method_verifier.cc revision 848f70a3d73833fc1bf3032a9ff6812e429661d9
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "base/logging.h"
23#include "base/mutex-inl.h"
24#include "class_linker.h"
25#include "compiler_callbacks.h"
26#include "dex_file-inl.h"
27#include "dex_instruction-inl.h"
28#include "dex_instruction_utils.h"
29#include "dex_instruction_visitor.h"
30#include "gc/accounting/card_table-inl.h"
31#include "indenter.h"
32#include "intern_table.h"
33#include "leb128.h"
34#include "mirror/art_method-inl.h"
35#include "mirror/class.h"
36#include "mirror/class-inl.h"
37#include "mirror/dex_cache-inl.h"
38#include "mirror/object-inl.h"
39#include "mirror/object_array-inl.h"
40#include "reg_type-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51static constexpr bool gDebugVerify = false;
52// TODO: Add a constant to method_verifier to turn on verbose logging?
53
54void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                 uint32_t insns_size, uint16_t registers_size,
56                                 MethodVerifier* verifier) {
57  DCHECK_GT(insns_size, 0U);
58  register_lines_.reset(new RegisterLine*[insns_size]());
59  size_ = insns_size;
60  for (uint32_t i = 0; i < insns_size; i++) {
61    bool interesting = false;
62    switch (mode) {
63      case kTrackRegsAll:
64        interesting = flags[i].IsOpcode();
65        break;
66      case kTrackCompilerInterestPoints:
67        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68        break;
69      case kTrackRegsBranches:
70        interesting = flags[i].IsBranchTarget();
71        break;
72      default:
73        break;
74    }
75    if (interesting) {
76      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77    }
78  }
79}
80
81PcToRegisterLineTable::~PcToRegisterLineTable() {
82  for (size_t i = 0; i < size_; i++) {
83    delete register_lines_[i];
84    if (kIsDebugBuild) {
85      register_lines_[i] = nullptr;
86    }
87  }
88}
89
90// Note: returns true on failure.
91ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
92                                             const char* error_msg, uint32_t work_insn_idx) {
93  if (kIsDebugBuild) {
94    // In a debug build, abort if the error condition is wrong.
95    DCHECK(condition) << error_msg << work_insn_idx;
96  } else {
97    // In a non-debug build, just fail the class.
98    if (!condition) {
99      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
100      return true;
101    }
102  }
103
104  return false;
105}
106
107static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
108  if (verifier->IsConstructor()) {
109    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
110    reg_line->CheckConstructorReturn(verifier);
111  }
112  reg_line->MarkAllRegistersAsConflicts(verifier);
113}
114
115MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
116    mirror::ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
117  Thread* self = Thread::Current();
118  StackHandleScope<3> hs(self);
119  mirror::Class* klass = method->GetDeclaringClass();
120  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
121  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
122  auto h_method = hs.NewHandle(method);
123  return VerifyMethod(self, method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), h_method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
164}
165
166MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
167                                                        const DexFile* dex_file,
168                                                        Handle<mirror::DexCache> dex_cache,
169                                                        Handle<mirror::ClassLoader> class_loader,
170                                                        const DexFile::ClassDef* class_def,
171                                                        bool allow_soft_failures,
172                                                        std::string* error) {
173  DCHECK(class_def != nullptr);
174  const uint8_t* class_data = dex_file->GetClassData(*class_def);
175  if (class_data == nullptr) {
176    // empty class, probably a marker interface
177    return kNoFailure;
178  }
179  ClassDataItemIterator it(*dex_file, class_data);
180  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
181    it.Next();
182  }
183  size_t error_count = 0;
184  bool hard_fail = false;
185  ClassLinker* linker = Runtime::Current()->GetClassLinker();
186  int64_t previous_direct_method_idx = -1;
187  while (it.HasNextDirectMethod()) {
188    self->AllowThreadSuspension();
189    uint32_t method_idx = it.GetMemberIndex();
190    if (method_idx == previous_direct_method_idx) {
191      // smali can create dex files with two encoded_methods sharing the same method_idx
192      // http://code.google.com/p/smali/issues/detail?id=119
193      it.Next();
194      continue;
195    }
196    previous_direct_method_idx = method_idx;
197    InvokeType type = it.GetMethodInvokeType(*class_def);
198    mirror::ArtMethod* method =
199        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
200                              NullHandle<mirror::ArtMethod>(), type);
201    if (method == nullptr) {
202      DCHECK(self->IsExceptionPending());
203      // We couldn't resolve the method, but continue regardless.
204      self->ClearException();
205    }
206    StackHandleScope<1> hs(self);
207    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
208    MethodVerifier::FailureKind result = VerifyMethod(self,
209                                                      method_idx,
210                                                      dex_file,
211                                                      dex_cache,
212                                                      class_loader,
213                                                      class_def,
214                                                      it.GetMethodCodeItem(),
215                                                      h_method,
216                                                      it.GetMethodAccessFlags(),
217                                                      allow_soft_failures,
218                                                      false);
219    if (result != kNoFailure) {
220      if (result == kHardFailure) {
221        hard_fail = true;
222        if (error_count > 0) {
223          *error += "\n";
224        }
225        *error = "Verifier rejected class ";
226        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
227        *error += " due to bad method ";
228        *error += PrettyMethod(method_idx, *dex_file);
229      }
230      ++error_count;
231    }
232    it.Next();
233  }
234  int64_t previous_virtual_method_idx = -1;
235  while (it.HasNextVirtualMethod()) {
236    self->AllowThreadSuspension();
237    uint32_t method_idx = it.GetMemberIndex();
238    if (method_idx == previous_virtual_method_idx) {
239      // smali can create dex files with two encoded_methods sharing the same method_idx
240      // http://code.google.com/p/smali/issues/detail?id=119
241      it.Next();
242      continue;
243    }
244    previous_virtual_method_idx = method_idx;
245    InvokeType type = it.GetMethodInvokeType(*class_def);
246    mirror::ArtMethod* method =
247        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
248                              NullHandle<mirror::ArtMethod>(), type);
249    if (method == nullptr) {
250      DCHECK(self->IsExceptionPending());
251      // We couldn't resolve the method, but continue regardless.
252      self->ClearException();
253    }
254    StackHandleScope<1> hs(self);
255    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
256    MethodVerifier::FailureKind result = VerifyMethod(self,
257                                                      method_idx,
258                                                      dex_file,
259                                                      dex_cache,
260                                                      class_loader,
261                                                      class_def,
262                                                      it.GetMethodCodeItem(),
263                                                      h_method,
264                                                      it.GetMethodAccessFlags(),
265                                                      allow_soft_failures,
266                                                      false);
267    if (result != kNoFailure) {
268      if (result == kHardFailure) {
269        hard_fail = true;
270        if (error_count > 0) {
271          *error += "\n";
272        }
273        *error = "Verifier rejected class ";
274        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
275        *error += " due to bad method ";
276        *error += PrettyMethod(method_idx, *dex_file);
277      }
278      ++error_count;
279    }
280    it.Next();
281  }
282  if (error_count == 0) {
283    return kNoFailure;
284  } else {
285    return hard_fail ? kHardFailure : kSoftFailure;
286  }
287}
288
289MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
290                                                         const DexFile* dex_file,
291                                                         Handle<mirror::DexCache> dex_cache,
292                                                         Handle<mirror::ClassLoader> class_loader,
293                                                         const DexFile::ClassDef* class_def,
294                                                         const DexFile::CodeItem* code_item,
295                                                         Handle<mirror::ArtMethod> method,
296                                                         uint32_t method_access_flags,
297                                                         bool allow_soft_failures,
298                                                         bool need_precise_constants) {
299  MethodVerifier::FailureKind result = kNoFailure;
300  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
301
302  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
303                          method_idx, method, method_access_flags, true, allow_soft_failures,
304                          need_precise_constants, true);
305  if (verifier.Verify()) {
306    // Verification completed, however failures may be pending that didn't cause the verification
307    // to hard fail.
308    CHECK(!verifier.have_pending_hard_failure_);
309    if (verifier.failures_.size() != 0) {
310      if (VLOG_IS_ON(verifier)) {
311          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
312                                << PrettyMethod(method_idx, *dex_file) << "\n");
313      }
314      result = kSoftFailure;
315    }
316  } else {
317    // Bad method data.
318    CHECK_NE(verifier.failures_.size(), 0U);
319    CHECK(verifier.have_pending_hard_failure_);
320    verifier.DumpFailures(LOG(INFO) << "Verification error in "
321                                    << PrettyMethod(method_idx, *dex_file) << "\n");
322    if (gDebugVerify) {
323      std::cout << "\n" << verifier.info_messages_.str();
324      verifier.Dump(std::cout);
325    }
326    result = kHardFailure;
327  }
328  if (kTimeVerifyMethod) {
329    uint64_t duration_ns = NanoTime() - start_ns;
330    if (duration_ns > MsToNs(100)) {
331      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
332                   << " took " << PrettyDuration(duration_ns);
333    }
334  }
335  return result;
336}
337
338MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
339                                         const DexFile* dex_file,
340                                         Handle<mirror::DexCache> dex_cache,
341                                         Handle<mirror::ClassLoader> class_loader,
342                                         const DexFile::ClassDef* class_def,
343                                         const DexFile::CodeItem* code_item,
344                                         Handle<mirror::ArtMethod> method,
345                                         uint32_t method_access_flags) {
346  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
347                                                class_def, code_item, dex_method_idx, method,
348                                                method_access_flags, true, true, true, true);
349  verifier->Verify();
350  verifier->DumpFailures(os);
351  os << verifier->info_messages_.str();
352  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
353  // and querying any info is dangerous/can abort.
354  if (verifier->have_pending_hard_failure_) {
355    delete verifier;
356    return nullptr;
357  } else {
358    verifier->Dump(os);
359    return verifier;
360  }
361}
362
363MethodVerifier::MethodVerifier(Thread* self,
364                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
365                               Handle<mirror::ClassLoader> class_loader,
366                               const DexFile::ClassDef* class_def,
367                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
368                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
369                               bool can_load_classes, bool allow_soft_failures,
370                               bool need_precise_constants, bool verify_to_dump,
371                               bool allow_thread_suspension)
372    : self_(self),
373      reg_types_(can_load_classes),
374      work_insn_idx_(-1),
375      dex_method_idx_(dex_method_idx),
376      mirror_method_(method),
377      method_access_flags_(method_access_flags),
378      return_type_(nullptr),
379      dex_file_(dex_file),
380      dex_cache_(dex_cache),
381      class_loader_(class_loader),
382      class_def_(class_def),
383      code_item_(code_item),
384      declaring_class_(nullptr),
385      interesting_dex_pc_(-1),
386      monitor_enter_dex_pcs_(nullptr),
387      have_pending_hard_failure_(false),
388      have_pending_runtime_throw_failure_(false),
389      new_instance_count_(0),
390      monitor_enter_count_(0),
391      can_load_classes_(can_load_classes),
392      allow_soft_failures_(allow_soft_failures),
393      need_precise_constants_(need_precise_constants),
394      has_check_casts_(false),
395      has_virtual_or_interface_invokes_(false),
396      verify_to_dump_(verify_to_dump),
397      allow_thread_suspension_(allow_thread_suspension) {
398  self->PushVerifier(this);
399  DCHECK(class_def != nullptr);
400}
401
402MethodVerifier::~MethodVerifier() {
403  Thread::Current()->PopVerifier(this);
404  STLDeleteElements(&failure_messages_);
405}
406
407void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
408                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
409  Thread* self = Thread::Current();
410  StackHandleScope<3> hs(self);
411  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
412  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
413  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
414  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
415                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
416                          false, true, false, false);
417  verifier.interesting_dex_pc_ = dex_pc;
418  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
419  verifier.FindLocksAtDexPc();
420}
421
422static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
423  const Instruction* inst = Instruction::At(code_item->insns_);
424
425  uint32_t insns_size = code_item->insns_size_in_code_units_;
426  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
427    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
428      return true;
429    }
430
431    dex_pc += inst->SizeInCodeUnits();
432    inst = inst->Next();
433  }
434
435  return false;
436}
437
438void MethodVerifier::FindLocksAtDexPc() {
439  CHECK(monitor_enter_dex_pcs_ != nullptr);
440  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
441
442  // Quick check whether there are any monitor_enter instructions at all.
443  if (!HasMonitorEnterInstructions(code_item_)) {
444    return;
445  }
446
447  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
448  // verification. In practice, the phase we want relies on data structures set up by all the
449  // earlier passes, so we just run the full method verification and bail out early when we've
450  // got what we wanted.
451  Verify();
452}
453
454ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
455                                                           uint32_t dex_pc) {
456  Thread* self = Thread::Current();
457  StackHandleScope<3> hs(self);
458  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
459  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
460  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
461  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
462                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
463                          true, true, false, true);
464  return verifier.FindAccessedFieldAtDexPc(dex_pc);
465}
466
467ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
468  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
469
470  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
471  // verification. In practice, the phase we want relies on data structures set up by all the
472  // earlier passes, so we just run the full method verification and bail out early when we've
473  // got what we wanted.
474  bool success = Verify();
475  if (!success) {
476    return nullptr;
477  }
478  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
479  if (register_line == nullptr) {
480    return nullptr;
481  }
482  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
483  return GetQuickFieldAccess(inst, register_line);
484}
485
486mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
487                                                            uint32_t dex_pc) {
488  Thread* self = Thread::Current();
489  StackHandleScope<3> hs(self);
490  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
491  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
492  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
493  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
494                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
495                          true, true, false, true);
496  return verifier.FindInvokedMethodAtDexPc(dex_pc);
497}
498
499mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
500  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
501
502  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
503  // verification. In practice, the phase we want relies on data structures set up by all the
504  // earlier passes, so we just run the full method verification and bail out early when we've
505  // got what we wanted.
506  bool success = Verify();
507  if (!success) {
508    return nullptr;
509  }
510  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
511  if (register_line == nullptr) {
512    return nullptr;
513  }
514  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
515  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
516  return GetQuickInvokedMethod(inst, register_line, is_range, false);
517}
518
519SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(mirror::ArtMethod* m) {
520  Thread* self = Thread::Current();
521  StackHandleScope<3> hs(self);
522  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
523  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
524  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
525  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
526                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
527                          true, true, false, true);
528  return verifier.FindStringInitMap();
529}
530
531SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
532  Verify();
533  return GetStringInitPcRegMap();
534}
535
536bool MethodVerifier::Verify() {
537  // If there aren't any instructions, make sure that's expected, then exit successfully.
538  if (code_item_ == nullptr) {
539    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
540      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
541      return false;
542    } else {
543      return true;
544    }
545  }
546  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
547  if (code_item_->ins_size_ > code_item_->registers_size_) {
548    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
549                                      << " regs=" << code_item_->registers_size_;
550    return false;
551  }
552  // Allocate and initialize an array to hold instruction data.
553  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
554  // Run through the instructions and see if the width checks out.
555  bool result = ComputeWidthsAndCountOps();
556  // Flag instructions guarded by a "try" block and check exception handlers.
557  result = result && ScanTryCatchBlocks();
558  // Perform static instruction verification.
559  result = result && VerifyInstructions();
560  // Perform code-flow analysis and return.
561  result = result && VerifyCodeFlow();
562  // Compute information for compiler.
563  if (result && Runtime::Current()->IsCompiler()) {
564    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
565  }
566  return result;
567}
568
569std::ostream& MethodVerifier::Fail(VerifyError error) {
570  switch (error) {
571    case VERIFY_ERROR_NO_CLASS:
572    case VERIFY_ERROR_NO_FIELD:
573    case VERIFY_ERROR_NO_METHOD:
574    case VERIFY_ERROR_ACCESS_CLASS:
575    case VERIFY_ERROR_ACCESS_FIELD:
576    case VERIFY_ERROR_ACCESS_METHOD:
577    case VERIFY_ERROR_INSTANTIATION:
578    case VERIFY_ERROR_CLASS_CHANGE:
579      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
580        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
581        // class change and instantiation errors into soft verification errors so that we re-verify
582        // at runtime. We may fail to find or to agree on access because of not yet available class
583        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
584        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
585        // paths" that dynamically perform the verification and cause the behavior to be that akin
586        // to an interpreter.
587        error = VERIFY_ERROR_BAD_CLASS_SOFT;
588      } else {
589        // If we fail again at runtime, mark that this instruction would throw and force this
590        // method to be executed using the interpreter with checks.
591        have_pending_runtime_throw_failure_ = true;
592
593        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
594        // try to merge garbage.
595        // Note: this assumes that Fail is called before we do any work_line modifications.
596        const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
597        const Instruction* inst = Instruction::At(insns);
598        int opcode_flags = Instruction::FlagsOf(inst->Opcode());
599
600        if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
601          saved_line_->CopyFromLine(work_line_.get());
602        }
603      }
604      break;
605      // Indication that verification should be retried at runtime.
606    case VERIFY_ERROR_BAD_CLASS_SOFT:
607      if (!allow_soft_failures_) {
608        have_pending_hard_failure_ = true;
609      }
610      break;
611      // Hard verification failures at compile time will still fail at runtime, so the class is
612      // marked as rejected to prevent it from being compiled.
613    case VERIFY_ERROR_BAD_CLASS_HARD: {
614      if (Runtime::Current()->IsAotCompiler()) {
615        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
616        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
617      }
618      have_pending_hard_failure_ = true;
619      break;
620    }
621  }
622  failures_.push_back(error);
623  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
624                                    work_insn_idx_));
625  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
626  failure_messages_.push_back(failure_message);
627  return *failure_message;
628}
629
630std::ostream& MethodVerifier::LogVerifyInfo() {
631  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
632                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
633}
634
635void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
636  size_t failure_num = failure_messages_.size();
637  DCHECK_NE(failure_num, 0U);
638  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
639  prepend += last_fail_message->str();
640  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
641  delete last_fail_message;
642}
643
644void MethodVerifier::AppendToLastFailMessage(std::string append) {
645  size_t failure_num = failure_messages_.size();
646  DCHECK_NE(failure_num, 0U);
647  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
648  (*last_fail_message) << append;
649}
650
651bool MethodVerifier::ComputeWidthsAndCountOps() {
652  const uint16_t* insns = code_item_->insns_;
653  size_t insns_size = code_item_->insns_size_in_code_units_;
654  const Instruction* inst = Instruction::At(insns);
655  size_t new_instance_count = 0;
656  size_t monitor_enter_count = 0;
657  size_t dex_pc = 0;
658
659  while (dex_pc < insns_size) {
660    Instruction::Code opcode = inst->Opcode();
661    switch (opcode) {
662      case Instruction::APUT_OBJECT:
663      case Instruction::CHECK_CAST:
664        has_check_casts_ = true;
665        break;
666      case Instruction::INVOKE_VIRTUAL:
667      case Instruction::INVOKE_VIRTUAL_RANGE:
668      case Instruction::INVOKE_INTERFACE:
669      case Instruction::INVOKE_INTERFACE_RANGE:
670        has_virtual_or_interface_invokes_ = true;
671        break;
672      case Instruction::MONITOR_ENTER:
673        monitor_enter_count++;
674        break;
675      case Instruction::NEW_INSTANCE:
676        new_instance_count++;
677        break;
678      default:
679        break;
680    }
681    size_t inst_size = inst->SizeInCodeUnits();
682    insn_flags_[dex_pc].SetIsOpcode();
683    dex_pc += inst_size;
684    inst = inst->RelativeAt(inst_size);
685  }
686
687  if (dex_pc != insns_size) {
688    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
689                                      << dex_pc << " vs. " << insns_size << ")";
690    return false;
691  }
692
693  new_instance_count_ = new_instance_count;
694  monitor_enter_count_ = monitor_enter_count;
695  return true;
696}
697
698bool MethodVerifier::ScanTryCatchBlocks() {
699  uint32_t tries_size = code_item_->tries_size_;
700  if (tries_size == 0) {
701    return true;
702  }
703  uint32_t insns_size = code_item_->insns_size_in_code_units_;
704  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
705
706  for (uint32_t idx = 0; idx < tries_size; idx++) {
707    const DexFile::TryItem* try_item = &tries[idx];
708    uint32_t start = try_item->start_addr_;
709    uint32_t end = start + try_item->insn_count_;
710    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
711      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
712                                        << " endAddr=" << end << " (size=" << insns_size << ")";
713      return false;
714    }
715    if (!insn_flags_[start].IsOpcode()) {
716      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
717          << "'try' block starts inside an instruction (" << start << ")";
718      return false;
719    }
720    uint32_t dex_pc = start;
721    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
722    while (dex_pc < end) {
723      insn_flags_[dex_pc].SetInTry();
724      size_t insn_size = inst->SizeInCodeUnits();
725      dex_pc += insn_size;
726      inst = inst->RelativeAt(insn_size);
727    }
728  }
729  // Iterate over each of the handlers to verify target addresses.
730  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
731  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
732  ClassLinker* linker = Runtime::Current()->GetClassLinker();
733  for (uint32_t idx = 0; idx < handlers_size; idx++) {
734    CatchHandlerIterator iterator(handlers_ptr);
735    for (; iterator.HasNext(); iterator.Next()) {
736      uint32_t dex_pc= iterator.GetHandlerAddress();
737      if (!insn_flags_[dex_pc].IsOpcode()) {
738        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
739            << "exception handler starts at bad address (" << dex_pc << ")";
740        return false;
741      }
742      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
743        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
744            << "exception handler begins with move-result* (" << dex_pc << ")";
745        return false;
746      }
747      insn_flags_[dex_pc].SetBranchTarget();
748      // Ensure exception types are resolved so that they don't need resolution to be delivered,
749      // unresolved exception types will be ignored by exception delivery
750      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
751        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
752                                                            iterator.GetHandlerTypeIndex(),
753                                                            dex_cache_, class_loader_);
754        if (exception_type == nullptr) {
755          DCHECK(self_->IsExceptionPending());
756          self_->ClearException();
757        }
758      }
759    }
760    handlers_ptr = iterator.EndDataPointer();
761  }
762  return true;
763}
764
765bool MethodVerifier::VerifyInstructions() {
766  const Instruction* inst = Instruction::At(code_item_->insns_);
767
768  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
769  insn_flags_[0].SetBranchTarget();
770  insn_flags_[0].SetCompileTimeInfoPoint();
771
772  uint32_t insns_size = code_item_->insns_size_in_code_units_;
773  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
774    if (!VerifyInstruction(inst, dex_pc)) {
775      DCHECK_NE(failures_.size(), 0U);
776      return false;
777    }
778    /* Flag instructions that are garbage collection points */
779    // All invoke points are marked as "Throw" points already.
780    // We are relying on this to also count all the invokes as interesting.
781    if (inst->IsBranch()) {
782      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
783      // The compiler also needs safepoints for fall-through to loop heads.
784      // Such a loop head must be a target of a branch.
785      int32_t offset = 0;
786      bool cond, self_ok;
787      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
788      DCHECK(target_ok);
789      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
790    } else if (inst->IsSwitch() || inst->IsThrow()) {
791      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
792    } else if (inst->IsReturn()) {
793      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
794    }
795    dex_pc += inst->SizeInCodeUnits();
796    inst = inst->Next();
797  }
798  return true;
799}
800
801bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
802  bool result = true;
803  switch (inst->GetVerifyTypeArgumentA()) {
804    case Instruction::kVerifyRegA:
805      result = result && CheckRegisterIndex(inst->VRegA());
806      break;
807    case Instruction::kVerifyRegAWide:
808      result = result && CheckWideRegisterIndex(inst->VRegA());
809      break;
810  }
811  switch (inst->GetVerifyTypeArgumentB()) {
812    case Instruction::kVerifyRegB:
813      result = result && CheckRegisterIndex(inst->VRegB());
814      break;
815    case Instruction::kVerifyRegBField:
816      result = result && CheckFieldIndex(inst->VRegB());
817      break;
818    case Instruction::kVerifyRegBMethod:
819      result = result && CheckMethodIndex(inst->VRegB());
820      break;
821    case Instruction::kVerifyRegBNewInstance:
822      result = result && CheckNewInstance(inst->VRegB());
823      break;
824    case Instruction::kVerifyRegBString:
825      result = result && CheckStringIndex(inst->VRegB());
826      break;
827    case Instruction::kVerifyRegBType:
828      result = result && CheckTypeIndex(inst->VRegB());
829      break;
830    case Instruction::kVerifyRegBWide:
831      result = result && CheckWideRegisterIndex(inst->VRegB());
832      break;
833  }
834  switch (inst->GetVerifyTypeArgumentC()) {
835    case Instruction::kVerifyRegC:
836      result = result && CheckRegisterIndex(inst->VRegC());
837      break;
838    case Instruction::kVerifyRegCField:
839      result = result && CheckFieldIndex(inst->VRegC());
840      break;
841    case Instruction::kVerifyRegCNewArray:
842      result = result && CheckNewArray(inst->VRegC());
843      break;
844    case Instruction::kVerifyRegCType:
845      result = result && CheckTypeIndex(inst->VRegC());
846      break;
847    case Instruction::kVerifyRegCWide:
848      result = result && CheckWideRegisterIndex(inst->VRegC());
849      break;
850  }
851  switch (inst->GetVerifyExtraFlags()) {
852    case Instruction::kVerifyArrayData:
853      result = result && CheckArrayData(code_offset);
854      break;
855    case Instruction::kVerifyBranchTarget:
856      result = result && CheckBranchTarget(code_offset);
857      break;
858    case Instruction::kVerifySwitchTargets:
859      result = result && CheckSwitchTargets(code_offset);
860      break;
861    case Instruction::kVerifyVarArgNonZero:
862      // Fall-through.
863    case Instruction::kVerifyVarArg: {
864      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
865        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
866                                             "non-range invoke";
867        return false;
868      }
869      uint32_t args[Instruction::kMaxVarArgRegs];
870      inst->GetVarArgs(args);
871      result = result && CheckVarArgRegs(inst->VRegA(), args);
872      break;
873    }
874    case Instruction::kVerifyVarArgRangeNonZero:
875      // Fall-through.
876    case Instruction::kVerifyVarArgRange:
877      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
878          inst->VRegA() <= 0) {
879        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
880                                             "range invoke";
881        return false;
882      }
883      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
884      break;
885    case Instruction::kVerifyError:
886      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
887      result = false;
888      break;
889  }
890  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
891    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
892    result = false;
893  }
894  return result;
895}
896
897inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
898  if (idx >= code_item_->registers_size_) {
899    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
900                                      << code_item_->registers_size_ << ")";
901    return false;
902  }
903  return true;
904}
905
906inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
907  if (idx + 1 >= code_item_->registers_size_) {
908    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
909                                      << "+1 >= " << code_item_->registers_size_ << ")";
910    return false;
911  }
912  return true;
913}
914
915inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
916  if (idx >= dex_file_->GetHeader().field_ids_size_) {
917    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
918                                      << dex_file_->GetHeader().field_ids_size_ << ")";
919    return false;
920  }
921  return true;
922}
923
924inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
925  if (idx >= dex_file_->GetHeader().method_ids_size_) {
926    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
927                                      << dex_file_->GetHeader().method_ids_size_ << ")";
928    return false;
929  }
930  return true;
931}
932
933inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
934  if (idx >= dex_file_->GetHeader().type_ids_size_) {
935    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
936                                      << dex_file_->GetHeader().type_ids_size_ << ")";
937    return false;
938  }
939  // We don't need the actual class, just a pointer to the class name.
940  const char* descriptor = dex_file_->StringByTypeIdx(idx);
941  if (descriptor[0] != 'L') {
942    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
943    return false;
944  }
945  return true;
946}
947
948inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
949  if (idx >= dex_file_->GetHeader().string_ids_size_) {
950    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
951                                      << dex_file_->GetHeader().string_ids_size_ << ")";
952    return false;
953  }
954  return true;
955}
956
957inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
958  if (idx >= dex_file_->GetHeader().type_ids_size_) {
959    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
960                                      << dex_file_->GetHeader().type_ids_size_ << ")";
961    return false;
962  }
963  return true;
964}
965
966bool MethodVerifier::CheckNewArray(uint32_t idx) {
967  if (idx >= dex_file_->GetHeader().type_ids_size_) {
968    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
969                                      << dex_file_->GetHeader().type_ids_size_ << ")";
970    return false;
971  }
972  int bracket_count = 0;
973  const char* descriptor = dex_file_->StringByTypeIdx(idx);
974  const char* cp = descriptor;
975  while (*cp++ == '[') {
976    bracket_count++;
977  }
978  if (bracket_count == 0) {
979    /* The given class must be an array type. */
980    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
981        << "can't new-array class '" << descriptor << "' (not an array)";
982    return false;
983  } else if (bracket_count > 255) {
984    /* It is illegal to create an array of more than 255 dimensions. */
985    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
986        << "can't new-array class '" << descriptor << "' (exceeds limit)";
987    return false;
988  }
989  return true;
990}
991
992bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
993  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
994  const uint16_t* insns = code_item_->insns_ + cur_offset;
995  const uint16_t* array_data;
996  int32_t array_data_offset;
997
998  DCHECK_LT(cur_offset, insn_count);
999  /* make sure the start of the array data table is in range */
1000  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
1001  if ((int32_t) cur_offset + array_data_offset < 0 ||
1002      cur_offset + array_data_offset + 2 >= insn_count) {
1003    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1004                                      << ", data offset " << array_data_offset
1005                                      << ", count " << insn_count;
1006    return false;
1007  }
1008  /* offset to array data table is a relative branch-style offset */
1009  array_data = insns + array_data_offset;
1010  /* make sure the table is 32-bit aligned */
1011  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1012    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1013                                      << ", data offset " << array_data_offset;
1014    return false;
1015  }
1016  uint32_t value_width = array_data[1];
1017  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1018  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1019  /* make sure the end of the switch is in range */
1020  if (cur_offset + array_data_offset + table_size > insn_count) {
1021    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1022                                      << ", data offset " << array_data_offset << ", end "
1023                                      << cur_offset + array_data_offset + table_size
1024                                      << ", count " << insn_count;
1025    return false;
1026  }
1027  return true;
1028}
1029
1030bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1031  int32_t offset;
1032  bool isConditional, selfOkay;
1033  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1034    return false;
1035  }
1036  if (!selfOkay && offset == 0) {
1037    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1038                                      << reinterpret_cast<void*>(cur_offset);
1039    return false;
1040  }
1041  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1042  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1043  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1044    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1045                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1046    return false;
1047  }
1048  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1049  int32_t abs_offset = cur_offset + offset;
1050  if (abs_offset < 0 ||
1051      (uint32_t) abs_offset >= insn_count ||
1052      !insn_flags_[abs_offset].IsOpcode()) {
1053    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1054                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1055                                      << reinterpret_cast<void*>(cur_offset);
1056    return false;
1057  }
1058  insn_flags_[abs_offset].SetBranchTarget();
1059  return true;
1060}
1061
1062bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1063                                  bool* selfOkay) {
1064  const uint16_t* insns = code_item_->insns_ + cur_offset;
1065  *pConditional = false;
1066  *selfOkay = false;
1067  switch (*insns & 0xff) {
1068    case Instruction::GOTO:
1069      *pOffset = ((int16_t) *insns) >> 8;
1070      break;
1071    case Instruction::GOTO_32:
1072      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1073      *selfOkay = true;
1074      break;
1075    case Instruction::GOTO_16:
1076      *pOffset = (int16_t) insns[1];
1077      break;
1078    case Instruction::IF_EQ:
1079    case Instruction::IF_NE:
1080    case Instruction::IF_LT:
1081    case Instruction::IF_GE:
1082    case Instruction::IF_GT:
1083    case Instruction::IF_LE:
1084    case Instruction::IF_EQZ:
1085    case Instruction::IF_NEZ:
1086    case Instruction::IF_LTZ:
1087    case Instruction::IF_GEZ:
1088    case Instruction::IF_GTZ:
1089    case Instruction::IF_LEZ:
1090      *pOffset = (int16_t) insns[1];
1091      *pConditional = true;
1092      break;
1093    default:
1094      return false;
1095  }
1096  return true;
1097}
1098
1099bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1100  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1101  DCHECK_LT(cur_offset, insn_count);
1102  const uint16_t* insns = code_item_->insns_ + cur_offset;
1103  /* make sure the start of the switch is in range */
1104  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1105  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1106    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1107                                      << ", switch offset " << switch_offset
1108                                      << ", count " << insn_count;
1109    return false;
1110  }
1111  /* offset to switch table is a relative branch-style offset */
1112  const uint16_t* switch_insns = insns + switch_offset;
1113  /* make sure the table is 32-bit aligned */
1114  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1115    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1116                                      << ", switch offset " << switch_offset;
1117    return false;
1118  }
1119  uint32_t switch_count = switch_insns[1];
1120  int32_t keys_offset, targets_offset;
1121  uint16_t expected_signature;
1122  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1123    /* 0=sig, 1=count, 2/3=firstKey */
1124    targets_offset = 4;
1125    keys_offset = -1;
1126    expected_signature = Instruction::kPackedSwitchSignature;
1127  } else {
1128    /* 0=sig, 1=count, 2..count*2 = keys */
1129    keys_offset = 2;
1130    targets_offset = 2 + 2 * switch_count;
1131    expected_signature = Instruction::kSparseSwitchSignature;
1132  }
1133  uint32_t table_size = targets_offset + switch_count * 2;
1134  if (switch_insns[0] != expected_signature) {
1135    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1136        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1137                        switch_insns[0], expected_signature);
1138    return false;
1139  }
1140  /* make sure the end of the switch is in range */
1141  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1142    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1143                                      << ", switch offset " << switch_offset
1144                                      << ", end " << (cur_offset + switch_offset + table_size)
1145                                      << ", count " << insn_count;
1146    return false;
1147  }
1148  /* for a sparse switch, verify the keys are in ascending order */
1149  if (keys_offset > 0 && switch_count > 1) {
1150    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1151    for (uint32_t targ = 1; targ < switch_count; targ++) {
1152      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1153                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1154      if (key <= last_key) {
1155        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1156                                          << ", this=" << key;
1157        return false;
1158      }
1159      last_key = key;
1160    }
1161  }
1162  /* verify each switch target */
1163  for (uint32_t targ = 0; targ < switch_count; targ++) {
1164    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1165                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1166    int32_t abs_offset = cur_offset + offset;
1167    if (abs_offset < 0 ||
1168        abs_offset >= (int32_t) insn_count ||
1169        !insn_flags_[abs_offset].IsOpcode()) {
1170      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1171                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1172                                        << reinterpret_cast<void*>(cur_offset)
1173                                        << "[" << targ << "]";
1174      return false;
1175    }
1176    insn_flags_[abs_offset].SetBranchTarget();
1177  }
1178  return true;
1179}
1180
1181bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1182  if (vA > Instruction::kMaxVarArgRegs) {
1183    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1184    return false;
1185  }
1186  uint16_t registers_size = code_item_->registers_size_;
1187  for (uint32_t idx = 0; idx < vA; idx++) {
1188    if (arg[idx] >= registers_size) {
1189      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1190                                        << ") in non-range invoke (>= " << registers_size << ")";
1191      return false;
1192    }
1193  }
1194
1195  return true;
1196}
1197
1198bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1199  uint16_t registers_size = code_item_->registers_size_;
1200  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1201  // integer overflow when adding them here.
1202  if (vA + vC > registers_size) {
1203    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1204                                      << " in range invoke (> " << registers_size << ")";
1205    return false;
1206  }
1207  return true;
1208}
1209
1210bool MethodVerifier::VerifyCodeFlow() {
1211  uint16_t registers_size = code_item_->registers_size_;
1212  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1213
1214  if (registers_size * insns_size > 4*1024*1024) {
1215    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1216                 << " insns_size=" << insns_size << ")";
1217  }
1218  /* Create and initialize table holding register status */
1219  reg_table_.Init(kTrackCompilerInterestPoints,
1220                  insn_flags_.get(),
1221                  insns_size,
1222                  registers_size,
1223                  this);
1224
1225
1226  work_line_.reset(RegisterLine::Create(registers_size, this));
1227  saved_line_.reset(RegisterLine::Create(registers_size, this));
1228
1229  /* Initialize register types of method arguments. */
1230  if (!SetTypesFromSignature()) {
1231    DCHECK_NE(failures_.size(), 0U);
1232    std::string prepend("Bad signature in ");
1233    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1234    PrependToLastFailMessage(prepend);
1235    return false;
1236  }
1237  /* Perform code flow verification. */
1238  if (!CodeFlowVerifyMethod()) {
1239    DCHECK_NE(failures_.size(), 0U);
1240    return false;
1241  }
1242  return true;
1243}
1244
1245std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1246  DCHECK_EQ(failures_.size(), failure_messages_.size());
1247  for (size_t i = 0; i < failures_.size(); ++i) {
1248      os << failure_messages_[i]->str() << "\n";
1249  }
1250  return os;
1251}
1252
1253void MethodVerifier::Dump(std::ostream& os) {
1254  if (code_item_ == nullptr) {
1255    os << "Native method\n";
1256    return;
1257  }
1258  {
1259    os << "Register Types:\n";
1260    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1261    std::ostream indent_os(&indent_filter);
1262    reg_types_.Dump(indent_os);
1263  }
1264  os << "Dumping instructions and register lines:\n";
1265  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1266  std::ostream indent_os(&indent_filter);
1267  const Instruction* inst = Instruction::At(code_item_->insns_);
1268  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1269      dex_pc += inst->SizeInCodeUnits()) {
1270    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1271    if (reg_line != nullptr) {
1272      indent_os << reg_line->Dump(this) << "\n";
1273    }
1274    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1275    const bool kDumpHexOfInstruction = false;
1276    if (kDumpHexOfInstruction) {
1277      indent_os << inst->DumpHex(5) << " ";
1278    }
1279    indent_os << inst->DumpString(dex_file_) << "\n";
1280    inst = inst->Next();
1281  }
1282}
1283
1284static bool IsPrimitiveDescriptor(char descriptor) {
1285  switch (descriptor) {
1286    case 'I':
1287    case 'C':
1288    case 'S':
1289    case 'B':
1290    case 'Z':
1291    case 'F':
1292    case 'D':
1293    case 'J':
1294      return true;
1295    default:
1296      return false;
1297  }
1298}
1299
1300bool MethodVerifier::SetTypesFromSignature() {
1301  RegisterLine* reg_line = reg_table_.GetLine(0);
1302  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1303  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1304
1305  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1306  // Include the "this" pointer.
1307  size_t cur_arg = 0;
1308  if (!IsStatic()) {
1309    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1310    // argument as uninitialized. This restricts field access until the superclass constructor is
1311    // called.
1312    const RegType& declaring_class = GetDeclaringClass();
1313    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1314      reg_line->SetRegisterType(this, arg_start + cur_arg,
1315                                reg_types_.UninitializedThisArgument(declaring_class));
1316    } else {
1317      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1318    }
1319    cur_arg++;
1320  }
1321
1322  const DexFile::ProtoId& proto_id =
1323      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1324  DexFileParameterIterator iterator(*dex_file_, proto_id);
1325
1326  for (; iterator.HasNext(); iterator.Next()) {
1327    const char* descriptor = iterator.GetDescriptor();
1328    if (descriptor == nullptr) {
1329      LOG(FATAL) << "Null descriptor";
1330    }
1331    if (cur_arg >= expected_args) {
1332      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1333                                        << " args, found more (" << descriptor << ")";
1334      return false;
1335    }
1336    switch (descriptor[0]) {
1337      case 'L':
1338      case '[':
1339        // We assume that reference arguments are initialized. The only way it could be otherwise
1340        // (assuming the caller was verified) is if the current method is <init>, but in that case
1341        // it's effectively considered initialized the instant we reach here (in the sense that we
1342        // can return without doing anything or call virtual methods).
1343        {
1344          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1345          if (!reg_type.IsNonZeroReferenceTypes()) {
1346            DCHECK(HasFailures());
1347            return false;
1348          }
1349          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1350        }
1351        break;
1352      case 'Z':
1353        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1354        break;
1355      case 'C':
1356        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1357        break;
1358      case 'B':
1359        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1360        break;
1361      case 'I':
1362        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1363        break;
1364      case 'S':
1365        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1366        break;
1367      case 'F':
1368        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1369        break;
1370      case 'J':
1371      case 'D': {
1372        if (cur_arg + 1 >= expected_args) {
1373          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1374              << " args, found more (" << descriptor << ")";
1375          return false;
1376        }
1377
1378        const RegType* lo_half;
1379        const RegType* hi_half;
1380        if (descriptor[0] == 'J') {
1381          lo_half = &reg_types_.LongLo();
1382          hi_half = &reg_types_.LongHi();
1383        } else {
1384          lo_half = &reg_types_.DoubleLo();
1385          hi_half = &reg_types_.DoubleHi();
1386        }
1387        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1388        cur_arg++;
1389        break;
1390      }
1391      default:
1392        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1393                                          << descriptor << "'";
1394        return false;
1395    }
1396    cur_arg++;
1397  }
1398  if (cur_arg != expected_args) {
1399    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1400                                      << " arguments, found " << cur_arg;
1401    return false;
1402  }
1403  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1404  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1405  // format. Only major difference from the method argument format is that 'V' is supported.
1406  bool result;
1407  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1408    result = descriptor[1] == '\0';
1409  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1410    size_t i = 0;
1411    do {
1412      i++;
1413    } while (descriptor[i] == '[');  // process leading [
1414    if (descriptor[i] == 'L') {  // object array
1415      do {
1416        i++;  // find closing ;
1417      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1418      result = descriptor[i] == ';';
1419    } else {  // primitive array
1420      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1421    }
1422  } else if (descriptor[0] == 'L') {
1423    // could be more thorough here, but shouldn't be required
1424    size_t i = 0;
1425    do {
1426      i++;
1427    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1428    result = descriptor[i] == ';';
1429  } else {
1430    result = false;
1431  }
1432  if (!result) {
1433    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1434                                      << descriptor << "'";
1435  }
1436  return result;
1437}
1438
1439bool MethodVerifier::CodeFlowVerifyMethod() {
1440  const uint16_t* insns = code_item_->insns_;
1441  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1442
1443  /* Begin by marking the first instruction as "changed". */
1444  insn_flags_[0].SetChanged();
1445  uint32_t start_guess = 0;
1446
1447  /* Continue until no instructions are marked "changed". */
1448  while (true) {
1449    if (allow_thread_suspension_) {
1450      self_->AllowThreadSuspension();
1451    }
1452    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1453    uint32_t insn_idx = start_guess;
1454    for (; insn_idx < insns_size; insn_idx++) {
1455      if (insn_flags_[insn_idx].IsChanged())
1456        break;
1457    }
1458    if (insn_idx == insns_size) {
1459      if (start_guess != 0) {
1460        /* try again, starting from the top */
1461        start_guess = 0;
1462        continue;
1463      } else {
1464        /* all flags are clear */
1465        break;
1466      }
1467    }
1468    // We carry the working set of registers from instruction to instruction. If this address can
1469    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1470    // "changed" flags, we need to load the set of registers from the table.
1471    // Because we always prefer to continue on to the next instruction, we should never have a
1472    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1473    // target.
1474    work_insn_idx_ = insn_idx;
1475    if (insn_flags_[insn_idx].IsBranchTarget()) {
1476      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1477    } else if (kIsDebugBuild) {
1478      /*
1479       * Sanity check: retrieve the stored register line (assuming
1480       * a full table) and make sure it actually matches.
1481       */
1482      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1483      if (register_line != nullptr) {
1484        if (work_line_->CompareLine(register_line) != 0) {
1485          Dump(std::cout);
1486          std::cout << info_messages_.str();
1487          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1488                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1489                     << " work_line=" << work_line_->Dump(this) << "\n"
1490                     << "  expected=" << register_line->Dump(this);
1491        }
1492      }
1493    }
1494    if (!CodeFlowVerifyInstruction(&start_guess)) {
1495      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1496      prepend += " failed to verify: ";
1497      PrependToLastFailMessage(prepend);
1498      return false;
1499    }
1500    /* Clear "changed" and mark as visited. */
1501    insn_flags_[insn_idx].SetVisited();
1502    insn_flags_[insn_idx].ClearChanged();
1503  }
1504
1505  if (gDebugVerify) {
1506    /*
1507     * Scan for dead code. There's nothing "evil" about dead code
1508     * (besides the wasted space), but it indicates a flaw somewhere
1509     * down the line, possibly in the verifier.
1510     *
1511     * If we've substituted "always throw" instructions into the stream,
1512     * we are almost certainly going to have some dead code.
1513     */
1514    int dead_start = -1;
1515    uint32_t insn_idx = 0;
1516    for (; insn_idx < insns_size;
1517         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1518      /*
1519       * Switch-statement data doesn't get "visited" by scanner. It
1520       * may or may not be preceded by a padding NOP (for alignment).
1521       */
1522      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1523          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1524          insns[insn_idx] == Instruction::kArrayDataSignature ||
1525          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1526           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1527            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1528            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1529        insn_flags_[insn_idx].SetVisited();
1530      }
1531
1532      if (!insn_flags_[insn_idx].IsVisited()) {
1533        if (dead_start < 0)
1534          dead_start = insn_idx;
1535      } else if (dead_start >= 0) {
1536        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1537                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1538        dead_start = -1;
1539      }
1540    }
1541    if (dead_start >= 0) {
1542      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1543                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1544    }
1545    // To dump the state of the verify after a method, do something like:
1546    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1547    //     "boolean java.lang.String.equals(java.lang.Object)") {
1548    //   LOG(INFO) << info_messages_.str();
1549    // }
1550  }
1551  return true;
1552}
1553
1554bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1555  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1556  // We want the state _before_ the instruction, for the case where the dex pc we're
1557  // interested in is itself a monitor-enter instruction (which is a likely place
1558  // for a thread to be suspended).
1559  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1560    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1561    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1562      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1563    }
1564  }
1565
1566  /*
1567   * Once we finish decoding the instruction, we need to figure out where
1568   * we can go from here. There are three possible ways to transfer
1569   * control to another statement:
1570   *
1571   * (1) Continue to the next instruction. Applies to all but
1572   *     unconditional branches, method returns, and exception throws.
1573   * (2) Branch to one or more possible locations. Applies to branches
1574   *     and switch statements.
1575   * (3) Exception handlers. Applies to any instruction that can
1576   *     throw an exception that is handled by an encompassing "try"
1577   *     block.
1578   *
1579   * We can also return, in which case there is no successor instruction
1580   * from this point.
1581   *
1582   * The behavior can be determined from the opcode flags.
1583   */
1584  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1585  const Instruction* inst = Instruction::At(insns);
1586  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1587
1588  int32_t branch_target = 0;
1589  bool just_set_result = false;
1590  if (gDebugVerify) {
1591    // Generate processing back trace to debug verifier
1592    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1593                    << work_line_->Dump(this) << "\n";
1594  }
1595
1596  /*
1597   * Make a copy of the previous register state. If the instruction
1598   * can throw an exception, we will copy/merge this into the "catch"
1599   * address rather than work_line, because we don't want the result
1600   * from the "successful" code path (e.g. a check-cast that "improves"
1601   * a type) to be visible to the exception handler.
1602   */
1603  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1604    saved_line_->CopyFromLine(work_line_.get());
1605  } else if (kIsDebugBuild) {
1606    saved_line_->FillWithGarbage();
1607  }
1608
1609
1610  // We need to ensure the work line is consistent while performing validation. When we spot a
1611  // peephole pattern we compute a new line for either the fallthrough instruction or the
1612  // branch target.
1613  std::unique_ptr<RegisterLine> branch_line;
1614  std::unique_ptr<RegisterLine> fallthrough_line;
1615
1616  /*
1617   * If we are in a constructor, and we currently have an UninitializedThis type
1618   * in a register somewhere, we need to make sure it isn't overwritten.
1619   */
1620  bool track_uninitialized_this = false;
1621  size_t uninitialized_this_loc = 0;
1622  if (IsConstructor()) {
1623    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1624  }
1625
1626  switch (inst->Opcode()) {
1627    case Instruction::NOP:
1628      /*
1629       * A "pure" NOP has no effect on anything. Data tables start with
1630       * a signature that looks like a NOP; if we see one of these in
1631       * the course of executing code then we have a problem.
1632       */
1633      if (inst->VRegA_10x() != 0) {
1634        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1635      }
1636      break;
1637
1638    case Instruction::MOVE:
1639      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1640      break;
1641    case Instruction::MOVE_FROM16:
1642      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1643      break;
1644    case Instruction::MOVE_16:
1645      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1646      break;
1647    case Instruction::MOVE_WIDE:
1648      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1649      break;
1650    case Instruction::MOVE_WIDE_FROM16:
1651      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1652      break;
1653    case Instruction::MOVE_WIDE_16:
1654      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1655      break;
1656    case Instruction::MOVE_OBJECT:
1657      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1658      break;
1659    case Instruction::MOVE_OBJECT_FROM16:
1660      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1661      break;
1662    case Instruction::MOVE_OBJECT_16:
1663      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1664      break;
1665
1666    /*
1667     * The move-result instructions copy data out of a "pseudo-register"
1668     * with the results from the last method invocation. In practice we
1669     * might want to hold the result in an actual CPU register, so the
1670     * Dalvik spec requires that these only appear immediately after an
1671     * invoke or filled-new-array.
1672     *
1673     * These calls invalidate the "result" register. (This is now
1674     * redundant with the reset done below, but it can make the debug info
1675     * easier to read in some cases.)
1676     */
1677    case Instruction::MOVE_RESULT:
1678      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1679      break;
1680    case Instruction::MOVE_RESULT_WIDE:
1681      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1682      break;
1683    case Instruction::MOVE_RESULT_OBJECT:
1684      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1685      break;
1686
1687    case Instruction::MOVE_EXCEPTION: {
1688      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1689      // where one entrypoint to the catch block is not actually an exception path.
1690      if (work_insn_idx_ == 0) {
1691        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1692        break;
1693      }
1694      /*
1695       * This statement can only appear as the first instruction in an exception handler. We verify
1696       * that as part of extracting the exception type from the catch block list.
1697       */
1698      const RegType& res_type = GetCaughtExceptionType();
1699      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1700      break;
1701    }
1702    case Instruction::RETURN_VOID:
1703      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1704        if (!GetMethodReturnType().IsConflict()) {
1705          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1706        }
1707      }
1708      break;
1709    case Instruction::RETURN:
1710      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1711        /* check the method signature */
1712        const RegType& return_type = GetMethodReturnType();
1713        if (!return_type.IsCategory1Types()) {
1714          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1715                                            << return_type;
1716        } else {
1717          // Compilers may generate synthetic functions that write byte values into boolean fields.
1718          // Also, it may use integer values for boolean, byte, short, and character return types.
1719          const uint32_t vregA = inst->VRegA_11x();
1720          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1721          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1722                          ((return_type.IsBoolean() || return_type.IsByte() ||
1723                           return_type.IsShort() || return_type.IsChar()) &&
1724                           src_type.IsInteger()));
1725          /* check the register contents */
1726          bool success =
1727              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1728          if (!success) {
1729            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1730          }
1731        }
1732      }
1733      break;
1734    case Instruction::RETURN_WIDE:
1735      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1736        /* check the method signature */
1737        const RegType& return_type = GetMethodReturnType();
1738        if (!return_type.IsCategory2Types()) {
1739          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1740        } else {
1741          /* check the register contents */
1742          const uint32_t vregA = inst->VRegA_11x();
1743          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1744          if (!success) {
1745            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1746          }
1747        }
1748      }
1749      break;
1750    case Instruction::RETURN_OBJECT:
1751      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1752        const RegType& return_type = GetMethodReturnType();
1753        if (!return_type.IsReferenceTypes()) {
1754          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1755        } else {
1756          /* return_type is the *expected* return type, not register value */
1757          DCHECK(!return_type.IsZero());
1758          DCHECK(!return_type.IsUninitializedReference());
1759          const uint32_t vregA = inst->VRegA_11x();
1760          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1761          // Disallow returning uninitialized values and verify that the reference in vAA is an
1762          // instance of the "return_type"
1763          if (reg_type.IsUninitializedTypes()) {
1764            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1765                                              << reg_type << "'";
1766          } else if (!return_type.IsAssignableFrom(reg_type)) {
1767            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1768              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1769                  << "' or '" << reg_type << "'";
1770            } else {
1771              bool soft_error = false;
1772              // Check whether arrays are involved. They will show a valid class status, even
1773              // if their components are erroneous.
1774              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1775                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1776                if (soft_error) {
1777                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1778                        << reg_type << " vs " << return_type;
1779                }
1780              }
1781
1782              if (!soft_error) {
1783                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1784                    << "', but expected from declaration '" << return_type << "'";
1785              }
1786            }
1787          }
1788        }
1789      }
1790      break;
1791
1792      /* could be boolean, int, float, or a null reference */
1793    case Instruction::CONST_4: {
1794      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1795      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1796                                  DetermineCat1Constant(val, need_precise_constants_));
1797      break;
1798    }
1799    case Instruction::CONST_16: {
1800      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1801      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1802                                  DetermineCat1Constant(val, need_precise_constants_));
1803      break;
1804    }
1805    case Instruction::CONST: {
1806      int32_t val = inst->VRegB_31i();
1807      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1808                                  DetermineCat1Constant(val, need_precise_constants_));
1809      break;
1810    }
1811    case Instruction::CONST_HIGH16: {
1812      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1813      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1814                                  DetermineCat1Constant(val, need_precise_constants_));
1815      break;
1816    }
1817      /* could be long or double; resolved upon use */
1818    case Instruction::CONST_WIDE_16: {
1819      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1820      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1821      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1822      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1823      break;
1824    }
1825    case Instruction::CONST_WIDE_32: {
1826      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1827      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1828      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1829      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1830      break;
1831    }
1832    case Instruction::CONST_WIDE: {
1833      int64_t val = inst->VRegB_51l();
1834      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1835      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1836      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1837      break;
1838    }
1839    case Instruction::CONST_WIDE_HIGH16: {
1840      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1841      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1842      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1843      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1844      break;
1845    }
1846    case Instruction::CONST_STRING:
1847      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1848      break;
1849    case Instruction::CONST_STRING_JUMBO:
1850      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1851      break;
1852    case Instruction::CONST_CLASS: {
1853      // Get type from instruction if unresolved then we need an access check
1854      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1855      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1856      // Register holds class, ie its type is class, on error it will hold Conflict.
1857      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1858                                  res_type.IsConflict() ? res_type
1859                                                        : reg_types_.JavaLangClass());
1860      break;
1861    }
1862    case Instruction::MONITOR_ENTER:
1863      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1864      break;
1865    case Instruction::MONITOR_EXIT:
1866      /*
1867       * monitor-exit instructions are odd. They can throw exceptions,
1868       * but when they do they act as if they succeeded and the PC is
1869       * pointing to the following instruction. (This behavior goes back
1870       * to the need to handle asynchronous exceptions, a now-deprecated
1871       * feature that Dalvik doesn't support.)
1872       *
1873       * In practice we don't need to worry about this. The only
1874       * exceptions that can be thrown from monitor-exit are for a
1875       * null reference and -exit without a matching -enter. If the
1876       * structured locking checks are working, the former would have
1877       * failed on the -enter instruction, and the latter is impossible.
1878       *
1879       * This is fortunate, because issue 3221411 prevents us from
1880       * chasing the "can throw" path when monitor verification is
1881       * enabled. If we can fully verify the locking we can ignore
1882       * some catch blocks (which will show up as "dead" code when
1883       * we skip them here); if we can't, then the code path could be
1884       * "live" so we still need to check it.
1885       */
1886      opcode_flags &= ~Instruction::kThrow;
1887      work_line_->PopMonitor(this, inst->VRegA_11x());
1888      break;
1889
1890    case Instruction::CHECK_CAST:
1891    case Instruction::INSTANCE_OF: {
1892      /*
1893       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1894       * could be a "upcast" -- not expected, so we don't try to address it.)
1895       *
1896       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1897       * dec_insn.vA when branching to a handler.
1898       */
1899      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1900      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1901      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1902      if (res_type.IsConflict()) {
1903        // If this is a primitive type, fail HARD.
1904        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1905        if (klass != nullptr && klass->IsPrimitive()) {
1906          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1907              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1908              << GetDeclaringClass();
1909          break;
1910        }
1911
1912        DCHECK_NE(failures_.size(), 0U);
1913        if (!is_checkcast) {
1914          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1915        }
1916        break;  // bad class
1917      }
1918      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1919      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1920      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1921      if (!res_type.IsNonZeroReferenceTypes()) {
1922        if (is_checkcast) {
1923          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1924        } else {
1925          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1926        }
1927      } else if (!orig_type.IsReferenceTypes()) {
1928        if (is_checkcast) {
1929          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1930        } else {
1931          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1932        }
1933      } else {
1934        if (is_checkcast) {
1935          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1936        } else {
1937          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1938        }
1939      }
1940      break;
1941    }
1942    case Instruction::ARRAY_LENGTH: {
1943      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1944      if (res_type.IsReferenceTypes()) {
1945        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1946          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1947        } else {
1948          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1949        }
1950      } else {
1951        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1952      }
1953      break;
1954    }
1955    case Instruction::NEW_INSTANCE: {
1956      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1957      if (res_type.IsConflict()) {
1958        DCHECK_NE(failures_.size(), 0U);
1959        break;  // bad class
1960      }
1961      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1962      // can't create an instance of an interface or abstract class */
1963      if (!res_type.IsInstantiableTypes()) {
1964        Fail(VERIFY_ERROR_INSTANTIATION)
1965            << "new-instance on primitive, interface or abstract class" << res_type;
1966        // Soft failure so carry on to set register type.
1967      }
1968      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1969      // Any registers holding previous allocations from this address that have not yet been
1970      // initialized must be marked invalid.
1971      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1972      // add the new uninitialized reference to the register state
1973      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1974      break;
1975    }
1976    case Instruction::NEW_ARRAY:
1977      VerifyNewArray(inst, false, false);
1978      break;
1979    case Instruction::FILLED_NEW_ARRAY:
1980      VerifyNewArray(inst, true, false);
1981      just_set_result = true;  // Filled new array sets result register
1982      break;
1983    case Instruction::FILLED_NEW_ARRAY_RANGE:
1984      VerifyNewArray(inst, true, true);
1985      just_set_result = true;  // Filled new array range sets result register
1986      break;
1987    case Instruction::CMPL_FLOAT:
1988    case Instruction::CMPG_FLOAT:
1989      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1990        break;
1991      }
1992      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1993        break;
1994      }
1995      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1996      break;
1997    case Instruction::CMPL_DOUBLE:
1998    case Instruction::CMPG_DOUBLE:
1999      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2000                                              reg_types_.DoubleHi())) {
2001        break;
2002      }
2003      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2004                                              reg_types_.DoubleHi())) {
2005        break;
2006      }
2007      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2008      break;
2009    case Instruction::CMP_LONG:
2010      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2011                                              reg_types_.LongHi())) {
2012        break;
2013      }
2014      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2015                                              reg_types_.LongHi())) {
2016        break;
2017      }
2018      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2019      break;
2020    case Instruction::THROW: {
2021      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2022      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2023        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2024            << "thrown class " << res_type << " not instanceof Throwable";
2025      }
2026      break;
2027    }
2028    case Instruction::GOTO:
2029    case Instruction::GOTO_16:
2030    case Instruction::GOTO_32:
2031      /* no effect on or use of registers */
2032      break;
2033
2034    case Instruction::PACKED_SWITCH:
2035    case Instruction::SPARSE_SWITCH:
2036      /* verify that vAA is an integer, or can be converted to one */
2037      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2038      break;
2039
2040    case Instruction::FILL_ARRAY_DATA: {
2041      /* Similar to the verification done for APUT */
2042      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2043      /* array_type can be null if the reg type is Zero */
2044      if (!array_type.IsZero()) {
2045        if (!array_type.IsArrayTypes()) {
2046          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2047                                            << array_type;
2048        } else {
2049          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2050          DCHECK(!component_type.IsConflict());
2051          if (component_type.IsNonZeroReferenceTypes()) {
2052            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2053                                              << component_type;
2054          } else {
2055            // Now verify if the element width in the table matches the element width declared in
2056            // the array
2057            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2058            if (array_data[0] != Instruction::kArrayDataSignature) {
2059              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2060            } else {
2061              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2062              // Since we don't compress the data in Dex, expect to see equal width of data stored
2063              // in the table and expected from the array class.
2064              if (array_data[1] != elem_width) {
2065                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2066                                                  << " vs " << elem_width << ")";
2067              }
2068            }
2069          }
2070        }
2071      }
2072      break;
2073    }
2074    case Instruction::IF_EQ:
2075    case Instruction::IF_NE: {
2076      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2077      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2078      bool mismatch = false;
2079      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2080        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2081      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2082        mismatch = !reg_type2.IsReferenceTypes();
2083      } else {  // both integral?
2084        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2085      }
2086      if (mismatch) {
2087        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2088                                          << reg_type2 << ") must both be references or integral";
2089      }
2090      break;
2091    }
2092    case Instruction::IF_LT:
2093    case Instruction::IF_GE:
2094    case Instruction::IF_GT:
2095    case Instruction::IF_LE: {
2096      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2097      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2098      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2099        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2100                                          << reg_type2 << ") must be integral";
2101      }
2102      break;
2103    }
2104    case Instruction::IF_EQZ:
2105    case Instruction::IF_NEZ: {
2106      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2107      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2108        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2109                                          << " unexpected as arg to if-eqz/if-nez";
2110      }
2111
2112      // Find previous instruction - its existence is a precondition to peephole optimization.
2113      uint32_t instance_of_idx = 0;
2114      if (0 != work_insn_idx_) {
2115        instance_of_idx = work_insn_idx_ - 1;
2116        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2117          instance_of_idx--;
2118        }
2119        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2120                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2121                        work_insn_idx_)) {
2122          break;
2123        }
2124      } else {
2125        break;
2126      }
2127
2128      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2129
2130      /* Check for peep-hole pattern of:
2131       *    ...;
2132       *    instance-of vX, vY, T;
2133       *    ifXXX vX, label ;
2134       *    ...;
2135       * label:
2136       *    ...;
2137       * and sharpen the type of vY to be type T.
2138       * Note, this pattern can't be if:
2139       *  - if there are other branches to this branch,
2140       *  - when vX == vY.
2141       */
2142      if (!CurrentInsnFlags()->IsBranchTarget() &&
2143          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2144          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2145          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2146        // Check the type of the instance-of is different than that of registers type, as if they
2147        // are the same there is no work to be done here. Check that the conversion is not to or
2148        // from an unresolved type as type information is imprecise. If the instance-of is to an
2149        // interface then ignore the type information as interfaces can only be treated as Objects
2150        // and we don't want to disallow field and other operations on the object. If the value
2151        // being instance-of checked against is known null (zero) then allow the optimization as
2152        // we didn't have type information. If the merge of the instance-of type with the original
2153        // type is assignable to the original then allow optimization. This check is performed to
2154        // ensure that subsequent merges don't lose type information - such as becoming an
2155        // interface from a class that would lose information relevant to field checks.
2156        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2157        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2158
2159        if (!orig_type.Equals(cast_type) &&
2160            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2161            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2162            !cast_type.GetClass()->IsInterface() &&
2163            (orig_type.IsZero() ||
2164                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2165          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2166          if (inst->Opcode() == Instruction::IF_EQZ) {
2167            fallthrough_line.reset(update_line);
2168          } else {
2169            branch_line.reset(update_line);
2170          }
2171          update_line->CopyFromLine(work_line_.get());
2172          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2173          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2174            // See if instance-of was preceded by a move-object operation, common due to the small
2175            // register encoding space of instance-of, and propagate type information to the source
2176            // of the move-object.
2177            uint32_t move_idx = instance_of_idx - 1;
2178            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2179              move_idx--;
2180            }
2181            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2182                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2183                            work_insn_idx_)) {
2184              break;
2185            }
2186            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2187            switch (move_inst->Opcode()) {
2188              case Instruction::MOVE_OBJECT:
2189                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2190                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2191                }
2192                break;
2193              case Instruction::MOVE_OBJECT_FROM16:
2194                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2195                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2196                }
2197                break;
2198              case Instruction::MOVE_OBJECT_16:
2199                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2200                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2201                }
2202                break;
2203              default:
2204                break;
2205            }
2206          }
2207        }
2208      }
2209
2210      break;
2211    }
2212    case Instruction::IF_LTZ:
2213    case Instruction::IF_GEZ:
2214    case Instruction::IF_GTZ:
2215    case Instruction::IF_LEZ: {
2216      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2217      if (!reg_type.IsIntegralTypes()) {
2218        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2219                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2220      }
2221      break;
2222    }
2223    case Instruction::AGET_BOOLEAN:
2224      VerifyAGet(inst, reg_types_.Boolean(), true);
2225      break;
2226    case Instruction::AGET_BYTE:
2227      VerifyAGet(inst, reg_types_.Byte(), true);
2228      break;
2229    case Instruction::AGET_CHAR:
2230      VerifyAGet(inst, reg_types_.Char(), true);
2231      break;
2232    case Instruction::AGET_SHORT:
2233      VerifyAGet(inst, reg_types_.Short(), true);
2234      break;
2235    case Instruction::AGET:
2236      VerifyAGet(inst, reg_types_.Integer(), true);
2237      break;
2238    case Instruction::AGET_WIDE:
2239      VerifyAGet(inst, reg_types_.LongLo(), true);
2240      break;
2241    case Instruction::AGET_OBJECT:
2242      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2243      break;
2244
2245    case Instruction::APUT_BOOLEAN:
2246      VerifyAPut(inst, reg_types_.Boolean(), true);
2247      break;
2248    case Instruction::APUT_BYTE:
2249      VerifyAPut(inst, reg_types_.Byte(), true);
2250      break;
2251    case Instruction::APUT_CHAR:
2252      VerifyAPut(inst, reg_types_.Char(), true);
2253      break;
2254    case Instruction::APUT_SHORT:
2255      VerifyAPut(inst, reg_types_.Short(), true);
2256      break;
2257    case Instruction::APUT:
2258      VerifyAPut(inst, reg_types_.Integer(), true);
2259      break;
2260    case Instruction::APUT_WIDE:
2261      VerifyAPut(inst, reg_types_.LongLo(), true);
2262      break;
2263    case Instruction::APUT_OBJECT:
2264      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2265      break;
2266
2267    case Instruction::IGET_BOOLEAN:
2268      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2269      break;
2270    case Instruction::IGET_BYTE:
2271      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2272      break;
2273    case Instruction::IGET_CHAR:
2274      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2275      break;
2276    case Instruction::IGET_SHORT:
2277      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2278      break;
2279    case Instruction::IGET:
2280      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2281      break;
2282    case Instruction::IGET_WIDE:
2283      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2284      break;
2285    case Instruction::IGET_OBJECT:
2286      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2287                                                    false);
2288      break;
2289
2290    case Instruction::IPUT_BOOLEAN:
2291      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2292      break;
2293    case Instruction::IPUT_BYTE:
2294      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2295      break;
2296    case Instruction::IPUT_CHAR:
2297      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2298      break;
2299    case Instruction::IPUT_SHORT:
2300      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2301      break;
2302    case Instruction::IPUT:
2303      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2304      break;
2305    case Instruction::IPUT_WIDE:
2306      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2307      break;
2308    case Instruction::IPUT_OBJECT:
2309      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2310                                                    false);
2311      break;
2312
2313    case Instruction::SGET_BOOLEAN:
2314      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2315      break;
2316    case Instruction::SGET_BYTE:
2317      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2318      break;
2319    case Instruction::SGET_CHAR:
2320      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2321      break;
2322    case Instruction::SGET_SHORT:
2323      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2324      break;
2325    case Instruction::SGET:
2326      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2327      break;
2328    case Instruction::SGET_WIDE:
2329      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2330      break;
2331    case Instruction::SGET_OBJECT:
2332      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2333                                                    true);
2334      break;
2335
2336    case Instruction::SPUT_BOOLEAN:
2337      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2338      break;
2339    case Instruction::SPUT_BYTE:
2340      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2341      break;
2342    case Instruction::SPUT_CHAR:
2343      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2344      break;
2345    case Instruction::SPUT_SHORT:
2346      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2347      break;
2348    case Instruction::SPUT:
2349      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2350      break;
2351    case Instruction::SPUT_WIDE:
2352      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2353      break;
2354    case Instruction::SPUT_OBJECT:
2355      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2356                                                    true);
2357      break;
2358
2359    case Instruction::INVOKE_VIRTUAL:
2360    case Instruction::INVOKE_VIRTUAL_RANGE:
2361    case Instruction::INVOKE_SUPER:
2362    case Instruction::INVOKE_SUPER_RANGE: {
2363      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2364                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2365      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2366                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2367      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2368                                                              is_super);
2369      const RegType* return_type = nullptr;
2370      if (called_method != nullptr) {
2371        StackHandleScope<1> hs(self_);
2372        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2373        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2374        if (return_type_class != nullptr) {
2375          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2376                                              return_type_class,
2377                                              return_type_class->CannotBeAssignedFromOtherTypes());
2378        } else {
2379          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2380          self_->ClearException();
2381        }
2382      }
2383      if (return_type == nullptr) {
2384        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2385        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2386        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2387        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2388        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2389      }
2390      if (!return_type->IsLowHalf()) {
2391        work_line_->SetResultRegisterType(this, *return_type);
2392      } else {
2393        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2394      }
2395      just_set_result = true;
2396      break;
2397    }
2398    case Instruction::INVOKE_DIRECT:
2399    case Instruction::INVOKE_DIRECT_RANGE: {
2400      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2401      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2402                                                                   is_range, false);
2403      const char* return_type_descriptor;
2404      bool is_constructor;
2405      const RegType* return_type = nullptr;
2406      if (called_method == nullptr) {
2407        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2408        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2409        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2410        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2411        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2412      } else {
2413        is_constructor = called_method->IsConstructor();
2414        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2415        StackHandleScope<1> hs(self_);
2416        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2417        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2418        if (return_type_class != nullptr) {
2419          return_type = &reg_types_.FromClass(return_type_descriptor,
2420                                              return_type_class,
2421                                              return_type_class->CannotBeAssignedFromOtherTypes());
2422        } else {
2423          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2424          self_->ClearException();
2425        }
2426      }
2427      if (is_constructor) {
2428        /*
2429         * Some additional checks when calling a constructor. We know from the invocation arg check
2430         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2431         * that to require that called_method->klass is the same as this->klass or this->super,
2432         * allowing the latter only if the "this" argument is the same as the "this" argument to
2433         * this method (which implies that we're in a constructor ourselves).
2434         */
2435        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2436        if (this_type.IsConflict())  // failure.
2437          break;
2438
2439        /* no null refs allowed (?) */
2440        if (this_type.IsZero()) {
2441          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2442          break;
2443        }
2444
2445        /* must be in same class or in superclass */
2446        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2447        // TODO: re-enable constructor type verification
2448        // if (this_super_klass.IsConflict()) {
2449          // Unknown super class, fail so we re-check at runtime.
2450          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2451          // break;
2452        // }
2453
2454        /* arg must be an uninitialized reference */
2455        if (!this_type.IsUninitializedTypes()) {
2456          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2457              << this_type;
2458          break;
2459        }
2460
2461        /*
2462         * Replace the uninitialized reference with an initialized one. We need to do this for all
2463         * registers that have the same object instance in them, not just the "this" register.
2464         */
2465        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2466        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2467      }
2468      if (return_type == nullptr) {
2469        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2470                                                 false);
2471      }
2472      if (!return_type->IsLowHalf()) {
2473        work_line_->SetResultRegisterType(this, *return_type);
2474      } else {
2475        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2476      }
2477      just_set_result = true;
2478      break;
2479    }
2480    case Instruction::INVOKE_STATIC:
2481    case Instruction::INVOKE_STATIC_RANGE: {
2482        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2483        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2484                                                                     METHOD_STATIC,
2485                                                                     is_range,
2486                                                                     false);
2487        const char* descriptor;
2488        if (called_method == nullptr) {
2489          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2490          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2491          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2492          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2493        } else {
2494          descriptor = called_method->GetReturnTypeDescriptor();
2495        }
2496        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2497        if (!return_type.IsLowHalf()) {
2498          work_line_->SetResultRegisterType(this, return_type);
2499        } else {
2500          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2501        }
2502        just_set_result = true;
2503      }
2504      break;
2505    case Instruction::INVOKE_INTERFACE:
2506    case Instruction::INVOKE_INTERFACE_RANGE: {
2507      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2508      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2509                                                                METHOD_INTERFACE,
2510                                                                is_range,
2511                                                                false);
2512      if (abs_method != nullptr) {
2513        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2514        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2515          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2516              << PrettyMethod(abs_method) << "'";
2517          break;
2518        }
2519      }
2520      /* Get the type of the "this" arg, which should either be a sub-interface of called
2521       * interface or Object (see comments in RegType::JoinClass).
2522       */
2523      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2524      if (this_type.IsZero()) {
2525        /* null pointer always passes (and always fails at runtime) */
2526      } else {
2527        if (this_type.IsUninitializedTypes()) {
2528          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2529              << this_type;
2530          break;
2531        }
2532        // In the past we have tried to assert that "called_interface" is assignable
2533        // from "this_type.GetClass()", however, as we do an imprecise Join
2534        // (RegType::JoinClass) we don't have full information on what interfaces are
2535        // implemented by "this_type". For example, two classes may implement the same
2536        // interfaces and have a common parent that doesn't implement the interface. The
2537        // join will set "this_type" to the parent class and a test that this implements
2538        // the interface will incorrectly fail.
2539      }
2540      /*
2541       * We don't have an object instance, so we can't find the concrete method. However, all of
2542       * the type information is in the abstract method, so we're good.
2543       */
2544      const char* descriptor;
2545      if (abs_method == nullptr) {
2546        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2547        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2548        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2549        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2550      } else {
2551        descriptor = abs_method->GetReturnTypeDescriptor();
2552      }
2553      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2554      if (!return_type.IsLowHalf()) {
2555        work_line_->SetResultRegisterType(this, return_type);
2556      } else {
2557        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2558      }
2559      just_set_result = true;
2560      break;
2561    }
2562    case Instruction::NEG_INT:
2563    case Instruction::NOT_INT:
2564      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2565      break;
2566    case Instruction::NEG_LONG:
2567    case Instruction::NOT_LONG:
2568      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2569                                   reg_types_.LongLo(), reg_types_.LongHi());
2570      break;
2571    case Instruction::NEG_FLOAT:
2572      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2573      break;
2574    case Instruction::NEG_DOUBLE:
2575      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2576                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2577      break;
2578    case Instruction::INT_TO_LONG:
2579      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2580                                     reg_types_.Integer());
2581      break;
2582    case Instruction::INT_TO_FLOAT:
2583      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2584      break;
2585    case Instruction::INT_TO_DOUBLE:
2586      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2587                                     reg_types_.Integer());
2588      break;
2589    case Instruction::LONG_TO_INT:
2590      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2591                                       reg_types_.LongLo(), reg_types_.LongHi());
2592      break;
2593    case Instruction::LONG_TO_FLOAT:
2594      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2595                                       reg_types_.LongLo(), reg_types_.LongHi());
2596      break;
2597    case Instruction::LONG_TO_DOUBLE:
2598      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2599                                   reg_types_.LongLo(), reg_types_.LongHi());
2600      break;
2601    case Instruction::FLOAT_TO_INT:
2602      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2603      break;
2604    case Instruction::FLOAT_TO_LONG:
2605      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2606                                     reg_types_.Float());
2607      break;
2608    case Instruction::FLOAT_TO_DOUBLE:
2609      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2610                                     reg_types_.Float());
2611      break;
2612    case Instruction::DOUBLE_TO_INT:
2613      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2614                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2615      break;
2616    case Instruction::DOUBLE_TO_LONG:
2617      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2618                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2619      break;
2620    case Instruction::DOUBLE_TO_FLOAT:
2621      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2622                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2623      break;
2624    case Instruction::INT_TO_BYTE:
2625      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2626      break;
2627    case Instruction::INT_TO_CHAR:
2628      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2629      break;
2630    case Instruction::INT_TO_SHORT:
2631      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2632      break;
2633
2634    case Instruction::ADD_INT:
2635    case Instruction::SUB_INT:
2636    case Instruction::MUL_INT:
2637    case Instruction::REM_INT:
2638    case Instruction::DIV_INT:
2639    case Instruction::SHL_INT:
2640    case Instruction::SHR_INT:
2641    case Instruction::USHR_INT:
2642      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2643                                reg_types_.Integer(), false);
2644      break;
2645    case Instruction::AND_INT:
2646    case Instruction::OR_INT:
2647    case Instruction::XOR_INT:
2648      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2649                                reg_types_.Integer(), true);
2650      break;
2651    case Instruction::ADD_LONG:
2652    case Instruction::SUB_LONG:
2653    case Instruction::MUL_LONG:
2654    case Instruction::DIV_LONG:
2655    case Instruction::REM_LONG:
2656    case Instruction::AND_LONG:
2657    case Instruction::OR_LONG:
2658    case Instruction::XOR_LONG:
2659      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2660                                    reg_types_.LongLo(), reg_types_.LongHi(),
2661                                    reg_types_.LongLo(), reg_types_.LongHi());
2662      break;
2663    case Instruction::SHL_LONG:
2664    case Instruction::SHR_LONG:
2665    case Instruction::USHR_LONG:
2666      /* shift distance is Int, making these different from other binary operations */
2667      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2668                                         reg_types_.Integer());
2669      break;
2670    case Instruction::ADD_FLOAT:
2671    case Instruction::SUB_FLOAT:
2672    case Instruction::MUL_FLOAT:
2673    case Instruction::DIV_FLOAT:
2674    case Instruction::REM_FLOAT:
2675      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2676                                reg_types_.Float(), false);
2677      break;
2678    case Instruction::ADD_DOUBLE:
2679    case Instruction::SUB_DOUBLE:
2680    case Instruction::MUL_DOUBLE:
2681    case Instruction::DIV_DOUBLE:
2682    case Instruction::REM_DOUBLE:
2683      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2684                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2685                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2686      break;
2687    case Instruction::ADD_INT_2ADDR:
2688    case Instruction::SUB_INT_2ADDR:
2689    case Instruction::MUL_INT_2ADDR:
2690    case Instruction::REM_INT_2ADDR:
2691    case Instruction::SHL_INT_2ADDR:
2692    case Instruction::SHR_INT_2ADDR:
2693    case Instruction::USHR_INT_2ADDR:
2694      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2695                                     reg_types_.Integer(), false);
2696      break;
2697    case Instruction::AND_INT_2ADDR:
2698    case Instruction::OR_INT_2ADDR:
2699    case Instruction::XOR_INT_2ADDR:
2700      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2701                                     reg_types_.Integer(), true);
2702      break;
2703    case Instruction::DIV_INT_2ADDR:
2704      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2705                                     reg_types_.Integer(), false);
2706      break;
2707    case Instruction::ADD_LONG_2ADDR:
2708    case Instruction::SUB_LONG_2ADDR:
2709    case Instruction::MUL_LONG_2ADDR:
2710    case Instruction::DIV_LONG_2ADDR:
2711    case Instruction::REM_LONG_2ADDR:
2712    case Instruction::AND_LONG_2ADDR:
2713    case Instruction::OR_LONG_2ADDR:
2714    case Instruction::XOR_LONG_2ADDR:
2715      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2716                                         reg_types_.LongLo(), reg_types_.LongHi(),
2717                                         reg_types_.LongLo(), reg_types_.LongHi());
2718      break;
2719    case Instruction::SHL_LONG_2ADDR:
2720    case Instruction::SHR_LONG_2ADDR:
2721    case Instruction::USHR_LONG_2ADDR:
2722      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2723                                              reg_types_.Integer());
2724      break;
2725    case Instruction::ADD_FLOAT_2ADDR:
2726    case Instruction::SUB_FLOAT_2ADDR:
2727    case Instruction::MUL_FLOAT_2ADDR:
2728    case Instruction::DIV_FLOAT_2ADDR:
2729    case Instruction::REM_FLOAT_2ADDR:
2730      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2731                                     reg_types_.Float(), false);
2732      break;
2733    case Instruction::ADD_DOUBLE_2ADDR:
2734    case Instruction::SUB_DOUBLE_2ADDR:
2735    case Instruction::MUL_DOUBLE_2ADDR:
2736    case Instruction::DIV_DOUBLE_2ADDR:
2737    case Instruction::REM_DOUBLE_2ADDR:
2738      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2739                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2740                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2741      break;
2742    case Instruction::ADD_INT_LIT16:
2743    case Instruction::RSUB_INT_LIT16:
2744    case Instruction::MUL_INT_LIT16:
2745    case Instruction::DIV_INT_LIT16:
2746    case Instruction::REM_INT_LIT16:
2747      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2748                                 true);
2749      break;
2750    case Instruction::AND_INT_LIT16:
2751    case Instruction::OR_INT_LIT16:
2752    case Instruction::XOR_INT_LIT16:
2753      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2754                                 true);
2755      break;
2756    case Instruction::ADD_INT_LIT8:
2757    case Instruction::RSUB_INT_LIT8:
2758    case Instruction::MUL_INT_LIT8:
2759    case Instruction::DIV_INT_LIT8:
2760    case Instruction::REM_INT_LIT8:
2761    case Instruction::SHL_INT_LIT8:
2762    case Instruction::SHR_INT_LIT8:
2763    case Instruction::USHR_INT_LIT8:
2764      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2765                                 false);
2766      break;
2767    case Instruction::AND_INT_LIT8:
2768    case Instruction::OR_INT_LIT8:
2769    case Instruction::XOR_INT_LIT8:
2770      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2771                                 false);
2772      break;
2773
2774    // Special instructions.
2775    case Instruction::RETURN_VOID_NO_BARRIER:
2776      if (IsConstructor() && !IsStatic()) {
2777        auto& declaring_class = GetDeclaringClass();
2778        auto* klass = declaring_class.GetClass();
2779        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2780          if (klass->GetInstanceField(i)->IsFinal()) {
2781            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2782                << PrettyField(klass->GetInstanceField(i));
2783            break;
2784          }
2785        }
2786      }
2787      break;
2788    // Note: the following instructions encode offsets derived from class linking.
2789    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2790    // meaning if the class linking and resolution were successful.
2791    case Instruction::IGET_QUICK:
2792      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2793      break;
2794    case Instruction::IGET_WIDE_QUICK:
2795      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2796      break;
2797    case Instruction::IGET_OBJECT_QUICK:
2798      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2799      break;
2800    case Instruction::IGET_BOOLEAN_QUICK:
2801      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2802      break;
2803    case Instruction::IGET_BYTE_QUICK:
2804      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2805      break;
2806    case Instruction::IGET_CHAR_QUICK:
2807      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2808      break;
2809    case Instruction::IGET_SHORT_QUICK:
2810      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2811      break;
2812    case Instruction::IPUT_QUICK:
2813      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2814      break;
2815    case Instruction::IPUT_BOOLEAN_QUICK:
2816      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2817      break;
2818    case Instruction::IPUT_BYTE_QUICK:
2819      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2820      break;
2821    case Instruction::IPUT_CHAR_QUICK:
2822      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2823      break;
2824    case Instruction::IPUT_SHORT_QUICK:
2825      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2826      break;
2827    case Instruction::IPUT_WIDE_QUICK:
2828      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2829      break;
2830    case Instruction::IPUT_OBJECT_QUICK:
2831      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2832      break;
2833    case Instruction::INVOKE_VIRTUAL_QUICK:
2834    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2835      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2836      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2837      if (called_method != nullptr) {
2838        const char* descriptor = called_method->GetReturnTypeDescriptor();
2839        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2840        if (!return_type.IsLowHalf()) {
2841          work_line_->SetResultRegisterType(this, return_type);
2842        } else {
2843          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2844        }
2845        just_set_result = true;
2846      }
2847      break;
2848    }
2849
2850    /* These should never appear during verification. */
2851    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2852    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2853    case Instruction::UNUSED_79:
2854    case Instruction::UNUSED_7A:
2855      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2856      break;
2857
2858    /*
2859     * DO NOT add a "default" clause here. Without it the compiler will
2860     * complain if an instruction is missing (which is desirable).
2861     */
2862  }  // end - switch (dec_insn.opcode)
2863
2864  /*
2865   * If we are in a constructor, and we had an UninitializedThis type
2866   * in a register somewhere, we need to make sure it wasn't overwritten.
2867   */
2868  if (track_uninitialized_this) {
2869    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2870                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2871    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2872                                                    was_invoke_direct)) {
2873      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2874          << "Constructor failed to initialize this object";
2875    }
2876  }
2877
2878  if (have_pending_hard_failure_) {
2879    if (Runtime::Current()->IsAotCompiler()) {
2880      /* When AOT compiling, check that the last failure is a hard failure */
2881      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2882    }
2883    /* immediate failure, reject class */
2884    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2885    return false;
2886  } else if (have_pending_runtime_throw_failure_) {
2887    /* checking interpreter will throw, mark following code as unreachable */
2888    opcode_flags = Instruction::kThrow;
2889  }
2890  /*
2891   * If we didn't just set the result register, clear it out. This ensures that you can only use
2892   * "move-result" immediately after the result is set. (We could check this statically, but it's
2893   * not expensive and it makes our debugging output cleaner.)
2894   */
2895  if (!just_set_result) {
2896    work_line_->SetResultTypeToUnknown(this);
2897  }
2898
2899
2900
2901  /*
2902   * Handle "branch". Tag the branch target.
2903   *
2904   * NOTE: instructions like Instruction::EQZ provide information about the
2905   * state of the register when the branch is taken or not taken. For example,
2906   * somebody could get a reference field, check it for zero, and if the
2907   * branch is taken immediately store that register in a boolean field
2908   * since the value is known to be zero. We do not currently account for
2909   * that, and will reject the code.
2910   *
2911   * TODO: avoid re-fetching the branch target
2912   */
2913  if ((opcode_flags & Instruction::kBranch) != 0) {
2914    bool isConditional, selfOkay;
2915    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2916      /* should never happen after static verification */
2917      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2918      return false;
2919    }
2920    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2921    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2922      return false;
2923    }
2924    /* update branch target, set "changed" if appropriate */
2925    if (nullptr != branch_line.get()) {
2926      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2927        return false;
2928      }
2929    } else {
2930      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2931        return false;
2932      }
2933    }
2934  }
2935
2936  /*
2937   * Handle "switch". Tag all possible branch targets.
2938   *
2939   * We've already verified that the table is structurally sound, so we
2940   * just need to walk through and tag the targets.
2941   */
2942  if ((opcode_flags & Instruction::kSwitch) != 0) {
2943    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2944    const uint16_t* switch_insns = insns + offset_to_switch;
2945    int switch_count = switch_insns[1];
2946    int offset_to_targets, targ;
2947
2948    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2949      /* 0 = sig, 1 = count, 2/3 = first key */
2950      offset_to_targets = 4;
2951    } else {
2952      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2953      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2954      offset_to_targets = 2 + 2 * switch_count;
2955    }
2956
2957    /* verify each switch target */
2958    for (targ = 0; targ < switch_count; targ++) {
2959      int offset;
2960      uint32_t abs_offset;
2961
2962      /* offsets are 32-bit, and only partly endian-swapped */
2963      offset = switch_insns[offset_to_targets + targ * 2] |
2964         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2965      abs_offset = work_insn_idx_ + offset;
2966      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2967      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2968        return false;
2969      }
2970      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2971        return false;
2972      }
2973    }
2974  }
2975
2976  /*
2977   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2978   * "try" block when they throw, control transfers out of the method.)
2979   */
2980  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2981    bool has_catch_all_handler = false;
2982    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2983
2984    // Need the linker to try and resolve the handled class to check if it's Throwable.
2985    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2986
2987    for (; iterator.HasNext(); iterator.Next()) {
2988      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2989      if (handler_type_idx == DexFile::kDexNoIndex16) {
2990        has_catch_all_handler = true;
2991      } else {
2992        // It is also a catch-all if it is java.lang.Throwable.
2993        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2994                                                   class_loader_);
2995        if (klass != nullptr) {
2996          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2997            has_catch_all_handler = true;
2998          }
2999        } else {
3000          // Clear exception.
3001          DCHECK(self_->IsExceptionPending());
3002          self_->ClearException();
3003        }
3004      }
3005      /*
3006       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3007       * "work_regs", because at runtime the exception will be thrown before the instruction
3008       * modifies any registers.
3009       */
3010      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3011        return false;
3012      }
3013    }
3014
3015    /*
3016     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3017     * instruction. This does apply to monitor-exit because of async exception handling.
3018     */
3019    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3020      /*
3021       * The state in work_line reflects the post-execution state. If the current instruction is a
3022       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3023       * it will do so before grabbing the lock).
3024       */
3025      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3026        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3027            << "expected to be within a catch-all for an instruction where a monitor is held";
3028        return false;
3029      }
3030    }
3031  }
3032
3033  /* Handle "continue". Tag the next consecutive instruction.
3034   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3035   *        because it changes work_line_ when performing peephole optimization
3036   *        and this change should not be used in those cases.
3037   */
3038  if ((opcode_flags & Instruction::kContinue) != 0) {
3039    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3040    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3041    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3042      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3043      return false;
3044    }
3045    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3046    // next instruction isn't one.
3047    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3048      return false;
3049    }
3050    if (nullptr != fallthrough_line.get()) {
3051      // Make workline consistent with fallthrough computed from peephole optimization.
3052      work_line_->CopyFromLine(fallthrough_line.get());
3053    }
3054    if (insn_flags_[next_insn_idx].IsReturn()) {
3055      // For returns we only care about the operand to the return, all other registers are dead.
3056      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3057      Instruction::Code opcode = ret_inst->Opcode();
3058      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3059        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3060      } else {
3061        if (opcode == Instruction::RETURN_WIDE) {
3062          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3063        } else {
3064          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3065        }
3066      }
3067    }
3068    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3069    if (next_line != nullptr) {
3070      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3071      // needed. If the merge changes the state of the registers then the work line will be
3072      // updated.
3073      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3074        return false;
3075      }
3076    } else {
3077      /*
3078       * We're not recording register data for the next instruction, so we don't know what the
3079       * prior state was. We have to assume that something has changed and re-evaluate it.
3080       */
3081      insn_flags_[next_insn_idx].SetChanged();
3082    }
3083  }
3084
3085  /* If we're returning from the method, make sure monitor stack is empty. */
3086  if ((opcode_flags & Instruction::kReturn) != 0) {
3087    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3088      return false;
3089    }
3090  }
3091
3092  /*
3093   * Update start_guess. Advance to the next instruction of that's
3094   * possible, otherwise use the branch target if one was found. If
3095   * neither of those exists we're in a return or throw; leave start_guess
3096   * alone and let the caller sort it out.
3097   */
3098  if ((opcode_flags & Instruction::kContinue) != 0) {
3099    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3100    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3101  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3102    /* we're still okay if branch_target is zero */
3103    *start_guess = work_insn_idx_ + branch_target;
3104  }
3105
3106  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3107  DCHECK(insn_flags_[*start_guess].IsOpcode());
3108
3109  return true;
3110}  // NOLINT(readability/fn_size)
3111
3112const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3113  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3114  const RegType& referrer = GetDeclaringClass();
3115  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3116  const RegType& result = klass != nullptr ?
3117      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3118      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3119  if (result.IsConflict()) {
3120    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3121        << "' in " << referrer;
3122    return result;
3123  }
3124  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3125    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3126  }
3127  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3128  // check at runtime if access is allowed and so pass here. If result is
3129  // primitive, skip the access check.
3130  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3131      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3132    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3133                                    << referrer << "' -> '" << result << "'";
3134  }
3135  return result;
3136}
3137
3138const RegType& MethodVerifier::GetCaughtExceptionType() {
3139  const RegType* common_super = nullptr;
3140  if (code_item_->tries_size_ != 0) {
3141    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3142    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3143    for (uint32_t i = 0; i < handlers_size; i++) {
3144      CatchHandlerIterator iterator(handlers_ptr);
3145      for (; iterator.HasNext(); iterator.Next()) {
3146        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3147          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3148            common_super = &reg_types_.JavaLangThrowable(false);
3149          } else {
3150            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3151            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3152              if (exception.IsUnresolvedTypes()) {
3153                // We don't know enough about the type. Fail here and let runtime handle it.
3154                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3155                return exception;
3156              } else {
3157                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3158                return reg_types_.Conflict();
3159              }
3160            } else if (common_super == nullptr) {
3161              common_super = &exception;
3162            } else if (common_super->Equals(exception)) {
3163              // odd case, but nothing to do
3164            } else {
3165              common_super = &common_super->Merge(exception, &reg_types_);
3166              if (FailOrAbort(this,
3167                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3168                              "java.lang.Throwable is not assignable-from common_super at ",
3169                              work_insn_idx_)) {
3170                break;
3171              }
3172            }
3173          }
3174        }
3175      }
3176      handlers_ptr = iterator.EndDataPointer();
3177    }
3178  }
3179  if (common_super == nullptr) {
3180    /* no catch blocks, or no catches with classes we can find */
3181    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3182    return reg_types_.Conflict();
3183  }
3184  return *common_super;
3185}
3186
3187mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3188                                                               MethodType method_type) {
3189  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3190  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3191  if (klass_type.IsConflict()) {
3192    std::string append(" in attempt to access method ");
3193    append += dex_file_->GetMethodName(method_id);
3194    AppendToLastFailMessage(append);
3195    return nullptr;
3196  }
3197  if (klass_type.IsUnresolvedTypes()) {
3198    return nullptr;  // Can't resolve Class so no more to do here
3199  }
3200  mirror::Class* klass = klass_type.GetClass();
3201  const RegType& referrer = GetDeclaringClass();
3202  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3203  if (res_method == nullptr) {
3204    const char* name = dex_file_->GetMethodName(method_id);
3205    const Signature signature = dex_file_->GetMethodSignature(method_id);
3206
3207    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3208      res_method = klass->FindDirectMethod(name, signature);
3209    } else if (method_type == METHOD_INTERFACE) {
3210      res_method = klass->FindInterfaceMethod(name, signature);
3211    } else {
3212      res_method = klass->FindVirtualMethod(name, signature);
3213    }
3214    if (res_method != nullptr) {
3215      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3216    } else {
3217      // If a virtual or interface method wasn't found with the expected type, look in
3218      // the direct methods. This can happen when the wrong invoke type is used or when
3219      // a class has changed, and will be flagged as an error in later checks.
3220      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3221        res_method = klass->FindDirectMethod(name, signature);
3222      }
3223      if (res_method == nullptr) {
3224        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3225                                     << PrettyDescriptor(klass) << "." << name
3226                                     << " " << signature;
3227        return nullptr;
3228      }
3229    }
3230  }
3231  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3232  // enforce them here.
3233  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3234    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3235                                      << PrettyMethod(res_method);
3236    return nullptr;
3237  }
3238  // Disallow any calls to class initializers.
3239  if (res_method->IsClassInitializer()) {
3240    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3241                                      << PrettyMethod(res_method);
3242    return nullptr;
3243  }
3244  // Check if access is allowed.
3245  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3246    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3247                                     << " from " << referrer << ")";
3248    return res_method;
3249  }
3250  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3251  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3252    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3253                                      << PrettyMethod(res_method);
3254    return nullptr;
3255  }
3256  // Check that interface methods match interface classes.
3257  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3258    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3259                                    << " is in an interface class " << PrettyClass(klass);
3260    return nullptr;
3261  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3262    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3263                                    << " is in a non-interface class " << PrettyClass(klass);
3264    return nullptr;
3265  }
3266  // See if the method type implied by the invoke instruction matches the access flags for the
3267  // target method.
3268  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3269      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3270      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3271      ) {
3272    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3273                                       " type of " << PrettyMethod(res_method);
3274    return nullptr;
3275  }
3276  return res_method;
3277}
3278
3279template <class T>
3280mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3281                                                                    MethodType method_type,
3282                                                                    bool is_range,
3283                                                                    mirror::ArtMethod* res_method) {
3284  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3285  // match the call to the signature. Also, we might be calling through an abstract method
3286  // definition (which doesn't have register count values).
3287  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3288  /* caught by static verifier */
3289  DCHECK(is_range || expected_args <= 5);
3290  if (expected_args > code_item_->outs_size_) {
3291    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3292        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3293    return nullptr;
3294  }
3295
3296  uint32_t arg[5];
3297  if (!is_range) {
3298    inst->GetVarArgs(arg);
3299  }
3300  uint32_t sig_registers = 0;
3301
3302  /*
3303   * Check the "this" argument, which must be an instance of the class that declared the method.
3304   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3305   * rigorous check here (which is okay since we have to do it at runtime).
3306   */
3307  if (method_type != METHOD_STATIC) {
3308    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3309    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3310      CHECK(have_pending_hard_failure_);
3311      return nullptr;
3312    }
3313    if (actual_arg_type.IsUninitializedReference()) {
3314      if (res_method) {
3315        if (!res_method->IsConstructor()) {
3316          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3317          return nullptr;
3318        }
3319      } else {
3320        // Check whether the name of the called method is "<init>"
3321        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3322        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3323          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3324          return nullptr;
3325        }
3326      }
3327    }
3328    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3329      const RegType* res_method_class;
3330      if (res_method != nullptr) {
3331        mirror::Class* klass = res_method->GetDeclaringClass();
3332        std::string temp;
3333        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3334                                                 klass->CannotBeAssignedFromOtherTypes());
3335      } else {
3336        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3337        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3338        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3339                                                      dex_file_->StringByTypeIdx(class_idx),
3340                                                      false);
3341      }
3342      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3343        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3344            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3345                << "' not instance of '" << *res_method_class << "'";
3346        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3347        // the compiler.
3348        if (have_pending_hard_failure_) {
3349          return nullptr;
3350        }
3351      }
3352    }
3353    sig_registers = 1;
3354  }
3355
3356  for ( ; it->HasNext(); it->Next()) {
3357    if (sig_registers >= expected_args) {
3358      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3359          " arguments, found " << sig_registers << " or more.";
3360      return nullptr;
3361    }
3362
3363    const char* param_descriptor = it->GetDescriptor();
3364
3365    if (param_descriptor == nullptr) {
3366      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3367          "component";
3368      return nullptr;
3369    }
3370
3371    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3372    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3373        arg[sig_registers];
3374    if (reg_type.IsIntegralTypes()) {
3375      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3376      if (!src_type.IsIntegralTypes()) {
3377        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3378            << " but expected " << reg_type;
3379        return res_method;
3380      }
3381    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3382      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3383      // compiler.
3384      if (have_pending_hard_failure_) {
3385        return res_method;
3386      }
3387    }
3388    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3389  }
3390  if (expected_args != sig_registers) {
3391    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3392        " arguments, found " << sig_registers;
3393    return nullptr;
3394  }
3395  return res_method;
3396}
3397
3398void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3399                                                          MethodType method_type,
3400                                                          bool is_range) {
3401  // As the method may not have been resolved, make this static check against what we expect.
3402  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3403  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3404  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3405  DexFileParameterIterator it(*dex_file_,
3406                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3407  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3408                                                             nullptr);
3409}
3410
3411class MethodParamListDescriptorIterator {
3412 public:
3413  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3414      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3415      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3416  }
3417
3418  bool HasNext() {
3419    return pos_ < params_size_;
3420  }
3421
3422  void Next() {
3423    ++pos_;
3424  }
3425
3426  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3427    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3428  }
3429
3430 private:
3431  mirror::ArtMethod* res_method_;
3432  size_t pos_;
3433  const DexFile::TypeList* params_;
3434  const size_t params_size_;
3435};
3436
3437mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3438                                                             MethodType method_type,
3439                                                             bool is_range,
3440                                                             bool is_super) {
3441  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3442  // we're making.
3443  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3444
3445  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3446  if (res_method == nullptr) {  // error or class is unresolved
3447    // Check what we can statically.
3448    if (!have_pending_hard_failure_) {
3449      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3450    }
3451    return nullptr;
3452  }
3453
3454  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3455  // has a vtable entry for the target method.
3456  if (is_super) {
3457    DCHECK(method_type == METHOD_VIRTUAL);
3458    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3459    if (super.IsUnresolvedTypes()) {
3460      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3461                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3462                                   << " to super " << PrettyMethod(res_method);
3463      return nullptr;
3464    }
3465    mirror::Class* super_klass = super.GetClass();
3466    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3467      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3468                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3469                                   << " to super " << super
3470                                   << "." << res_method->GetName()
3471                                   << res_method->GetSignature();
3472      return nullptr;
3473    }
3474  }
3475
3476  // Process the target method's signature. This signature may or may not
3477  MethodParamListDescriptorIterator it(res_method);
3478  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3479                                                                             is_range, res_method);
3480}
3481
3482mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3483                                                         RegisterLine* reg_line, bool is_range,
3484                                                         bool allow_failure) {
3485  if (is_range) {
3486    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3487  } else {
3488    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3489  }
3490  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3491  if (!actual_arg_type.HasClass()) {
3492    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3493    return nullptr;
3494  }
3495  mirror::Class* klass = actual_arg_type.GetClass();
3496  mirror::Class* dispatch_class;
3497  if (klass->IsInterface()) {
3498    // Derive Object.class from Class.class.getSuperclass().
3499    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3500    if (FailOrAbort(this, object_klass->IsObjectClass(),
3501                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3502      return nullptr;
3503    }
3504    dispatch_class = object_klass;
3505  } else {
3506    dispatch_class = klass;
3507  }
3508  if (!dispatch_class->HasVTable()) {
3509    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3510                work_insn_idx_);
3511    return nullptr;
3512  }
3513  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3514  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3515    FailOrAbort(this, allow_failure,
3516                "Receiver class has not enough vtable slots for quickened invoke at ",
3517                work_insn_idx_);
3518    return nullptr;
3519  }
3520  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3521  if (self_->IsExceptionPending()) {
3522    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3523                work_insn_idx_);
3524    return nullptr;
3525  }
3526  return res_method;
3527}
3528
3529mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3530                                                                bool is_range) {
3531  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3532      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3533
3534  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3535  if (res_method == nullptr) {
3536    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3537    return nullptr;
3538  }
3539  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3540                  work_insn_idx_)) {
3541    return nullptr;
3542  }
3543  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3544                  work_insn_idx_)) {
3545    return nullptr;
3546  }
3547
3548  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3549  // match the call to the signature. Also, we might be calling through an abstract method
3550  // definition (which doesn't have register count values).
3551  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3552  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3553    return nullptr;
3554  }
3555  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3556  /* caught by static verifier */
3557  DCHECK(is_range || expected_args <= 5);
3558  if (expected_args > code_item_->outs_size_) {
3559    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3560        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3561    return nullptr;
3562  }
3563
3564  /*
3565   * Check the "this" argument, which must be an instance of the class that declared the method.
3566   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3567   * rigorous check here (which is okay since we have to do it at runtime).
3568   */
3569  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3570    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3571    return nullptr;
3572  }
3573  if (!actual_arg_type.IsZero()) {
3574    mirror::Class* klass = res_method->GetDeclaringClass();
3575    std::string temp;
3576    const RegType& res_method_class =
3577        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3578                             klass->CannotBeAssignedFromOtherTypes());
3579    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3580      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3581          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3582          << "' not instance of '" << res_method_class << "'";
3583      return nullptr;
3584    }
3585  }
3586  /*
3587   * Process the target method's signature. This signature may or may not
3588   * have been verified, so we can't assume it's properly formed.
3589   */
3590  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3591  size_t params_size = params == nullptr ? 0 : params->Size();
3592  uint32_t arg[5];
3593  if (!is_range) {
3594    inst->GetVarArgs(arg);
3595  }
3596  size_t actual_args = 1;
3597  for (size_t param_index = 0; param_index < params_size; param_index++) {
3598    if (actual_args >= expected_args) {
3599      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3600                                        << "'. Expected " << expected_args
3601                                         << " arguments, processing argument " << actual_args
3602                                        << " (where longs/doubles count twice).";
3603      return nullptr;
3604    }
3605    const char* descriptor =
3606        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3607    if (descriptor == nullptr) {
3608      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3609                                        << " missing signature component";
3610      return nullptr;
3611    }
3612    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3613    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3614    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3615      return res_method;
3616    }
3617    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3618  }
3619  if (actual_args != expected_args) {
3620    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3621              << " expected " << expected_args << " arguments, found " << actual_args;
3622    return nullptr;
3623  } else {
3624    return res_method;
3625  }
3626}
3627
3628void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3629  uint32_t type_idx;
3630  if (!is_filled) {
3631    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3632    type_idx = inst->VRegC_22c();
3633  } else if (!is_range) {
3634    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3635    type_idx = inst->VRegB_35c();
3636  } else {
3637    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3638    type_idx = inst->VRegB_3rc();
3639  }
3640  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3641  if (res_type.IsConflict()) {  // bad class
3642    DCHECK_NE(failures_.size(), 0U);
3643  } else {
3644    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3645    if (!res_type.IsArrayTypes()) {
3646      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3647    } else if (!is_filled) {
3648      /* make sure "size" register is valid type */
3649      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3650      /* set register type to array class */
3651      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3652      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3653    } else {
3654      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3655      // the list and fail. It's legal, if silly, for arg_count to be zero.
3656      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3657      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3658      uint32_t arg[5];
3659      if (!is_range) {
3660        inst->GetVarArgs(arg);
3661      }
3662      for (size_t ui = 0; ui < arg_count; ui++) {
3663        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3664        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3665          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3666          return;
3667        }
3668      }
3669      // filled-array result goes into "result" register
3670      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3671      work_line_->SetResultRegisterType(this, precise_type);
3672    }
3673  }
3674}
3675
3676void MethodVerifier::VerifyAGet(const Instruction* inst,
3677                                const RegType& insn_type, bool is_primitive) {
3678  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3679  if (!index_type.IsArrayIndexTypes()) {
3680    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3681  } else {
3682    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3683    if (array_type.IsZero()) {
3684      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3685      // instruction type. TODO: have a proper notion of bottom here.
3686      if (!is_primitive || insn_type.IsCategory1Types()) {
3687        // Reference or category 1
3688        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3689      } else {
3690        // Category 2
3691        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3692                                        reg_types_.FromCat2ConstLo(0, false),
3693                                        reg_types_.FromCat2ConstHi(0, false));
3694      }
3695    } else if (!array_type.IsArrayTypes()) {
3696      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3697    } else {
3698      /* verify the class */
3699      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3700      if (!component_type.IsReferenceTypes() && !is_primitive) {
3701        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3702            << " source for aget-object";
3703      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3704        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3705            << " source for category 1 aget";
3706      } else if (is_primitive && !insn_type.Equals(component_type) &&
3707                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3708                 (insn_type.IsLong() && component_type.IsDouble()))) {
3709        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3710            << " incompatible with aget of type " << insn_type;
3711      } else {
3712        // Use knowledge of the field type which is stronger than the type inferred from the
3713        // instruction, which can't differentiate object types and ints from floats, longs from
3714        // doubles.
3715        if (!component_type.IsLowHalf()) {
3716          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3717        } else {
3718          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3719                                          component_type.HighHalf(&reg_types_));
3720        }
3721      }
3722    }
3723  }
3724}
3725
3726void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3727                                        const uint32_t vregA) {
3728  // Primitive assignability rules are weaker than regular assignability rules.
3729  bool instruction_compatible;
3730  bool value_compatible;
3731  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3732  if (target_type.IsIntegralTypes()) {
3733    instruction_compatible = target_type.Equals(insn_type);
3734    value_compatible = value_type.IsIntegralTypes();
3735  } else if (target_type.IsFloat()) {
3736    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3737    value_compatible = value_type.IsFloatTypes();
3738  } else if (target_type.IsLong()) {
3739    instruction_compatible = insn_type.IsLong();
3740    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3741    // as target_type depends on the resolved type of the field.
3742    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3743      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3744      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3745    } else {
3746      value_compatible = false;
3747    }
3748  } else if (target_type.IsDouble()) {
3749    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3750    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3751    // as target_type depends on the resolved type of the field.
3752    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3753      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3754      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3755    } else {
3756      value_compatible = false;
3757    }
3758  } else {
3759    instruction_compatible = false;  // reference with primitive store
3760    value_compatible = false;  // unused
3761  }
3762  if (!instruction_compatible) {
3763    // This is a global failure rather than a class change failure as the instructions and
3764    // the descriptors for the type should have been consistent within the same file at
3765    // compile time.
3766    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3767        << "' but expected type '" << target_type << "'";
3768    return;
3769  }
3770  if (!value_compatible) {
3771    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3772        << " of type " << value_type << " but expected " << target_type << " for put";
3773    return;
3774  }
3775}
3776
3777void MethodVerifier::VerifyAPut(const Instruction* inst,
3778                                const RegType& insn_type, bool is_primitive) {
3779  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3780  if (!index_type.IsArrayIndexTypes()) {
3781    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3782  } else {
3783    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3784    if (array_type.IsZero()) {
3785      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3786      // instruction type.
3787    } else if (!array_type.IsArrayTypes()) {
3788      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3789    } else {
3790      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3791      const uint32_t vregA = inst->VRegA_23x();
3792      if (is_primitive) {
3793        VerifyPrimitivePut(component_type, insn_type, vregA);
3794      } else {
3795        if (!component_type.IsReferenceTypes()) {
3796          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3797              << " source for aput-object";
3798        } else {
3799          // The instruction agrees with the type of array, confirm the value to be stored does too
3800          // Note: we use the instruction type (rather than the component type) for aput-object as
3801          // incompatible classes will be caught at runtime as an array store exception
3802          work_line_->VerifyRegisterType(this, vregA, insn_type);
3803        }
3804      }
3805    }
3806  }
3807}
3808
3809ArtField* MethodVerifier::GetStaticField(int field_idx) {
3810  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3811  // Check access to class
3812  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3813  if (klass_type.IsConflict()) {  // bad class
3814    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3815                                         field_idx, dex_file_->GetFieldName(field_id),
3816                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3817    return nullptr;
3818  }
3819  if (klass_type.IsUnresolvedTypes()) {
3820    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3821  }
3822  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3823  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3824                                                  class_loader_);
3825  if (field == nullptr) {
3826    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3827              << dex_file_->GetFieldName(field_id) << ") in "
3828              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3829    DCHECK(self_->IsExceptionPending());
3830    self_->ClearException();
3831    return nullptr;
3832  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3833                                                  field->GetAccessFlags())) {
3834    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3835                                    << " from " << GetDeclaringClass();
3836    return nullptr;
3837  } else if (!field->IsStatic()) {
3838    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3839    return nullptr;
3840  }
3841  return field;
3842}
3843
3844ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3845  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3846  // Check access to class
3847  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3848  if (klass_type.IsConflict()) {
3849    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3850                                         field_idx, dex_file_->GetFieldName(field_id),
3851                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3852    return nullptr;
3853  }
3854  if (klass_type.IsUnresolvedTypes()) {
3855    return nullptr;  // Can't resolve Class so no more to do here
3856  }
3857  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3858  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3859                                                  class_loader_);
3860  if (field == nullptr) {
3861    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3862              << dex_file_->GetFieldName(field_id) << ") in "
3863              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3864    DCHECK(self_->IsExceptionPending());
3865    self_->ClearException();
3866    return nullptr;
3867  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3868                                                  field->GetAccessFlags())) {
3869    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3870                                    << " from " << GetDeclaringClass();
3871    return nullptr;
3872  } else if (field->IsStatic()) {
3873    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3874                                    << " to not be static";
3875    return nullptr;
3876  } else if (obj_type.IsZero()) {
3877    // Cannot infer and check type, however, access will cause null pointer exception
3878    return field;
3879  } else if (!obj_type.IsReferenceTypes()) {
3880    // Trying to read a field from something that isn't a reference
3881    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3882                                      << "non-reference type " << obj_type;
3883    return nullptr;
3884  } else {
3885    mirror::Class* klass = field->GetDeclaringClass();
3886    const RegType& field_klass =
3887        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3888                             klass, klass->CannotBeAssignedFromOtherTypes());
3889    if (obj_type.IsUninitializedTypes() &&
3890        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3891            !field_klass.Equals(GetDeclaringClass()))) {
3892      // Field accesses through uninitialized references are only allowable for constructors where
3893      // the field is declared in this class
3894      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3895                                        << " of a not fully initialized object within the context"
3896                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3897      return nullptr;
3898    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3899      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3900      // of C1. For resolution to occur the declared class of the field must be compatible with
3901      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3902      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3903                                  << " from object of type " << obj_type;
3904      return nullptr;
3905    } else {
3906      return field;
3907    }
3908  }
3909}
3910
3911template <MethodVerifier::FieldAccessType kAccType>
3912void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3913                                         bool is_primitive, bool is_static) {
3914  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3915  ArtField* field;
3916  if (is_static) {
3917    field = GetStaticField(field_idx);
3918  } else {
3919    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3920    field = GetInstanceField(object_type, field_idx);
3921    if (UNLIKELY(have_pending_hard_failure_)) {
3922      return;
3923    }
3924  }
3925  const RegType* field_type = nullptr;
3926  if (field != nullptr) {
3927    if (kAccType == FieldAccessType::kAccPut) {
3928      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3929        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3930                                        << " from other class " << GetDeclaringClass();
3931        return;
3932      }
3933    }
3934
3935    mirror::Class* field_type_class =
3936        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
3937    if (field_type_class != nullptr) {
3938      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3939                                         field_type_class->CannotBeAssignedFromOtherTypes());
3940    } else {
3941      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3942      self_->ClearException();
3943    }
3944  }
3945  if (field_type == nullptr) {
3946    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3947    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3948    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3949  }
3950  DCHECK(field_type != nullptr);
3951  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3952  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3953                "Unexpected third access type");
3954  if (kAccType == FieldAccessType::kAccPut) {
3955    // sput or iput.
3956    if (is_primitive) {
3957      VerifyPrimitivePut(*field_type, insn_type, vregA);
3958    } else {
3959      if (!insn_type.IsAssignableFrom(*field_type)) {
3960        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3961                                                << " to be compatible with type '" << insn_type
3962                                                << "' but found type '" << *field_type
3963                                                << "' in put-object";
3964        return;
3965      }
3966      work_line_->VerifyRegisterType(this, vregA, *field_type);
3967    }
3968  } else if (kAccType == FieldAccessType::kAccGet) {
3969    // sget or iget.
3970    if (is_primitive) {
3971      if (field_type->Equals(insn_type) ||
3972          (field_type->IsFloat() && insn_type.IsInteger()) ||
3973          (field_type->IsDouble() && insn_type.IsLong())) {
3974        // expected that read is of the correct primitive type or that int reads are reading
3975        // floats or long reads are reading doubles
3976      } else {
3977        // This is a global failure rather than a class change failure as the instructions and
3978        // the descriptors for the type should have been consistent within the same file at
3979        // compile time
3980        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3981                                          << " to be of type '" << insn_type
3982                                          << "' but found type '" << *field_type << "' in get";
3983        return;
3984      }
3985    } else {
3986      if (!insn_type.IsAssignableFrom(*field_type)) {
3987        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3988                                          << " to be compatible with type '" << insn_type
3989                                          << "' but found type '" << *field_type
3990                                          << "' in get-object";
3991        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3992        return;
3993      }
3994    }
3995    if (!field_type->IsLowHalf()) {
3996      work_line_->SetRegisterType(this, vregA, *field_type);
3997    } else {
3998      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3999    }
4000  } else {
4001    LOG(FATAL) << "Unexpected case.";
4002  }
4003}
4004
4005ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4006                                                      RegisterLine* reg_line) {
4007  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4008  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4009  if (!object_type.HasClass()) {
4010    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4011    return nullptr;
4012  }
4013  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4014  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4015  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4016  if (f == nullptr) {
4017    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4018                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4019  }
4020  return f;
4021}
4022
4023template <MethodVerifier::FieldAccessType kAccType>
4024void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4025                                            bool is_primitive) {
4026  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4027
4028  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4029  if (field == nullptr) {
4030    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4031    return;
4032  }
4033
4034  // For an IPUT_QUICK, we now test for final flag of the field.
4035  if (kAccType == FieldAccessType::kAccPut) {
4036    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4037      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4038                                      << " from other class " << GetDeclaringClass();
4039      return;
4040    }
4041  }
4042
4043  // Get the field type.
4044  const RegType* field_type;
4045  {
4046    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4047        field->GetType<false>();
4048
4049    if (field_type_class != nullptr) {
4050      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
4051                                         field_type_class->CannotBeAssignedFromOtherTypes());
4052    } else {
4053      Thread* self = Thread::Current();
4054      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4055      self->ClearException();
4056      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4057                                              field->GetTypeDescriptor(), false);
4058    }
4059    if (field_type == nullptr) {
4060      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4061      return;
4062    }
4063  }
4064
4065  const uint32_t vregA = inst->VRegA_22c();
4066  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4067                "Unexpected third access type");
4068  if (kAccType == FieldAccessType::kAccPut) {
4069    if (is_primitive) {
4070      // Primitive field assignability rules are weaker than regular assignability rules
4071      bool instruction_compatible;
4072      bool value_compatible;
4073      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4074      if (field_type->IsIntegralTypes()) {
4075        instruction_compatible = insn_type.IsIntegralTypes();
4076        value_compatible = value_type.IsIntegralTypes();
4077      } else if (field_type->IsFloat()) {
4078        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4079        value_compatible = value_type.IsFloatTypes();
4080      } else if (field_type->IsLong()) {
4081        instruction_compatible = insn_type.IsLong();
4082        value_compatible = value_type.IsLongTypes();
4083      } else if (field_type->IsDouble()) {
4084        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4085        value_compatible = value_type.IsDoubleTypes();
4086      } else {
4087        instruction_compatible = false;  // reference field with primitive store
4088        value_compatible = false;  // unused
4089      }
4090      if (!instruction_compatible) {
4091        // This is a global failure rather than a class change failure as the instructions and
4092        // the descriptors for the type should have been consistent within the same file at
4093        // compile time
4094        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4095                                          << " to be of type '" << insn_type
4096                                          << "' but found type '" << *field_type
4097                                          << "' in put";
4098        return;
4099      }
4100      if (!value_compatible) {
4101        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4102            << " of type " << value_type
4103            << " but expected " << *field_type
4104            << " for store to " << PrettyField(field) << " in put";
4105        return;
4106      }
4107    } else {
4108      if (!insn_type.IsAssignableFrom(*field_type)) {
4109        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4110                                          << " to be compatible with type '" << insn_type
4111                                          << "' but found type '" << *field_type
4112                                          << "' in put-object";
4113        return;
4114      }
4115      work_line_->VerifyRegisterType(this, vregA, *field_type);
4116    }
4117  } else if (kAccType == FieldAccessType::kAccGet) {
4118    if (is_primitive) {
4119      if (field_type->Equals(insn_type) ||
4120          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4121          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4122        // expected that read is of the correct primitive type or that int reads are reading
4123        // floats or long reads are reading doubles
4124      } else {
4125        // This is a global failure rather than a class change failure as the instructions and
4126        // the descriptors for the type should have been consistent within the same file at
4127        // compile time
4128        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4129                                          << " to be of type '" << insn_type
4130                                          << "' but found type '" << *field_type << "' in Get";
4131        return;
4132      }
4133    } else {
4134      if (!insn_type.IsAssignableFrom(*field_type)) {
4135        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4136                                          << " to be compatible with type '" << insn_type
4137                                          << "' but found type '" << *field_type
4138                                          << "' in get-object";
4139        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4140        return;
4141      }
4142    }
4143    if (!field_type->IsLowHalf()) {
4144      work_line_->SetRegisterType(this, vregA, *field_type);
4145    } else {
4146      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4147    }
4148  } else {
4149    LOG(FATAL) << "Unexpected case.";
4150  }
4151}
4152
4153bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4154  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4155    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4156    return false;
4157  }
4158  return true;
4159}
4160
4161bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4162  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4163      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4164    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4165    return false;
4166  }
4167  return true;
4168}
4169
4170bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4171  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4172}
4173
4174bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4175                                     bool update_merge_line) {
4176  bool changed = true;
4177  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4178  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4179    /*
4180     * We haven't processed this instruction before, and we haven't touched the registers here, so
4181     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4182     * only way a register can transition out of "unknown", so this is not just an optimization.)
4183     */
4184    if (!insn_flags_[next_insn].IsReturn()) {
4185      target_line->CopyFromLine(merge_line);
4186    } else {
4187      // Verify that the monitor stack is empty on return.
4188      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4189        return false;
4190      }
4191      // For returns we only care about the operand to the return, all other registers are dead.
4192      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4193      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4194      Instruction::Code opcode = ret_inst->Opcode();
4195      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4196        SafelyMarkAllRegistersAsConflicts(this, target_line);
4197      } else {
4198        target_line->CopyFromLine(merge_line);
4199        if (opcode == Instruction::RETURN_WIDE) {
4200          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4201        } else {
4202          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4203        }
4204      }
4205    }
4206  } else {
4207    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4208                                 RegisterLine::Create(target_line->NumRegs(), this) :
4209                                 nullptr);
4210    if (gDebugVerify) {
4211      copy->CopyFromLine(target_line);
4212    }
4213    changed = target_line->MergeRegisters(this, merge_line);
4214    if (have_pending_hard_failure_) {
4215      return false;
4216    }
4217    if (gDebugVerify && changed) {
4218      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4219                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4220                      << copy->Dump(this) << "  MERGE\n"
4221                      << merge_line->Dump(this) << "  ==\n"
4222                      << target_line->Dump(this) << "\n";
4223    }
4224    if (update_merge_line && changed) {
4225      merge_line->CopyFromLine(target_line);
4226    }
4227  }
4228  if (changed) {
4229    insn_flags_[next_insn].SetChanged();
4230  }
4231  return true;
4232}
4233
4234InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4235  return &insn_flags_[work_insn_idx_];
4236}
4237
4238const RegType& MethodVerifier::GetMethodReturnType() {
4239  if (return_type_ == nullptr) {
4240    if (mirror_method_.Get() != nullptr) {
4241      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4242      if (return_type_class != nullptr) {
4243        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4244                                             return_type_class,
4245                                             return_type_class->CannotBeAssignedFromOtherTypes());
4246      } else {
4247        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4248        self_->ClearException();
4249      }
4250    }
4251    if (return_type_ == nullptr) {
4252      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4253      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4254      uint16_t return_type_idx = proto_id.return_type_idx_;
4255      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4256      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4257    }
4258  }
4259  return *return_type_;
4260}
4261
4262const RegType& MethodVerifier::GetDeclaringClass() {
4263  if (declaring_class_ == nullptr) {
4264    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4265    const char* descriptor
4266        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4267    if (mirror_method_.Get() != nullptr) {
4268      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4269      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4270                                               klass->CannotBeAssignedFromOtherTypes());
4271    } else {
4272      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4273    }
4274  }
4275  return *declaring_class_;
4276}
4277
4278std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4279  RegisterLine* line = reg_table_.GetLine(dex_pc);
4280  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4281  std::vector<int32_t> result;
4282  for (size_t i = 0; i < line->NumRegs(); ++i) {
4283    const RegType& type = line->GetRegisterType(this, i);
4284    if (type.IsConstant()) {
4285      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4286      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4287      result.push_back(const_val->ConstantValue());
4288    } else if (type.IsConstantLo()) {
4289      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4290      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4291      result.push_back(const_val->ConstantValueLo());
4292    } else if (type.IsConstantHi()) {
4293      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4294      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4295      result.push_back(const_val->ConstantValueHi());
4296    } else if (type.IsIntegralTypes()) {
4297      result.push_back(kIntVReg);
4298      result.push_back(0);
4299    } else if (type.IsFloat()) {
4300      result.push_back(kFloatVReg);
4301      result.push_back(0);
4302    } else if (type.IsLong()) {
4303      result.push_back(kLongLoVReg);
4304      result.push_back(0);
4305      result.push_back(kLongHiVReg);
4306      result.push_back(0);
4307      ++i;
4308    } else if (type.IsDouble()) {
4309      result.push_back(kDoubleLoVReg);
4310      result.push_back(0);
4311      result.push_back(kDoubleHiVReg);
4312      result.push_back(0);
4313      ++i;
4314    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4315      result.push_back(kUndefined);
4316      result.push_back(0);
4317    } else {
4318      CHECK(type.IsNonZeroReferenceTypes());
4319      result.push_back(kReferenceVReg);
4320      result.push_back(0);
4321    }
4322  }
4323  return result;
4324}
4325
4326const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4327  if (precise) {
4328    // Precise constant type.
4329    return reg_types_.FromCat1Const(value, true);
4330  } else {
4331    // Imprecise constant type.
4332    if (value < -32768) {
4333      return reg_types_.IntConstant();
4334    } else if (value < -128) {
4335      return reg_types_.ShortConstant();
4336    } else if (value < 0) {
4337      return reg_types_.ByteConstant();
4338    } else if (value == 0) {
4339      return reg_types_.Zero();
4340    } else if (value == 1) {
4341      return reg_types_.One();
4342    } else if (value < 128) {
4343      return reg_types_.PosByteConstant();
4344    } else if (value < 32768) {
4345      return reg_types_.PosShortConstant();
4346    } else if (value < 65536) {
4347      return reg_types_.CharConstant();
4348    } else {
4349      return reg_types_.IntConstant();
4350    }
4351  }
4352}
4353
4354void MethodVerifier::Init() {
4355  art::verifier::RegTypeCache::Init();
4356}
4357
4358void MethodVerifier::Shutdown() {
4359  verifier::RegTypeCache::ShutDown();
4360}
4361
4362void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4363  RegTypeCache::VisitStaticRoots(visitor);
4364}
4365
4366void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4367  reg_types_.VisitRoots(visitor, root_info);
4368}
4369
4370}  // namespace verifier
4371}  // namespace art
4372