method_verifier.cc revision dc3761719fb5e2d1ced5708e3c73b965f9ef0c73
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool gDebugVerify = false;
51// TODO: Add a constant to method_verifier to turn on verbose logging?
52
53void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
54                                 uint32_t insns_size, uint16_t registers_size,
55                                 MethodVerifier* verifier) {
56  DCHECK_GT(insns_size, 0U);
57  register_lines_.reset(new RegisterLine*[insns_size]());
58  size_ = insns_size;
59  for (uint32_t i = 0; i < insns_size; i++) {
60    bool interesting = false;
61    switch (mode) {
62      case kTrackRegsAll:
63        interesting = flags[i].IsOpcode();
64        break;
65      case kTrackCompilerInterestPoints:
66        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
67        break;
68      case kTrackRegsBranches:
69        interesting = flags[i].IsBranchTarget();
70        break;
71      default:
72        break;
73    }
74    if (interesting) {
75      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
76    }
77  }
78}
79
80PcToRegisterLineTable::~PcToRegisterLineTable() {
81  for (size_t i = 0; i < size_; i++) {
82    delete register_lines_[i];
83    if (kIsDebugBuild) {
84      register_lines_[i] = nullptr;
85    }
86  }
87}
88
89MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
90                                                        bool allow_soft_failures,
91                                                        std::string* error) {
92  if (klass->IsVerified()) {
93    return kNoFailure;
94  }
95  bool early_failure = false;
96  std::string failure_message;
97  const DexFile& dex_file = klass->GetDexFile();
98  const DexFile::ClassDef* class_def = klass->GetClassDef();
99  mirror::Class* super = klass->GetSuperClass();
100  std::string temp;
101  if (super == NULL && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
102    early_failure = true;
103    failure_message = " that has no super class";
104  } else if (super != NULL && super->IsFinal()) {
105    early_failure = true;
106    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
107  } else if (class_def == NULL) {
108    early_failure = true;
109    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
110  }
111  if (early_failure) {
112    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
113    if (Runtime::Current()->IsCompiler()) {
114      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
115      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
116    }
117    return kHardFailure;
118  }
119  StackHandleScope<2> hs(Thread::Current());
120  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
121  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
122  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
123}
124
125MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
126                                                        Handle<mirror::DexCache> dex_cache,
127                                                        Handle<mirror::ClassLoader> class_loader,
128                                                        const DexFile::ClassDef* class_def,
129                                                        bool allow_soft_failures,
130                                                        std::string* error) {
131  DCHECK(class_def != nullptr);
132  const byte* class_data = dex_file->GetClassData(*class_def);
133  if (class_data == NULL) {
134    // empty class, probably a marker interface
135    return kNoFailure;
136  }
137  ClassDataItemIterator it(*dex_file, class_data);
138  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
139    it.Next();
140  }
141  Thread* self = Thread::Current();
142  size_t error_count = 0;
143  bool hard_fail = false;
144  ClassLinker* linker = Runtime::Current()->GetClassLinker();
145  int64_t previous_direct_method_idx = -1;
146  while (it.HasNextDirectMethod()) {
147    uint32_t method_idx = it.GetMemberIndex();
148    if (method_idx == previous_direct_method_idx) {
149      // smali can create dex files with two encoded_methods sharing the same method_idx
150      // http://code.google.com/p/smali/issues/detail?id=119
151      it.Next();
152      continue;
153    }
154    previous_direct_method_idx = method_idx;
155    InvokeType type = it.GetMethodInvokeType(*class_def);
156    mirror::ArtMethod* method =
157        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
158                              NullHandle<mirror::ArtMethod>(), type);
159    if (method == NULL) {
160      DCHECK(self->IsExceptionPending());
161      // We couldn't resolve the method, but continue regardless.
162      self->ClearException();
163    }
164    StackHandleScope<1> hs(self);
165    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
166    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
167                                                      dex_file,
168                                                      dex_cache,
169                                                      class_loader,
170                                                      class_def,
171                                                      it.GetMethodCodeItem(),
172                                                      h_method,
173                                                      it.GetMemberAccessFlags(),
174                                                      allow_soft_failures,
175                                                      false);
176    if (result != kNoFailure) {
177      if (result == kHardFailure) {
178        hard_fail = true;
179        if (error_count > 0) {
180          *error += "\n";
181        }
182        *error = "Verifier rejected class ";
183        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
184        *error += " due to bad method ";
185        *error += PrettyMethod(method_idx, *dex_file);
186      }
187      ++error_count;
188    }
189    it.Next();
190  }
191  int64_t previous_virtual_method_idx = -1;
192  while (it.HasNextVirtualMethod()) {
193    uint32_t method_idx = it.GetMemberIndex();
194    if (method_idx == previous_virtual_method_idx) {
195      // smali can create dex files with two encoded_methods sharing the same method_idx
196      // http://code.google.com/p/smali/issues/detail?id=119
197      it.Next();
198      continue;
199    }
200    previous_virtual_method_idx = method_idx;
201    InvokeType type = it.GetMethodInvokeType(*class_def);
202    mirror::ArtMethod* method =
203        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
204                              NullHandle<mirror::ArtMethod>(), type);
205    if (method == NULL) {
206      DCHECK(self->IsExceptionPending());
207      // We couldn't resolve the method, but continue regardless.
208      self->ClearException();
209    }
210    StackHandleScope<1> hs(self);
211    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
212    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
213                                                      dex_file,
214                                                      dex_cache,
215                                                      class_loader,
216                                                      class_def,
217                                                      it.GetMethodCodeItem(),
218                                                      h_method,
219                                                      it.GetMemberAccessFlags(),
220                                                      allow_soft_failures,
221                                                      false);
222    if (result != kNoFailure) {
223      if (result == kHardFailure) {
224        hard_fail = true;
225        if (error_count > 0) {
226          *error += "\n";
227        }
228        *error = "Verifier rejected class ";
229        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
230        *error += " due to bad method ";
231        *error += PrettyMethod(method_idx, *dex_file);
232      }
233      ++error_count;
234    }
235    it.Next();
236  }
237  if (error_count == 0) {
238    return kNoFailure;
239  } else {
240    return hard_fail ? kHardFailure : kSoftFailure;
241  }
242}
243
244MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
245                                                         const DexFile* dex_file,
246                                                         Handle<mirror::DexCache> dex_cache,
247                                                         Handle<mirror::ClassLoader> class_loader,
248                                                         const DexFile::ClassDef* class_def,
249                                                         const DexFile::CodeItem* code_item,
250                                                         Handle<mirror::ArtMethod> method,
251                                                         uint32_t method_access_flags,
252                                                         bool allow_soft_failures,
253                                                         bool need_precise_constants) {
254  MethodVerifier::FailureKind result = kNoFailure;
255  uint64_t start_ns = NanoTime();
256
257  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
258                          method_idx, method, method_access_flags, true, allow_soft_failures,
259                          need_precise_constants);
260  if (verifier.Verify()) {
261    // Verification completed, however failures may be pending that didn't cause the verification
262    // to hard fail.
263    CHECK(!verifier.have_pending_hard_failure_);
264    if (verifier.failures_.size() != 0) {
265      if (VLOG_IS_ON(verifier)) {
266          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
267                                << PrettyMethod(method_idx, *dex_file) << "\n");
268      }
269      result = kSoftFailure;
270    }
271  } else {
272    // Bad method data.
273    CHECK_NE(verifier.failures_.size(), 0U);
274    CHECK(verifier.have_pending_hard_failure_);
275    verifier.DumpFailures(LOG(INFO) << "Verification error in "
276                                    << PrettyMethod(method_idx, *dex_file) << "\n");
277    if (gDebugVerify) {
278      std::cout << "\n" << verifier.info_messages_.str();
279      verifier.Dump(std::cout);
280    }
281    result = kHardFailure;
282  }
283  uint64_t duration_ns = NanoTime() - start_ns;
284  if (duration_ns > MsToNs(100) && !kIsDebugBuild) {
285    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
286                 << " took " << PrettyDuration(duration_ns);
287  }
288  return result;
289}
290
291void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
292                                         const DexFile* dex_file,
293                                         Handle<mirror::DexCache> dex_cache,
294                                         Handle<mirror::ClassLoader> class_loader,
295                                         const DexFile::ClassDef* class_def,
296                                         const DexFile::CodeItem* code_item,
297                                         Handle<mirror::ArtMethod> method,
298                                         uint32_t method_access_flags) {
299  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
300                          dex_method_idx, method, method_access_flags, true, true, true);
301  verifier.Verify();
302  verifier.DumpFailures(os);
303  os << verifier.info_messages_.str();
304  verifier.Dump(os);
305}
306
307MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
308                               Handle<mirror::ClassLoader>* class_loader,
309                               const DexFile::ClassDef* class_def,
310                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
311                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
312                               bool can_load_classes, bool allow_soft_failures,
313                               bool need_precise_constants)
314    : reg_types_(can_load_classes),
315      work_insn_idx_(-1),
316      dex_method_idx_(dex_method_idx),
317      mirror_method_(method),
318      method_access_flags_(method_access_flags),
319      return_type_(nullptr),
320      dex_file_(dex_file),
321      dex_cache_(dex_cache),
322      class_loader_(class_loader),
323      class_def_(class_def),
324      code_item_(code_item),
325      declaring_class_(NULL),
326      interesting_dex_pc_(-1),
327      monitor_enter_dex_pcs_(nullptr),
328      have_pending_hard_failure_(false),
329      have_pending_runtime_throw_failure_(false),
330      new_instance_count_(0),
331      monitor_enter_count_(0),
332      can_load_classes_(can_load_classes),
333      allow_soft_failures_(allow_soft_failures),
334      need_precise_constants_(need_precise_constants),
335      has_check_casts_(false),
336      has_virtual_or_interface_invokes_(false) {
337  Runtime::Current()->AddMethodVerifier(this);
338  DCHECK(class_def != nullptr);
339}
340
341MethodVerifier::~MethodVerifier() {
342  Runtime::Current()->RemoveMethodVerifier(this);
343  STLDeleteElements(&failure_messages_);
344}
345
346void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
347                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
348  StackHandleScope<3> hs(Thread::Current());
349  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
350  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
351  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
352  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
353                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
354                          false, true, false);
355  verifier.interesting_dex_pc_ = dex_pc;
356  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
357  verifier.FindLocksAtDexPc();
358}
359
360void MethodVerifier::FindLocksAtDexPc() {
361  CHECK(monitor_enter_dex_pcs_ != NULL);
362  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
363
364  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
365  // verification. In practice, the phase we want relies on data structures set up by all the
366  // earlier passes, so we just run the full method verification and bail out early when we've
367  // got what we wanted.
368  Verify();
369}
370
371mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
372                                                           uint32_t dex_pc) {
373  StackHandleScope<3> hs(Thread::Current());
374  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
375  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
376  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
377  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
378                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
379                          true, true, false);
380  return verifier.FindAccessedFieldAtDexPc(dex_pc);
381}
382
383mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
384  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
385
386  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
387  // verification. In practice, the phase we want relies on data structures set up by all the
388  // earlier passes, so we just run the full method verification and bail out early when we've
389  // got what we wanted.
390  bool success = Verify();
391  if (!success) {
392    return nullptr;
393  }
394  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
395  if (register_line == NULL) {
396    return nullptr;
397  }
398  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
399  return GetQuickFieldAccess(inst, register_line);
400}
401
402mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
403                                                            uint32_t dex_pc) {
404  StackHandleScope<3> hs(Thread::Current());
405  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
406  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
407  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
408  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
409                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
410                          true, true, false);
411  return verifier.FindInvokedMethodAtDexPc(dex_pc);
412}
413
414mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
415  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
416
417  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
418  // verification. In practice, the phase we want relies on data structures set up by all the
419  // earlier passes, so we just run the full method verification and bail out early when we've
420  // got what we wanted.
421  bool success = Verify();
422  if (!success) {
423    return NULL;
424  }
425  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
426  if (register_line == NULL) {
427    return NULL;
428  }
429  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
430  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
431  return GetQuickInvokedMethod(inst, register_line, is_range);
432}
433
434bool MethodVerifier::Verify() {
435  // If there aren't any instructions, make sure that's expected, then exit successfully.
436  if (code_item_ == NULL) {
437    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
438      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
439      return false;
440    } else {
441      return true;
442    }
443  }
444  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
445  if (code_item_->ins_size_ > code_item_->registers_size_) {
446    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
447                                      << " regs=" << code_item_->registers_size_;
448    return false;
449  }
450  // Allocate and initialize an array to hold instruction data.
451  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
452  // Run through the instructions and see if the width checks out.
453  bool result = ComputeWidthsAndCountOps();
454  // Flag instructions guarded by a "try" block and check exception handlers.
455  result = result && ScanTryCatchBlocks();
456  // Perform static instruction verification.
457  result = result && VerifyInstructions();
458  // Perform code-flow analysis and return.
459  result = result && VerifyCodeFlow();
460  // Compute information for compiler.
461  if (result && Runtime::Current()->IsCompiler()) {
462    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
463  }
464  return result;
465}
466
467std::ostream& MethodVerifier::Fail(VerifyError error) {
468  switch (error) {
469    case VERIFY_ERROR_NO_CLASS:
470    case VERIFY_ERROR_NO_FIELD:
471    case VERIFY_ERROR_NO_METHOD:
472    case VERIFY_ERROR_ACCESS_CLASS:
473    case VERIFY_ERROR_ACCESS_FIELD:
474    case VERIFY_ERROR_ACCESS_METHOD:
475    case VERIFY_ERROR_INSTANTIATION:
476    case VERIFY_ERROR_CLASS_CHANGE:
477      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
478        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
479        // class change and instantiation errors into soft verification errors so that we re-verify
480        // at runtime. We may fail to find or to agree on access because of not yet available class
481        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
482        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
483        // paths" that dynamically perform the verification and cause the behavior to be that akin
484        // to an interpreter.
485        error = VERIFY_ERROR_BAD_CLASS_SOFT;
486      } else {
487        // If we fail again at runtime, mark that this instruction would throw and force this
488        // method to be executed using the interpreter with checks.
489        have_pending_runtime_throw_failure_ = true;
490      }
491      break;
492      // Indication that verification should be retried at runtime.
493    case VERIFY_ERROR_BAD_CLASS_SOFT:
494      if (!allow_soft_failures_) {
495        have_pending_hard_failure_ = true;
496      }
497      break;
498      // Hard verification failures at compile time will still fail at runtime, so the class is
499      // marked as rejected to prevent it from being compiled.
500    case VERIFY_ERROR_BAD_CLASS_HARD: {
501      if (Runtime::Current()->IsCompiler()) {
502        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
503        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
504      }
505      have_pending_hard_failure_ = true;
506      break;
507    }
508  }
509  failures_.push_back(error);
510  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
511                                    work_insn_idx_));
512  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
513  failure_messages_.push_back(failure_message);
514  return *failure_message;
515}
516
517std::ostream& MethodVerifier::LogVerifyInfo() {
518  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
519                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
520}
521
522void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
523  size_t failure_num = failure_messages_.size();
524  DCHECK_NE(failure_num, 0U);
525  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
526  prepend += last_fail_message->str();
527  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
528  delete last_fail_message;
529}
530
531void MethodVerifier::AppendToLastFailMessage(std::string append) {
532  size_t failure_num = failure_messages_.size();
533  DCHECK_NE(failure_num, 0U);
534  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
535  (*last_fail_message) << append;
536}
537
538bool MethodVerifier::ComputeWidthsAndCountOps() {
539  const uint16_t* insns = code_item_->insns_;
540  size_t insns_size = code_item_->insns_size_in_code_units_;
541  const Instruction* inst = Instruction::At(insns);
542  size_t new_instance_count = 0;
543  size_t monitor_enter_count = 0;
544  size_t dex_pc = 0;
545
546  while (dex_pc < insns_size) {
547    Instruction::Code opcode = inst->Opcode();
548    switch (opcode) {
549      case Instruction::APUT_OBJECT:
550      case Instruction::CHECK_CAST:
551        has_check_casts_ = true;
552        break;
553      case Instruction::INVOKE_VIRTUAL:
554      case Instruction::INVOKE_VIRTUAL_RANGE:
555      case Instruction::INVOKE_INTERFACE:
556      case Instruction::INVOKE_INTERFACE_RANGE:
557        has_virtual_or_interface_invokes_ = true;
558        break;
559      case Instruction::MONITOR_ENTER:
560        monitor_enter_count++;
561        break;
562      case Instruction::NEW_INSTANCE:
563        new_instance_count++;
564        break;
565      default:
566        break;
567    }
568    size_t inst_size = inst->SizeInCodeUnits();
569    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
570    dex_pc += inst_size;
571    inst = inst->Next();
572  }
573
574  if (dex_pc != insns_size) {
575    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
576                                      << dex_pc << " vs. " << insns_size << ")";
577    return false;
578  }
579
580  new_instance_count_ = new_instance_count;
581  monitor_enter_count_ = monitor_enter_count;
582  return true;
583}
584
585bool MethodVerifier::ScanTryCatchBlocks() {
586  uint32_t tries_size = code_item_->tries_size_;
587  if (tries_size == 0) {
588    return true;
589  }
590  uint32_t insns_size = code_item_->insns_size_in_code_units_;
591  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
592
593  for (uint32_t idx = 0; idx < tries_size; idx++) {
594    const DexFile::TryItem* try_item = &tries[idx];
595    uint32_t start = try_item->start_addr_;
596    uint32_t end = start + try_item->insn_count_;
597    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
598      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
599                                        << " endAddr=" << end << " (size=" << insns_size << ")";
600      return false;
601    }
602    if (!insn_flags_[start].IsOpcode()) {
603      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
604          << "'try' block starts inside an instruction (" << start << ")";
605      return false;
606    }
607    for (uint32_t dex_pc = start; dex_pc < end;
608        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
609      insn_flags_[dex_pc].SetInTry();
610    }
611  }
612  // Iterate over each of the handlers to verify target addresses.
613  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
614  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
615  ClassLinker* linker = Runtime::Current()->GetClassLinker();
616  for (uint32_t idx = 0; idx < handlers_size; idx++) {
617    CatchHandlerIterator iterator(handlers_ptr);
618    for (; iterator.HasNext(); iterator.Next()) {
619      uint32_t dex_pc= iterator.GetHandlerAddress();
620      if (!insn_flags_[dex_pc].IsOpcode()) {
621        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
622            << "exception handler starts at bad address (" << dex_pc << ")";
623        return false;
624      }
625      insn_flags_[dex_pc].SetBranchTarget();
626      // Ensure exception types are resolved so that they don't need resolution to be delivered,
627      // unresolved exception types will be ignored by exception delivery
628      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
629        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
630                                                            iterator.GetHandlerTypeIndex(),
631                                                            *dex_cache_, *class_loader_);
632        if (exception_type == NULL) {
633          DCHECK(Thread::Current()->IsExceptionPending());
634          Thread::Current()->ClearException();
635        }
636      }
637    }
638    handlers_ptr = iterator.EndDataPointer();
639  }
640  return true;
641}
642
643bool MethodVerifier::VerifyInstructions() {
644  const Instruction* inst = Instruction::At(code_item_->insns_);
645
646  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
647  insn_flags_[0].SetBranchTarget();
648  insn_flags_[0].SetCompileTimeInfoPoint();
649
650  uint32_t insns_size = code_item_->insns_size_in_code_units_;
651  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
652    if (!VerifyInstruction(inst, dex_pc)) {
653      DCHECK_NE(failures_.size(), 0U);
654      return false;
655    }
656    /* Flag instructions that are garbage collection points */
657    // All invoke points are marked as "Throw" points already.
658    // We are relying on this to also count all the invokes as interesting.
659    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
660      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
661    } else if (inst->IsReturn()) {
662      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
663    }
664    dex_pc += inst->SizeInCodeUnits();
665    inst = inst->Next();
666  }
667  return true;
668}
669
670bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
671  bool result = true;
672  switch (inst->GetVerifyTypeArgumentA()) {
673    case Instruction::kVerifyRegA:
674      result = result && CheckRegisterIndex(inst->VRegA());
675      break;
676    case Instruction::kVerifyRegAWide:
677      result = result && CheckWideRegisterIndex(inst->VRegA());
678      break;
679  }
680  switch (inst->GetVerifyTypeArgumentB()) {
681    case Instruction::kVerifyRegB:
682      result = result && CheckRegisterIndex(inst->VRegB());
683      break;
684    case Instruction::kVerifyRegBField:
685      result = result && CheckFieldIndex(inst->VRegB());
686      break;
687    case Instruction::kVerifyRegBMethod:
688      result = result && CheckMethodIndex(inst->VRegB());
689      break;
690    case Instruction::kVerifyRegBNewInstance:
691      result = result && CheckNewInstance(inst->VRegB());
692      break;
693    case Instruction::kVerifyRegBString:
694      result = result && CheckStringIndex(inst->VRegB());
695      break;
696    case Instruction::kVerifyRegBType:
697      result = result && CheckTypeIndex(inst->VRegB());
698      break;
699    case Instruction::kVerifyRegBWide:
700      result = result && CheckWideRegisterIndex(inst->VRegB());
701      break;
702  }
703  switch (inst->GetVerifyTypeArgumentC()) {
704    case Instruction::kVerifyRegC:
705      result = result && CheckRegisterIndex(inst->VRegC());
706      break;
707    case Instruction::kVerifyRegCField:
708      result = result && CheckFieldIndex(inst->VRegC());
709      break;
710    case Instruction::kVerifyRegCNewArray:
711      result = result && CheckNewArray(inst->VRegC());
712      break;
713    case Instruction::kVerifyRegCType:
714      result = result && CheckTypeIndex(inst->VRegC());
715      break;
716    case Instruction::kVerifyRegCWide:
717      result = result && CheckWideRegisterIndex(inst->VRegC());
718      break;
719  }
720  switch (inst->GetVerifyExtraFlags()) {
721    case Instruction::kVerifyArrayData:
722      result = result && CheckArrayData(code_offset);
723      break;
724    case Instruction::kVerifyBranchTarget:
725      result = result && CheckBranchTarget(code_offset);
726      break;
727    case Instruction::kVerifySwitchTargets:
728      result = result && CheckSwitchTargets(code_offset);
729      break;
730    case Instruction::kVerifyVarArgNonZero:
731      // Fall-through.
732    case Instruction::kVerifyVarArg: {
733      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
734        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
735                                             "non-range invoke";
736        return false;
737      }
738      uint32_t args[Instruction::kMaxVarArgRegs];
739      inst->GetVarArgs(args);
740      result = result && CheckVarArgRegs(inst->VRegA(), args);
741      break;
742    }
743    case Instruction::kVerifyVarArgRangeNonZero:
744      // Fall-through.
745    case Instruction::kVerifyVarArgRange:
746      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
747          inst->VRegA() <= 0) {
748        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
749                                             "range invoke";
750        return false;
751      }
752      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
753      break;
754    case Instruction::kVerifyError:
755      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
756      result = false;
757      break;
758  }
759  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler()) {
760    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
761    result = false;
762  }
763  return result;
764}
765
766bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
767  if (idx >= code_item_->registers_size_) {
768    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
769                                      << code_item_->registers_size_ << ")";
770    return false;
771  }
772  return true;
773}
774
775bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
776  if (idx + 1 >= code_item_->registers_size_) {
777    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
778                                      << "+1 >= " << code_item_->registers_size_ << ")";
779    return false;
780  }
781  return true;
782}
783
784bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
785  if (idx >= dex_file_->GetHeader().field_ids_size_) {
786    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
787                                      << dex_file_->GetHeader().field_ids_size_ << ")";
788    return false;
789  }
790  return true;
791}
792
793bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
794  if (idx >= dex_file_->GetHeader().method_ids_size_) {
795    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
796                                      << dex_file_->GetHeader().method_ids_size_ << ")";
797    return false;
798  }
799  return true;
800}
801
802bool MethodVerifier::CheckNewInstance(uint32_t idx) {
803  if (idx >= dex_file_->GetHeader().type_ids_size_) {
804    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
805                                      << dex_file_->GetHeader().type_ids_size_ << ")";
806    return false;
807  }
808  // We don't need the actual class, just a pointer to the class name.
809  const char* descriptor = dex_file_->StringByTypeIdx(idx);
810  if (descriptor[0] != 'L') {
811    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
812    return false;
813  }
814  return true;
815}
816
817bool MethodVerifier::CheckStringIndex(uint32_t idx) {
818  if (idx >= dex_file_->GetHeader().string_ids_size_) {
819    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
820                                      << dex_file_->GetHeader().string_ids_size_ << ")";
821    return false;
822  }
823  return true;
824}
825
826bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
827  if (idx >= dex_file_->GetHeader().type_ids_size_) {
828    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
829                                      << dex_file_->GetHeader().type_ids_size_ << ")";
830    return false;
831  }
832  return true;
833}
834
835bool MethodVerifier::CheckNewArray(uint32_t idx) {
836  if (idx >= dex_file_->GetHeader().type_ids_size_) {
837    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
838                                      << dex_file_->GetHeader().type_ids_size_ << ")";
839    return false;
840  }
841  int bracket_count = 0;
842  const char* descriptor = dex_file_->StringByTypeIdx(idx);
843  const char* cp = descriptor;
844  while (*cp++ == '[') {
845    bracket_count++;
846  }
847  if (bracket_count == 0) {
848    /* The given class must be an array type. */
849    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
850        << "can't new-array class '" << descriptor << "' (not an array)";
851    return false;
852  } else if (bracket_count > 255) {
853    /* It is illegal to create an array of more than 255 dimensions. */
854    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
855        << "can't new-array class '" << descriptor << "' (exceeds limit)";
856    return false;
857  }
858  return true;
859}
860
861bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
862  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
863  const uint16_t* insns = code_item_->insns_ + cur_offset;
864  const uint16_t* array_data;
865  int32_t array_data_offset;
866
867  DCHECK_LT(cur_offset, insn_count);
868  /* make sure the start of the array data table is in range */
869  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
870  if ((int32_t) cur_offset + array_data_offset < 0 ||
871      cur_offset + array_data_offset + 2 >= insn_count) {
872    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
873                                      << ", data offset " << array_data_offset
874                                      << ", count " << insn_count;
875    return false;
876  }
877  /* offset to array data table is a relative branch-style offset */
878  array_data = insns + array_data_offset;
879  /* make sure the table is 32-bit aligned */
880  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
881    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
882                                      << ", data offset " << array_data_offset;
883    return false;
884  }
885  uint32_t value_width = array_data[1];
886  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
887  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
888  /* make sure the end of the switch is in range */
889  if (cur_offset + array_data_offset + table_size > insn_count) {
890    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
891                                      << ", data offset " << array_data_offset << ", end "
892                                      << cur_offset + array_data_offset + table_size
893                                      << ", count " << insn_count;
894    return false;
895  }
896  return true;
897}
898
899bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
900  int32_t offset;
901  bool isConditional, selfOkay;
902  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
903    return false;
904  }
905  if (!selfOkay && offset == 0) {
906    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
907                                      << reinterpret_cast<void*>(cur_offset);
908    return false;
909  }
910  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
911  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
912  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
913    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
914                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
915    return false;
916  }
917  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
918  int32_t abs_offset = cur_offset + offset;
919  if (abs_offset < 0 ||
920      (uint32_t) abs_offset >= insn_count ||
921      !insn_flags_[abs_offset].IsOpcode()) {
922    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
923                                      << reinterpret_cast<void*>(abs_offset) << ") at "
924                                      << reinterpret_cast<void*>(cur_offset);
925    return false;
926  }
927  insn_flags_[abs_offset].SetBranchTarget();
928  return true;
929}
930
931bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
932                                  bool* selfOkay) {
933  const uint16_t* insns = code_item_->insns_ + cur_offset;
934  *pConditional = false;
935  *selfOkay = false;
936  switch (*insns & 0xff) {
937    case Instruction::GOTO:
938      *pOffset = ((int16_t) *insns) >> 8;
939      break;
940    case Instruction::GOTO_32:
941      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
942      *selfOkay = true;
943      break;
944    case Instruction::GOTO_16:
945      *pOffset = (int16_t) insns[1];
946      break;
947    case Instruction::IF_EQ:
948    case Instruction::IF_NE:
949    case Instruction::IF_LT:
950    case Instruction::IF_GE:
951    case Instruction::IF_GT:
952    case Instruction::IF_LE:
953    case Instruction::IF_EQZ:
954    case Instruction::IF_NEZ:
955    case Instruction::IF_LTZ:
956    case Instruction::IF_GEZ:
957    case Instruction::IF_GTZ:
958    case Instruction::IF_LEZ:
959      *pOffset = (int16_t) insns[1];
960      *pConditional = true;
961      break;
962    default:
963      return false;
964      break;
965  }
966  return true;
967}
968
969bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
970  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
971  DCHECK_LT(cur_offset, insn_count);
972  const uint16_t* insns = code_item_->insns_ + cur_offset;
973  /* make sure the start of the switch is in range */
974  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
975  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
976    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
977                                      << ", switch offset " << switch_offset
978                                      << ", count " << insn_count;
979    return false;
980  }
981  /* offset to switch table is a relative branch-style offset */
982  const uint16_t* switch_insns = insns + switch_offset;
983  /* make sure the table is 32-bit aligned */
984  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
985    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
986                                      << ", switch offset " << switch_offset;
987    return false;
988  }
989  uint32_t switch_count = switch_insns[1];
990  int32_t keys_offset, targets_offset;
991  uint16_t expected_signature;
992  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
993    /* 0=sig, 1=count, 2/3=firstKey */
994    targets_offset = 4;
995    keys_offset = -1;
996    expected_signature = Instruction::kPackedSwitchSignature;
997  } else {
998    /* 0=sig, 1=count, 2..count*2 = keys */
999    keys_offset = 2;
1000    targets_offset = 2 + 2 * switch_count;
1001    expected_signature = Instruction::kSparseSwitchSignature;
1002  }
1003  uint32_t table_size = targets_offset + switch_count * 2;
1004  if (switch_insns[0] != expected_signature) {
1005    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1006        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1007                        switch_insns[0], expected_signature);
1008    return false;
1009  }
1010  /* make sure the end of the switch is in range */
1011  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1012    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1013                                      << ", switch offset " << switch_offset
1014                                      << ", end " << (cur_offset + switch_offset + table_size)
1015                                      << ", count " << insn_count;
1016    return false;
1017  }
1018  /* for a sparse switch, verify the keys are in ascending order */
1019  if (keys_offset > 0 && switch_count > 1) {
1020    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1021    for (uint32_t targ = 1; targ < switch_count; targ++) {
1022      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1023                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1024      if (key <= last_key) {
1025        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1026                                          << ", this=" << key;
1027        return false;
1028      }
1029      last_key = key;
1030    }
1031  }
1032  /* verify each switch target */
1033  for (uint32_t targ = 0; targ < switch_count; targ++) {
1034    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1035                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1036    int32_t abs_offset = cur_offset + offset;
1037    if (abs_offset < 0 ||
1038        abs_offset >= (int32_t) insn_count ||
1039        !insn_flags_[abs_offset].IsOpcode()) {
1040      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1041                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1042                                        << reinterpret_cast<void*>(cur_offset)
1043                                        << "[" << targ << "]";
1044      return false;
1045    }
1046    insn_flags_[abs_offset].SetBranchTarget();
1047  }
1048  return true;
1049}
1050
1051bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1052  if (vA > Instruction::kMaxVarArgRegs) {
1053    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1054    return false;
1055  }
1056  uint16_t registers_size = code_item_->registers_size_;
1057  for (uint32_t idx = 0; idx < vA; idx++) {
1058    if (arg[idx] >= registers_size) {
1059      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1060                                        << ") in non-range invoke (>= " << registers_size << ")";
1061      return false;
1062    }
1063  }
1064
1065  return true;
1066}
1067
1068bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1069  uint16_t registers_size = code_item_->registers_size_;
1070  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1071  // integer overflow when adding them here.
1072  if (vA + vC > registers_size) {
1073    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1074                                      << " in range invoke (> " << registers_size << ")";
1075    return false;
1076  }
1077  return true;
1078}
1079
1080bool MethodVerifier::VerifyCodeFlow() {
1081  uint16_t registers_size = code_item_->registers_size_;
1082  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1083
1084  if (registers_size * insns_size > 4*1024*1024) {
1085    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1086                 << " insns_size=" << insns_size << ")";
1087  }
1088  /* Create and initialize table holding register status */
1089  reg_table_.Init(kTrackCompilerInterestPoints,
1090                  insn_flags_.get(),
1091                  insns_size,
1092                  registers_size,
1093                  this);
1094
1095
1096  work_line_.reset(RegisterLine::Create(registers_size, this));
1097  saved_line_.reset(RegisterLine::Create(registers_size, this));
1098
1099  /* Initialize register types of method arguments. */
1100  if (!SetTypesFromSignature()) {
1101    DCHECK_NE(failures_.size(), 0U);
1102    std::string prepend("Bad signature in ");
1103    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1104    PrependToLastFailMessage(prepend);
1105    return false;
1106  }
1107  /* Perform code flow verification. */
1108  if (!CodeFlowVerifyMethod()) {
1109    DCHECK_NE(failures_.size(), 0U);
1110    return false;
1111  }
1112  return true;
1113}
1114
1115std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1116  DCHECK_EQ(failures_.size(), failure_messages_.size());
1117  for (size_t i = 0; i < failures_.size(); ++i) {
1118      os << failure_messages_[i]->str() << "\n";
1119  }
1120  return os;
1121}
1122
1123extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1124    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1125  v->Dump(std::cerr);
1126}
1127
1128void MethodVerifier::Dump(std::ostream& os) {
1129  if (code_item_ == NULL) {
1130    os << "Native method\n";
1131    return;
1132  }
1133  {
1134    os << "Register Types:\n";
1135    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1136    std::ostream indent_os(&indent_filter);
1137    reg_types_.Dump(indent_os);
1138  }
1139  os << "Dumping instructions and register lines:\n";
1140  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1141  std::ostream indent_os(&indent_filter);
1142  const Instruction* inst = Instruction::At(code_item_->insns_);
1143  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1144      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1145    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1146    if (reg_line != NULL) {
1147      indent_os << reg_line->Dump() << "\n";
1148    }
1149    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1150    const bool kDumpHexOfInstruction = false;
1151    if (kDumpHexOfInstruction) {
1152      indent_os << inst->DumpHex(5) << " ";
1153    }
1154    indent_os << inst->DumpString(dex_file_) << "\n";
1155    inst = inst->Next();
1156  }
1157}
1158
1159static bool IsPrimitiveDescriptor(char descriptor) {
1160  switch (descriptor) {
1161    case 'I':
1162    case 'C':
1163    case 'S':
1164    case 'B':
1165    case 'Z':
1166    case 'F':
1167    case 'D':
1168    case 'J':
1169      return true;
1170    default:
1171      return false;
1172  }
1173}
1174
1175bool MethodVerifier::SetTypesFromSignature() {
1176  RegisterLine* reg_line = reg_table_.GetLine(0);
1177  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1178  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1179
1180  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1181  // Include the "this" pointer.
1182  size_t cur_arg = 0;
1183  if (!IsStatic()) {
1184    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1185    // argument as uninitialized. This restricts field access until the superclass constructor is
1186    // called.
1187    RegType& declaring_class = GetDeclaringClass();
1188    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1189      reg_line->SetRegisterType(arg_start + cur_arg,
1190                                reg_types_.UninitializedThisArgument(declaring_class));
1191    } else {
1192      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1193    }
1194    cur_arg++;
1195  }
1196
1197  const DexFile::ProtoId& proto_id =
1198      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1199  DexFileParameterIterator iterator(*dex_file_, proto_id);
1200
1201  for (; iterator.HasNext(); iterator.Next()) {
1202    const char* descriptor = iterator.GetDescriptor();
1203    if (descriptor == NULL) {
1204      LOG(FATAL) << "Null descriptor";
1205    }
1206    if (cur_arg >= expected_args) {
1207      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1208                                        << " args, found more (" << descriptor << ")";
1209      return false;
1210    }
1211    switch (descriptor[0]) {
1212      case 'L':
1213      case '[':
1214        // We assume that reference arguments are initialized. The only way it could be otherwise
1215        // (assuming the caller was verified) is if the current method is <init>, but in that case
1216        // it's effectively considered initialized the instant we reach here (in the sense that we
1217        // can return without doing anything or call virtual methods).
1218        {
1219          RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1220          if (!reg_type.IsNonZeroReferenceTypes()) {
1221            DCHECK(HasFailures());
1222            return false;
1223          }
1224          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1225        }
1226        break;
1227      case 'Z':
1228        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1229        break;
1230      case 'C':
1231        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1232        break;
1233      case 'B':
1234        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1235        break;
1236      case 'I':
1237        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1238        break;
1239      case 'S':
1240        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1241        break;
1242      case 'F':
1243        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1244        break;
1245      case 'J':
1246      case 'D': {
1247        if (cur_arg + 1 >= expected_args) {
1248          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1249              << " args, found more (" << descriptor << ")";
1250          return false;
1251        }
1252
1253        RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1254        RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1255        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1256        cur_arg++;
1257        break;
1258      }
1259      default:
1260        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1261                                          << descriptor << "'";
1262        return false;
1263    }
1264    cur_arg++;
1265  }
1266  if (cur_arg != expected_args) {
1267    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1268                                      << " arguments, found " << cur_arg;
1269    return false;
1270  }
1271  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1272  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1273  // format. Only major difference from the method argument format is that 'V' is supported.
1274  bool result;
1275  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1276    result = descriptor[1] == '\0';
1277  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1278    size_t i = 0;
1279    do {
1280      i++;
1281    } while (descriptor[i] == '[');  // process leading [
1282    if (descriptor[i] == 'L') {  // object array
1283      do {
1284        i++;  // find closing ;
1285      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1286      result = descriptor[i] == ';';
1287    } else {  // primitive array
1288      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1289    }
1290  } else if (descriptor[0] == 'L') {
1291    // could be more thorough here, but shouldn't be required
1292    size_t i = 0;
1293    do {
1294      i++;
1295    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1296    result = descriptor[i] == ';';
1297  } else {
1298    result = false;
1299  }
1300  if (!result) {
1301    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1302                                      << descriptor << "'";
1303  }
1304  return result;
1305}
1306
1307bool MethodVerifier::CodeFlowVerifyMethod() {
1308  const uint16_t* insns = code_item_->insns_;
1309  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1310
1311  /* Begin by marking the first instruction as "changed". */
1312  insn_flags_[0].SetChanged();
1313  uint32_t start_guess = 0;
1314
1315  /* Continue until no instructions are marked "changed". */
1316  while (true) {
1317    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1318    uint32_t insn_idx = start_guess;
1319    for (; insn_idx < insns_size; insn_idx++) {
1320      if (insn_flags_[insn_idx].IsChanged())
1321        break;
1322    }
1323    if (insn_idx == insns_size) {
1324      if (start_guess != 0) {
1325        /* try again, starting from the top */
1326        start_guess = 0;
1327        continue;
1328      } else {
1329        /* all flags are clear */
1330        break;
1331      }
1332    }
1333    // We carry the working set of registers from instruction to instruction. If this address can
1334    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1335    // "changed" flags, we need to load the set of registers from the table.
1336    // Because we always prefer to continue on to the next instruction, we should never have a
1337    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1338    // target.
1339    work_insn_idx_ = insn_idx;
1340    if (insn_flags_[insn_idx].IsBranchTarget()) {
1341      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1342    } else if (kIsDebugBuild) {
1343      /*
1344       * Sanity check: retrieve the stored register line (assuming
1345       * a full table) and make sure it actually matches.
1346       */
1347      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1348      if (register_line != NULL) {
1349        if (work_line_->CompareLine(register_line) != 0) {
1350          Dump(std::cout);
1351          std::cout << info_messages_.str();
1352          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1353                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1354                     << " work_line=" << *work_line_ << "\n"
1355                     << "  expected=" << *register_line;
1356        }
1357      }
1358    }
1359    if (!CodeFlowVerifyInstruction(&start_guess)) {
1360      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1361      prepend += " failed to verify: ";
1362      PrependToLastFailMessage(prepend);
1363      return false;
1364    }
1365    /* Clear "changed" and mark as visited. */
1366    insn_flags_[insn_idx].SetVisited();
1367    insn_flags_[insn_idx].ClearChanged();
1368  }
1369
1370  if (gDebugVerify) {
1371    /*
1372     * Scan for dead code. There's nothing "evil" about dead code
1373     * (besides the wasted space), but it indicates a flaw somewhere
1374     * down the line, possibly in the verifier.
1375     *
1376     * If we've substituted "always throw" instructions into the stream,
1377     * we are almost certainly going to have some dead code.
1378     */
1379    int dead_start = -1;
1380    uint32_t insn_idx = 0;
1381    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1382      /*
1383       * Switch-statement data doesn't get "visited" by scanner. It
1384       * may or may not be preceded by a padding NOP (for alignment).
1385       */
1386      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1387          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1388          insns[insn_idx] == Instruction::kArrayDataSignature ||
1389          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1390           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1391            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1392            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1393        insn_flags_[insn_idx].SetVisited();
1394      }
1395
1396      if (!insn_flags_[insn_idx].IsVisited()) {
1397        if (dead_start < 0)
1398          dead_start = insn_idx;
1399      } else if (dead_start >= 0) {
1400        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1401                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1402        dead_start = -1;
1403      }
1404    }
1405    if (dead_start >= 0) {
1406      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1407                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1408    }
1409    // To dump the state of the verify after a method, do something like:
1410    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1411    //     "boolean java.lang.String.equals(java.lang.Object)") {
1412    //   LOG(INFO) << info_messages_.str();
1413    // }
1414  }
1415  return true;
1416}
1417
1418bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1419  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1420  // We want the state _before_ the instruction, for the case where the dex pc we're
1421  // interested in is itself a monitor-enter instruction (which is a likely place
1422  // for a thread to be suspended).
1423  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1424    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1425    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1426      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1427    }
1428  }
1429
1430  /*
1431   * Once we finish decoding the instruction, we need to figure out where
1432   * we can go from here. There are three possible ways to transfer
1433   * control to another statement:
1434   *
1435   * (1) Continue to the next instruction. Applies to all but
1436   *     unconditional branches, method returns, and exception throws.
1437   * (2) Branch to one or more possible locations. Applies to branches
1438   *     and switch statements.
1439   * (3) Exception handlers. Applies to any instruction that can
1440   *     throw an exception that is handled by an encompassing "try"
1441   *     block.
1442   *
1443   * We can also return, in which case there is no successor instruction
1444   * from this point.
1445   *
1446   * The behavior can be determined from the opcode flags.
1447   */
1448  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1449  const Instruction* inst = Instruction::At(insns);
1450  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1451
1452  int32_t branch_target = 0;
1453  bool just_set_result = false;
1454  if (gDebugVerify) {
1455    // Generate processing back trace to debug verifier
1456    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1457                    << *work_line_.get() << "\n";
1458  }
1459
1460  /*
1461   * Make a copy of the previous register state. If the instruction
1462   * can throw an exception, we will copy/merge this into the "catch"
1463   * address rather than work_line, because we don't want the result
1464   * from the "successful" code path (e.g. a check-cast that "improves"
1465   * a type) to be visible to the exception handler.
1466   */
1467  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1468    saved_line_->CopyFromLine(work_line_.get());
1469  } else if (kIsDebugBuild) {
1470    saved_line_->FillWithGarbage();
1471  }
1472
1473
1474  // We need to ensure the work line is consistent while performing validation. When we spot a
1475  // peephole pattern we compute a new line for either the fallthrough instruction or the
1476  // branch target.
1477  std::unique_ptr<RegisterLine> branch_line;
1478  std::unique_ptr<RegisterLine> fallthrough_line;
1479
1480  switch (inst->Opcode()) {
1481    case Instruction::NOP:
1482      /*
1483       * A "pure" NOP has no effect on anything. Data tables start with
1484       * a signature that looks like a NOP; if we see one of these in
1485       * the course of executing code then we have a problem.
1486       */
1487      if (inst->VRegA_10x() != 0) {
1488        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1489      }
1490      break;
1491
1492    case Instruction::MOVE:
1493      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1494      break;
1495    case Instruction::MOVE_FROM16:
1496      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1497      break;
1498    case Instruction::MOVE_16:
1499      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1500      break;
1501    case Instruction::MOVE_WIDE:
1502      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1503      break;
1504    case Instruction::MOVE_WIDE_FROM16:
1505      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1506      break;
1507    case Instruction::MOVE_WIDE_16:
1508      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1509      break;
1510    case Instruction::MOVE_OBJECT:
1511      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1512      break;
1513    case Instruction::MOVE_OBJECT_FROM16:
1514      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1515      break;
1516    case Instruction::MOVE_OBJECT_16:
1517      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1518      break;
1519
1520    /*
1521     * The move-result instructions copy data out of a "pseudo-register"
1522     * with the results from the last method invocation. In practice we
1523     * might want to hold the result in an actual CPU register, so the
1524     * Dalvik spec requires that these only appear immediately after an
1525     * invoke or filled-new-array.
1526     *
1527     * These calls invalidate the "result" register. (This is now
1528     * redundant with the reset done below, but it can make the debug info
1529     * easier to read in some cases.)
1530     */
1531    case Instruction::MOVE_RESULT:
1532      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1533      break;
1534    case Instruction::MOVE_RESULT_WIDE:
1535      work_line_->CopyResultRegister2(inst->VRegA_11x());
1536      break;
1537    case Instruction::MOVE_RESULT_OBJECT:
1538      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1539      break;
1540
1541    case Instruction::MOVE_EXCEPTION: {
1542      /*
1543       * This statement can only appear as the first instruction in an exception handler. We verify
1544       * that as part of extracting the exception type from the catch block list.
1545       */
1546      RegType& res_type = GetCaughtExceptionType();
1547      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1548      break;
1549    }
1550    case Instruction::RETURN_VOID:
1551      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1552        if (!GetMethodReturnType().IsConflict()) {
1553          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1554        }
1555      }
1556      break;
1557    case Instruction::RETURN:
1558      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1559        /* check the method signature */
1560        RegType& return_type = GetMethodReturnType();
1561        if (!return_type.IsCategory1Types()) {
1562          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1563                                            << return_type;
1564        } else {
1565          // Compilers may generate synthetic functions that write byte values into boolean fields.
1566          // Also, it may use integer values for boolean, byte, short, and character return types.
1567          const uint32_t vregA = inst->VRegA_11x();
1568          RegType& src_type = work_line_->GetRegisterType(vregA);
1569          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1570                          ((return_type.IsBoolean() || return_type.IsByte() ||
1571                           return_type.IsShort() || return_type.IsChar()) &&
1572                           src_type.IsInteger()));
1573          /* check the register contents */
1574          bool success =
1575              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1576          if (!success) {
1577            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1578          }
1579        }
1580      }
1581      break;
1582    case Instruction::RETURN_WIDE:
1583      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1584        /* check the method signature */
1585        RegType& return_type = GetMethodReturnType();
1586        if (!return_type.IsCategory2Types()) {
1587          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1588        } else {
1589          /* check the register contents */
1590          const uint32_t vregA = inst->VRegA_11x();
1591          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1592          if (!success) {
1593            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1594          }
1595        }
1596      }
1597      break;
1598    case Instruction::RETURN_OBJECT:
1599      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1600        RegType& return_type = GetMethodReturnType();
1601        if (!return_type.IsReferenceTypes()) {
1602          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1603        } else {
1604          /* return_type is the *expected* return type, not register value */
1605          DCHECK(!return_type.IsZero());
1606          DCHECK(!return_type.IsUninitializedReference());
1607          const uint32_t vregA = inst->VRegA_11x();
1608          RegType& reg_type = work_line_->GetRegisterType(vregA);
1609          // Disallow returning uninitialized values and verify that the reference in vAA is an
1610          // instance of the "return_type"
1611          if (reg_type.IsUninitializedTypes()) {
1612            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1613                                              << reg_type << "'";
1614          } else if (!return_type.IsAssignableFrom(reg_type)) {
1615            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1616              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1617                  << "' or '" << reg_type << "'";
1618            } else {
1619              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1620                  << "', but expected from declaration '" << return_type << "'";
1621            }
1622          }
1623        }
1624      }
1625      break;
1626
1627      /* could be boolean, int, float, or a null reference */
1628    case Instruction::CONST_4: {
1629      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1630      work_line_->SetRegisterType(inst->VRegA_11n(),
1631                                  DetermineCat1Constant(val, need_precise_constants_));
1632      break;
1633    }
1634    case Instruction::CONST_16: {
1635      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1636      work_line_->SetRegisterType(inst->VRegA_21s(),
1637                                  DetermineCat1Constant(val, need_precise_constants_));
1638      break;
1639    }
1640    case Instruction::CONST: {
1641      int32_t val = inst->VRegB_31i();
1642      work_line_->SetRegisterType(inst->VRegA_31i(),
1643                                  DetermineCat1Constant(val, need_precise_constants_));
1644      break;
1645    }
1646    case Instruction::CONST_HIGH16: {
1647      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1648      work_line_->SetRegisterType(inst->VRegA_21h(),
1649                                  DetermineCat1Constant(val, need_precise_constants_));
1650      break;
1651    }
1652      /* could be long or double; resolved upon use */
1653    case Instruction::CONST_WIDE_16: {
1654      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1655      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1656      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1657      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1658      break;
1659    }
1660    case Instruction::CONST_WIDE_32: {
1661      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1662      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1663      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1664      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1665      break;
1666    }
1667    case Instruction::CONST_WIDE: {
1668      int64_t val = inst->VRegB_51l();
1669      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1670      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1671      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1672      break;
1673    }
1674    case Instruction::CONST_WIDE_HIGH16: {
1675      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1676      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1677      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1678      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1679      break;
1680    }
1681    case Instruction::CONST_STRING:
1682      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1683      break;
1684    case Instruction::CONST_STRING_JUMBO:
1685      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1686      break;
1687    case Instruction::CONST_CLASS: {
1688      // Get type from instruction if unresolved then we need an access check
1689      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1690      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1691      // Register holds class, ie its type is class, on error it will hold Conflict.
1692      work_line_->SetRegisterType(inst->VRegA_21c(),
1693                                  res_type.IsConflict() ? res_type
1694                                                        : reg_types_.JavaLangClass(true));
1695      break;
1696    }
1697    case Instruction::MONITOR_ENTER:
1698      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1699      break;
1700    case Instruction::MONITOR_EXIT:
1701      /*
1702       * monitor-exit instructions are odd. They can throw exceptions,
1703       * but when they do they act as if they succeeded and the PC is
1704       * pointing to the following instruction. (This behavior goes back
1705       * to the need to handle asynchronous exceptions, a now-deprecated
1706       * feature that Dalvik doesn't support.)
1707       *
1708       * In practice we don't need to worry about this. The only
1709       * exceptions that can be thrown from monitor-exit are for a
1710       * null reference and -exit without a matching -enter. If the
1711       * structured locking checks are working, the former would have
1712       * failed on the -enter instruction, and the latter is impossible.
1713       *
1714       * This is fortunate, because issue 3221411 prevents us from
1715       * chasing the "can throw" path when monitor verification is
1716       * enabled. If we can fully verify the locking we can ignore
1717       * some catch blocks (which will show up as "dead" code when
1718       * we skip them here); if we can't, then the code path could be
1719       * "live" so we still need to check it.
1720       */
1721      opcode_flags &= ~Instruction::kThrow;
1722      work_line_->PopMonitor(inst->VRegA_11x());
1723      break;
1724
1725    case Instruction::CHECK_CAST:
1726    case Instruction::INSTANCE_OF: {
1727      /*
1728       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1729       * could be a "upcast" -- not expected, so we don't try to address it.)
1730       *
1731       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1732       * dec_insn.vA when branching to a handler.
1733       */
1734      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1735      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1736      RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1737      if (res_type.IsConflict()) {
1738        // If this is a primitive type, fail HARD.
1739        mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx);
1740        if (klass != nullptr && klass->IsPrimitive()) {
1741          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1742              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1743              << GetDeclaringClass();
1744          break;
1745        }
1746
1747        DCHECK_NE(failures_.size(), 0U);
1748        if (!is_checkcast) {
1749          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1750        }
1751        break;  // bad class
1752      }
1753      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1754      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1755      RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1756      if (!res_type.IsNonZeroReferenceTypes()) {
1757        if (is_checkcast) {
1758          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1759        } else {
1760          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1761        }
1762      } else if (!orig_type.IsReferenceTypes()) {
1763        if (is_checkcast) {
1764          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1765        } else {
1766          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1767        }
1768      } else {
1769        if (is_checkcast) {
1770          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1771        } else {
1772          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1773        }
1774      }
1775      break;
1776    }
1777    case Instruction::ARRAY_LENGTH: {
1778      RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1779      if (res_type.IsReferenceTypes()) {
1780        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1781          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1782        } else {
1783          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1784        }
1785      } else {
1786        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1787      }
1788      break;
1789    }
1790    case Instruction::NEW_INSTANCE: {
1791      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1792      if (res_type.IsConflict()) {
1793        DCHECK_NE(failures_.size(), 0U);
1794        break;  // bad class
1795      }
1796      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1797      // can't create an instance of an interface or abstract class */
1798      if (!res_type.IsInstantiableTypes()) {
1799        Fail(VERIFY_ERROR_INSTANTIATION)
1800            << "new-instance on primitive, interface or abstract class" << res_type;
1801        // Soft failure so carry on to set register type.
1802      }
1803      RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1804      // Any registers holding previous allocations from this address that have not yet been
1805      // initialized must be marked invalid.
1806      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1807      // add the new uninitialized reference to the register state
1808      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1809      break;
1810    }
1811    case Instruction::NEW_ARRAY:
1812      VerifyNewArray(inst, false, false);
1813      break;
1814    case Instruction::FILLED_NEW_ARRAY:
1815      VerifyNewArray(inst, true, false);
1816      just_set_result = true;  // Filled new array sets result register
1817      break;
1818    case Instruction::FILLED_NEW_ARRAY_RANGE:
1819      VerifyNewArray(inst, true, true);
1820      just_set_result = true;  // Filled new array range sets result register
1821      break;
1822    case Instruction::CMPL_FLOAT:
1823    case Instruction::CMPG_FLOAT:
1824      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1825        break;
1826      }
1827      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1828        break;
1829      }
1830      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1831      break;
1832    case Instruction::CMPL_DOUBLE:
1833    case Instruction::CMPG_DOUBLE:
1834      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1835                                              reg_types_.DoubleHi())) {
1836        break;
1837      }
1838      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1839                                              reg_types_.DoubleHi())) {
1840        break;
1841      }
1842      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1843      break;
1844    case Instruction::CMP_LONG:
1845      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1846                                              reg_types_.LongHi())) {
1847        break;
1848      }
1849      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1850                                              reg_types_.LongHi())) {
1851        break;
1852      }
1853      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1854      break;
1855    case Instruction::THROW: {
1856      RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1857      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1858        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1859            << "thrown class " << res_type << " not instanceof Throwable";
1860      }
1861      break;
1862    }
1863    case Instruction::GOTO:
1864    case Instruction::GOTO_16:
1865    case Instruction::GOTO_32:
1866      /* no effect on or use of registers */
1867      break;
1868
1869    case Instruction::PACKED_SWITCH:
1870    case Instruction::SPARSE_SWITCH:
1871      /* verify that vAA is an integer, or can be converted to one */
1872      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1873      break;
1874
1875    case Instruction::FILL_ARRAY_DATA: {
1876      /* Similar to the verification done for APUT */
1877      RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1878      /* array_type can be null if the reg type is Zero */
1879      if (!array_type.IsZero()) {
1880        if (!array_type.IsArrayTypes()) {
1881          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1882                                            << array_type;
1883        } else {
1884          RegType& component_type = reg_types_.GetComponentType(array_type,
1885                                                                      class_loader_->Get());
1886          DCHECK(!component_type.IsConflict());
1887          if (component_type.IsNonZeroReferenceTypes()) {
1888            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1889                                              << component_type;
1890          } else {
1891            // Now verify if the element width in the table matches the element width declared in
1892            // the array
1893            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1894            if (array_data[0] != Instruction::kArrayDataSignature) {
1895              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1896            } else {
1897              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1898              // Since we don't compress the data in Dex, expect to see equal width of data stored
1899              // in the table and expected from the array class.
1900              if (array_data[1] != elem_width) {
1901                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1902                                                  << " vs " << elem_width << ")";
1903              }
1904            }
1905          }
1906        }
1907      }
1908      break;
1909    }
1910    case Instruction::IF_EQ:
1911    case Instruction::IF_NE: {
1912      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1913      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1914      bool mismatch = false;
1915      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1916        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1917      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1918        mismatch = !reg_type2.IsReferenceTypes();
1919      } else {  // both integral?
1920        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1921      }
1922      if (mismatch) {
1923        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1924                                          << reg_type2 << ") must both be references or integral";
1925      }
1926      break;
1927    }
1928    case Instruction::IF_LT:
1929    case Instruction::IF_GE:
1930    case Instruction::IF_GT:
1931    case Instruction::IF_LE: {
1932      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1933      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1934      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1935        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1936                                          << reg_type2 << ") must be integral";
1937      }
1938      break;
1939    }
1940    case Instruction::IF_EQZ:
1941    case Instruction::IF_NEZ: {
1942      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1943      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1944        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1945                                          << " unexpected as arg to if-eqz/if-nez";
1946      }
1947
1948      // Find previous instruction - its existence is a precondition to peephole optimization.
1949      uint32_t instance_of_idx = 0;
1950      if (0 != work_insn_idx_) {
1951        instance_of_idx = work_insn_idx_ - 1;
1952        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1953          instance_of_idx--;
1954        }
1955        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1956      } else {
1957        break;
1958      }
1959
1960      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1961
1962      /* Check for peep-hole pattern of:
1963       *    ...;
1964       *    instance-of vX, vY, T;
1965       *    ifXXX vX, label ;
1966       *    ...;
1967       * label:
1968       *    ...;
1969       * and sharpen the type of vY to be type T.
1970       * Note, this pattern can't be if:
1971       *  - if there are other branches to this branch,
1972       *  - when vX == vY.
1973       */
1974      if (!CurrentInsnFlags()->IsBranchTarget() &&
1975          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1976          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1977          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1978        // Check the type of the instance-of is different than that of registers type, as if they
1979        // are the same there is no work to be done here. Check that the conversion is not to or
1980        // from an unresolved type as type information is imprecise. If the instance-of is to an
1981        // interface then ignore the type information as interfaces can only be treated as Objects
1982        // and we don't want to disallow field and other operations on the object. If the value
1983        // being instance-of checked against is known null (zero) then allow the optimization as
1984        // we didn't have type information. If the merge of the instance-of type with the original
1985        // type is assignable to the original then allow optimization. This check is performed to
1986        // ensure that subsequent merges don't lose type information - such as becoming an
1987        // interface from a class that would lose information relevant to field checks.
1988        RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1989        RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1990
1991        if (!orig_type.Equals(cast_type) &&
1992            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1993            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
1994            !cast_type.GetClass()->IsInterface() &&
1995            (orig_type.IsZero() ||
1996                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
1997          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1998          if (inst->Opcode() == Instruction::IF_EQZ) {
1999            fallthrough_line.reset(update_line);
2000          } else {
2001            branch_line.reset(update_line);
2002          }
2003          update_line->CopyFromLine(work_line_.get());
2004          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
2005          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2006            // See if instance-of was preceded by a move-object operation, common due to the small
2007            // register encoding space of instance-of, and propagate type information to the source
2008            // of the move-object.
2009            uint32_t move_idx = instance_of_idx - 1;
2010            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2011              move_idx--;
2012            }
2013            CHECK(insn_flags_[move_idx].IsOpcode());
2014            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2015            switch (move_inst->Opcode()) {
2016              case Instruction::MOVE_OBJECT:
2017                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2018                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
2019                }
2020                break;
2021              case Instruction::MOVE_OBJECT_FROM16:
2022                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2023                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
2024                }
2025                break;
2026              case Instruction::MOVE_OBJECT_16:
2027                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2028                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2029                }
2030                break;
2031              default:
2032                break;
2033            }
2034          }
2035        }
2036      }
2037
2038      break;
2039    }
2040    case Instruction::IF_LTZ:
2041    case Instruction::IF_GEZ:
2042    case Instruction::IF_GTZ:
2043    case Instruction::IF_LEZ: {
2044      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2045      if (!reg_type.IsIntegralTypes()) {
2046        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2047                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2048      }
2049      break;
2050    }
2051    case Instruction::AGET_BOOLEAN:
2052      VerifyAGet(inst, reg_types_.Boolean(), true);
2053      break;
2054    case Instruction::AGET_BYTE:
2055      VerifyAGet(inst, reg_types_.Byte(), true);
2056      break;
2057    case Instruction::AGET_CHAR:
2058      VerifyAGet(inst, reg_types_.Char(), true);
2059      break;
2060    case Instruction::AGET_SHORT:
2061      VerifyAGet(inst, reg_types_.Short(), true);
2062      break;
2063    case Instruction::AGET:
2064      VerifyAGet(inst, reg_types_.Integer(), true);
2065      break;
2066    case Instruction::AGET_WIDE:
2067      VerifyAGet(inst, reg_types_.LongLo(), true);
2068      break;
2069    case Instruction::AGET_OBJECT:
2070      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2071      break;
2072
2073    case Instruction::APUT_BOOLEAN:
2074      VerifyAPut(inst, reg_types_.Boolean(), true);
2075      break;
2076    case Instruction::APUT_BYTE:
2077      VerifyAPut(inst, reg_types_.Byte(), true);
2078      break;
2079    case Instruction::APUT_CHAR:
2080      VerifyAPut(inst, reg_types_.Char(), true);
2081      break;
2082    case Instruction::APUT_SHORT:
2083      VerifyAPut(inst, reg_types_.Short(), true);
2084      break;
2085    case Instruction::APUT:
2086      VerifyAPut(inst, reg_types_.Integer(), true);
2087      break;
2088    case Instruction::APUT_WIDE:
2089      VerifyAPut(inst, reg_types_.LongLo(), true);
2090      break;
2091    case Instruction::APUT_OBJECT:
2092      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2093      break;
2094
2095    case Instruction::IGET_BOOLEAN:
2096      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2097      break;
2098    case Instruction::IGET_BYTE:
2099      VerifyISGet(inst, reg_types_.Byte(), true, false);
2100      break;
2101    case Instruction::IGET_CHAR:
2102      VerifyISGet(inst, reg_types_.Char(), true, false);
2103      break;
2104    case Instruction::IGET_SHORT:
2105      VerifyISGet(inst, reg_types_.Short(), true, false);
2106      break;
2107    case Instruction::IGET:
2108      VerifyISGet(inst, reg_types_.Integer(), true, false);
2109      break;
2110    case Instruction::IGET_WIDE:
2111      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2112      break;
2113    case Instruction::IGET_OBJECT:
2114      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2115      break;
2116
2117    case Instruction::IPUT_BOOLEAN:
2118      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2119      break;
2120    case Instruction::IPUT_BYTE:
2121      VerifyISPut(inst, reg_types_.Byte(), true, false);
2122      break;
2123    case Instruction::IPUT_CHAR:
2124      VerifyISPut(inst, reg_types_.Char(), true, false);
2125      break;
2126    case Instruction::IPUT_SHORT:
2127      VerifyISPut(inst, reg_types_.Short(), true, false);
2128      break;
2129    case Instruction::IPUT:
2130      VerifyISPut(inst, reg_types_.Integer(), true, false);
2131      break;
2132    case Instruction::IPUT_WIDE:
2133      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2134      break;
2135    case Instruction::IPUT_OBJECT:
2136      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2137      break;
2138
2139    case Instruction::SGET_BOOLEAN:
2140      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2141      break;
2142    case Instruction::SGET_BYTE:
2143      VerifyISGet(inst, reg_types_.Byte(), true, true);
2144      break;
2145    case Instruction::SGET_CHAR:
2146      VerifyISGet(inst, reg_types_.Char(), true, true);
2147      break;
2148    case Instruction::SGET_SHORT:
2149      VerifyISGet(inst, reg_types_.Short(), true, true);
2150      break;
2151    case Instruction::SGET:
2152      VerifyISGet(inst, reg_types_.Integer(), true, true);
2153      break;
2154    case Instruction::SGET_WIDE:
2155      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2156      break;
2157    case Instruction::SGET_OBJECT:
2158      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2159      break;
2160
2161    case Instruction::SPUT_BOOLEAN:
2162      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2163      break;
2164    case Instruction::SPUT_BYTE:
2165      VerifyISPut(inst, reg_types_.Byte(), true, true);
2166      break;
2167    case Instruction::SPUT_CHAR:
2168      VerifyISPut(inst, reg_types_.Char(), true, true);
2169      break;
2170    case Instruction::SPUT_SHORT:
2171      VerifyISPut(inst, reg_types_.Short(), true, true);
2172      break;
2173    case Instruction::SPUT:
2174      VerifyISPut(inst, reg_types_.Integer(), true, true);
2175      break;
2176    case Instruction::SPUT_WIDE:
2177      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2178      break;
2179    case Instruction::SPUT_OBJECT:
2180      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2181      break;
2182
2183    case Instruction::INVOKE_VIRTUAL:
2184    case Instruction::INVOKE_VIRTUAL_RANGE:
2185    case Instruction::INVOKE_SUPER:
2186    case Instruction::INVOKE_SUPER_RANGE: {
2187      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2188                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2189      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2190                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2191      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2192                                                              is_super);
2193      RegType* return_type = nullptr;
2194      if (called_method != nullptr) {
2195        Thread* self = Thread::Current();
2196        StackHandleScope<1> hs(self);
2197        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2198        MethodHelper mh(h_called_method);
2199        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2200        if (return_type_class != nullptr) {
2201          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2202                                              return_type_class,
2203                                              return_type_class->CannotBeAssignedFromOtherTypes());
2204        } else {
2205          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2206          self->ClearException();
2207        }
2208      }
2209      if (return_type == nullptr) {
2210        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2211        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2212        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2213        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2214        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2215      }
2216      if (!return_type->IsLowHalf()) {
2217        work_line_->SetResultRegisterType(*return_type);
2218      } else {
2219        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2220      }
2221      just_set_result = true;
2222      break;
2223    }
2224    case Instruction::INVOKE_DIRECT:
2225    case Instruction::INVOKE_DIRECT_RANGE: {
2226      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2227      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2228                                                                   is_range, false);
2229      const char* return_type_descriptor;
2230      bool is_constructor;
2231      RegType* return_type = nullptr;
2232      if (called_method == NULL) {
2233        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2234        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2235        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2236        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2237        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2238      } else {
2239        is_constructor = called_method->IsConstructor();
2240        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2241        Thread* self = Thread::Current();
2242        StackHandleScope<1> hs(self);
2243        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2244        MethodHelper mh(h_called_method);
2245        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2246        if (return_type_class != nullptr) {
2247          return_type = &reg_types_.FromClass(return_type_descriptor,
2248                                              return_type_class,
2249                                              return_type_class->CannotBeAssignedFromOtherTypes());
2250        } else {
2251          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2252          self->ClearException();
2253        }
2254      }
2255      if (is_constructor) {
2256        /*
2257         * Some additional checks when calling a constructor. We know from the invocation arg check
2258         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2259         * that to require that called_method->klass is the same as this->klass or this->super,
2260         * allowing the latter only if the "this" argument is the same as the "this" argument to
2261         * this method (which implies that we're in a constructor ourselves).
2262         */
2263        RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2264        if (this_type.IsConflict())  // failure.
2265          break;
2266
2267        /* no null refs allowed (?) */
2268        if (this_type.IsZero()) {
2269          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2270          break;
2271        }
2272
2273        /* must be in same class or in superclass */
2274        // RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2275        // TODO: re-enable constructor type verification
2276        // if (this_super_klass.IsConflict()) {
2277          // Unknown super class, fail so we re-check at runtime.
2278          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2279          // break;
2280        // }
2281
2282        /* arg must be an uninitialized reference */
2283        if (!this_type.IsUninitializedTypes()) {
2284          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2285              << this_type;
2286          break;
2287        }
2288
2289        /*
2290         * Replace the uninitialized reference with an initialized one. We need to do this for all
2291         * registers that have the same object instance in them, not just the "this" register.
2292         */
2293        work_line_->MarkRefsAsInitialized(this_type);
2294      }
2295      if (return_type == nullptr) {
2296        return_type = &reg_types_.FromDescriptor(class_loader_->Get(),
2297                                                 return_type_descriptor, false);
2298      }
2299      if (!return_type->IsLowHalf()) {
2300        work_line_->SetResultRegisterType(*return_type);
2301      } else {
2302        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2303      }
2304      just_set_result = true;
2305      break;
2306    }
2307    case Instruction::INVOKE_STATIC:
2308    case Instruction::INVOKE_STATIC_RANGE: {
2309        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2310        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2311                                                                     METHOD_STATIC,
2312                                                                     is_range,
2313                                                                     false);
2314        const char* descriptor;
2315        if (called_method == NULL) {
2316          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2317          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2318          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2319          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2320        } else {
2321          descriptor = called_method->GetReturnTypeDescriptor();
2322        }
2323        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2324                                                               false);
2325        if (!return_type.IsLowHalf()) {
2326          work_line_->SetResultRegisterType(return_type);
2327        } else {
2328          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2329        }
2330        just_set_result = true;
2331      }
2332      break;
2333    case Instruction::INVOKE_INTERFACE:
2334    case Instruction::INVOKE_INTERFACE_RANGE: {
2335      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2336      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2337                                                                METHOD_INTERFACE,
2338                                                                is_range,
2339                                                                false);
2340      if (abs_method != NULL) {
2341        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2342        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2343          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2344              << PrettyMethod(abs_method) << "'";
2345          break;
2346        }
2347      }
2348      /* Get the type of the "this" arg, which should either be a sub-interface of called
2349       * interface or Object (see comments in RegType::JoinClass).
2350       */
2351      RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2352      if (this_type.IsZero()) {
2353        /* null pointer always passes (and always fails at runtime) */
2354      } else {
2355        if (this_type.IsUninitializedTypes()) {
2356          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2357              << this_type;
2358          break;
2359        }
2360        // In the past we have tried to assert that "called_interface" is assignable
2361        // from "this_type.GetClass()", however, as we do an imprecise Join
2362        // (RegType::JoinClass) we don't have full information on what interfaces are
2363        // implemented by "this_type". For example, two classes may implement the same
2364        // interfaces and have a common parent that doesn't implement the interface. The
2365        // join will set "this_type" to the parent class and a test that this implements
2366        // the interface will incorrectly fail.
2367      }
2368      /*
2369       * We don't have an object instance, so we can't find the concrete method. However, all of
2370       * the type information is in the abstract method, so we're good.
2371       */
2372      const char* descriptor;
2373      if (abs_method == NULL) {
2374        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2375        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2376        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2377        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2378      } else {
2379        descriptor = abs_method->GetReturnTypeDescriptor();
2380      }
2381      RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2382                                                             false);
2383      if (!return_type.IsLowHalf()) {
2384        work_line_->SetResultRegisterType(return_type);
2385      } else {
2386        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2387      }
2388      just_set_result = true;
2389      break;
2390    }
2391    case Instruction::NEG_INT:
2392    case Instruction::NOT_INT:
2393      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2394      break;
2395    case Instruction::NEG_LONG:
2396    case Instruction::NOT_LONG:
2397      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2398                                   reg_types_.LongLo(), reg_types_.LongHi());
2399      break;
2400    case Instruction::NEG_FLOAT:
2401      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2402      break;
2403    case Instruction::NEG_DOUBLE:
2404      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2405                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2406      break;
2407    case Instruction::INT_TO_LONG:
2408      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2409                                     reg_types_.Integer());
2410      break;
2411    case Instruction::INT_TO_FLOAT:
2412      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2413      break;
2414    case Instruction::INT_TO_DOUBLE:
2415      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2416                                     reg_types_.Integer());
2417      break;
2418    case Instruction::LONG_TO_INT:
2419      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2420                                       reg_types_.LongLo(), reg_types_.LongHi());
2421      break;
2422    case Instruction::LONG_TO_FLOAT:
2423      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2424                                       reg_types_.LongLo(), reg_types_.LongHi());
2425      break;
2426    case Instruction::LONG_TO_DOUBLE:
2427      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2428                                   reg_types_.LongLo(), reg_types_.LongHi());
2429      break;
2430    case Instruction::FLOAT_TO_INT:
2431      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2432      break;
2433    case Instruction::FLOAT_TO_LONG:
2434      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2435                                     reg_types_.Float());
2436      break;
2437    case Instruction::FLOAT_TO_DOUBLE:
2438      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2439                                     reg_types_.Float());
2440      break;
2441    case Instruction::DOUBLE_TO_INT:
2442      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2443                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2444      break;
2445    case Instruction::DOUBLE_TO_LONG:
2446      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2447                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2448      break;
2449    case Instruction::DOUBLE_TO_FLOAT:
2450      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2451                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2452      break;
2453    case Instruction::INT_TO_BYTE:
2454      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2455      break;
2456    case Instruction::INT_TO_CHAR:
2457      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2458      break;
2459    case Instruction::INT_TO_SHORT:
2460      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2461      break;
2462
2463    case Instruction::ADD_INT:
2464    case Instruction::SUB_INT:
2465    case Instruction::MUL_INT:
2466    case Instruction::REM_INT:
2467    case Instruction::DIV_INT:
2468    case Instruction::SHL_INT:
2469    case Instruction::SHR_INT:
2470    case Instruction::USHR_INT:
2471      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2472                                reg_types_.Integer(), false);
2473      break;
2474    case Instruction::AND_INT:
2475    case Instruction::OR_INT:
2476    case Instruction::XOR_INT:
2477      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2478                                reg_types_.Integer(), true);
2479      break;
2480    case Instruction::ADD_LONG:
2481    case Instruction::SUB_LONG:
2482    case Instruction::MUL_LONG:
2483    case Instruction::DIV_LONG:
2484    case Instruction::REM_LONG:
2485    case Instruction::AND_LONG:
2486    case Instruction::OR_LONG:
2487    case Instruction::XOR_LONG:
2488      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2489                                    reg_types_.LongLo(), reg_types_.LongHi(),
2490                                    reg_types_.LongLo(), reg_types_.LongHi());
2491      break;
2492    case Instruction::SHL_LONG:
2493    case Instruction::SHR_LONG:
2494    case Instruction::USHR_LONG:
2495      /* shift distance is Int, making these different from other binary operations */
2496      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2497                                         reg_types_.Integer());
2498      break;
2499    case Instruction::ADD_FLOAT:
2500    case Instruction::SUB_FLOAT:
2501    case Instruction::MUL_FLOAT:
2502    case Instruction::DIV_FLOAT:
2503    case Instruction::REM_FLOAT:
2504      work_line_->CheckBinaryOp(inst,
2505                                reg_types_.Float(),
2506                                reg_types_.Float(),
2507                                reg_types_.Float(),
2508                                false);
2509      break;
2510    case Instruction::ADD_DOUBLE:
2511    case Instruction::SUB_DOUBLE:
2512    case Instruction::MUL_DOUBLE:
2513    case Instruction::DIV_DOUBLE:
2514    case Instruction::REM_DOUBLE:
2515      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2516                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2517                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2518      break;
2519    case Instruction::ADD_INT_2ADDR:
2520    case Instruction::SUB_INT_2ADDR:
2521    case Instruction::MUL_INT_2ADDR:
2522    case Instruction::REM_INT_2ADDR:
2523    case Instruction::SHL_INT_2ADDR:
2524    case Instruction::SHR_INT_2ADDR:
2525    case Instruction::USHR_INT_2ADDR:
2526      work_line_->CheckBinaryOp2addr(inst,
2527                                     reg_types_.Integer(),
2528                                     reg_types_.Integer(),
2529                                     reg_types_.Integer(),
2530                                     false);
2531      break;
2532    case Instruction::AND_INT_2ADDR:
2533    case Instruction::OR_INT_2ADDR:
2534    case Instruction::XOR_INT_2ADDR:
2535      work_line_->CheckBinaryOp2addr(inst,
2536                                     reg_types_.Integer(),
2537                                     reg_types_.Integer(),
2538                                     reg_types_.Integer(),
2539                                     true);
2540      break;
2541    case Instruction::DIV_INT_2ADDR:
2542      work_line_->CheckBinaryOp2addr(inst,
2543                                     reg_types_.Integer(),
2544                                     reg_types_.Integer(),
2545                                     reg_types_.Integer(),
2546                                     false);
2547      break;
2548    case Instruction::ADD_LONG_2ADDR:
2549    case Instruction::SUB_LONG_2ADDR:
2550    case Instruction::MUL_LONG_2ADDR:
2551    case Instruction::DIV_LONG_2ADDR:
2552    case Instruction::REM_LONG_2ADDR:
2553    case Instruction::AND_LONG_2ADDR:
2554    case Instruction::OR_LONG_2ADDR:
2555    case Instruction::XOR_LONG_2ADDR:
2556      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2557                                         reg_types_.LongLo(), reg_types_.LongHi(),
2558                                         reg_types_.LongLo(), reg_types_.LongHi());
2559      break;
2560    case Instruction::SHL_LONG_2ADDR:
2561    case Instruction::SHR_LONG_2ADDR:
2562    case Instruction::USHR_LONG_2ADDR:
2563      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2564                                              reg_types_.Integer());
2565      break;
2566    case Instruction::ADD_FLOAT_2ADDR:
2567    case Instruction::SUB_FLOAT_2ADDR:
2568    case Instruction::MUL_FLOAT_2ADDR:
2569    case Instruction::DIV_FLOAT_2ADDR:
2570    case Instruction::REM_FLOAT_2ADDR:
2571      work_line_->CheckBinaryOp2addr(inst,
2572                                     reg_types_.Float(),
2573                                     reg_types_.Float(),
2574                                     reg_types_.Float(),
2575                                     false);
2576      break;
2577    case Instruction::ADD_DOUBLE_2ADDR:
2578    case Instruction::SUB_DOUBLE_2ADDR:
2579    case Instruction::MUL_DOUBLE_2ADDR:
2580    case Instruction::DIV_DOUBLE_2ADDR:
2581    case Instruction::REM_DOUBLE_2ADDR:
2582      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2583                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2584                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2585      break;
2586    case Instruction::ADD_INT_LIT16:
2587    case Instruction::RSUB_INT:
2588    case Instruction::MUL_INT_LIT16:
2589    case Instruction::DIV_INT_LIT16:
2590    case Instruction::REM_INT_LIT16:
2591      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2592      break;
2593    case Instruction::AND_INT_LIT16:
2594    case Instruction::OR_INT_LIT16:
2595    case Instruction::XOR_INT_LIT16:
2596      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2597      break;
2598    case Instruction::ADD_INT_LIT8:
2599    case Instruction::RSUB_INT_LIT8:
2600    case Instruction::MUL_INT_LIT8:
2601    case Instruction::DIV_INT_LIT8:
2602    case Instruction::REM_INT_LIT8:
2603    case Instruction::SHL_INT_LIT8:
2604    case Instruction::SHR_INT_LIT8:
2605    case Instruction::USHR_INT_LIT8:
2606      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2607      break;
2608    case Instruction::AND_INT_LIT8:
2609    case Instruction::OR_INT_LIT8:
2610    case Instruction::XOR_INT_LIT8:
2611      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2612      break;
2613
2614    // Special instructions.
2615    case Instruction::RETURN_VOID_BARRIER:
2616      if (!IsConstructor() || IsStatic()) {
2617          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2618      }
2619      break;
2620    // Note: the following instructions encode offsets derived from class linking.
2621    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2622    // meaning if the class linking and resolution were successful.
2623    case Instruction::IGET_QUICK:
2624      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2625      break;
2626    case Instruction::IGET_WIDE_QUICK:
2627      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2628      break;
2629    case Instruction::IGET_OBJECT_QUICK:
2630      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2631      break;
2632    case Instruction::IPUT_QUICK:
2633      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2634      break;
2635    case Instruction::IPUT_WIDE_QUICK:
2636      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2637      break;
2638    case Instruction::IPUT_OBJECT_QUICK:
2639      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2640      break;
2641    case Instruction::INVOKE_VIRTUAL_QUICK:
2642    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2643      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2644      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2645      if (called_method != NULL) {
2646        const char* descriptor = called_method->GetReturnTypeDescriptor();
2647        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2648                                                               false);
2649        if (!return_type.IsLowHalf()) {
2650          work_line_->SetResultRegisterType(return_type);
2651        } else {
2652          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2653        }
2654        just_set_result = true;
2655      }
2656      break;
2657    }
2658
2659    /* These should never appear during verification. */
2660    case Instruction::UNUSED_3E:
2661    case Instruction::UNUSED_3F:
2662    case Instruction::UNUSED_40:
2663    case Instruction::UNUSED_41:
2664    case Instruction::UNUSED_42:
2665    case Instruction::UNUSED_43:
2666    case Instruction::UNUSED_79:
2667    case Instruction::UNUSED_7A:
2668    case Instruction::UNUSED_EB:
2669    case Instruction::UNUSED_EC:
2670    case Instruction::UNUSED_ED:
2671    case Instruction::UNUSED_EE:
2672    case Instruction::UNUSED_EF:
2673    case Instruction::UNUSED_F0:
2674    case Instruction::UNUSED_F1:
2675    case Instruction::UNUSED_F2:
2676    case Instruction::UNUSED_F3:
2677    case Instruction::UNUSED_F4:
2678    case Instruction::UNUSED_F5:
2679    case Instruction::UNUSED_F6:
2680    case Instruction::UNUSED_F7:
2681    case Instruction::UNUSED_F8:
2682    case Instruction::UNUSED_F9:
2683    case Instruction::UNUSED_FA:
2684    case Instruction::UNUSED_FB:
2685    case Instruction::UNUSED_FC:
2686    case Instruction::UNUSED_FD:
2687    case Instruction::UNUSED_FE:
2688    case Instruction::UNUSED_FF:
2689      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2690      break;
2691
2692    /*
2693     * DO NOT add a "default" clause here. Without it the compiler will
2694     * complain if an instruction is missing (which is desirable).
2695     */
2696  }  // end - switch (dec_insn.opcode)
2697
2698  if (have_pending_hard_failure_) {
2699    if (Runtime::Current()->IsCompiler()) {
2700      /* When compiling, check that the last failure is a hard failure */
2701      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2702    }
2703    /* immediate failure, reject class */
2704    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2705    return false;
2706  } else if (have_pending_runtime_throw_failure_) {
2707    /* checking interpreter will throw, mark following code as unreachable */
2708    opcode_flags = Instruction::kThrow;
2709  }
2710  /*
2711   * If we didn't just set the result register, clear it out. This ensures that you can only use
2712   * "move-result" immediately after the result is set. (We could check this statically, but it's
2713   * not expensive and it makes our debugging output cleaner.)
2714   */
2715  if (!just_set_result) {
2716    work_line_->SetResultTypeToUnknown();
2717  }
2718
2719
2720
2721  /*
2722   * Handle "branch". Tag the branch target.
2723   *
2724   * NOTE: instructions like Instruction::EQZ provide information about the
2725   * state of the register when the branch is taken or not taken. For example,
2726   * somebody could get a reference field, check it for zero, and if the
2727   * branch is taken immediately store that register in a boolean field
2728   * since the value is known to be zero. We do not currently account for
2729   * that, and will reject the code.
2730   *
2731   * TODO: avoid re-fetching the branch target
2732   */
2733  if ((opcode_flags & Instruction::kBranch) != 0) {
2734    bool isConditional, selfOkay;
2735    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2736      /* should never happen after static verification */
2737      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2738      return false;
2739    }
2740    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2741    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2742      return false;
2743    }
2744    /* update branch target, set "changed" if appropriate */
2745    if (NULL != branch_line.get()) {
2746      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2747        return false;
2748      }
2749    } else {
2750      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2751        return false;
2752      }
2753    }
2754  }
2755
2756  /*
2757   * Handle "switch". Tag all possible branch targets.
2758   *
2759   * We've already verified that the table is structurally sound, so we
2760   * just need to walk through and tag the targets.
2761   */
2762  if ((opcode_flags & Instruction::kSwitch) != 0) {
2763    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2764    const uint16_t* switch_insns = insns + offset_to_switch;
2765    int switch_count = switch_insns[1];
2766    int offset_to_targets, targ;
2767
2768    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2769      /* 0 = sig, 1 = count, 2/3 = first key */
2770      offset_to_targets = 4;
2771    } else {
2772      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2773      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2774      offset_to_targets = 2 + 2 * switch_count;
2775    }
2776
2777    /* verify each switch target */
2778    for (targ = 0; targ < switch_count; targ++) {
2779      int offset;
2780      uint32_t abs_offset;
2781
2782      /* offsets are 32-bit, and only partly endian-swapped */
2783      offset = switch_insns[offset_to_targets + targ * 2] |
2784         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2785      abs_offset = work_insn_idx_ + offset;
2786      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2787      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2788        return false;
2789      }
2790      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2791        return false;
2792      }
2793    }
2794  }
2795
2796  /*
2797   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2798   * "try" block when they throw, control transfers out of the method.)
2799   */
2800  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2801    bool has_catch_all_handler = false;
2802    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2803
2804    // Need the linker to try and resolve the handled class to check if it's Throwable.
2805    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2806
2807    for (; iterator.HasNext(); iterator.Next()) {
2808      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2809      if (handler_type_idx == DexFile::kDexNoIndex16) {
2810        has_catch_all_handler = true;
2811      } else {
2812        // It is also a catch-all if it is java.lang.Throwable.
2813        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_,
2814                                                   *class_loader_);
2815        if (klass != nullptr) {
2816          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2817            has_catch_all_handler = true;
2818          }
2819        } else {
2820          // Clear exception.
2821          Thread* self = Thread::Current();
2822          DCHECK(self->IsExceptionPending());
2823          self->ClearException();
2824        }
2825      }
2826      /*
2827       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2828       * "work_regs", because at runtime the exception will be thrown before the instruction
2829       * modifies any registers.
2830       */
2831      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2832        return false;
2833      }
2834    }
2835
2836    /*
2837     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2838     * instruction. This does apply to monitor-exit because of async exception handling.
2839     */
2840    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2841      /*
2842       * The state in work_line reflects the post-execution state. If the current instruction is a
2843       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2844       * it will do so before grabbing the lock).
2845       */
2846      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2847        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2848            << "expected to be within a catch-all for an instruction where a monitor is held";
2849        return false;
2850      }
2851    }
2852  }
2853
2854  /* Handle "continue". Tag the next consecutive instruction.
2855   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2856   *        because it changes work_line_ when performing peephole optimization
2857   *        and this change should not be used in those cases.
2858   */
2859  if ((opcode_flags & Instruction::kContinue) != 0) {
2860    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2861    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2862      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2863      return false;
2864    }
2865    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2866    // next instruction isn't one.
2867    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2868      return false;
2869    }
2870    if (NULL != fallthrough_line.get()) {
2871      // Make workline consistent with fallthrough computed from peephole optimization.
2872      work_line_->CopyFromLine(fallthrough_line.get());
2873    }
2874    if (insn_flags_[next_insn_idx].IsReturn()) {
2875      // For returns we only care about the operand to the return, all other registers are dead.
2876      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2877      Instruction::Code opcode = ret_inst->Opcode();
2878      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2879        work_line_->MarkAllRegistersAsConflicts();
2880      } else {
2881        if (opcode == Instruction::RETURN_WIDE) {
2882          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2883        } else {
2884          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2885        }
2886      }
2887    }
2888    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2889    if (next_line != NULL) {
2890      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2891      // needed. If the merge changes the state of the registers then the work line will be
2892      // updated.
2893      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2894        return false;
2895      }
2896    } else {
2897      /*
2898       * We're not recording register data for the next instruction, so we don't know what the
2899       * prior state was. We have to assume that something has changed and re-evaluate it.
2900       */
2901      insn_flags_[next_insn_idx].SetChanged();
2902    }
2903  }
2904
2905  /* If we're returning from the method, make sure monitor stack is empty. */
2906  if ((opcode_flags & Instruction::kReturn) != 0) {
2907    if (!work_line_->VerifyMonitorStackEmpty()) {
2908      return false;
2909    }
2910  }
2911
2912  /*
2913   * Update start_guess. Advance to the next instruction of that's
2914   * possible, otherwise use the branch target if one was found. If
2915   * neither of those exists we're in a return or throw; leave start_guess
2916   * alone and let the caller sort it out.
2917   */
2918  if ((opcode_flags & Instruction::kContinue) != 0) {
2919    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2920  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2921    /* we're still okay if branch_target is zero */
2922    *start_guess = work_insn_idx_ + branch_target;
2923  }
2924
2925  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2926  DCHECK(insn_flags_[*start_guess].IsOpcode());
2927
2928  return true;
2929}  // NOLINT(readability/fn_size)
2930
2931RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2932  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2933  RegType& referrer = GetDeclaringClass();
2934  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2935  RegType& result =
2936      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2937                                           klass->CannotBeAssignedFromOtherTypes())
2938                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2939  if (result.IsConflict()) {
2940    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2941        << "' in " << referrer;
2942    return result;
2943  }
2944  if (klass == NULL && !result.IsUnresolvedTypes()) {
2945    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2946  }
2947  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2948  // check at runtime if access is allowed and so pass here. If result is
2949  // primitive, skip the access check.
2950  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2951      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2952    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2953                                    << referrer << "' -> '" << result << "'";
2954  }
2955  return result;
2956}
2957
2958RegType& MethodVerifier::GetCaughtExceptionType() {
2959  RegType* common_super = NULL;
2960  if (code_item_->tries_size_ != 0) {
2961    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2962    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2963    for (uint32_t i = 0; i < handlers_size; i++) {
2964      CatchHandlerIterator iterator(handlers_ptr);
2965      for (; iterator.HasNext(); iterator.Next()) {
2966        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2967          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2968            common_super = &reg_types_.JavaLangThrowable(false);
2969          } else {
2970            RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2971            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2972              if (exception.IsUnresolvedTypes()) {
2973                // We don't know enough about the type. Fail here and let runtime handle it.
2974                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2975                return exception;
2976              } else {
2977                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2978                return reg_types_.Conflict();
2979              }
2980            } else if (common_super == nullptr) {
2981              common_super = &exception;
2982            } else if (common_super->Equals(exception)) {
2983              // odd case, but nothing to do
2984            } else {
2985              common_super = &common_super->Merge(exception, &reg_types_);
2986              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2987            }
2988          }
2989        }
2990      }
2991      handlers_ptr = iterator.EndDataPointer();
2992    }
2993  }
2994  if (common_super == NULL) {
2995    /* no catch blocks, or no catches with classes we can find */
2996    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2997    return reg_types_.Conflict();
2998  }
2999  return *common_super;
3000}
3001
3002mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3003                                                               MethodType method_type) {
3004  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3005  RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3006  if (klass_type.IsConflict()) {
3007    std::string append(" in attempt to access method ");
3008    append += dex_file_->GetMethodName(method_id);
3009    AppendToLastFailMessage(append);
3010    return NULL;
3011  }
3012  if (klass_type.IsUnresolvedTypes()) {
3013    return NULL;  // Can't resolve Class so no more to do here
3014  }
3015  mirror::Class* klass = klass_type.GetClass();
3016  RegType& referrer = GetDeclaringClass();
3017  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
3018  if (res_method == NULL) {
3019    const char* name = dex_file_->GetMethodName(method_id);
3020    const Signature signature = dex_file_->GetMethodSignature(method_id);
3021
3022    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3023      res_method = klass->FindDirectMethod(name, signature);
3024    } else if (method_type == METHOD_INTERFACE) {
3025      res_method = klass->FindInterfaceMethod(name, signature);
3026    } else {
3027      res_method = klass->FindVirtualMethod(name, signature);
3028    }
3029    if (res_method != NULL) {
3030      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
3031    } else {
3032      // If a virtual or interface method wasn't found with the expected type, look in
3033      // the direct methods. This can happen when the wrong invoke type is used or when
3034      // a class has changed, and will be flagged as an error in later checks.
3035      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3036        res_method = klass->FindDirectMethod(name, signature);
3037      }
3038      if (res_method == NULL) {
3039        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3040                                     << PrettyDescriptor(klass) << "." << name
3041                                     << " " << signature;
3042        return NULL;
3043      }
3044    }
3045  }
3046  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3047  // enforce them here.
3048  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3049    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3050                                      << PrettyMethod(res_method);
3051    return NULL;
3052  }
3053  // Disallow any calls to class initializers.
3054  if (res_method->IsClassInitializer()) {
3055    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3056                                      << PrettyMethod(res_method);
3057    return NULL;
3058  }
3059  // Check if access is allowed.
3060  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3061    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3062                                     << " from " << referrer << ")";
3063    return res_method;
3064  }
3065  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3066  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3067    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3068                                      << PrettyMethod(res_method);
3069    return NULL;
3070  }
3071  // Check that interface methods match interface classes.
3072  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3073    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3074                                    << " is in an interface class " << PrettyClass(klass);
3075    return NULL;
3076  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3077    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3078                                    << " is in a non-interface class " << PrettyClass(klass);
3079    return NULL;
3080  }
3081  // See if the method type implied by the invoke instruction matches the access flags for the
3082  // target method.
3083  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3084      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3085      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3086      ) {
3087    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3088                                       " type of " << PrettyMethod(res_method);
3089    return NULL;
3090  }
3091  return res_method;
3092}
3093
3094template <class T>
3095mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3096                                                                    MethodType method_type,
3097                                                                    bool is_range,
3098                                                                    mirror::ArtMethod* res_method) {
3099  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3100  // match the call to the signature. Also, we might be calling through an abstract method
3101  // definition (which doesn't have register count values).
3102  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3103  /* caught by static verifier */
3104  DCHECK(is_range || expected_args <= 5);
3105  if (expected_args > code_item_->outs_size_) {
3106    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3107        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3108    return nullptr;
3109  }
3110
3111  uint32_t arg[5];
3112  if (!is_range) {
3113    inst->GetVarArgs(arg);
3114  }
3115  uint32_t sig_registers = 0;
3116
3117  /*
3118   * Check the "this" argument, which must be an instance of the class that declared the method.
3119   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3120   * rigorous check here (which is okay since we have to do it at runtime).
3121   */
3122  if (method_type != METHOD_STATIC) {
3123    RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3124    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3125      CHECK(have_pending_hard_failure_);
3126      return nullptr;
3127    }
3128    if (actual_arg_type.IsUninitializedReference()) {
3129      if (res_method) {
3130        if (!res_method->IsConstructor()) {
3131          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3132          return nullptr;
3133        }
3134      } else {
3135        // Check whether the name of the called method is "<init>"
3136        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3137        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3138          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3139          return nullptr;
3140        }
3141      }
3142    }
3143    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3144      RegType* res_method_class;
3145      if (res_method != nullptr) {
3146        mirror::Class* klass = res_method->GetDeclaringClass();
3147        std::string temp;
3148        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3149                                                 klass->CannotBeAssignedFromOtherTypes());
3150      } else {
3151        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3152        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3153        res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3154                                                      dex_file_->StringByTypeIdx(class_idx),
3155                                                      false);
3156      }
3157      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3158        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3159            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3160                << "' not instance of '" << *res_method_class << "'";
3161        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3162        // the compiler.
3163        if (have_pending_hard_failure_) {
3164          return nullptr;
3165        }
3166      }
3167    }
3168    sig_registers = 1;
3169  }
3170
3171  for ( ; it->HasNext(); it->Next()) {
3172    if (sig_registers >= expected_args) {
3173      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3174          " arguments, found " << sig_registers << " or more.";
3175      return nullptr;
3176    }
3177
3178    const char* param_descriptor = it->GetDescriptor();
3179
3180    if (param_descriptor == nullptr) {
3181      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3182          "component";
3183      return nullptr;
3184    }
3185
3186    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3187                                                        false);
3188    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3189        arg[sig_registers];
3190    if (reg_type.IsIntegralTypes()) {
3191      RegType& src_type = work_line_->GetRegisterType(get_reg);
3192      if (!src_type.IsIntegralTypes()) {
3193        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3194            << " but expected " << reg_type;
3195        return res_method;
3196      }
3197    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3198      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3199      // compiler.
3200      if (have_pending_hard_failure_) {
3201        return res_method;
3202      }
3203    }
3204    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3205  }
3206  if (expected_args != sig_registers) {
3207    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3208        " arguments, found " << sig_registers;
3209    return nullptr;
3210  }
3211  return res_method;
3212}
3213
3214void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3215                                                          MethodType method_type,
3216                                                          bool is_range) {
3217  // As the method may not have been resolved, make this static check against what we expect.
3218  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3219  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3220  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3221  DexFileParameterIterator it(*dex_file_,
3222                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3223  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3224                                                             nullptr);
3225}
3226
3227class MethodParamListDescriptorIterator {
3228 public:
3229  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3230      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3231      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3232  }
3233
3234  bool HasNext() {
3235    return pos_ < params_size_;
3236  }
3237
3238  void Next() {
3239    ++pos_;
3240  }
3241
3242  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3243    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3244  }
3245
3246 private:
3247  mirror::ArtMethod* res_method_;
3248  size_t pos_;
3249  const DexFile::TypeList* params_;
3250  const size_t params_size_;
3251};
3252
3253mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3254                                                             MethodType method_type,
3255                                                             bool is_range,
3256                                                             bool is_super) {
3257  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3258  // we're making.
3259  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3260
3261  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3262  if (res_method == NULL) {  // error or class is unresolved
3263    // Check what we can statically.
3264    if (!have_pending_hard_failure_) {
3265      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3266    }
3267    return nullptr;
3268  }
3269
3270  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3271  // has a vtable entry for the target method.
3272  if (is_super) {
3273    DCHECK(method_type == METHOD_VIRTUAL);
3274    RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3275    if (super.IsUnresolvedTypes()) {
3276      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3277                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3278                                   << " to super " << PrettyMethod(res_method);
3279      return nullptr;
3280    }
3281    mirror::Class* super_klass = super.GetClass();
3282    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3283      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3284                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3285                                   << " to super " << super
3286                                   << "." << res_method->GetName()
3287                                   << res_method->GetSignature();
3288      return nullptr;
3289    }
3290  }
3291
3292  // Process the target method's signature. This signature may or may not
3293  MethodParamListDescriptorIterator it(res_method);
3294  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3295                                                                             is_range, res_method);
3296}
3297
3298mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3299                                                         RegisterLine* reg_line, bool is_range) {
3300  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3301         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3302  RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3303  if (!actual_arg_type.HasClass()) {
3304    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3305    return nullptr;
3306  }
3307  mirror::Class* klass = actual_arg_type.GetClass();
3308  mirror::Class* dispatch_class;
3309  if (klass->IsInterface()) {
3310    // Derive Object.class from Class.class.getSuperclass().
3311    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3312    CHECK(object_klass->IsObjectClass());
3313    dispatch_class = object_klass;
3314  } else {
3315    dispatch_class = klass;
3316  }
3317  CHECK(dispatch_class->HasVTable()) << PrettyDescriptor(dispatch_class);
3318  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3319  CHECK_LT(static_cast<int32_t>(vtable_index), dispatch_class->GetVTableLength())
3320      << PrettyDescriptor(klass);
3321  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3322  CHECK(!Thread::Current()->IsExceptionPending());
3323  return res_method;
3324}
3325
3326mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3327                                                                     bool is_range) {
3328  DCHECK(Runtime::Current()->IsStarted());
3329  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3330                                                             is_range);
3331  if (res_method == NULL) {
3332    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3333    return NULL;
3334  }
3335  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3336
3337  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3338  // match the call to the signature. Also, we might be calling through an abstract method
3339  // definition (which doesn't have register count values).
3340  RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3341  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3342    return NULL;
3343  }
3344  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3345  /* caught by static verifier */
3346  DCHECK(is_range || expected_args <= 5);
3347  if (expected_args > code_item_->outs_size_) {
3348    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3349        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3350    return NULL;
3351  }
3352
3353  /*
3354   * Check the "this" argument, which must be an instance of the class that declared the method.
3355   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3356   * rigorous check here (which is okay since we have to do it at runtime).
3357   */
3358  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3359    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3360    return NULL;
3361  }
3362  if (!actual_arg_type.IsZero()) {
3363    mirror::Class* klass = res_method->GetDeclaringClass();
3364    std::string temp;
3365    RegType& res_method_class =
3366        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3367                             klass->CannotBeAssignedFromOtherTypes());
3368    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3369      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3370          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3371          << "' not instance of '" << res_method_class << "'";
3372      return NULL;
3373    }
3374  }
3375  /*
3376   * Process the target method's signature. This signature may or may not
3377   * have been verified, so we can't assume it's properly formed.
3378   */
3379  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3380  size_t params_size = params == NULL ? 0 : params->Size();
3381  uint32_t arg[5];
3382  if (!is_range) {
3383    inst->GetVarArgs(arg);
3384  }
3385  size_t actual_args = 1;
3386  for (size_t param_index = 0; param_index < params_size; param_index++) {
3387    if (actual_args >= expected_args) {
3388      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3389                                        << "'. Expected " << expected_args
3390                                         << " arguments, processing argument " << actual_args
3391                                        << " (where longs/doubles count twice).";
3392      return NULL;
3393    }
3394    const char* descriptor =
3395        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3396    if (descriptor == NULL) {
3397      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3398                                        << " missing signature component";
3399      return NULL;
3400    }
3401    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3402    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3403    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3404      return res_method;
3405    }
3406    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3407  }
3408  if (actual_args != expected_args) {
3409    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3410              << " expected " << expected_args << " arguments, found " << actual_args;
3411    return NULL;
3412  } else {
3413    return res_method;
3414  }
3415}
3416
3417void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3418  uint32_t type_idx;
3419  if (!is_filled) {
3420    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3421    type_idx = inst->VRegC_22c();
3422  } else if (!is_range) {
3423    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3424    type_idx = inst->VRegB_35c();
3425  } else {
3426    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3427    type_idx = inst->VRegB_3rc();
3428  }
3429  RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3430  if (res_type.IsConflict()) {  // bad class
3431    DCHECK_NE(failures_.size(), 0U);
3432  } else {
3433    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3434    if (!res_type.IsArrayTypes()) {
3435      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3436    } else if (!is_filled) {
3437      /* make sure "size" register is valid type */
3438      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3439      /* set register type to array class */
3440      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3441      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3442    } else {
3443      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3444      // the list and fail. It's legal, if silly, for arg_count to be zero.
3445      RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3446      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3447      uint32_t arg[5];
3448      if (!is_range) {
3449        inst->GetVarArgs(arg);
3450      }
3451      for (size_t ui = 0; ui < arg_count; ui++) {
3452        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3453        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3454          work_line_->SetResultRegisterType(reg_types_.Conflict());
3455          return;
3456        }
3457      }
3458      // filled-array result goes into "result" register
3459      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3460      work_line_->SetResultRegisterType(precise_type);
3461    }
3462  }
3463}
3464
3465void MethodVerifier::VerifyAGet(const Instruction* inst,
3466                                RegType& insn_type, bool is_primitive) {
3467  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3468  if (!index_type.IsArrayIndexTypes()) {
3469    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3470  } else {
3471    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3472    if (array_type.IsZero()) {
3473      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3474      // instruction type. TODO: have a proper notion of bottom here.
3475      if (!is_primitive || insn_type.IsCategory1Types()) {
3476        // Reference or category 1
3477        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3478      } else {
3479        // Category 2
3480        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3481                                        reg_types_.FromCat2ConstHi(0, false));
3482      }
3483    } else if (!array_type.IsArrayTypes()) {
3484      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3485    } else {
3486      /* verify the class */
3487      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3488      if (!component_type.IsReferenceTypes() && !is_primitive) {
3489        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3490            << " source for aget-object";
3491      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3492        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3493            << " source for category 1 aget";
3494      } else if (is_primitive && !insn_type.Equals(component_type) &&
3495                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3496                 (insn_type.IsLong() && component_type.IsDouble()))) {
3497        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3498            << " incompatible with aget of type " << insn_type;
3499      } else {
3500        // Use knowledge of the field type which is stronger than the type inferred from the
3501        // instruction, which can't differentiate object types and ints from floats, longs from
3502        // doubles.
3503        if (!component_type.IsLowHalf()) {
3504          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3505        } else {
3506          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3507                                          component_type.HighHalf(&reg_types_));
3508        }
3509      }
3510    }
3511  }
3512}
3513
3514void MethodVerifier::VerifyPrimitivePut(RegType& target_type, RegType& insn_type,
3515                                        const uint32_t vregA) {
3516  // Primitive assignability rules are weaker than regular assignability rules.
3517  bool instruction_compatible;
3518  bool value_compatible;
3519  RegType& value_type = work_line_->GetRegisterType(vregA);
3520  if (target_type.IsIntegralTypes()) {
3521    instruction_compatible = target_type.Equals(insn_type);
3522    value_compatible = value_type.IsIntegralTypes();
3523  } else if (target_type.IsFloat()) {
3524    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3525    value_compatible = value_type.IsFloatTypes();
3526  } else if (target_type.IsLong()) {
3527    instruction_compatible = insn_type.IsLong();
3528    RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3529    value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3530  } else if (target_type.IsDouble()) {
3531    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3532    RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3533    value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3534  } else {
3535    instruction_compatible = false;  // reference with primitive store
3536    value_compatible = false;  // unused
3537  }
3538  if (!instruction_compatible) {
3539    // This is a global failure rather than a class change failure as the instructions and
3540    // the descriptors for the type should have been consistent within the same file at
3541    // compile time.
3542    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3543        << "' but expected type '" << target_type << "'";
3544    return;
3545  }
3546  if (!value_compatible) {
3547    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3548        << " of type " << value_type << " but expected " << target_type << " for put";
3549    return;
3550  }
3551}
3552
3553void MethodVerifier::VerifyAPut(const Instruction* inst,
3554                                RegType& insn_type, bool is_primitive) {
3555  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3556  if (!index_type.IsArrayIndexTypes()) {
3557    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3558  } else {
3559    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3560    if (array_type.IsZero()) {
3561      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3562      // instruction type.
3563    } else if (!array_type.IsArrayTypes()) {
3564      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3565    } else {
3566      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3567      const uint32_t vregA = inst->VRegA_23x();
3568      if (is_primitive) {
3569        VerifyPrimitivePut(component_type, insn_type, vregA);
3570      } else {
3571        if (!component_type.IsReferenceTypes()) {
3572          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3573              << " source for aput-object";
3574        } else {
3575          // The instruction agrees with the type of array, confirm the value to be stored does too
3576          // Note: we use the instruction type (rather than the component type) for aput-object as
3577          // incompatible classes will be caught at runtime as an array store exception
3578          work_line_->VerifyRegisterType(vregA, insn_type);
3579        }
3580      }
3581    }
3582  }
3583}
3584
3585mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3586  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3587  // Check access to class
3588  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3589  if (klass_type.IsConflict()) {  // bad class
3590    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3591                                         field_idx, dex_file_->GetFieldName(field_id),
3592                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3593    return NULL;
3594  }
3595  if (klass_type.IsUnresolvedTypes()) {
3596    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3597  }
3598  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3599  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3600                                                          *class_loader_);
3601  if (field == NULL) {
3602    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3603              << dex_file_->GetFieldName(field_id) << ") in "
3604              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3605    DCHECK(Thread::Current()->IsExceptionPending());
3606    Thread::Current()->ClearException();
3607    return NULL;
3608  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3609                                                  field->GetAccessFlags())) {
3610    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3611                                    << " from " << GetDeclaringClass();
3612    return NULL;
3613  } else if (!field->IsStatic()) {
3614    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3615    return NULL;
3616  }
3617  return field;
3618}
3619
3620mirror::ArtField* MethodVerifier::GetInstanceField(RegType& obj_type, int field_idx) {
3621  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3622  // Check access to class
3623  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3624  if (klass_type.IsConflict()) {
3625    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3626                                         field_idx, dex_file_->GetFieldName(field_id),
3627                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3628    return NULL;
3629  }
3630  if (klass_type.IsUnresolvedTypes()) {
3631    return NULL;  // Can't resolve Class so no more to do here
3632  }
3633  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3634  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3635                                                          *class_loader_);
3636  if (field == NULL) {
3637    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3638              << dex_file_->GetFieldName(field_id) << ") in "
3639              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3640    DCHECK(Thread::Current()->IsExceptionPending());
3641    Thread::Current()->ClearException();
3642    return NULL;
3643  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3644                                                  field->GetAccessFlags())) {
3645    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3646                                    << " from " << GetDeclaringClass();
3647    return NULL;
3648  } else if (field->IsStatic()) {
3649    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3650                                    << " to not be static";
3651    return NULL;
3652  } else if (obj_type.IsZero()) {
3653    // Cannot infer and check type, however, access will cause null pointer exception
3654    return field;
3655  } else {
3656    mirror::Class* klass = field->GetDeclaringClass();
3657    RegType& field_klass =
3658        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3659                             klass, klass->CannotBeAssignedFromOtherTypes());
3660    if (obj_type.IsUninitializedTypes() &&
3661        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3662            !field_klass.Equals(GetDeclaringClass()))) {
3663      // Field accesses through uninitialized references are only allowable for constructors where
3664      // the field is declared in this class
3665      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3666                                        << " of a not fully initialized object within the context"
3667                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3668      return NULL;
3669    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3670      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3671      // of C1. For resolution to occur the declared class of the field must be compatible with
3672      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3673      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3674                                  << " from object of type " << obj_type;
3675      return NULL;
3676    } else {
3677      return field;
3678    }
3679  }
3680}
3681
3682void MethodVerifier::VerifyISGet(const Instruction* inst, RegType& insn_type,
3683                                 bool is_primitive, bool is_static) {
3684  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3685  mirror::ArtField* field;
3686  if (is_static) {
3687    field = GetStaticField(field_idx);
3688  } else {
3689    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3690    field = GetInstanceField(object_type, field_idx);
3691  }
3692  RegType* field_type = nullptr;
3693  if (field != NULL) {
3694    Thread* self = Thread::Current();
3695    mirror::Class* field_type_class;
3696    {
3697      StackHandleScope<1> hs(self);
3698      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3699      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3700    }
3701    if (field_type_class != nullptr) {
3702      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3703                                         field_type_class->CannotBeAssignedFromOtherTypes());
3704    } else {
3705      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3706      self->ClearException();
3707    }
3708  }
3709  if (field_type == nullptr) {
3710    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3711    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3712    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3713  }
3714  DCHECK(field_type != nullptr);
3715  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3716  if (is_primitive) {
3717    if (field_type->Equals(insn_type) ||
3718        (field_type->IsFloat() && insn_type.IsInteger()) ||
3719        (field_type->IsDouble() && insn_type.IsLong())) {
3720      // expected that read is of the correct primitive type or that int reads are reading
3721      // floats or long reads are reading doubles
3722    } else {
3723      // This is a global failure rather than a class change failure as the instructions and
3724      // the descriptors for the type should have been consistent within the same file at
3725      // compile time
3726      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3727                                        << " to be of type '" << insn_type
3728                                        << "' but found type '" << *field_type << "' in get";
3729      return;
3730    }
3731  } else {
3732    if (!insn_type.IsAssignableFrom(*field_type)) {
3733      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3734                                        << " to be compatible with type '" << insn_type
3735                                        << "' but found type '" << *field_type
3736                                        << "' in Get-object";
3737      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3738      return;
3739    }
3740  }
3741  if (!field_type->IsLowHalf()) {
3742    work_line_->SetRegisterType(vregA, *field_type);
3743  } else {
3744    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3745  }
3746}
3747
3748void MethodVerifier::VerifyISPut(const Instruction* inst, RegType& insn_type,
3749                                 bool is_primitive, bool is_static) {
3750  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3751  mirror::ArtField* field;
3752  if (is_static) {
3753    field = GetStaticField(field_idx);
3754  } else {
3755    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3756    field = GetInstanceField(object_type, field_idx);
3757  }
3758  RegType* field_type = nullptr;
3759  if (field != NULL) {
3760    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3761      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3762                                      << " from other class " << GetDeclaringClass();
3763      return;
3764    }
3765    mirror::Class* field_type_class;
3766    {
3767      StackHandleScope<1> hs(Thread::Current());
3768      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3769      FieldHelper fh(h_field);
3770      field_type_class = fh.GetType(can_load_classes_);
3771    }
3772    if (field_type_class != nullptr) {
3773      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3774                                         field_type_class->CannotBeAssignedFromOtherTypes());
3775    } else {
3776      Thread* self = Thread::Current();
3777      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3778      self->ClearException();
3779    }
3780  }
3781  if (field_type == nullptr) {
3782    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3783    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3784    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3785  }
3786  DCHECK(field_type != nullptr);
3787  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3788  if (is_primitive) {
3789    VerifyPrimitivePut(*field_type, insn_type, vregA);
3790  } else {
3791    if (!insn_type.IsAssignableFrom(*field_type)) {
3792      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3793                                        << " to be compatible with type '" << insn_type
3794                                        << "' but found type '" << *field_type
3795                                        << "' in put-object";
3796      return;
3797    }
3798    work_line_->VerifyRegisterType(vregA, *field_type);
3799  }
3800}
3801
3802mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3803                                                      RegisterLine* reg_line) {
3804  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3805         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3806         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3807         inst->Opcode() == Instruction::IPUT_QUICK ||
3808         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3809         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3810  RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3811  if (!object_type.HasClass()) {
3812    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3813    return nullptr;
3814  }
3815  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3816  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3817                                                                      field_offset);
3818  if (f == nullptr) {
3819    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3820                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3821  }
3822  return f;
3823}
3824
3825void MethodVerifier::VerifyIGetQuick(const Instruction* inst, RegType& insn_type,
3826                                     bool is_primitive) {
3827  DCHECK(Runtime::Current()->IsStarted());
3828  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3829  if (field == NULL) {
3830    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3831    return;
3832  }
3833  mirror::Class* field_type_class;
3834  {
3835    StackHandleScope<1> hs(Thread::Current());
3836    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3837    FieldHelper fh(h_field);
3838    field_type_class = fh.GetType(can_load_classes_);
3839  }
3840  RegType* field_type;
3841  if (field_type_class != nullptr) {
3842    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3843                                       field_type_class->CannotBeAssignedFromOtherTypes());
3844  } else {
3845    Thread* self = Thread::Current();
3846    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3847    self->ClearException();
3848    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3849                                            field->GetTypeDescriptor(), false);
3850  }
3851  DCHECK(field_type != nullptr);
3852  const uint32_t vregA = inst->VRegA_22c();
3853  if (is_primitive) {
3854    if (field_type->Equals(insn_type) ||
3855        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3856        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3857      // expected that read is of the correct primitive type or that int reads are reading
3858      // floats or long reads are reading doubles
3859    } else {
3860      // This is a global failure rather than a class change failure as the instructions and
3861      // the descriptors for the type should have been consistent within the same file at
3862      // compile time
3863      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3864                                        << " to be of type '" << insn_type
3865                                        << "' but found type '" << *field_type << "' in Get";
3866      return;
3867    }
3868  } else {
3869    if (!insn_type.IsAssignableFrom(*field_type)) {
3870      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3871                                        << " to be compatible with type '" << insn_type
3872                                        << "' but found type '" << *field_type
3873                                        << "' in get-object";
3874      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3875      return;
3876    }
3877  }
3878  if (!field_type->IsLowHalf()) {
3879    work_line_->SetRegisterType(vregA, *field_type);
3880  } else {
3881    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3882  }
3883}
3884
3885void MethodVerifier::VerifyIPutQuick(const Instruction* inst, RegType& insn_type,
3886                                     bool is_primitive) {
3887  DCHECK(Runtime::Current()->IsStarted());
3888  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3889  if (field == NULL) {
3890    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3891    return;
3892  }
3893  const char* descriptor = field->GetTypeDescriptor();
3894  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3895  RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3896  if (field != NULL) {
3897    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3898      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3899                                      << " from other class " << GetDeclaringClass();
3900      return;
3901    }
3902  }
3903  const uint32_t vregA = inst->VRegA_22c();
3904  if (is_primitive) {
3905    // Primitive field assignability rules are weaker than regular assignability rules
3906    bool instruction_compatible;
3907    bool value_compatible;
3908    RegType& value_type = work_line_->GetRegisterType(vregA);
3909    if (field_type.IsIntegralTypes()) {
3910      instruction_compatible = insn_type.IsIntegralTypes();
3911      value_compatible = value_type.IsIntegralTypes();
3912    } else if (field_type.IsFloat()) {
3913      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3914      value_compatible = value_type.IsFloatTypes();
3915    } else if (field_type.IsLong()) {
3916      instruction_compatible = insn_type.IsLong();
3917      value_compatible = value_type.IsLongTypes();
3918    } else if (field_type.IsDouble()) {
3919      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3920      value_compatible = value_type.IsDoubleTypes();
3921    } else {
3922      instruction_compatible = false;  // reference field with primitive store
3923      value_compatible = false;  // unused
3924    }
3925    if (!instruction_compatible) {
3926      // This is a global failure rather than a class change failure as the instructions and
3927      // the descriptors for the type should have been consistent within the same file at
3928      // compile time
3929      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3930                                        << " to be of type '" << insn_type
3931                                        << "' but found type '" << field_type
3932                                        << "' in put";
3933      return;
3934    }
3935    if (!value_compatible) {
3936      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3937          << " of type " << value_type
3938          << " but expected " << field_type
3939          << " for store to " << PrettyField(field) << " in put";
3940      return;
3941    }
3942  } else {
3943    if (!insn_type.IsAssignableFrom(field_type)) {
3944      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3945                                        << " to be compatible with type '" << insn_type
3946                                        << "' but found type '" << field_type
3947                                        << "' in put-object";
3948      return;
3949    }
3950    work_line_->VerifyRegisterType(vregA, field_type);
3951  }
3952}
3953
3954bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3955  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3956    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3957    return false;
3958  }
3959  return true;
3960}
3961
3962bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
3963                                     bool update_merge_line) {
3964  bool changed = true;
3965  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3966  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3967    /*
3968     * We haven't processed this instruction before, and we haven't touched the registers here, so
3969     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3970     * only way a register can transition out of "unknown", so this is not just an optimization.)
3971     */
3972    if (!insn_flags_[next_insn].IsReturn()) {
3973      target_line->CopyFromLine(merge_line);
3974    } else {
3975      // Verify that the monitor stack is empty on return.
3976      if (!merge_line->VerifyMonitorStackEmpty()) {
3977        return false;
3978      }
3979      // For returns we only care about the operand to the return, all other registers are dead.
3980      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3981      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3982      Instruction::Code opcode = ret_inst->Opcode();
3983      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3984        target_line->MarkAllRegistersAsConflicts();
3985      } else {
3986        target_line->CopyFromLine(merge_line);
3987        if (opcode == Instruction::RETURN_WIDE) {
3988          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3989        } else {
3990          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3991        }
3992      }
3993    }
3994  } else {
3995    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
3996                                 RegisterLine::Create(target_line->NumRegs(), this) :
3997                                 NULL);
3998    if (gDebugVerify) {
3999      copy->CopyFromLine(target_line);
4000    }
4001    changed = target_line->MergeRegisters(merge_line);
4002    if (have_pending_hard_failure_) {
4003      return false;
4004    }
4005    if (gDebugVerify && changed) {
4006      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4007                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4008                      << *copy.get() << "  MERGE\n"
4009                      << *merge_line << "  ==\n"
4010                      << *target_line << "\n";
4011    }
4012    if (update_merge_line && changed) {
4013      merge_line->CopyFromLine(target_line);
4014    }
4015  }
4016  if (changed) {
4017    insn_flags_[next_insn].SetChanged();
4018  }
4019  return true;
4020}
4021
4022InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4023  return &insn_flags_[work_insn_idx_];
4024}
4025
4026RegType& MethodVerifier::GetMethodReturnType() {
4027  if (return_type_ == nullptr) {
4028    if (mirror_method_.Get() != nullptr) {
4029      Thread* self = Thread::Current();
4030      mirror::Class* return_type_class;
4031      return_type_class = MethodHelper(mirror_method_).GetReturnType(can_load_classes_);
4032      if (return_type_class != nullptr) {
4033        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4034                                             return_type_class,
4035                                             return_type_class->CannotBeAssignedFromOtherTypes());
4036      } else {
4037        DCHECK(!can_load_classes_ || self->IsExceptionPending());
4038        self->ClearException();
4039      }
4040    }
4041    if (return_type_ == nullptr) {
4042      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4043      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4044      uint16_t return_type_idx = proto_id.return_type_idx_;
4045      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4046      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4047    }
4048  }
4049  return *return_type_;
4050}
4051
4052RegType& MethodVerifier::GetDeclaringClass() {
4053  if (declaring_class_ == NULL) {
4054    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4055    const char* descriptor
4056        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4057    if (mirror_method_.Get() != nullptr) {
4058      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4059      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4060                                               klass->CannotBeAssignedFromOtherTypes());
4061    } else {
4062      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4063    }
4064  }
4065  return *declaring_class_;
4066}
4067
4068std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4069  RegisterLine* line = reg_table_.GetLine(dex_pc);
4070  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4071  std::vector<int32_t> result;
4072  for (size_t i = 0; i < line->NumRegs(); ++i) {
4073    RegType& type = line->GetRegisterType(i);
4074    if (type.IsConstant()) {
4075      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4076      result.push_back(type.ConstantValue());
4077    } else if (type.IsConstantLo()) {
4078      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4079      result.push_back(type.ConstantValueLo());
4080    } else if (type.IsConstantHi()) {
4081      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4082      result.push_back(type.ConstantValueHi());
4083    } else if (type.IsIntegralTypes()) {
4084      result.push_back(kIntVReg);
4085      result.push_back(0);
4086    } else if (type.IsFloat()) {
4087      result.push_back(kFloatVReg);
4088      result.push_back(0);
4089    } else if (type.IsLong()) {
4090      result.push_back(kLongLoVReg);
4091      result.push_back(0);
4092      result.push_back(kLongHiVReg);
4093      result.push_back(0);
4094      ++i;
4095    } else if (type.IsDouble()) {
4096      result.push_back(kDoubleLoVReg);
4097      result.push_back(0);
4098      result.push_back(kDoubleHiVReg);
4099      result.push_back(0);
4100      ++i;
4101    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4102      result.push_back(kUndefined);
4103      result.push_back(0);
4104    } else {
4105      CHECK(type.IsNonZeroReferenceTypes());
4106      result.push_back(kReferenceVReg);
4107      result.push_back(0);
4108    }
4109  }
4110  return result;
4111}
4112
4113RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4114  if (precise) {
4115    // Precise constant type.
4116    return reg_types_.FromCat1Const(value, true);
4117  } else {
4118    // Imprecise constant type.
4119    if (value < -32768) {
4120      return reg_types_.IntConstant();
4121    } else if (value < -128) {
4122      return reg_types_.ShortConstant();
4123    } else if (value < 0) {
4124      return reg_types_.ByteConstant();
4125    } else if (value == 0) {
4126      return reg_types_.Zero();
4127    } else if (value == 1) {
4128      return reg_types_.One();
4129    } else if (value < 128) {
4130      return reg_types_.PosByteConstant();
4131    } else if (value < 32768) {
4132      return reg_types_.PosShortConstant();
4133    } else if (value < 65536) {
4134      return reg_types_.CharConstant();
4135    } else {
4136      return reg_types_.IntConstant();
4137    }
4138  }
4139}
4140
4141void MethodVerifier::Init() {
4142  art::verifier::RegTypeCache::Init();
4143}
4144
4145void MethodVerifier::Shutdown() {
4146  verifier::RegTypeCache::ShutDown();
4147}
4148
4149void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4150  reg_types_.VisitRoots(callback, arg);
4151}
4152
4153}  // namespace verifier
4154}  // namespace art
4155