedTypes()) {
2488          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2489              << this_type;
2490          break;
2491        }
2492
2493        /*
2494         * Replace the uninitialized reference with an initialized one. We need to do this for all
2495         * registers that have the same object instance in them, not just the "this" register.
2496         */
2497        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2498        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2499      }
2500      if (return_type == nullptr) {
2501        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2502                                                 false);
2503      }
2504      if (!return_type->IsLowHalf()) {
2505        work_line_->SetResultRegisterType(this, *return_type);
2506      } else {
2507        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2508      }
2509      just_set_result = true;
2510      break;
2511    }
2512    case Instruction::INVOKE_STATIC:
2513    case Instruction::INVOKE_STATIC_RANGE: {
2514        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2515        ArtMethod* called_method = VerifyInvocationArgs(inst,
2516                                                        METHOD_STATIC,
2517                                                        is_range,
2518                                                        false);
2519        const char* descriptor;
2520        if (called_method == nullptr) {
2521          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2522          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2523          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2524          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2525        } else {
2526          descriptor = called_method->GetReturnTypeDescriptor();
2527        }
2528        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2529        if (!return_type.IsLowHalf()) {
2530          work_line_->SetResultRegisterType(this, return_type);
2531        } else {
2532          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2533        }
2534        just_set_result = true;
2535      }
2536      break;
2537    case Instruction::INVOKE_INTERFACE:
2538    case Instruction::INVOKE_INTERFACE_RANGE: {
2539      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2540      ArtMethod* abs_method = VerifyInvocationArgs(inst,
2541                                                   METHOD_INTERFACE,
2542                                                   is_range,
2543                                                   false);
2544      if (abs_method != nullptr) {
2545        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2546        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2547          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2548              << PrettyMethod(abs_method) << "'";
2549          break;
2550        }
2551      }
2552      /* Get the type of the "this" arg, which should either be a sub-interface of called
2553       * interface or Object (see comments in RegType::JoinClass).
2554       */
2555      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2556      if (this_type.IsZero()) {
2557        /* null pointer always passes (and always fails at runtime) */
2558      } else {
2559        if (this_type.IsUninitializedTypes()) {
2560          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2561              << this_type;
2562          break;
2563        }
2564        // In the past we have tried to assert that "called_interface" is assignable
2565        // from "this_type.GetClass()", however, as we do an imprecise Join
2566        // (RegType::JoinClass) we don't have full information on what interfaces are
2567        // implemented by "this_type". For example, two classes may implement the same
2568        // interfaces and have a common parent that doesn't implement the interface. The
2569        // join will set "this_type" to the parent class and a test that this implements
2570        // the interface will incorrectly fail.
2571      }
2572      /*
2573       * We don't have an object instance, so we can't find the concrete method. However, all of
2574       * the type information is in the abstract method, so we're good.
2575       */
2576      const char* descriptor;
2577      if (abs_method == nullptr) {
2578        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2579        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2580        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2581        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2582      } else {
2583        descriptor = abs_method->GetReturnTypeDescriptor();
2584      }
2585      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2586      if (!return_type.IsLowHalf()) {
2587        work_line_->SetResultRegisterType(this, return_type);
2588      } else {
2589        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2590      }
2591      just_set_result = true;
2592      break;
2593    }
2594    case Instruction::NEG_INT:
2595    case Instruction::NOT_INT:
2596      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2597      break;
2598    case Instruction::NEG_LONG:
2599    case Instruction::NOT_LONG:
2600      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2601                                   reg_types_.LongLo(), reg_types_.LongHi());
2602      break;
2603    case Instruction::NEG_FLOAT:
2604      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2605      break;
2606    case Instruction::NEG_DOUBLE:
2607      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2608                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2609      break;
2610    case Instruction::INT_TO_LONG:
2611      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2612                                     reg_types_.Integer());
2613      break;
2614    case Instruction::INT_TO_FLOAT:
2615      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2616      break;
2617    case Instruction::INT_TO_DOUBLE:
2618      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2619                                     reg_types_.Integer());
2620      break;
2621    case Instruction::LONG_TO_INT:
2622      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2623                                       reg_types_.LongLo(), reg_types_.LongHi());
2624      break;
2625    case Instruction::LONG_TO_FLOAT:
2626      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2627                                       reg_types_.LongLo(), reg_types_.LongHi());
2628      break;
2629    case Instruction::LONG_TO_DOUBLE:
2630      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2631                                   reg_types_.LongLo(), reg_types_.LongHi());
2632      break;
2633    case Instruction::FLOAT_TO_INT:
2634      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2635      break;
2636    case Instruction::FLOAT_TO_LONG:
2637      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2638                                     reg_types_.Float());
2639      break;
2640    case Instruction::FLOAT_TO_DOUBLE:
2641      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2642                                     reg_types_.Float());
2643      break;
2644    case Instruction::DOUBLE_TO_INT:
2645      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2646                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2647      break;
2648    case Instruction::DOUBLE_TO_LONG:
2649      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2650                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2651      break;
2652    case Instruction::DOUBLE_TO_FLOAT:
2653      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2654                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2655      break;
2656    case Instruction::INT_TO_BYTE:
2657      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2658      break;
2659    case Instruction::INT_TO_CHAR:
2660      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2661      break;
2662    case Instruction::INT_TO_SHORT:
2663      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2664      break;
2665
2666    case Instruction::ADD_INT:
2667    case Instruction::SUB_INT:
2668    case Instruction::MUL_INT:
2669    case Instruction::REM_INT:
2670    case Instruction::DIV_INT:
2671    case Instruction::SHL_INT:
2672    case Instruction::SHR_INT:
2673    case Instruction::USHR_INT:
2674      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2675                                reg_types_.Integer(), false);
2676      break;
2677    case Instruction::AND_INT:
2678    case Instruction::OR_INT:
2679    case Instruction::XOR_INT:
2680      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2681                                reg_types_.Integer(), true);
2682      break;
2683    case Instruction::ADD_LONG:
2684    case Instruction::SUB_LONG:
2685    case Instruction::MUL_LONG:
2686    case Instruction::DIV_LONG:
2687    case Instruction::REM_LONG:
2688    case Instruction::AND_LONG:
2689    case Instruction::OR_LONG:
2690    case Instruction::XOR_LONG:
2691      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2692                                    reg_types_.LongLo(), reg_types_.LongHi(),
2693                                    reg_types_.LongLo(), reg_types_.LongHi());
2694      break;
2695    case Instruction::SHL_LONG:
2696    case Instruction::SHR_LONG:
2697    case Instruction::USHR_LONG:
2698      /* shift distance is Int, making these different from other binary operations */
2699      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2700                                         reg_types_.Integer());
2701      break;
2702    case Instruction::ADD_FLOAT:
2703    case Instruction::SUB_FLOAT:
2704    case Instruction::MUL_FLOAT:
2705    case Instruction::DIV_FLOAT:
2706    case Instruction::REM_FLOAT:
2707      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2708                                reg_types_.Float(), false);
2709      break;
2710    case Instruction::ADD_DOUBLE:
2711    case Instruction::SUB_DOUBLE:
2712    case Instruction::MUL_DOUBLE:
2713    case Instruction::DIV_DOUBLE:
2714    case Instruction::REM_DOUBLE:
2715      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2716                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2717                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2718      break;
2719    case Instruction::ADD_INT_2ADDR:
2720    case Instruction::SUB_INT_2ADDR:
2721    case Instruction::MUL_INT_2ADDR:
2722    case Instruction::REM_INT_2ADDR:
2723    case Instruction::SHL_INT_2ADDR:
2724    case Instruction::SHR_INT_2ADDR:
2725    case Instruction::USHR_INT_2ADDR:
2726      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2727                                     reg_types_.Integer(), false);
2728      break;
2729    case Instruction::AND_INT_2ADDR:
2730    case Instruction::OR_INT_2ADDR:
2731    case Instruction::XOR_INT_2ADDR:
2732      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2733                                     reg_types_.Integer(), true);
2734      break;
2735    case Instruction::DIV_INT_2ADDR:
2736      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2737                                     reg_types_.Integer(), false);
2738      break;
2739    case Instruction::ADD_LONG_2ADDR:
2740    case Instruction::SUB_LONG_2ADDR:
2741    case Instruction::MUL_LONG_2ADDR:
2742    case Instruction::DIV_LONG_2ADDR:
2743    case Instruction::REM_LONG_2ADDR:
2744    case Instruction::AND_LONG_2ADDR:
2745    case Instruction::OR_LONG_2ADDR:
2746    case Instruction::XOR_LONG_2ADDR:
2747      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2748                                         reg_types_.LongLo(), reg_types_.LongHi(),
2749                                         reg_types_.LongLo(), reg_types_.LongHi());
2750      break;
2751    case Instruction::SHL_LONG_2ADDR:
2752    case Instruction::SHR_LONG_2ADDR:
2753    case Instruction::USHR_LONG_2ADDR:
2754      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2755                                              reg_types_.Integer());
2756      break;
2757    case Instruction::ADD_FLOAT_2ADDR:
2758    case Instruction::SUB_FLOAT_2ADDR:
2759    case Instruction::MUL_FLOAT_2ADDR:
2760    case Instruction::DIV_FLOAT_2ADDR:
2761    case Instruction::REM_FLOAT_2ADDR:
2762      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2763                                     reg_types_.Float(), false);
2764      break;
2765    case Instruction::ADD_DOUBLE_2ADDR:
2766    case Instruction::SUB_DOUBLE_2ADDR:
2767    case Instruction::MUL_DOUBLE_2ADDR:
2768    case Instruction::DIV_DOUBLE_2ADDR:
2769    case Instruction::REM_DOUBLE_2ADDR:
2770      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2771                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2772                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2773      break;
2774    case Instruction::ADD_INT_LIT16:
2775    case Instruction::RSUB_INT_LIT16:
2776    case Instruction::MUL_INT_LIT16:
2777    case Instruction::DIV_INT_LIT16:
2778    case Instruction::REM_INT_LIT16:
2779      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2780                                 true);
2781      break;
2782    case Instruction::AND_INT_LIT16:
2783    case Instruction::OR_INT_LIT16:
2784    case Instruction::XOR_INT_LIT16:
2785      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2786                                 true);
2787      break;
2788    case Instruction::ADD_INT_LIT8:
2789    case Instruction::RSUB_INT_LIT8:
2790    case Instruction::MUL_INT_LIT8:
2791    case Instruction::DIV_INT_LIT8:
2792    case Instruction::REM_INT_LIT8:
2793    case Instruction::SHL_INT_LIT8:
2794    case Instruction::SHR_INT_LIT8:
2795    case Instruction::USHR_INT_LIT8:
2796      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2797                                 false);
2798      break;
2799    case Instruction::AND_INT_LIT8:
2800    case Instruction::OR_INT_LIT8:
2801    case Instruction::XOR_INT_LIT8:
2802      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2803                                 false);
2804      break;
2805
2806    // Special instructions.
2807    case Instruction::RETURN_VOID_NO_BARRIER:
2808      if (IsConstructor() && !IsStatic()) {
2809        auto& declaring_class = GetDeclaringClass();
2810        if (declaring_class.IsUnresolvedReference()) {
2811          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
2812          // manually over the underlying dex file.
2813          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
2814              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
2815          if (first_index != DexFile::kDexNoIndex) {
2816            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
2817                              << first_index;
2818          }
2819          break;
2820        }
2821        auto* klass = declaring_class.GetClass();
2822        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2823          if (klass->GetInstanceField(i)->IsFinal()) {
2824            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2825                << PrettyField(klass->GetInstanceField(i));
2826            break;
2827          }
2828        }
2829      }
2830      break;
2831    // Note: the following instructions encode offsets derived from class linking.
2832    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2833    // meaning if the class linking and resolution were successful.
2834    case Instruction::IGET_QUICK:
2835      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2836      break;
2837    case Instruction::IGET_WIDE_QUICK:
2838      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2839      break;
2840    case Instruction::IGET_OBJECT_QUICK:
2841      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2842      break;
2843    case Instruction::IGET_BOOLEAN_QUICK:
2844      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2845      break;
2846    case Instruction::IGET_BYTE_QUICK:
2847      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2848      break;
2849    case Instruction::IGET_CHAR_QUICK:
2850      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2851      break;
2852    case Instruction::IGET_SHORT_QUICK:
2853      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2854      break;
2855    case Instruction::IPUT_QUICK:
2856      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2857      break;
2858    case Instruction::IPUT_BOOLEAN_QUICK:
2859      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2860      break;
2861    case Instruction::IPUT_BYTE_QUICK:
2862      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2863      break;
2864    case Instruction::IPUT_CHAR_QUICK:
2865      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2866      break;
2867    case Instruction::IPUT_SHORT_QUICK:
2868      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2869      break;
2870    case Instruction::IPUT_WIDE_QUICK:
2871      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2872      break;
2873    case Instruction::IPUT_OBJECT_QUICK:
2874      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2875      break;
2876    case Instruction::INVOKE_VIRTUAL_QUICK:
2877    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2878      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2879      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2880      if (called_method != nullptr) {
2881        const char* descriptor = called_method->GetReturnTypeDescriptor();
2882        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2883        if (!return_type.IsLowHalf()) {
2884          work_line_->SetResultRegisterType(this, return_type);
2885        } else {
2886          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2887        }
2888        just_set_result = true;
2889      }
2890      break;
2891    }
2892
2893    /* These should never appear during verification. */
2894    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2895    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2896    case Instruction::UNUSED_79:
2897    case Instruction::UNUSED_7A:
2898      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2899      break;
2900
2901    /*
2902     * DO NOT add a "default" clause here. Without it the compiler will
2903     * complain if an instruction is missing (which is desirable).
2904     */
2905  }  // end - switch (dec_insn.opcode)
2906
2907  /*
2908   * If we are in a constructor, and we had an UninitializedThis type
2909   * in a register somewhere, we need to make sure it wasn't overwritten.
2910   */
2911  if (track_uninitialized_this) {
2912    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2913                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2914    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2915                                                    was_invoke_direct)) {
2916      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2917          << "Constructor failed to initialize this object";
2918    }
2919  }
2920
2921  if (have_pending_hard_failure_) {
2922    if (Runtime::Current()->IsAotCompiler()) {
2923      /* When AOT compiling, check that the last failure is a hard failure */
2924      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
2925        LOG(ERROR) << "Pending failures:";
2926        for (auto& error : failures_) {
2927          LOG(ERROR) << error;
2928        }
2929        for (auto& error_msg : failure_messages_) {
2930          LOG(ERROR) << error_msg->str();
2931        }
2932        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
2933      }
2934    }
2935    /* immediate failure, reject class */
2936    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2937    return false;
2938  } else if (have_pending_runtime_throw_failure_) {
2939    /* checking interpreter will throw, mark following code as unreachable */
2940    opcode_flags = Instruction::kThrow;
2941    have_any_pending_runtime_throw_failure_ = true;
2942    // Reset the pending_runtime_throw flag. The flag is a global to decouple Fail and is per
2943    // instruction.
2944    have_pending_runtime_throw_failure_ = false;
2945  }
2946  /*
2947   * If we didn't just set the result register, clear it out. This ensures that you can only use
2948   * "move-result" immediately after the result is set. (We could check this statically, but it's
2949   * not expensive and it makes our debugging output cleaner.)
2950   */
2951  if (!just_set_result) {
2952    work_line_->SetResultTypeToUnknown(this);
2953  }
2954
2955
2956
2957  /*
2958   * Handle "branch". Tag the branch target.
2959   *
2960   * NOTE: instructions like Instruction::EQZ provide information about the
2961   * state of the register when the branch is taken or not taken. For example,
2962   * somebody could get a reference field, check it for zero, and if the
2963   * branch is taken immediately store that register in a boolean field
2964   * since the value is known to be zero. We do not currently account for
2965   * that, and will reject the code.
2966   *
2967   * TODO: avoid re-fetching the branch target
2968   */
2969  if ((opcode_flags & Instruction::kBranch) != 0) {
2970    bool isConditional, selfOkay;
2971    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2972      /* should never happen after static verification */
2973      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2974      return false;
2975    }
2976    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2977    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2978      return false;
2979    }
2980    /* update branch target, set "changed" if appropriate */
2981    if (nullptr != branch_line.get()) {
2982      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2983        return false;
2984      }
2985    } else {
2986      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2987        return false;
2988      }
2989    }
2990  }
2991
2992  /*
2993   * Handle "switch". Tag all possible branch targets.
2994   *
2995   * We've already verified that the table is structurally sound, so we
2996   * just need to walk through and tag the targets.
2997   */
2998  if ((opcode_flags & Instruction::kSwitch) != 0) {
2999    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
3000    const uint16_t* switch_insns = insns + offset_to_switch;
3001    int switch_count = switch_insns[1];
3002    int offset_to_targets, targ;
3003
3004    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3005      /* 0 = sig, 1 = count, 2/3 = first key */
3006      offset_to_targets = 4;
3007    } else {
3008      /* 0 = sig, 1 = count, 2..count * 2 = keys */
3009      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3010      offset_to_targets = 2 + 2 * switch_count;
3011    }
3012
3013    /* verify each switch target */
3014    for (targ = 0; targ < switch_count; targ++) {
3015      int offset;
3016      uint32_t abs_offset;
3017
3018      /* offsets are 32-bit, and only partly endian-swapped */
3019      offset = switch_insns[offset_to_targets + targ * 2] |
3020         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3021      abs_offset = work_insn_idx_ + offset;
3022      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3023      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3024        return false;
3025      }
3026      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3027        return false;
3028      }
3029    }
3030  }
3031
3032  /*
3033   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3034   * "try" block when they throw, control transfers out of the method.)
3035   */
3036  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
3037    bool has_catch_all_handler = false;
3038    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3039
3040    // Need the linker to try and resolve the handled class to check if it's Throwable.
3041    ClassLinker* linker = Runtime::Current()->GetClassLinker();
3042
3043    for (; iterator.HasNext(); iterator.Next()) {
3044      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
3045      if (handler_type_idx == DexFile::kDexNoIndex16) {
3046        has_catch_all_handler = true;
3047      } else {
3048        // It is also a catch-all if it is java.lang.Throwable.
3049        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3050                                                   class_loader_);
3051        if (klass != nullptr) {
3052          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3053            has_catch_all_handler = true;
3054          }
3055        } else {
3056          // Clear exception.
3057          DCHECK(self_->IsExceptionPending());
3058          self_->ClearException();
3059        }
3060      }
3061      /*
3062       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3063       * "work_regs", because at runtime the exception will be thrown before the instruction
3064       * modifies any registers.
3065       */
3066      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3067        return false;
3068      }
3069    }
3070
3071    /*
3072     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3073     * instruction. This does apply to monitor-exit because of async exception handling.
3074     */
3075    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3076      /*
3077       * The state in work_line reflects the post-execution state. If the current instruction is a
3078       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3079       * it will do so before grabbing the lock).
3080       */
3081      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3082        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3083            << "expected to be within a catch-all for an instruction where a monitor is held";
3084        return false;
3085      }
3086    }
3087  }
3088
3089  /* Handle "continue". Tag the next consecutive instruction.
3090   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3091   *        because it changes work_line_ when performing peephole optimization
3092   *        and this change should not be used in those cases.
3093   */
3094  if ((opcode_flags & Instruction::kContinue) != 0) {
3095    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3096    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3097    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3098      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3099      return false;
3100    }
3101    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3102    // next instruction isn't one.
3103    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3104      return false;
3105    }
3106    if (nullptr != fallthrough_line.get()) {
3107      // Make workline consistent with fallthrough computed from peephole optimization.
3108      work_line_->CopyFromLine(fallthrough_line.get());
3109    }
3110    if (insn_flags_[next_insn_idx].IsReturn()) {
3111      // For returns we only care about the operand to the return, all other registers are dead.
3112      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3113      Instruction::Code opcode = ret_inst->Opcode();
3114      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3115        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3116      } else {
3117        if (opcode == Instruction::RETURN_WIDE) {
3118          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3119        } else {
3120          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3121        }
3122      }
3123    }
3124    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3125    if (next_line != nullptr) {
3126      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3127      // needed. If the merge changes the state of the registers then the work line will be
3128      // updated.
3129      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3130        return false;
3131      }
3132    } else {
3133      /*
3134       * We're not recording register data for the next instruction, so we don't know what the
3135       * prior state was. We have to assume that something has changed and re-evaluate it.
3136       */
3137      insn_flags_[next_insn_idx].SetChanged();
3138    }
3139  }
3140
3141  /* If we're returning from the method, make sure monitor stack is empty. */
3142  if ((opcode_flags & Instruction::kReturn) != 0) {
3143    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3144      return false;
3145    }
3146  }
3147
3148  /*
3149   * Update start_guess. Advance to the next instruction of that's
3150   * possible, otherwise use the branch target if one was found. If
3151   * neither of those exists we're in a return or throw; leave start_guess
3152   * alone and let the caller sort it out.
3153   */
3154  if ((opcode_flags & Instruction::kContinue) != 0) {
3155    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3156    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3157  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3158    /* we're still okay if branch_target is zero */
3159    *start_guess = work_insn_idx_ + branch_target;
3160  }
3161
3162  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3163  DCHECK(insn_flags_[*start_guess].IsOpcode());
3164
3165  return true;
3166}  // NOLINT(readability/fn_size)
3167
3168const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3169  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3170  const RegType& referrer = GetDeclaringClass();
3171  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3172  const RegType& result = klass != nullptr ?
3173      FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3174      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3175  if (result.IsConflict()) {
3176    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3177        << "' in " << referrer;
3178    return result;
3179  }
3180  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3181    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3182  }
3183  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3184  // check at runtime if access is allowed and so pass here. If result is
3185  // primitive, skip the access check.
3186  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3187      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3188    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3189                                    << referrer << "' -> '" << result << "'";
3190  }
3191  return result;
3192}
3193
3194const RegType& MethodVerifier::GetCaughtExceptionType() {
3195  const RegType* common_super = nullptr;
3196  if (code_item_->tries_size_ != 0) {
3197    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3198    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3199    for (uint32_t i = 0; i < handlers_size; i++) {
3200      CatchHandlerIterator iterator(handlers_ptr);
3201      for (; iterator.HasNext(); iterator.Next()) {
3202        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3203          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3204            common_super = &reg_types_.JavaLangThrowable(false);
3205          } else {
3206            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3207            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3208              if (exception.IsUnresolvedTypes()) {
3209                // We don't know enough about the type. Fail here and let runtime handle it.
3210                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3211                return exception;
3212              } else {
3213                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3214                return reg_types_.Conflict();
3215              }
3216            } else if (common_super == nullptr) {
3217              common_super = &exception;
3218            } else if (common_super->Equals(exception)) {
3219              // odd case, but nothing to do
3220            } else {
3221              common_super = &common_super->Merge(exception, &reg_types_);
3222              if (FailOrAbort(this,
3223                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3224                              "java.lang.Throwable is not assignable-from common_super at ",
3225                              work_insn_idx_)) {
3226                break;
3227              }
3228            }
3229          }
3230        }
3231      }
3232      handlers_ptr = iterator.EndDataPointer();
3233    }
3234  }
3235  if (common_super == nullptr) {
3236    /* no catch blocks, or no catches with classes we can find */
3237    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3238    return reg_types_.Conflict();
3239  }
3240  return *common_super;
3241}
3242
3243ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3244    uint32_t dex_method_idx, MethodType method_type) {
3245  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3246  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3247  if (klass_type.IsConflict()) {
3248    std::string append(" in attempt to access method ");
3249    append += dex_file_->GetMethodName(method_id);
3250    AppendToLastFailMessage(append);
3251    return nullptr;
3252  }
3253  if (klass_type.IsUnresolvedTypes()) {
3254    return nullptr;  // Can't resolve Class so no more to do here
3255  }
3256  mirror::Class* klass = klass_type.GetClass();
3257  const RegType& referrer = GetDeclaringClass();
3258  auto* cl = Runtime::Current()->GetClassLinker();
3259  auto pointer_size = cl->GetImagePointerSize();
3260  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3261  if (res_method == nullptr) {
3262    const char* name = dex_file_->GetMethodName(method_id);
3263    const Signature signature = dex_file_->GetMethodSignature(method_id);
3264
3265    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3266      res_method = klass->FindDirectMethod(name, signature, pointer_size);
3267    } else if (method_type == METHOD_INTERFACE) {
3268      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3269    } else {
3270      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3271    }
3272    if (res_method != nullptr) {
3273      dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3274    } else {
3275      // If a virtual or interface method wasn't found with the expected type, look in
3276      // the direct methods. This can happen when the wrong invoke type is used or when
3277      // a class has changed, and will be flagged as an error in later checks.
3278      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3279        res_method = klass->FindDirectMethod(name, signature, pointer_size);
3280      }
3281      if (res_method == nullptr) {
3282        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3283                                     << PrettyDescriptor(klass) << "." << name
3284                                     << " " << signature;
3285        return nullptr;
3286      }
3287    }
3288  }
3289  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3290  // enforce them here.
3291  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3292    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3293                                      << PrettyMethod(res_method);
3294    return nullptr;
3295  }
3296  // Disallow any calls to class initializers.
3297  if (res_method->IsClassInitializer()) {
3298    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3299                                      << PrettyMethod(res_method);
3300    return nullptr;
3301  }
3302  // Check if access is allowed.
3303  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3304    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3305                                     << " from " << referrer << ")";
3306    return res_method;
3307  }
3308  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3309  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3310    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3311                                      << PrettyMethod(res_method);
3312    return nullptr;
3313  }
3314  // Check that interface methods match interface classes.
3315  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3316    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3317                                    << " is in an interface class " << PrettyClass(klass);
3318    return nullptr;
3319  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3320    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3321                                    << " is in a non-interface class " << PrettyClass(klass);
3322    return nullptr;
3323  }
3324  // See if the method type implied by the invoke instruction matches the access flags for the
3325  // target method.
3326  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3327      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3328      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3329      ) {
3330    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3331                                       " type of " << PrettyMethod(res_method);
3332    return nullptr;
3333  }
3334  return res_method;
3335}
3336
3337template <class T>
3338ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3339    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3340  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3341  // match the call to the signature. Also, we might be calling through an abstract method
3342  // definition (which doesn't have register count values).
3343  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3344  /* caught by static verifier */
3345  DCHECK(is_range || expected_args <= 5);
3346  if (expected_args > code_item_->outs_size_) {
3347    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3348        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3349    return nullptr;
3350  }
3351
3352  uint32_t arg[5];
3353  if (!is_range) {
3354    inst->GetVarArgs(arg);
3355  }
3356  uint32_t sig_registers = 0;
3357
3358  /*
3359   * Check the "this" argument, which must be an instance of the class that declared the method.
3360   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3361   * rigorous check here (which is okay since we have to do it at runtime).
3362   */
3363  if (method_type != METHOD_STATIC) {
3364    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3365    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3366      CHECK(have_pending_hard_failure_);
3367      return nullptr;
3368    }
3369    if (actual_arg_type.IsUninitializedReference()) {
3370      if (res_method) {
3371        if (!res_method->IsConstructor()) {
3372          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3373          return nullptr;
3374        }
3375      } else {
3376        // Check whether the name of the called method is "<init>"
3377        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3378        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3379          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3380          return nullptr;
3381        }
3382      }
3383    }
3384    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3385      const RegType* res_method_class;
3386      if (res_method != nullptr) {
3387        mirror::Class* klass = res_method->GetDeclaringClass();
3388        std::string temp;
3389        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3390                                      klass->CannotBeAssignedFromOtherTypes());
3391      } else {
3392        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3393        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3394        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3395                                                      dex_file_->StringByTypeIdx(class_idx),
3396                                                      false);
3397      }
3398      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3399        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3400            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3401                << "' not instance of '" << *res_method_class << "'";
3402        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3403        // the compiler.
3404        if (have_pending_hard_failure_) {
3405          return nullptr;
3406        }
3407      }
3408    }
3409    sig_registers = 1;
3410  }
3411
3412  for ( ; it->HasNext(); it->Next()) {
3413    if (sig_registers >= expected_args) {
3414      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3415          " arguments, found " << sig_registers << " or more.";
3416      return nullptr;
3417    }
3418
3419    const char* param_descriptor = it->GetDescriptor();
3420
3421    if (param_descriptor == nullptr) {
3422      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3423          "component";
3424      return nullptr;
3425    }
3426
3427    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3428    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3429        arg[sig_registers];
3430    if (reg_type.IsIntegralTypes()) {
3431      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3432      if (!src_type.IsIntegralTypes()) {
3433        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3434            << " but expected " << reg_type;
3435        return nullptr;
3436      }
3437    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3438      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3439      // compiler.
3440      if (have_pending_hard_failure_) {
3441        return nullptr;
3442      }
3443    }
3444    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3445  }
3446  if (expected_args != sig_registers) {
3447    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3448        " arguments, found " << sig_registers;
3449    return nullptr;
3450  }
3451  return res_method;
3452}
3453
3454void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3455                                                          MethodType method_type,
3456                                                          bool is_range) {
3457  // As the method may not have been resolved, make this static check against what we expect.
3458  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3459  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3460  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3461  DexFileParameterIterator it(*dex_file_,
3462                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3463  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3464                                                             nullptr);
3465}
3466
3467class MethodParamListDescriptorIterator {
3468 public:
3469  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
3470      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3471      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3472  }
3473
3474  bool HasNext() {
3475    return pos_ < params_size_;
3476  }
3477
3478  void Next() {
3479    ++pos_;
3480  }
3481
3482  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3483    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3484  }
3485
3486 private:
3487  ArtMethod* res_method_;
3488  size_t pos_;
3489  const DexFile::TypeList* params_;
3490  const size_t params_size_;
3491};
3492
3493ArtMethod* MethodVerifier::VerifyInvocationArgs(
3494    const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
3495  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3496  // we're making.
3497  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3498
3499  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3500  if (res_method == nullptr) {  // error or class is unresolved
3501    // Check what we can statically.
3502    if (!have_pending_hard_failure_) {
3503      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3504    }
3505    return nullptr;
3506  }
3507
3508  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3509  // has a vtable entry for the target method.
3510  if (is_super) {
3511    DCHECK(method_type == METHOD_VIRTUAL);
3512    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3513    if (super.IsUnresolvedTypes()) {
3514      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3515                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3516                                   << " to super " << PrettyMethod(res_method);
3517      return nullptr;
3518    }
3519    mirror::Class* super_klass = super.GetClass();
3520    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3521      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3522                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3523                                   << " to super " << super
3524                                   << "." << res_method->GetName()
3525                                   << res_method->GetSignature();
3526      return nullptr;
3527    }
3528  }
3529
3530  // Process the target method's signature. This signature may or may not
3531  MethodParamListDescriptorIterator it(res_method);
3532  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3533                                                                             is_range, res_method);
3534}
3535
3536ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
3537                                                 bool is_range, bool allow_failure) {
3538  if (is_range) {
3539    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3540  } else {
3541    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3542  }
3543  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3544  if (!actual_arg_type.HasClass()) {
3545    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3546    return nullptr;
3547  }
3548  mirror::Class* klass = actual_arg_type.GetClass();
3549  mirror::Class* dispatch_class;
3550  if (klass->IsInterface()) {
3551    // Derive Object.class from Class.class.getSuperclass().
3552    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3553    if (FailOrAbort(this, object_klass->IsObjectClass(),
3554                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3555      return nullptr;
3556    }
3557    dispatch_class = object_klass;
3558  } else {
3559    dispatch_class = klass;
3560  }
3561  if (!dispatch_class->HasVTable()) {
3562    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3563                work_insn_idx_);
3564    return nullptr;
3565  }
3566  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3567  auto* cl = Runtime::Current()->GetClassLinker();
3568  auto pointer_size = cl->GetImagePointerSize();
3569  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3570    FailOrAbort(this, allow_failure,
3571                "Receiver class has not enough vtable slots for quickened invoke at ",
3572                work_insn_idx_);
3573    return nullptr;
3574  }
3575  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
3576  if (self_->IsExceptionPending()) {
3577    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3578                work_insn_idx_);
3579    return nullptr;
3580  }
3581  return res_method;
3582}
3583
3584ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
3585  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3586      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3587
3588  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3589  if (res_method == nullptr) {
3590    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3591    return nullptr;
3592  }
3593  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3594                  work_insn_idx_)) {
3595    return nullptr;
3596  }
3597  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3598                  work_insn_idx_)) {
3599    return nullptr;
3600  }
3601
3602  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3603  // match the call to the signature. Also, we might be calling through an abstract method
3604  // definition (which doesn't have register count values).
3605  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3606  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3607    return nullptr;
3608  }
3609  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3610  /* caught by static verifier */
3611  DCHECK(is_range || expected_args <= 5);
3612  if (expected_args > code_item_->outs_size_) {
3613    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3614        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3615    return nullptr;
3616  }
3617
3618  /*
3619   * Check the "this" argument, which must be an instance of the class that declared the method.
3620   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3621   * rigorous check here (which is okay since we have to do it at runtime).
3622   */
3623  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3624    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3625    return nullptr;
3626  }
3627  if (!actual_arg_type.IsZero()) {
3628    mirror::Class* klass = res_method->GetDeclaringClass();
3629    std::string temp;
3630    const RegType& res_method_class =
3631        FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
3632    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3633      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3634          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3635          << "' not instance of '" << res_method_class << "'";
3636      return nullptr;
3637    }
3638  }
3639  /*
3640   * Process the target method's signature. This signature may or may not
3641   * have been verified, so we can't assume it's properly formed.
3642   */
3643  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3644  size_t params_size = params == nullptr ? 0 : params->Size();
3645  uint32_t arg[5];
3646  if (!is_range) {
3647    inst->GetVarArgs(arg);
3648  }
3649  size_t actual_args = 1;
3650  for (size_t param_index = 0; param_index < params_size; param_index++) {
3651    if (actual_args >= expected_args) {
3652      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3653                                        << "'. Expected " << expected_args
3654                                         << " arguments, processing argument " << actual_args
3655                                        << " (where longs/doubles count twice).";
3656      return nullptr;
3657    }
3658    const char* descriptor =
3659        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3660    if (descriptor == nullptr) {
3661      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3662                                        << " missing signature component";
3663      return nullptr;
3664    }
3665    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3666    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3667    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3668      return res_method;
3669    }
3670    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3671  }
3672  if (actual_args != expected_args) {
3673    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3674              << " expected " << expected_args << " arguments, found " << actual_args;
3675    return nullptr;
3676  } else {
3677    return res_method;
3678  }
3679}
3680
3681void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3682  uint32_t type_idx;
3683  if (!is_filled) {
3684    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3685    type_idx = inst->VRegC_22c();
3686  } else if (!is_range) {
3687    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3688    type_idx = inst->VRegB_35c();
3689  } else {
3690    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3691    type_idx = inst->VRegB_3rc();
3692  }
3693  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3694  if (res_type.IsConflict()) {  // bad class
3695    DCHECK_NE(failures_.size(), 0U);
3696  } else {
3697    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3698    if (!res_type.IsArrayTypes()) {
3699      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3700    } else if (!is_filled) {
3701      /* make sure "size" register is valid type */
3702      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3703      /* set register type to array class */
3704      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3705      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3706    } else {
3707      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3708      // the list and fail. It's legal, if silly, for arg_count to be zero.
3709      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3710      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3711      uint32_t arg[5];
3712      if (!is_range) {
3713        inst->GetVarArgs(arg);
3714      }
3715      for (size_t ui = 0; ui < arg_count; ui++) {
3716        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3717        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3718          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3719          return;
3720        }
3721      }
3722      // filled-array result goes into "result" register
3723      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3724      work_line_->SetResultRegisterType(this, precise_type);
3725    }
3726  }
3727}
3728
3729void MethodVerifier::VerifyAGet(const Instruction* inst,
3730                                const RegType& insn_type, bool is_primitive) {
3731  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3732  if (!index_type.IsArrayIndexTypes()) {
3733    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3734  } else {
3735    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3736    if (array_type.IsZero()) {
3737      have_pending_runtime_throw_failure_ = true;
3738      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3739      // instruction type. TODO: have a proper notion of bottom here.
3740      if (!is_primitive || insn_type.IsCategory1Types()) {
3741        // Reference or category 1
3742        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3743      } else {
3744        // Category 2
3745        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3746                                        reg_types_.FromCat2ConstLo(0, false),
3747                                        reg_types_.FromCat2ConstHi(0, false));
3748      }
3749    } else if (!array_type.IsArrayTypes()) {
3750      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3751    } else {
3752      /* verify the class */
3753      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3754      if (!component_type.IsReferenceTypes() && !is_primitive) {
3755        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3756            << " source for aget-object";
3757      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3758        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3759            << " source for category 1 aget";
3760      } else if (is_primitive && !insn_type.Equals(component_type) &&
3761                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3762                 (insn_type.IsLong() && component_type.IsDouble()))) {
3763        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3764            << " incompatible with aget of type " << insn_type;
3765      } else {
3766        // Use knowledge of the field type which is stronger than the type inferred from the
3767        // instruction, which can't differentiate object types and ints from floats, longs from
3768        // doubles.
3769        if (!component_type.IsLowHalf()) {
3770          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3771        } else {
3772          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3773                                          component_type.HighHalf(&reg_types_));
3774        }
3775      }
3776    }
3777  }
3778}
3779
3780void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3781                                        const uint32_t vregA) {
3782  // Primitive assignability rules are weaker than regular assignability rules.
3783  bool instruction_compatible;
3784  bool value_compatible;
3785  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3786  if (target_type.IsIntegralTypes()) {
3787    instruction_compatible = target_type.Equals(insn_type);
3788    value_compatible = value_type.IsIntegralTypes();
3789  } else if (target_type.IsFloat()) {
3790    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3791    value_compatible = value_type.IsFloatTypes();
3792  } else if (target_type.IsLong()) {
3793    instruction_compatible = insn_type.IsLong();
3794    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3795    // as target_type depends on the resolved type of the field.
3796    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3797      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3798      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3799    } else {
3800      value_compatible = false;
3801    }
3802  } else if (target_type.IsDouble()) {
3803    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3804    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3805    // as target_type depends on the resolved type of the field.
3806    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3807      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3808      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3809    } else {
3810      value_compatible = false;
3811    }
3812  } else {
3813    instruction_compatible = false;  // reference with primitive store
3814    value_compatible = false;  // unused
3815  }
3816  if (!instruction_compatible) {
3817    // This is a global failure rather than a class change failure as the instructions and
3818    // the descriptors for the type should have been consistent within the same file at
3819    // compile time.
3820    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3821        << "' but expected type '" << target_type << "'";
3822    return;
3823  }
3824  if (!value_compatible) {
3825    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3826        << " of type " << value_type << " but expected " << target_type << " for put";
3827    return;
3828  }
3829}
3830
3831void MethodVerifier::VerifyAPut(const Instruction* inst,
3832                                const RegType& insn_type, bool is_primitive) {
3833  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3834  if (!index_type.IsArrayIndexTypes()) {
3835    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3836  } else {
3837    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3838    if (array_type.IsZero()) {
3839      // Null array type; this code path will fail at runtime.
3840      // Still check that the given value matches the instruction's type.
3841      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), insn_type);
3842    } else if (!array_type.IsArrayTypes()) {
3843      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3844    } else {
3845      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3846      const uint32_t vregA = inst->VRegA_23x();
3847      if (is_primitive) {
3848        VerifyPrimitivePut(component_type, insn_type, vregA);
3849      } else {
3850        if (!component_type.IsReferenceTypes()) {
3851          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3852              << " source for aput-object";
3853        } else {
3854          // The instruction agrees with the type of array, confirm the value to be stored does too
3855          // Note: we use the instruction type (rather than the component type) for aput-object as
3856          // incompatible classes will be caught at runtime as an array store exception
3857          work_line_->VerifyRegisterType(this, vregA, insn_type);
3858        }
3859      }
3860    }
3861  }
3862}
3863
3864ArtField* MethodVerifier::GetStaticField(int field_idx) {
3865  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3866  // Check access to class
3867  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3868  if (klass_type.IsConflict()) {  // bad class
3869    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3870                                         field_idx, dex_file_->GetFieldName(field_id),
3871                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3872    return nullptr;
3873  }
3874  if (klass_type.IsUnresolvedTypes()) {
3875    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3876  }
3877  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3878  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3879                                                  class_loader_);
3880  if (field == nullptr) {
3881    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3882              << dex_file_->GetFieldName(field_id) << ") in "
3883              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3884    DCHECK(self_->IsExceptionPending());
3885    self_->ClearException();
3886    return nullptr;
3887  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3888                                                  field->GetAccessFlags())) {
3889    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3890                                    << " from " << GetDeclaringClass();
3891    return nullptr;
3892  } else if (!field->IsStatic()) {
3893    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3894    return nullptr;
3895  }
3896  return field;
3897}
3898
3899ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3900  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3901  // Check access to class
3902  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3903  if (klass_type.IsConflict()) {
3904    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3905                                         field_idx, dex_file_->GetFieldName(field_id),
3906                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3907    return nullptr;
3908  }
3909  if (klass_type.IsUnresolvedTypes()) {
3910    return nullptr;  // Can't resolve Class so no more to do here
3911  }
3912  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3913  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3914                                                  class_loader_);
3915  if (field == nullptr) {
3916    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3917              << dex_file_->GetFieldName(field_id) << ") in "
3918              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3919    DCHECK(self_->IsExceptionPending());
3920    self_->ClearException();
3921    return nullptr;
3922  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3923                                                  field->GetAccessFlags())) {
3924    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3925                                    << " from " << GetDeclaringClass();
3926    return nullptr;
3927  } else if (field->IsStatic()) {
3928    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3929                                    << " to not be static";
3930    return nullptr;
3931  } else if (obj_type.IsZero()) {
3932    // Cannot infer and check type, however, access will cause null pointer exception
3933    return field;
3934  } else if (!obj_type.IsReferenceTypes()) {
3935    // Trying to read a field from something that isn't a reference
3936    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3937                                      << "non-reference type " << obj_type;
3938    return nullptr;
3939  } else {
3940    mirror::Class* klass = field->GetDeclaringClass();
3941    const RegType& field_klass =
3942        FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3943                  klass, klass->CannotBeAssignedFromOtherTypes());
3944    if (obj_type.IsUninitializedTypes() &&
3945        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3946            !field_klass.Equals(GetDeclaringClass()))) {
3947      // Field accesses through uninitialized references are only allowable for constructors where
3948      // the field is declared in this class
3949      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3950                                        << " of a not fully initialized object within the context"
3951                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3952      return nullptr;
3953    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3954      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3955      // of C1. For resolution to occur the declared class of the field must be compatible with
3956      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3957      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3958                                  << " from object of type " << obj_type;
3959      return nullptr;
3960    } else {
3961      return field;
3962    }
3963  }
3964}
3965
3966template <MethodVerifier::FieldAccessType kAccType>
3967void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3968                                         bool is_primitive, bool is_static) {
3969  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3970  ArtField* field;
3971  if (is_static) {
3972    field = GetStaticField(field_idx);
3973  } else {
3974    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3975    field = GetInstanceField(object_type, field_idx);
3976    if (UNLIKELY(have_pending_hard_failure_)) {
3977      return;
3978    }
3979  }
3980  const RegType* field_type = nullptr;
3981  if (field != nullptr) {
3982    if (kAccType == FieldAccessType::kAccPut) {
3983      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3984        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3985                                        << " from other class " << GetDeclaringClass();
3986        return;
3987      }
3988    }
3989
3990    mirror::Class* field_type_class =
3991        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
3992    if (field_type_class != nullptr) {
3993      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
3994                              field_type_class->CannotBeAssignedFromOtherTypes());
3995    } else {
3996      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3997      self_->ClearException();
3998    }
3999  }
4000  if (field_type == nullptr) {
4001    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4002    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4003    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4004  }
4005  DCHECK(field_type != nullptr);
4006  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4007  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4008                "Unexpected third access type");
4009  if (kAccType == FieldAccessType::kAccPut) {
4010    // sput or iput.
4011    if (is_primitive) {
4012      VerifyPrimitivePut(*field_type, insn_type, vregA);
4013    } else {
4014      if (!insn_type.IsAssignableFrom(*field_type)) {
4015        // If the field type is not a reference, this is a global failure rather than
4016        // a class change failure as the instructions and the descriptors for the type
4017        // should have been consistent within the same file at compile time.
4018        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4019                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4020        Fail(error) << "expected field " << PrettyField(field)
4021                    << " to be compatible with type '" << insn_type
4022                    << "' but found type '" << *field_type
4023                    << "' in put-object";
4024        return;
4025      }
4026      work_line_->VerifyRegisterType(this, vregA, *field_type);
4027    }
4028  } else if (kAccType == FieldAccessType::kAccGet) {
4029    // sget or iget.
4030    if (is_primitive) {
4031      if (field_type->Equals(insn_type) ||
4032          (field_type->IsFloat() && insn_type.IsInteger()) ||
4033          (field_type->IsDouble() && insn_type.IsLong())) {
4034        // expected that read is of the correct primitive type or that int reads are reading
4035        // floats or long reads are reading doubles
4036      } else {
4037        // This is a global failure rather than a class change failure as the instructions and
4038        // the descriptors for the type should have been consistent within the same file at
4039        // compile time
4040        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4041                                          << " to be of type '" << insn_type
4042                                          << "' but found type '" << *field_type << "' in get";
4043        return;
4044      }
4045    } else {
4046      if (!insn_type.IsAssignableFrom(*field_type)) {
4047        // If the field type is not a reference, this is a global failure rather than
4048        // a class change failure as the instructions and the descriptors for the type
4049        // should have been consistent within the same file at compile time.
4050        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4051                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4052        Fail(error) << "expected field " << PrettyField(field)
4053                    << " to be compatible with type '" << insn_type
4054                    << "' but found type '" << *field_type
4055                    << "' in get-object";
4056        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4057        return;
4058      }
4059    }
4060    if (!field_type->IsLowHalf()) {
4061      work_line_->SetRegisterType(this, vregA, *field_type);
4062    } else {
4063      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4064    }
4065  } else {
4066    LOG(FATAL) << "Unexpected case.";
4067  }
4068}
4069
4070ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4071                                                      RegisterLine* reg_line) {
4072  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4073  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4074  if (!object_type.HasClass()) {
4075    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4076    return nullptr;
4077  }
4078  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4079  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4080  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4081  if (f == nullptr) {
4082    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4083                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4084  }
4085  return f;
4086}
4087
4088template <MethodVerifier::FieldAccessType kAccType>
4089void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4090                                            bool is_primitive) {
4091  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4092
4093  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4094  if (field == nullptr) {
4095    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4096    return;
4097  }
4098
4099  // For an IPUT_QUICK, we now test for final flag of the field.
4100  if (kAccType == FieldAccessType::kAccPut) {
4101    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4102      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4103                                      << " from other class " << GetDeclaringClass();
4104      return;
4105    }
4106  }
4107
4108  // Get the field type.
4109  const RegType* field_type;
4110  {
4111    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4112        field->GetType<false>();
4113
4114    if (field_type_class != nullptr) {
4115      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4116                              field_type_class->CannotBeAssignedFromOtherTypes());
4117    } else {
4118      Thread* self = Thread::Current();
4119      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4120      self->ClearException();
4121      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4122                                              field->GetTypeDescriptor(), false);
4123    }
4124    if (field_type == nullptr) {
4125      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4126      return;
4127    }
4128  }
4129
4130  const uint32_t vregA = inst->VRegA_22c();
4131  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4132                "Unexpected third access type");
4133  if (kAccType == FieldAccessType::kAccPut) {
4134    if (is_primitive) {
4135      // Primitive field assignability rules are weaker than regular assignability rules
4136      bool instruction_compatible;
4137      bool value_compatible;
4138      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4139      if (field_type->IsIntegralTypes()) {
4140        instruction_compatible = insn_type.IsIntegralTypes();
4141        value_compatible = value_type.IsIntegralTypes();
4142      } else if (field_type->IsFloat()) {
4143        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4144        value_compatible = value_type.IsFloatTypes();
4145      } else if (field_type->IsLong()) {
4146        instruction_compatible = insn_type.IsLong();
4147        value_compatible = value_type.IsLongTypes();
4148      } else if (field_type->IsDouble()) {
4149        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4150        value_compatible = value_type.IsDoubleTypes();
4151      } else {
4152        instruction_compatible = false;  // reference field with primitive store
4153        value_compatible = false;  // unused
4154      }
4155      if (!instruction_compatible) {
4156        // This is a global failure rather than a class change failure as the instructions and
4157        // the descriptors for the type should have been consistent within the same file at
4158        // compile time
4159        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4160                                          << " to be of type '" << insn_type
4161                                          << "' but found type '" << *field_type
4162                                          << "' in put";
4163        return;
4164      }
4165      if (!value_compatible) {
4166        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4167            << " of type " << value_type
4168            << " but expected " << *field_type
4169            << " for store to " << PrettyField(field) << " in put";
4170        return;
4171      }
4172    } else {
4173      if (!insn_type.IsAssignableFrom(*field_type)) {
4174        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4175                                          << " to be compatible with type '" << insn_type
4176                                          << "' but found type '" << *field_type
4177                                          << "' in put-object";
4178        return;
4179      }
4180      work_line_->VerifyRegisterType(this, vregA, *field_type);
4181    }
4182  } else if (kAccType == FieldAccessType::kAccGet) {
4183    if (is_primitive) {
4184      if (field_type->Equals(insn_type) ||
4185          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4186          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4187        // expected that read is of the correct primitive type or that int reads are reading
4188        // floats or long reads are reading doubles
4189      } else {
4190        // This is a global failure rather than a class change failure as the instructions and
4191        // the descriptors for the type should have been consistent within the same file at
4192        // compile time
4193        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4194                                          << " to be of type '" << insn_type
4195                                          << "' but found type '" << *field_type << "' in Get";
4196        return;
4197      }
4198    } else {
4199      if (!insn_type.IsAssignableFrom(*field_type)) {
4200        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4201                                          << " to be compatible with type '" << insn_type
4202                                          << "' but found type '" << *field_type
4203                                          << "' in get-object";
4204        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4205        return;
4206      }
4207    }
4208    if (!field_type->IsLowHalf()) {
4209      work_line_->SetRegisterType(this, vregA, *field_type);
4210    } else {
4211      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4212    }
4213  } else {
4214    LOG(FATAL) << "Unexpected case.";
4215  }
4216}
4217
4218bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4219  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4220    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4221    return false;
4222  }
4223  return true;
4224}
4225
4226bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4227  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4228      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4229    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4230    return false;
4231  }
4232  return true;
4233}
4234
4235bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4236  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4237}
4238
4239bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4240                                     bool update_merge_line) {
4241  bool changed = true;
4242  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4243  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4244    /*
4245     * We haven't processed this instruction before, and we haven't touched the registers here, so
4246     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4247     * only way a register can transition out of "unknown", so this is not just an optimization.)
4248     */
4249    if (!insn_flags_[next_insn].IsReturn()) {
4250      target_line->CopyFromLine(merge_line);
4251    } else {
4252      // Verify that the monitor stack is empty on return.
4253      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4254        return false;
4255      }
4256      // For returns we only care about the operand to the return, all other registers are dead.
4257      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4258      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4259      Instruction::Code opcode = ret_inst->Opcode();
4260      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4261        SafelyMarkAllRegistersAsConflicts(this, target_line);
4262      } else {
4263        target_line->CopyFromLine(merge_line);
4264        if (opcode == Instruction::RETURN_WIDE) {
4265          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4266        } else {
4267          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4268        }
4269      }
4270    }
4271  } else {
4272    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4273                                 RegisterLine::Create(target_line->NumRegs(), this) :
4274                                 nullptr);
4275    if (gDebugVerify) {
4276      copy->CopyFromLine(target_line);
4277    }
4278    changed = target_line->MergeRegisters(this, merge_line);
4279    if (have_pending_hard_failure_) {
4280      return false;
4281    }
4282    if (gDebugVerify && changed) {
4283      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4284                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4285                      << copy->Dump(this) << "  MERGE\n"
4286                      << merge_line->Dump(this) << "  ==\n"
4287                      << target_line->Dump(this) << "\n";
4288    }
4289    if (update_merge_line && changed) {
4290      merge_line->CopyFromLine(target_line);
4291    }
4292  }
4293  if (changed) {
4294    insn_flags_[next_insn].SetChanged();
4295  }
4296  return true;
4297}
4298
4299InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4300  return &insn_flags_[work_insn_idx_];
4301}
4302
4303const RegType& MethodVerifier::GetMethodReturnType() {
4304  if (return_type_ == nullptr) {
4305    if (mirror_method_ != nullptr) {
4306      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4307      if (return_type_class != nullptr) {
4308        return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
4309                                  return_type_class,
4310                                  return_type_class->CannotBeAssignedFromOtherTypes());
4311      } else {
4312        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4313        self_->ClearException();
4314      }
4315    }
4316    if (return_type_ == nullptr) {
4317      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4318      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4319      uint16_t return_type_idx = proto_id.return_type_idx_;
4320      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4321      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4322    }
4323  }
4324  return *return_type_;
4325}
4326
4327const RegType& MethodVerifier::GetDeclaringClass() {
4328  if (declaring_class_ == nullptr) {
4329    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4330    const char* descriptor
4331        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4332    if (mirror_method_ != nullptr) {
4333      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4334      declaring_class_ = &FromClass(descriptor, klass,
4335                                    klass->CannotBeAssignedFromOtherTypes());
4336    } else {
4337      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4338    }
4339  }
4340  return *declaring_class_;
4341}
4342
4343std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4344  RegisterLine* line = reg_table_.GetLine(dex_pc);
4345  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4346  std::vector<int32_t> result;
4347  for (size_t i = 0; i < line->NumRegs(); ++i) {
4348    const RegType& type = line->GetRegisterType(this, i);
4349    if (type.IsConstant()) {
4350      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4351      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4352      result.push_back(const_val->ConstantValue());
4353    } else if (type.IsConstantLo()) {
4354      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4355      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4356      result.push_back(const_val->ConstantValueLo());
4357    } else if (type.IsConstantHi()) {
4358      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4359      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4360      result.push_back(const_val->ConstantValueHi());
4361    } else if (type.IsIntegralTypes()) {
4362      result.push_back(kIntVReg);
4363      result.push_back(0);
4364    } else if (type.IsFloat()) {
4365      result.push_back(kFloatVReg);
4366      result.push_back(0);
4367    } else if (type.IsLong()) {
4368      result.push_back(kLongLoVReg);
4369      result.push_back(0);
4370      result.push_back(kLongHiVReg);
4371      result.push_back(0);
4372      ++i;
4373    } else if (type.IsDouble()) {
4374      result.push_back(kDoubleLoVReg);
4375      result.push_back(0);
4376      result.push_back(kDoubleHiVReg);
4377      result.push_back(0);
4378      ++i;
4379    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4380      result.push_back(kUndefined);
4381      result.push_back(0);
4382    } else {
4383      CHECK(type.IsNonZeroReferenceTypes());
4384      result.push_back(kReferenceVReg);
4385      result.push_back(0);
4386    }
4387  }
4388  return result;
4389}
4390
4391const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4392  if (precise) {
4393    // Precise constant type.
4394    return reg_types_.FromCat1Const(value, true);
4395  } else {
4396    // Imprecise constant type.
4397    if (value < -32768) {
4398      return reg_types_.IntConstant();
4399    } else if (value < -128) {
4400      return reg_types_.ShortConstant();
4401    } else if (value < 0) {
4402      return reg_types_.ByteConstant();
4403    } else if (value == 0) {
4404      return reg_types_.Zero();
4405    } else if (value == 1) {
4406      return reg_types_.One();
4407    } else if (value < 128) {
4408      return reg_types_.PosByteConstant();
4409    } else if (value < 32768) {
4410      return reg_types_.PosShortConstant();
4411    } else if (value < 65536) {
4412      return reg_types_.CharConstant();
4413    } else {
4414      return reg_types_.IntConstant();
4415    }
4416  }
4417}
4418
4419void MethodVerifier::Init() {
4420  art::verifier::RegTypeCache::Init();
4421}
4422
4423void MethodVerifier::Shutdown() {
4424  verifier::RegTypeCache::ShutDown();
4425}
4426
4427void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4428  RegTypeCache::VisitStaticRoots(visitor);
4429}
4430
4431void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4432  reg_types_.VisitRoots(visitor, root_info);
4433}
4434
4435const RegType& MethodVerifier::FromClass(const char* descriptor,
4436                                         mirror::Class* klass,
4437                                         bool precise) {
4438  DCHECK(klass != nullptr);
4439  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
4440    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
4441        << "non-instantiable klass " << descriptor;
4442    precise = false;
4443  }
4444  return reg_types_.FromClass(descriptor, klass, precise);
4445}
4446
4447}  // namespace verifier
4448}  // namespace art
4449