method_verifier.cc revision ee39a10e45a6a0880e8b829525c40d6055818560
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "verifier/dex_gc_map.h"
43
44namespace art {
45namespace verifier {
46
47static const bool gDebugVerify = false;
48// TODO: Add a constant to method_verifier to turn on verbose logging?
49
50void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
51                                 uint32_t insns_size, uint16_t registers_size,
52                                 MethodVerifier* verifier) {
53  DCHECK_GT(insns_size, 0U);
54
55  for (uint32_t i = 0; i < insns_size; i++) {
56    bool interesting = false;
57    switch (mode) {
58      case kTrackRegsAll:
59        interesting = flags[i].IsOpcode();
60        break;
61      case kTrackCompilerInterestPoints:
62        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
63        break;
64      case kTrackRegsBranches:
65        interesting = flags[i].IsBranchTarget();
66        break;
67      default:
68        break;
69    }
70    if (interesting) {
71      pc_to_register_line_.Put(i, new RegisterLine(registers_size, verifier));
72    }
73  }
74}
75
76MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
77                                                        bool allow_soft_failures,
78                                                        std::string* error) {
79  if (klass->IsVerified()) {
80    return kNoFailure;
81  }
82  mirror::Class* super = klass->GetSuperClass();
83  if (super == NULL && StringPiece(ClassHelper(klass).GetDescriptor()) != "Ljava/lang/Object;") {
84    *error = "Verifier rejected class ";
85    *error += PrettyDescriptor(klass);
86    *error += " that has no super class";
87    return kHardFailure;
88  }
89  if (super != NULL && super->IsFinal()) {
90    *error = "Verifier rejected class ";
91    *error += PrettyDescriptor(klass);
92    *error += " that attempts to sub-class final class ";
93    *error += PrettyDescriptor(super);
94    return kHardFailure;
95  }
96  ClassHelper kh(klass);
97  const DexFile& dex_file = kh.GetDexFile();
98  const DexFile::ClassDef* class_def = kh.GetClassDef();
99  if (class_def == NULL) {
100    *error = "Verifier rejected class ";
101    *error += PrettyDescriptor(klass);
102    *error += " that isn't present in dex file ";
103    *error += dex_file.GetLocation();
104    return kHardFailure;
105  }
106  return VerifyClass(&dex_file,
107                     kh.GetDexCache(),
108                     klass->GetClassLoader(),
109                     class_def,
110                     allow_soft_failures,
111                     error);
112}
113
114MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
115                                                        mirror::DexCache* dex_cache,
116                                                        mirror::ClassLoader* class_loader,
117                                                        const DexFile::ClassDef* class_def,
118                                                        bool allow_soft_failures,
119                                                        std::string* error) {
120  DCHECK(class_def != nullptr);
121  const byte* class_data = dex_file->GetClassData(*class_def);
122  if (class_data == NULL) {
123    // empty class, probably a marker interface
124    return kNoFailure;
125  }
126  ClassDataItemIterator it(*dex_file, class_data);
127  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
128    it.Next();
129  }
130  size_t error_count = 0;
131  bool hard_fail = false;
132  ClassLinker* linker = Runtime::Current()->GetClassLinker();
133  int64_t previous_direct_method_idx = -1;
134  while (it.HasNextDirectMethod()) {
135    uint32_t method_idx = it.GetMemberIndex();
136    if (method_idx == previous_direct_method_idx) {
137      // smali can create dex files with two encoded_methods sharing the same method_idx
138      // http://code.google.com/p/smali/issues/detail?id=119
139      it.Next();
140      continue;
141    }
142    previous_direct_method_idx = method_idx;
143    InvokeType type = it.GetMethodInvokeType(*class_def);
144    mirror::ArtMethod* method =
145        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
146    if (method == NULL) {
147      DCHECK(Thread::Current()->IsExceptionPending());
148      // We couldn't resolve the method, but continue regardless.
149      Thread::Current()->ClearException();
150    }
151    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
152                                                      dex_file,
153                                                      dex_cache,
154                                                      class_loader,
155                                                      class_def,
156                                                      it.GetMethodCodeItem(),
157                                                      method,
158                                                      it.GetMemberAccessFlags(),
159                                                      allow_soft_failures);
160    if (result != kNoFailure) {
161      if (result == kHardFailure) {
162        hard_fail = true;
163        if (error_count > 0) {
164          *error += "\n";
165        }
166        *error = "Verifier rejected class ";
167        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
168        *error += " due to bad method ";
169        *error += PrettyMethod(method_idx, *dex_file);
170      }
171      ++error_count;
172    }
173    it.Next();
174  }
175  int64_t previous_virtual_method_idx = -1;
176  while (it.HasNextVirtualMethod()) {
177    uint32_t method_idx = it.GetMemberIndex();
178    if (method_idx == previous_virtual_method_idx) {
179      // smali can create dex files with two encoded_methods sharing the same method_idx
180      // http://code.google.com/p/smali/issues/detail?id=119
181      it.Next();
182      continue;
183    }
184    previous_virtual_method_idx = method_idx;
185    InvokeType type = it.GetMethodInvokeType(*class_def);
186    mirror::ArtMethod* method =
187        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
188    if (method == NULL) {
189      DCHECK(Thread::Current()->IsExceptionPending());
190      // We couldn't resolve the method, but continue regardless.
191      Thread::Current()->ClearException();
192    }
193    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
194                                                      dex_file,
195                                                      dex_cache,
196                                                      class_loader,
197                                                      class_def,
198                                                      it.GetMethodCodeItem(),
199                                                      method,
200                                                      it.GetMemberAccessFlags(),
201                                                      allow_soft_failures);
202    if (result != kNoFailure) {
203      if (result == kHardFailure) {
204        hard_fail = true;
205        if (error_count > 0) {
206          *error += "\n";
207        }
208        *error = "Verifier rejected class ";
209        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
210        *error += " due to bad method ";
211        *error += PrettyMethod(method_idx, *dex_file);
212      }
213      ++error_count;
214    }
215    it.Next();
216  }
217  if (error_count == 0) {
218    return kNoFailure;
219  } else {
220    return hard_fail ? kHardFailure : kSoftFailure;
221  }
222}
223
224MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
225                                                         const DexFile* dex_file,
226                                                         mirror::DexCache* dex_cache,
227                                                         mirror::ClassLoader* class_loader,
228                                                         const DexFile::ClassDef* class_def,
229                                                         const DexFile::CodeItem* code_item,
230                                                         mirror::ArtMethod* method,
231                                                         uint32_t method_access_flags,
232                                                         bool allow_soft_failures) {
233  MethodVerifier::FailureKind result = kNoFailure;
234  uint64_t start_ns = NanoTime();
235
236  MethodVerifier verifier_(dex_file, dex_cache, class_loader, class_def, code_item, method_idx,
237                           method, method_access_flags, true, allow_soft_failures);
238  if (verifier_.Verify()) {
239    // Verification completed, however failures may be pending that didn't cause the verification
240    // to hard fail.
241    CHECK(!verifier_.have_pending_hard_failure_);
242    if (verifier_.failures_.size() != 0) {
243      if (VLOG_IS_ON(verifier)) {
244          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
245                                << PrettyMethod(method_idx, *dex_file) << "\n");
246      }
247      result = kSoftFailure;
248    }
249  } else {
250    // Bad method data.
251    CHECK_NE(verifier_.failures_.size(), 0U);
252    CHECK(verifier_.have_pending_hard_failure_);
253    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
254                                    << PrettyMethod(method_idx, *dex_file) << "\n");
255    if (gDebugVerify) {
256      std::cout << "\n" << verifier_.info_messages_.str();
257      verifier_.Dump(std::cout);
258    }
259    result = kHardFailure;
260  }
261  uint64_t duration_ns = NanoTime() - start_ns;
262  if (duration_ns > MsToNs(100)) {
263    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
264                 << " took " << PrettyDuration(duration_ns);
265  }
266  return result;
267}
268
269void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
270                                         const DexFile* dex_file, mirror::DexCache* dex_cache,
271                                         mirror::ClassLoader* class_loader,
272                                         const DexFile::ClassDef* class_def,
273                                         const DexFile::CodeItem* code_item,
274                                         mirror::ArtMethod* method,
275                                         uint32_t method_access_flags) {
276  MethodVerifier verifier(dex_file, dex_cache, class_loader, class_def, code_item,
277                          dex_method_idx, method, method_access_flags, true, true);
278  verifier.Verify();
279  verifier.DumpFailures(os);
280  os << verifier.info_messages_.str();
281  verifier.Dump(os);
282}
283
284MethodVerifier::MethodVerifier(const DexFile* dex_file, mirror::DexCache* dex_cache,
285                               mirror::ClassLoader* class_loader,
286                               const DexFile::ClassDef* class_def,
287                               const DexFile::CodeItem* code_item,
288                               uint32_t dex_method_idx, mirror::ArtMethod* method,
289                               uint32_t method_access_flags, bool can_load_classes,
290                               bool allow_soft_failures)
291    : reg_types_(can_load_classes),
292      work_insn_idx_(-1),
293      dex_method_idx_(dex_method_idx),
294      mirror_method_(method),
295      method_access_flags_(method_access_flags),
296      dex_file_(dex_file),
297      dex_cache_(dex_cache),
298      class_loader_(class_loader),
299      class_def_(class_def),
300      code_item_(code_item),
301      declaring_class_(NULL),
302      interesting_dex_pc_(-1),
303      monitor_enter_dex_pcs_(NULL),
304      have_pending_hard_failure_(false),
305      have_pending_runtime_throw_failure_(false),
306      new_instance_count_(0),
307      monitor_enter_count_(0),
308      can_load_classes_(can_load_classes),
309      allow_soft_failures_(allow_soft_failures),
310      has_check_casts_(false),
311      has_virtual_or_interface_invokes_(false) {
312  DCHECK(class_def != NULL);
313}
314
315void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
316                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
317  MethodHelper mh(m);
318  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
319                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
320                          m, m->GetAccessFlags(), false, true);
321  verifier.interesting_dex_pc_ = dex_pc;
322  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
323  verifier.FindLocksAtDexPc();
324}
325
326void MethodVerifier::FindLocksAtDexPc() {
327  CHECK(monitor_enter_dex_pcs_ != NULL);
328  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
329
330  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
331  // verification. In practice, the phase we want relies on data structures set up by all the
332  // earlier passes, so we just run the full method verification and bail out early when we've
333  // got what we wanted.
334  Verify();
335}
336
337mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
338                                                        uint32_t dex_pc) {
339  MethodHelper mh(m);
340  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
341                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
342                          m, m->GetAccessFlags(), false, true);
343  return verifier.FindAccessedFieldAtDexPc(dex_pc);
344}
345
346mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
347  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
348
349  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
350  // verification. In practice, the phase we want relies on data structures set up by all the
351  // earlier passes, so we just run the full method verification and bail out early when we've
352  // got what we wanted.
353  bool success = Verify();
354  if (!success) {
355    return NULL;
356  }
357  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
358  if (register_line == NULL) {
359    return NULL;
360  }
361  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
362  return GetQuickFieldAccess(inst, register_line);
363}
364
365mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
366                                                                 uint32_t dex_pc) {
367  MethodHelper mh(m);
368  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
369                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
370                          m, m->GetAccessFlags(), false, true);
371  return verifier.FindInvokedMethodAtDexPc(dex_pc);
372}
373
374mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
375  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
376
377  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
378  // verification. In practice, the phase we want relies on data structures set up by all the
379  // earlier passes, so we just run the full method verification and bail out early when we've
380  // got what we wanted.
381  bool success = Verify();
382  if (!success) {
383    return NULL;
384  }
385  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
386  if (register_line == NULL) {
387    return NULL;
388  }
389  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
390  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
391  return GetQuickInvokedMethod(inst, register_line, is_range);
392}
393
394bool MethodVerifier::Verify() {
395  // If there aren't any instructions, make sure that's expected, then exit successfully.
396  if (code_item_ == NULL) {
397    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
398      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
399      return false;
400    } else {
401      return true;
402    }
403  }
404  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
405  if (code_item_->ins_size_ > code_item_->registers_size_) {
406    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
407                                      << " regs=" << code_item_->registers_size_;
408    return false;
409  }
410  // Allocate and initialize an array to hold instruction data.
411  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
412  // Run through the instructions and see if the width checks out.
413  bool result = ComputeWidthsAndCountOps();
414  // Flag instructions guarded by a "try" block and check exception handlers.
415  result = result && ScanTryCatchBlocks();
416  // Perform static instruction verification.
417  result = result && VerifyInstructions();
418  // Perform code-flow analysis and return.
419  return result && VerifyCodeFlow();
420}
421
422std::ostream& MethodVerifier::Fail(VerifyError error) {
423  switch (error) {
424    case VERIFY_ERROR_NO_CLASS:
425    case VERIFY_ERROR_NO_FIELD:
426    case VERIFY_ERROR_NO_METHOD:
427    case VERIFY_ERROR_ACCESS_CLASS:
428    case VERIFY_ERROR_ACCESS_FIELD:
429    case VERIFY_ERROR_ACCESS_METHOD:
430    case VERIFY_ERROR_INSTANTIATION:
431    case VERIFY_ERROR_CLASS_CHANGE:
432      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
433        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
434        // class change and instantiation errors into soft verification errors so that we re-verify
435        // at runtime. We may fail to find or to agree on access because of not yet available class
436        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
437        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
438        // paths" that dynamically perform the verification and cause the behavior to be that akin
439        // to an interpreter.
440        error = VERIFY_ERROR_BAD_CLASS_SOFT;
441      } else {
442        have_pending_runtime_throw_failure_ = true;
443      }
444      break;
445      // Indication that verification should be retried at runtime.
446    case VERIFY_ERROR_BAD_CLASS_SOFT:
447      if (!allow_soft_failures_) {
448        have_pending_hard_failure_ = true;
449      }
450      break;
451      // Hard verification failures at compile time will still fail at runtime, so the class is
452      // marked as rejected to prevent it from being compiled.
453    case VERIFY_ERROR_BAD_CLASS_HARD: {
454      if (Runtime::Current()->IsCompiler()) {
455        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
456        AddRejectedClass(ref);
457      }
458      have_pending_hard_failure_ = true;
459      break;
460    }
461  }
462  failures_.push_back(error);
463  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
464                                    work_insn_idx_));
465  std::ostringstream* failure_message = new std::ostringstream(location);
466  failure_messages_.push_back(failure_message);
467  return *failure_message;
468}
469
470void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
471  size_t failure_num = failure_messages_.size();
472  DCHECK_NE(failure_num, 0U);
473  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
474  prepend += last_fail_message->str();
475  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
476  delete last_fail_message;
477}
478
479void MethodVerifier::AppendToLastFailMessage(std::string append) {
480  size_t failure_num = failure_messages_.size();
481  DCHECK_NE(failure_num, 0U);
482  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
483  (*last_fail_message) << append;
484}
485
486bool MethodVerifier::ComputeWidthsAndCountOps() {
487  const uint16_t* insns = code_item_->insns_;
488  size_t insns_size = code_item_->insns_size_in_code_units_;
489  const Instruction* inst = Instruction::At(insns);
490  size_t new_instance_count = 0;
491  size_t monitor_enter_count = 0;
492  size_t dex_pc = 0;
493
494  while (dex_pc < insns_size) {
495    Instruction::Code opcode = inst->Opcode();
496    if (opcode == Instruction::NEW_INSTANCE) {
497      new_instance_count++;
498    } else if (opcode == Instruction::MONITOR_ENTER) {
499      monitor_enter_count++;
500    } else if (opcode == Instruction::CHECK_CAST) {
501      has_check_casts_ = true;
502    } else if ((inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
503              (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
504              (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
505              (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE)) {
506      has_virtual_or_interface_invokes_ = true;
507    }
508    size_t inst_size = inst->SizeInCodeUnits();
509    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
510    dex_pc += inst_size;
511    inst = inst->Next();
512  }
513
514  if (dex_pc != insns_size) {
515    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
516                                      << dex_pc << " vs. " << insns_size << ")";
517    return false;
518  }
519
520  new_instance_count_ = new_instance_count;
521  monitor_enter_count_ = monitor_enter_count;
522  return true;
523}
524
525bool MethodVerifier::ScanTryCatchBlocks() {
526  uint32_t tries_size = code_item_->tries_size_;
527  if (tries_size == 0) {
528    return true;
529  }
530  uint32_t insns_size = code_item_->insns_size_in_code_units_;
531  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
532
533  for (uint32_t idx = 0; idx < tries_size; idx++) {
534    const DexFile::TryItem* try_item = &tries[idx];
535    uint32_t start = try_item->start_addr_;
536    uint32_t end = start + try_item->insn_count_;
537    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
538      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
539                                        << " endAddr=" << end << " (size=" << insns_size << ")";
540      return false;
541    }
542    if (!insn_flags_[start].IsOpcode()) {
543      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
544          << "'try' block starts inside an instruction (" << start << ")";
545      return false;
546    }
547    for (uint32_t dex_pc = start; dex_pc < end;
548        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
549      insn_flags_[dex_pc].SetInTry();
550    }
551  }
552  // Iterate over each of the handlers to verify target addresses.
553  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
554  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
555  ClassLinker* linker = Runtime::Current()->GetClassLinker();
556  for (uint32_t idx = 0; idx < handlers_size; idx++) {
557    CatchHandlerIterator iterator(handlers_ptr);
558    for (; iterator.HasNext(); iterator.Next()) {
559      uint32_t dex_pc= iterator.GetHandlerAddress();
560      if (!insn_flags_[dex_pc].IsOpcode()) {
561        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
562            << "exception handler starts at bad address (" << dex_pc << ")";
563        return false;
564      }
565      insn_flags_[dex_pc].SetBranchTarget();
566      // Ensure exception types are resolved so that they don't need resolution to be delivered,
567      // unresolved exception types will be ignored by exception delivery
568      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
569        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
570                                                            iterator.GetHandlerTypeIndex(),
571                                                            dex_cache_, class_loader_);
572        if (exception_type == NULL) {
573          DCHECK(Thread::Current()->IsExceptionPending());
574          Thread::Current()->ClearException();
575        }
576      }
577    }
578    handlers_ptr = iterator.EndDataPointer();
579  }
580  return true;
581}
582
583bool MethodVerifier::VerifyInstructions() {
584  const Instruction* inst = Instruction::At(code_item_->insns_);
585
586  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
587  insn_flags_[0].SetBranchTarget();
588  insn_flags_[0].SetCompileTimeInfoPoint();
589
590  uint32_t insns_size = code_item_->insns_size_in_code_units_;
591  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
592    if (!VerifyInstruction(inst, dex_pc)) {
593      DCHECK_NE(failures_.size(), 0U);
594      return false;
595    }
596    /* Flag instructions that are garbage collection points */
597    // All invoke points are marked as "Throw" points already.
598    // We are relying on this to also count all the invokes as interesting.
599    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
600      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
601    } else if (inst->IsReturn()) {
602      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
603    }
604    dex_pc += inst->SizeInCodeUnits();
605    inst = inst->Next();
606  }
607  return true;
608}
609
610bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
611  DecodedInstruction dec_insn(inst);
612  bool result = true;
613  switch (inst->GetVerifyTypeArgumentA()) {
614    case Instruction::kVerifyRegA:
615      result = result && CheckRegisterIndex(dec_insn.vA);
616      break;
617    case Instruction::kVerifyRegAWide:
618      result = result && CheckWideRegisterIndex(dec_insn.vA);
619      break;
620  }
621  switch (inst->GetVerifyTypeArgumentB()) {
622    case Instruction::kVerifyRegB:
623      result = result && CheckRegisterIndex(dec_insn.vB);
624      break;
625    case Instruction::kVerifyRegBField:
626      result = result && CheckFieldIndex(dec_insn.vB);
627      break;
628    case Instruction::kVerifyRegBMethod:
629      result = result && CheckMethodIndex(dec_insn.vB);
630      break;
631    case Instruction::kVerifyRegBNewInstance:
632      result = result && CheckNewInstance(dec_insn.vB);
633      break;
634    case Instruction::kVerifyRegBString:
635      result = result && CheckStringIndex(dec_insn.vB);
636      break;
637    case Instruction::kVerifyRegBType:
638      result = result && CheckTypeIndex(dec_insn.vB);
639      break;
640    case Instruction::kVerifyRegBWide:
641      result = result && CheckWideRegisterIndex(dec_insn.vB);
642      break;
643  }
644  switch (inst->GetVerifyTypeArgumentC()) {
645    case Instruction::kVerifyRegC:
646      result = result && CheckRegisterIndex(dec_insn.vC);
647      break;
648    case Instruction::kVerifyRegCField:
649      result = result && CheckFieldIndex(dec_insn.vC);
650      break;
651    case Instruction::kVerifyRegCNewArray:
652      result = result && CheckNewArray(dec_insn.vC);
653      break;
654    case Instruction::kVerifyRegCType:
655      result = result && CheckTypeIndex(dec_insn.vC);
656      break;
657    case Instruction::kVerifyRegCWide:
658      result = result && CheckWideRegisterIndex(dec_insn.vC);
659      break;
660  }
661  switch (inst->GetVerifyExtraFlags()) {
662    case Instruction::kVerifyArrayData:
663      result = result && CheckArrayData(code_offset);
664      break;
665    case Instruction::kVerifyBranchTarget:
666      result = result && CheckBranchTarget(code_offset);
667      break;
668    case Instruction::kVerifySwitchTargets:
669      result = result && CheckSwitchTargets(code_offset);
670      break;
671    case Instruction::kVerifyVarArg:
672      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
673      break;
674    case Instruction::kVerifyVarArgRange:
675      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
676      break;
677    case Instruction::kVerifyError:
678      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
679      result = false;
680      break;
681  }
682  return result;
683}
684
685bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
686  if (idx >= code_item_->registers_size_) {
687    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
688                                      << code_item_->registers_size_ << ")";
689    return false;
690  }
691  return true;
692}
693
694bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
695  if (idx + 1 >= code_item_->registers_size_) {
696    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
697                                      << "+1 >= " << code_item_->registers_size_ << ")";
698    return false;
699  }
700  return true;
701}
702
703bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
704  if (idx >= dex_file_->GetHeader().field_ids_size_) {
705    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
706                                      << dex_file_->GetHeader().field_ids_size_ << ")";
707    return false;
708  }
709  return true;
710}
711
712bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
713  if (idx >= dex_file_->GetHeader().method_ids_size_) {
714    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
715                                      << dex_file_->GetHeader().method_ids_size_ << ")";
716    return false;
717  }
718  return true;
719}
720
721bool MethodVerifier::CheckNewInstance(uint32_t idx) {
722  if (idx >= dex_file_->GetHeader().type_ids_size_) {
723    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
724                                      << dex_file_->GetHeader().type_ids_size_ << ")";
725    return false;
726  }
727  // We don't need the actual class, just a pointer to the class name.
728  const char* descriptor = dex_file_->StringByTypeIdx(idx);
729  if (descriptor[0] != 'L') {
730    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
731    return false;
732  }
733  return true;
734}
735
736bool MethodVerifier::CheckStringIndex(uint32_t idx) {
737  if (idx >= dex_file_->GetHeader().string_ids_size_) {
738    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
739                                      << dex_file_->GetHeader().string_ids_size_ << ")";
740    return false;
741  }
742  return true;
743}
744
745bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
746  if (idx >= dex_file_->GetHeader().type_ids_size_) {
747    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
748                                      << dex_file_->GetHeader().type_ids_size_ << ")";
749    return false;
750  }
751  return true;
752}
753
754bool MethodVerifier::CheckNewArray(uint32_t idx) {
755  if (idx >= dex_file_->GetHeader().type_ids_size_) {
756    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
757                                      << dex_file_->GetHeader().type_ids_size_ << ")";
758    return false;
759  }
760  int bracket_count = 0;
761  const char* descriptor = dex_file_->StringByTypeIdx(idx);
762  const char* cp = descriptor;
763  while (*cp++ == '[') {
764    bracket_count++;
765  }
766  if (bracket_count == 0) {
767    /* The given class must be an array type. */
768    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
769        << "can't new-array class '" << descriptor << "' (not an array)";
770    return false;
771  } else if (bracket_count > 255) {
772    /* It is illegal to create an array of more than 255 dimensions. */
773    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
774        << "can't new-array class '" << descriptor << "' (exceeds limit)";
775    return false;
776  }
777  return true;
778}
779
780bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
781  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
782  const uint16_t* insns = code_item_->insns_ + cur_offset;
783  const uint16_t* array_data;
784  int32_t array_data_offset;
785
786  DCHECK_LT(cur_offset, insn_count);
787  /* make sure the start of the array data table is in range */
788  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
789  if ((int32_t) cur_offset + array_data_offset < 0 ||
790      cur_offset + array_data_offset + 2 >= insn_count) {
791    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
792                                      << ", data offset " << array_data_offset
793                                      << ", count " << insn_count;
794    return false;
795  }
796  /* offset to array data table is a relative branch-style offset */
797  array_data = insns + array_data_offset;
798  /* make sure the table is 32-bit aligned */
799  if ((((uint32_t) array_data) & 0x03) != 0) {
800    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
801                                      << ", data offset " << array_data_offset;
802    return false;
803  }
804  uint32_t value_width = array_data[1];
805  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
806  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
807  /* make sure the end of the switch is in range */
808  if (cur_offset + array_data_offset + table_size > insn_count) {
809    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
810                                      << ", data offset " << array_data_offset << ", end "
811                                      << cur_offset + array_data_offset + table_size
812                                      << ", count " << insn_count;
813    return false;
814  }
815  return true;
816}
817
818bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
819  int32_t offset;
820  bool isConditional, selfOkay;
821  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
822    return false;
823  }
824  if (!selfOkay && offset == 0) {
825    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
826                                      << reinterpret_cast<void*>(cur_offset);
827    return false;
828  }
829  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
830  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
831  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
832    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
833                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
834    return false;
835  }
836  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
837  int32_t abs_offset = cur_offset + offset;
838  if (abs_offset < 0 ||
839      (uint32_t) abs_offset >= insn_count ||
840      !insn_flags_[abs_offset].IsOpcode()) {
841    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
842                                      << reinterpret_cast<void*>(abs_offset) << ") at "
843                                      << reinterpret_cast<void*>(cur_offset);
844    return false;
845  }
846  insn_flags_[abs_offset].SetBranchTarget();
847  return true;
848}
849
850bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
851                                  bool* selfOkay) {
852  const uint16_t* insns = code_item_->insns_ + cur_offset;
853  *pConditional = false;
854  *selfOkay = false;
855  switch (*insns & 0xff) {
856    case Instruction::GOTO:
857      *pOffset = ((int16_t) *insns) >> 8;
858      break;
859    case Instruction::GOTO_32:
860      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
861      *selfOkay = true;
862      break;
863    case Instruction::GOTO_16:
864      *pOffset = (int16_t) insns[1];
865      break;
866    case Instruction::IF_EQ:
867    case Instruction::IF_NE:
868    case Instruction::IF_LT:
869    case Instruction::IF_GE:
870    case Instruction::IF_GT:
871    case Instruction::IF_LE:
872    case Instruction::IF_EQZ:
873    case Instruction::IF_NEZ:
874    case Instruction::IF_LTZ:
875    case Instruction::IF_GEZ:
876    case Instruction::IF_GTZ:
877    case Instruction::IF_LEZ:
878      *pOffset = (int16_t) insns[1];
879      *pConditional = true;
880      break;
881    default:
882      return false;
883      break;
884  }
885  return true;
886}
887
888bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
889  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
890  DCHECK_LT(cur_offset, insn_count);
891  const uint16_t* insns = code_item_->insns_ + cur_offset;
892  /* make sure the start of the switch is in range */
893  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
894  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
895    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
896                                      << ", switch offset " << switch_offset
897                                      << ", count " << insn_count;
898    return false;
899  }
900  /* offset to switch table is a relative branch-style offset */
901  const uint16_t* switch_insns = insns + switch_offset;
902  /* make sure the table is 32-bit aligned */
903  if ((((uint32_t) switch_insns) & 0x03) != 0) {
904    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
905                                      << ", switch offset " << switch_offset;
906    return false;
907  }
908  uint32_t switch_count = switch_insns[1];
909  int32_t keys_offset, targets_offset;
910  uint16_t expected_signature;
911  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
912    /* 0=sig, 1=count, 2/3=firstKey */
913    targets_offset = 4;
914    keys_offset = -1;
915    expected_signature = Instruction::kPackedSwitchSignature;
916  } else {
917    /* 0=sig, 1=count, 2..count*2 = keys */
918    keys_offset = 2;
919    targets_offset = 2 + 2 * switch_count;
920    expected_signature = Instruction::kSparseSwitchSignature;
921  }
922  uint32_t table_size = targets_offset + switch_count * 2;
923  if (switch_insns[0] != expected_signature) {
924    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
925        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
926                        switch_insns[0], expected_signature);
927    return false;
928  }
929  /* make sure the end of the switch is in range */
930  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
931    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
932                                      << ", switch offset " << switch_offset
933                                      << ", end " << (cur_offset + switch_offset + table_size)
934                                      << ", count " << insn_count;
935    return false;
936  }
937  /* for a sparse switch, verify the keys are in ascending order */
938  if (keys_offset > 0 && switch_count > 1) {
939    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
940    for (uint32_t targ = 1; targ < switch_count; targ++) {
941      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
942                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
943      if (key <= last_key) {
944        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
945                                          << ", this=" << key;
946        return false;
947      }
948      last_key = key;
949    }
950  }
951  /* verify each switch target */
952  for (uint32_t targ = 0; targ < switch_count; targ++) {
953    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
954                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
955    int32_t abs_offset = cur_offset + offset;
956    if (abs_offset < 0 ||
957        abs_offset >= (int32_t) insn_count ||
958        !insn_flags_[abs_offset].IsOpcode()) {
959      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
960                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
961                                        << reinterpret_cast<void*>(cur_offset)
962                                        << "[" << targ << "]";
963      return false;
964    }
965    insn_flags_[abs_offset].SetBranchTarget();
966  }
967  return true;
968}
969
970bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
971  if (vA > 5) {
972    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
973    return false;
974  }
975  uint16_t registers_size = code_item_->registers_size_;
976  for (uint32_t idx = 0; idx < vA; idx++) {
977    if (arg[idx] >= registers_size) {
978      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
979                                        << ") in non-range invoke (>= " << registers_size << ")";
980      return false;
981    }
982  }
983
984  return true;
985}
986
987bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
988  uint16_t registers_size = code_item_->registers_size_;
989  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
990  // integer overflow when adding them here.
991  if (vA + vC > registers_size) {
992    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
993                                      << " in range invoke (> " << registers_size << ")";
994    return false;
995  }
996  return true;
997}
998
999static const std::vector<uint8_t>* CreateLengthPrefixedDexGcMap(
1000    const std::vector<uint8_t>& gc_map) {
1001  std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>;
1002  length_prefixed_gc_map->reserve(gc_map.size() + 4);
1003  length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24);
1004  length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16);
1005  length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8);
1006  length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0);
1007  length_prefixed_gc_map->insert(length_prefixed_gc_map->end(),
1008                                 gc_map.begin(),
1009                                 gc_map.end());
1010  DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size());
1011  DCHECK_EQ(gc_map.size(),
1012            static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) |
1013                                (length_prefixed_gc_map->at(1) << 16) |
1014                                (length_prefixed_gc_map->at(2) << 8) |
1015                                (length_prefixed_gc_map->at(3) << 0)));
1016  return length_prefixed_gc_map;
1017}
1018
1019bool MethodVerifier::VerifyCodeFlow() {
1020  uint16_t registers_size = code_item_->registers_size_;
1021  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1022
1023  if (registers_size * insns_size > 4*1024*1024) {
1024    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1025                 << " insns_size=" << insns_size << ")";
1026  }
1027  /* Create and initialize table holding register status */
1028  reg_table_.Init(kTrackCompilerInterestPoints,
1029                  insn_flags_.get(),
1030                  insns_size,
1031                  registers_size,
1032                  this);
1033
1034
1035  work_line_.reset(new RegisterLine(registers_size, this));
1036  saved_line_.reset(new RegisterLine(registers_size, this));
1037
1038  /* Initialize register types of method arguments. */
1039  if (!SetTypesFromSignature()) {
1040    DCHECK_NE(failures_.size(), 0U);
1041    std::string prepend("Bad signature in ");
1042    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1043    PrependToLastFailMessage(prepend);
1044    return false;
1045  }
1046  /* Perform code flow verification. */
1047  if (!CodeFlowVerifyMethod()) {
1048    DCHECK_NE(failures_.size(), 0U);
1049    return false;
1050  }
1051
1052  // Compute information for compiler.
1053  if (Runtime::Current()->IsCompiler()) {
1054    MethodReference ref(dex_file_, dex_method_idx_);
1055    bool compile = IsCandidateForCompilation(ref, method_access_flags_);
1056    if (compile) {
1057      /* Generate a register map and add it to the method. */
1058      UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap());
1059      if (map.get() == NULL) {
1060        DCHECK_NE(failures_.size(), 0U);
1061        return false;  // Not a real failure, but a failure to encode
1062      }
1063      if (kIsDebugBuild) {
1064        VerifyGcMap(*map);
1065      }
1066      const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
1067      verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
1068    }
1069
1070    if (has_check_casts_) {
1071      MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1072      if (method_to_safe_casts != NULL) {
1073        SetSafeCastMap(ref, method_to_safe_casts);
1074      }
1075    }
1076
1077    if (has_virtual_or_interface_invokes_) {
1078      MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1079      if (pc_to_concrete_method != NULL) {
1080        SetDevirtMap(ref, pc_to_concrete_method);
1081      }
1082    }
1083  }
1084  return true;
1085}
1086
1087std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1088  DCHECK_EQ(failures_.size(), failure_messages_.size());
1089  if (VLOG_IS_ON(verifier)) {
1090      for (size_t i = 0; i < failures_.size(); ++i) {
1091          os << failure_messages_[i]->str() << "\n";
1092      }
1093  }
1094  return os;
1095}
1096
1097extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1098    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1099  v->Dump(std::cerr);
1100}
1101
1102void MethodVerifier::Dump(std::ostream& os) {
1103  if (code_item_ == NULL) {
1104    os << "Native method\n";
1105    return;
1106  }
1107  {
1108    os << "Register Types:\n";
1109    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1110    std::ostream indent_os(&indent_filter);
1111    reg_types_.Dump(indent_os);
1112  }
1113  os << "Dumping instructions and register lines:\n";
1114  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1115  std::ostream indent_os(&indent_filter);
1116  const Instruction* inst = Instruction::At(code_item_->insns_);
1117  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1118      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1119    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1120    if (reg_line != NULL) {
1121      indent_os << reg_line->Dump() << "\n";
1122    }
1123    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1124    const bool kDumpHexOfInstruction = false;
1125    if (kDumpHexOfInstruction) {
1126      indent_os << inst->DumpHex(5) << " ";
1127    }
1128    indent_os << inst->DumpString(dex_file_) << "\n";
1129    inst = inst->Next();
1130  }
1131}
1132
1133static bool IsPrimitiveDescriptor(char descriptor) {
1134  switch (descriptor) {
1135    case 'I':
1136    case 'C':
1137    case 'S':
1138    case 'B':
1139    case 'Z':
1140    case 'F':
1141    case 'D':
1142    case 'J':
1143      return true;
1144    default:
1145      return false;
1146  }
1147}
1148
1149bool MethodVerifier::SetTypesFromSignature() {
1150  RegisterLine* reg_line = reg_table_.GetLine(0);
1151  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1152  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1153
1154  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1155  // Include the "this" pointer.
1156  size_t cur_arg = 0;
1157  if (!IsStatic()) {
1158    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1159    // argument as uninitialized. This restricts field access until the superclass constructor is
1160    // called.
1161    const RegType& declaring_class = GetDeclaringClass();
1162    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1163      reg_line->SetRegisterType(arg_start + cur_arg,
1164                                reg_types_.UninitializedThisArgument(declaring_class));
1165    } else {
1166      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1167    }
1168    cur_arg++;
1169  }
1170
1171  const DexFile::ProtoId& proto_id =
1172      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1173  DexFileParameterIterator iterator(*dex_file_, proto_id);
1174
1175  for (; iterator.HasNext(); iterator.Next()) {
1176    const char* descriptor = iterator.GetDescriptor();
1177    if (descriptor == NULL) {
1178      LOG(FATAL) << "Null descriptor";
1179    }
1180    if (cur_arg >= expected_args) {
1181      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1182                                        << " args, found more (" << descriptor << ")";
1183      return false;
1184    }
1185    switch (descriptor[0]) {
1186      case 'L':
1187      case '[':
1188        // We assume that reference arguments are initialized. The only way it could be otherwise
1189        // (assuming the caller was verified) is if the current method is <init>, but in that case
1190        // it's effectively considered initialized the instant we reach here (in the sense that we
1191        // can return without doing anything or call virtual methods).
1192        {
1193          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
1194          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1195        }
1196        break;
1197      case 'Z':
1198        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1199        break;
1200      case 'C':
1201        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1202        break;
1203      case 'B':
1204        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1205        break;
1206      case 'I':
1207        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1208        break;
1209      case 'S':
1210        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1211        break;
1212      case 'F':
1213        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1214        break;
1215      case 'J':
1216      case 'D': {
1217        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1218        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1219        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1220        cur_arg++;
1221        break;
1222      }
1223      default:
1224        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1225                                          << descriptor << "'";
1226        return false;
1227    }
1228    cur_arg++;
1229  }
1230  if (cur_arg != expected_args) {
1231    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1232                                      << " arguments, found " << cur_arg;
1233    return false;
1234  }
1235  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1236  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1237  // format. Only major difference from the method argument format is that 'V' is supported.
1238  bool result;
1239  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1240    result = descriptor[1] == '\0';
1241  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1242    size_t i = 0;
1243    do {
1244      i++;
1245    } while (descriptor[i] == '[');  // process leading [
1246    if (descriptor[i] == 'L') {  // object array
1247      do {
1248        i++;  // find closing ;
1249      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1250      result = descriptor[i] == ';';
1251    } else {  // primitive array
1252      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1253    }
1254  } else if (descriptor[0] == 'L') {
1255    // could be more thorough here, but shouldn't be required
1256    size_t i = 0;
1257    do {
1258      i++;
1259    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1260    result = descriptor[i] == ';';
1261  } else {
1262    result = false;
1263  }
1264  if (!result) {
1265    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1266                                      << descriptor << "'";
1267  }
1268  return result;
1269}
1270
1271bool MethodVerifier::CodeFlowVerifyMethod() {
1272  const uint16_t* insns = code_item_->insns_;
1273  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1274
1275  /* Begin by marking the first instruction as "changed". */
1276  insn_flags_[0].SetChanged();
1277  uint32_t start_guess = 0;
1278
1279  /* Continue until no instructions are marked "changed". */
1280  while (true) {
1281    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1282    uint32_t insn_idx = start_guess;
1283    for (; insn_idx < insns_size; insn_idx++) {
1284      if (insn_flags_[insn_idx].IsChanged())
1285        break;
1286    }
1287    if (insn_idx == insns_size) {
1288      if (start_guess != 0) {
1289        /* try again, starting from the top */
1290        start_guess = 0;
1291        continue;
1292      } else {
1293        /* all flags are clear */
1294        break;
1295      }
1296    }
1297    // We carry the working set of registers from instruction to instruction. If this address can
1298    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1299    // "changed" flags, we need to load the set of registers from the table.
1300    // Because we always prefer to continue on to the next instruction, we should never have a
1301    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1302    // target.
1303    work_insn_idx_ = insn_idx;
1304    if (insn_flags_[insn_idx].IsBranchTarget()) {
1305      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1306    } else {
1307#ifndef NDEBUG
1308      /*
1309       * Sanity check: retrieve the stored register line (assuming
1310       * a full table) and make sure it actually matches.
1311       */
1312      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1313      if (register_line != NULL) {
1314        if (work_line_->CompareLine(register_line) != 0) {
1315          Dump(std::cout);
1316          std::cout << info_messages_.str();
1317          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1318                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1319                     << " work_line=" << *work_line_ << "\n"
1320                     << "  expected=" << *register_line;
1321        }
1322      }
1323#endif
1324    }
1325    if (!CodeFlowVerifyInstruction(&start_guess)) {
1326      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1327      prepend += " failed to verify: ";
1328      PrependToLastFailMessage(prepend);
1329      return false;
1330    }
1331    /* Clear "changed" and mark as visited. */
1332    insn_flags_[insn_idx].SetVisited();
1333    insn_flags_[insn_idx].ClearChanged();
1334  }
1335
1336  if (gDebugVerify) {
1337    /*
1338     * Scan for dead code. There's nothing "evil" about dead code
1339     * (besides the wasted space), but it indicates a flaw somewhere
1340     * down the line, possibly in the verifier.
1341     *
1342     * If we've substituted "always throw" instructions into the stream,
1343     * we are almost certainly going to have some dead code.
1344     */
1345    int dead_start = -1;
1346    uint32_t insn_idx = 0;
1347    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1348      /*
1349       * Switch-statement data doesn't get "visited" by scanner. It
1350       * may or may not be preceded by a padding NOP (for alignment).
1351       */
1352      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1353          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1354          insns[insn_idx] == Instruction::kArrayDataSignature ||
1355          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1356           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1357            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1358            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1359        insn_flags_[insn_idx].SetVisited();
1360      }
1361
1362      if (!insn_flags_[insn_idx].IsVisited()) {
1363        if (dead_start < 0)
1364          dead_start = insn_idx;
1365      } else if (dead_start >= 0) {
1366        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1367                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1368        dead_start = -1;
1369      }
1370    }
1371    if (dead_start >= 0) {
1372      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1373                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1374    }
1375    // To dump the state of the verify after a method, do something like:
1376    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1377    //     "boolean java.lang.String.equals(java.lang.Object)") {
1378    //   LOG(INFO) << info_messages_.str();
1379    // }
1380  }
1381  return true;
1382}
1383
1384bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1385  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1386  // We want the state _before_ the instruction, for the case where the dex pc we're
1387  // interested in is itself a monitor-enter instruction (which is a likely place
1388  // for a thread to be suspended).
1389  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1390    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1391    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1392      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1393    }
1394  }
1395
1396  /*
1397   * Once we finish decoding the instruction, we need to figure out where
1398   * we can go from here. There are three possible ways to transfer
1399   * control to another statement:
1400   *
1401   * (1) Continue to the next instruction. Applies to all but
1402   *     unconditional branches, method returns, and exception throws.
1403   * (2) Branch to one or more possible locations. Applies to branches
1404   *     and switch statements.
1405   * (3) Exception handlers. Applies to any instruction that can
1406   *     throw an exception that is handled by an encompassing "try"
1407   *     block.
1408   *
1409   * We can also return, in which case there is no successor instruction
1410   * from this point.
1411   *
1412   * The behavior can be determined from the opcode flags.
1413   */
1414  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1415  const Instruction* inst = Instruction::At(insns);
1416  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1417
1418  int32_t branch_target = 0;
1419  bool just_set_result = false;
1420  if (gDebugVerify) {
1421    // Generate processing back trace to debug verifier
1422    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1423                    << *work_line_.get() << "\n";
1424  }
1425
1426  /*
1427   * Make a copy of the previous register state. If the instruction
1428   * can throw an exception, we will copy/merge this into the "catch"
1429   * address rather than work_line, because we don't want the result
1430   * from the "successful" code path (e.g. a check-cast that "improves"
1431   * a type) to be visible to the exception handler.
1432   */
1433  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1434    saved_line_->CopyFromLine(work_line_.get());
1435  } else {
1436#ifndef NDEBUG
1437    saved_line_->FillWithGarbage();
1438#endif
1439  }
1440
1441
1442  // We need to ensure the work line is consistent while performing validation. When we spot a
1443  // peephole pattern we compute a new line for either the fallthrough instruction or the
1444  // branch target.
1445  UniquePtr<RegisterLine> branch_line;
1446  UniquePtr<RegisterLine> fallthrough_line;
1447
1448  switch (inst->Opcode()) {
1449    case Instruction::NOP:
1450      /*
1451       * A "pure" NOP has no effect on anything. Data tables start with
1452       * a signature that looks like a NOP; if we see one of these in
1453       * the course of executing code then we have a problem.
1454       */
1455      if (inst->VRegA_10x() != 0) {
1456        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1457      }
1458      break;
1459
1460    case Instruction::MOVE:
1461      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1462      break;
1463    case Instruction::MOVE_FROM16:
1464      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1465      break;
1466    case Instruction::MOVE_16:
1467      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1468      break;
1469    case Instruction::MOVE_WIDE:
1470      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1471      break;
1472    case Instruction::MOVE_WIDE_FROM16:
1473      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1474      break;
1475    case Instruction::MOVE_WIDE_16:
1476      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1477      break;
1478    case Instruction::MOVE_OBJECT:
1479      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1480      break;
1481    case Instruction::MOVE_OBJECT_FROM16:
1482      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1483      break;
1484    case Instruction::MOVE_OBJECT_16:
1485      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1486      break;
1487
1488    /*
1489     * The move-result instructions copy data out of a "pseudo-register"
1490     * with the results from the last method invocation. In practice we
1491     * might want to hold the result in an actual CPU register, so the
1492     * Dalvik spec requires that these only appear immediately after an
1493     * invoke or filled-new-array.
1494     *
1495     * These calls invalidate the "result" register. (This is now
1496     * redundant with the reset done below, but it can make the debug info
1497     * easier to read in some cases.)
1498     */
1499    case Instruction::MOVE_RESULT:
1500      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1501      break;
1502    case Instruction::MOVE_RESULT_WIDE:
1503      work_line_->CopyResultRegister2(inst->VRegA_11x());
1504      break;
1505    case Instruction::MOVE_RESULT_OBJECT:
1506      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1507      break;
1508
1509    case Instruction::MOVE_EXCEPTION: {
1510      /*
1511       * This statement can only appear as the first instruction in an exception handler. We verify
1512       * that as part of extracting the exception type from the catch block list.
1513       */
1514      const RegType& res_type = GetCaughtExceptionType();
1515      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1516      break;
1517    }
1518    case Instruction::RETURN_VOID:
1519      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1520        if (!GetMethodReturnType().IsConflict()) {
1521          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1522        }
1523      }
1524      break;
1525    case Instruction::RETURN:
1526      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1527        /* check the method signature */
1528        const RegType& return_type = GetMethodReturnType();
1529        if (!return_type.IsCategory1Types()) {
1530          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1531                                            << return_type;
1532        } else {
1533          // Compilers may generate synthetic functions that write byte values into boolean fields.
1534          // Also, it may use integer values for boolean, byte, short, and character return types.
1535          const uint32_t vregA = inst->VRegA_11x();
1536          const RegType& src_type = work_line_->GetRegisterType(vregA);
1537          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1538                          ((return_type.IsBoolean() || return_type.IsByte() ||
1539                           return_type.IsShort() || return_type.IsChar()) &&
1540                           src_type.IsInteger()));
1541          /* check the register contents */
1542          bool success =
1543              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1544          if (!success) {
1545            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1546          }
1547        }
1548      }
1549      break;
1550    case Instruction::RETURN_WIDE:
1551      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1552        /* check the method signature */
1553        const RegType& return_type = GetMethodReturnType();
1554        if (!return_type.IsCategory2Types()) {
1555          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1556        } else {
1557          /* check the register contents */
1558          const uint32_t vregA = inst->VRegA_11x();
1559          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1560          if (!success) {
1561            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1562          }
1563        }
1564      }
1565      break;
1566    case Instruction::RETURN_OBJECT:
1567      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1568        const RegType& return_type = GetMethodReturnType();
1569        if (!return_type.IsReferenceTypes()) {
1570          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1571        } else {
1572          /* return_type is the *expected* return type, not register value */
1573          DCHECK(!return_type.IsZero());
1574          DCHECK(!return_type.IsUninitializedReference());
1575          const uint32_t vregA = inst->VRegA_11x();
1576          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1577          // Disallow returning uninitialized values and verify that the reference in vAA is an
1578          // instance of the "return_type"
1579          if (reg_type.IsUninitializedTypes()) {
1580            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1581                                              << reg_type << "'";
1582          } else if (!return_type.IsAssignableFrom(reg_type)) {
1583            Fail(reg_type.IsUnresolvedTypes() ?
1584                 VERIFY_ERROR_BAD_CLASS_SOFT :
1585                 VERIFY_ERROR_BAD_CLASS_HARD)
1586                    << "returning '" << reg_type << "', but expected from declaration '"
1587                    << return_type << "'";
1588          }
1589        }
1590      }
1591      break;
1592
1593      /* could be boolean, int, float, or a null reference */
1594    case Instruction::CONST_4: {
1595      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1596      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1597      break;
1598    }
1599    case Instruction::CONST_16: {
1600      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1601      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1602      break;
1603    }
1604    case Instruction::CONST:
1605      work_line_->SetRegisterType(inst->VRegA_31i(),
1606                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1607      break;
1608    case Instruction::CONST_HIGH16:
1609      work_line_->SetRegisterType(inst->VRegA_21h(),
1610                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1611      break;
1612      /* could be long or double; resolved upon use */
1613    case Instruction::CONST_WIDE_16: {
1614      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1615      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1616      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1617      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1618      break;
1619    }
1620    case Instruction::CONST_WIDE_32: {
1621      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1622      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1623      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1624      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1625      break;
1626    }
1627    case Instruction::CONST_WIDE: {
1628      int64_t val = inst->VRegB_51l();
1629      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1630      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1631      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1632      break;
1633    }
1634    case Instruction::CONST_WIDE_HIGH16: {
1635      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1636      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1637      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1638      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1639      break;
1640    }
1641    case Instruction::CONST_STRING:
1642      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1643      break;
1644    case Instruction::CONST_STRING_JUMBO:
1645      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1646      break;
1647    case Instruction::CONST_CLASS: {
1648      // Get type from instruction if unresolved then we need an access check
1649      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1650      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1651      // Register holds class, ie its type is class, on error it will hold Conflict.
1652      work_line_->SetRegisterType(inst->VRegA_21c(),
1653                                  res_type.IsConflict() ? res_type
1654                                                        : reg_types_.JavaLangClass(true));
1655      break;
1656    }
1657    case Instruction::MONITOR_ENTER:
1658      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1659      break;
1660    case Instruction::MONITOR_EXIT:
1661      /*
1662       * monitor-exit instructions are odd. They can throw exceptions,
1663       * but when they do they act as if they succeeded and the PC is
1664       * pointing to the following instruction. (This behavior goes back
1665       * to the need to handle asynchronous exceptions, a now-deprecated
1666       * feature that Dalvik doesn't support.)
1667       *
1668       * In practice we don't need to worry about this. The only
1669       * exceptions that can be thrown from monitor-exit are for a
1670       * null reference and -exit without a matching -enter. If the
1671       * structured locking checks are working, the former would have
1672       * failed on the -enter instruction, and the latter is impossible.
1673       *
1674       * This is fortunate, because issue 3221411 prevents us from
1675       * chasing the "can throw" path when monitor verification is
1676       * enabled. If we can fully verify the locking we can ignore
1677       * some catch blocks (which will show up as "dead" code when
1678       * we skip them here); if we can't, then the code path could be
1679       * "live" so we still need to check it.
1680       */
1681      opcode_flags &= ~Instruction::kThrow;
1682      work_line_->PopMonitor(inst->VRegA_11x());
1683      break;
1684
1685    case Instruction::CHECK_CAST:
1686    case Instruction::INSTANCE_OF: {
1687      /*
1688       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1689       * could be a "upcast" -- not expected, so we don't try to address it.)
1690       *
1691       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1692       * dec_insn.vA when branching to a handler.
1693       */
1694      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1695      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1696      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1697      if (res_type.IsConflict()) {
1698        DCHECK_NE(failures_.size(), 0U);
1699        if (!is_checkcast) {
1700          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1701        }
1702        break;  // bad class
1703      }
1704      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1705      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1706      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1707      if (!res_type.IsNonZeroReferenceTypes()) {
1708        if (is_checkcast) {
1709          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1710        } else {
1711          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1712        }
1713      } else if (!orig_type.IsReferenceTypes()) {
1714        if (is_checkcast) {
1715          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1716        } else {
1717          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1718        }
1719      } else {
1720        if (is_checkcast) {
1721          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1722        } else {
1723          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1724        }
1725      }
1726      break;
1727    }
1728    case Instruction::ARRAY_LENGTH: {
1729      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1730      if (res_type.IsReferenceTypes()) {
1731        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1732          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1733        } else {
1734          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1735        }
1736      }
1737      break;
1738    }
1739    case Instruction::NEW_INSTANCE: {
1740      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1741      if (res_type.IsConflict()) {
1742        DCHECK_NE(failures_.size(), 0U);
1743        break;  // bad class
1744      }
1745      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1746      // can't create an instance of an interface or abstract class */
1747      if (!res_type.IsInstantiableTypes()) {
1748        Fail(VERIFY_ERROR_INSTANTIATION)
1749            << "new-instance on primitive, interface or abstract class" << res_type;
1750        // Soft failure so carry on to set register type.
1751      }
1752      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1753      // Any registers holding previous allocations from this address that have not yet been
1754      // initialized must be marked invalid.
1755      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1756      // add the new uninitialized reference to the register state
1757      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1758      break;
1759    }
1760    case Instruction::NEW_ARRAY:
1761      VerifyNewArray(inst, false, false);
1762      break;
1763    case Instruction::FILLED_NEW_ARRAY:
1764      VerifyNewArray(inst, true, false);
1765      just_set_result = true;  // Filled new array sets result register
1766      break;
1767    case Instruction::FILLED_NEW_ARRAY_RANGE:
1768      VerifyNewArray(inst, true, true);
1769      just_set_result = true;  // Filled new array range sets result register
1770      break;
1771    case Instruction::CMPL_FLOAT:
1772    case Instruction::CMPG_FLOAT:
1773      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1774        break;
1775      }
1776      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1777        break;
1778      }
1779      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1780      break;
1781    case Instruction::CMPL_DOUBLE:
1782    case Instruction::CMPG_DOUBLE:
1783      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1784                                              reg_types_.DoubleHi())) {
1785        break;
1786      }
1787      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1788                                              reg_types_.DoubleHi())) {
1789        break;
1790      }
1791      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1792      break;
1793    case Instruction::CMP_LONG:
1794      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1795                                              reg_types_.LongHi())) {
1796        break;
1797      }
1798      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1799                                              reg_types_.LongHi())) {
1800        break;
1801      }
1802      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1803      break;
1804    case Instruction::THROW: {
1805      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1806      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1807        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "thrown class " << res_type
1808                                          << " not instanceof Throwable";
1809      }
1810      break;
1811    }
1812    case Instruction::GOTO:
1813    case Instruction::GOTO_16:
1814    case Instruction::GOTO_32:
1815      /* no effect on or use of registers */
1816      break;
1817
1818    case Instruction::PACKED_SWITCH:
1819    case Instruction::SPARSE_SWITCH:
1820      /* verify that vAA is an integer, or can be converted to one */
1821      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1822      break;
1823
1824    case Instruction::FILL_ARRAY_DATA: {
1825      /* Similar to the verification done for APUT */
1826      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1827      /* array_type can be null if the reg type is Zero */
1828      if (!array_type.IsZero()) {
1829        if (!array_type.IsArrayTypes()) {
1830          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1831                                            << array_type;
1832        } else {
1833          const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
1834          DCHECK(!component_type.IsConflict());
1835          if (component_type.IsNonZeroReferenceTypes()) {
1836            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1837                                              << component_type;
1838          } else {
1839            // Now verify if the element width in the table matches the element width declared in
1840            // the array
1841            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1842            if (array_data[0] != Instruction::kArrayDataSignature) {
1843              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1844            } else {
1845              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1846              // Since we don't compress the data in Dex, expect to see equal width of data stored
1847              // in the table and expected from the array class.
1848              if (array_data[1] != elem_width) {
1849                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1850                                                  << " vs " << elem_width << ")";
1851              }
1852            }
1853          }
1854        }
1855      }
1856      break;
1857    }
1858    case Instruction::IF_EQ:
1859    case Instruction::IF_NE: {
1860      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1861      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1862      bool mismatch = false;
1863      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1864        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1865      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1866        mismatch = !reg_type2.IsReferenceTypes();
1867      } else {  // both integral?
1868        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1869      }
1870      if (mismatch) {
1871        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1872                                          << reg_type2 << ") must both be references or integral";
1873      }
1874      break;
1875    }
1876    case Instruction::IF_LT:
1877    case Instruction::IF_GE:
1878    case Instruction::IF_GT:
1879    case Instruction::IF_LE: {
1880      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1881      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1882      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1883        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1884                                          << reg_type2 << ") must be integral";
1885      }
1886      break;
1887    }
1888    case Instruction::IF_EQZ:
1889    case Instruction::IF_NEZ: {
1890      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1891      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1892        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1893                                          << " unexpected as arg to if-eqz/if-nez";
1894      }
1895
1896      // Find previous instruction - its existence is a precondition to peephole optimization.
1897      uint32_t instance_of_idx = 0;
1898      if (0 != work_insn_idx_) {
1899        instance_of_idx = work_insn_idx_ - 1;
1900        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1901          instance_of_idx--;
1902        }
1903        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1904      } else {
1905        break;
1906      }
1907
1908      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1909
1910      /* Check for peep-hole pattern of:
1911       *    ...;
1912       *    instance-of vX, vY, T;
1913       *    ifXXX vX, label ;
1914       *    ...;
1915       * label:
1916       *    ...;
1917       * and sharpen the type of vY to be type T.
1918       * Note, this pattern can't be if:
1919       *  - if there are other branches to this branch,
1920       *  - when vX == vY.
1921       */
1922      if (!CurrentInsnFlags()->IsBranchTarget() &&
1923          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1924          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1925          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1926        // Check that the we are not attempting conversion to interface types,
1927        // which is not done because of the multiple inheritance implications.
1928        // Also don't change the type if it would result in an upcast.
1929        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1930        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1931
1932        if (!cast_type.IsUnresolvedTypes() && !cast_type.GetClass()->IsInterface() &&
1933            !cast_type.IsAssignableFrom(orig_type)) {
1934          RegisterLine* update_line = new RegisterLine(code_item_->registers_size_, this);
1935          if (inst->Opcode() == Instruction::IF_EQZ) {
1936            fallthrough_line.reset(update_line);
1937          } else {
1938            branch_line.reset(update_line);
1939          }
1940          update_line->CopyFromLine(work_line_.get());
1941          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1942          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1943            // See if instance-of was preceded by a move-object operation, common due to the small
1944            // register encoding space of instance-of, and propagate type information to the source
1945            // of the move-object.
1946            uint32_t move_idx = instance_of_idx - 1;
1947            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1948              move_idx--;
1949            }
1950            CHECK(insn_flags_[move_idx].IsOpcode());
1951            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1952            switch (move_inst->Opcode()) {
1953              case Instruction::MOVE_OBJECT:
1954                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1955                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1956                }
1957                break;
1958              case Instruction::MOVE_OBJECT_FROM16:
1959                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1960                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1961                }
1962                break;
1963              case Instruction::MOVE_OBJECT_16:
1964                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1965                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1966                }
1967                break;
1968              default:
1969                break;
1970            }
1971          }
1972        }
1973      }
1974
1975      break;
1976    }
1977    case Instruction::IF_LTZ:
1978    case Instruction::IF_GEZ:
1979    case Instruction::IF_GTZ:
1980    case Instruction::IF_LEZ: {
1981      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1982      if (!reg_type.IsIntegralTypes()) {
1983        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1984                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1985      }
1986      break;
1987    }
1988    case Instruction::AGET_BOOLEAN:
1989      VerifyAGet(inst, reg_types_.Boolean(), true);
1990      break;
1991    case Instruction::AGET_BYTE:
1992      VerifyAGet(inst, reg_types_.Byte(), true);
1993      break;
1994    case Instruction::AGET_CHAR:
1995      VerifyAGet(inst, reg_types_.Char(), true);
1996      break;
1997    case Instruction::AGET_SHORT:
1998      VerifyAGet(inst, reg_types_.Short(), true);
1999      break;
2000    case Instruction::AGET:
2001      VerifyAGet(inst, reg_types_.Integer(), true);
2002      break;
2003    case Instruction::AGET_WIDE:
2004      VerifyAGet(inst, reg_types_.LongLo(), true);
2005      break;
2006    case Instruction::AGET_OBJECT:
2007      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2008      break;
2009
2010    case Instruction::APUT_BOOLEAN:
2011      VerifyAPut(inst, reg_types_.Boolean(), true);
2012      break;
2013    case Instruction::APUT_BYTE:
2014      VerifyAPut(inst, reg_types_.Byte(), true);
2015      break;
2016    case Instruction::APUT_CHAR:
2017      VerifyAPut(inst, reg_types_.Char(), true);
2018      break;
2019    case Instruction::APUT_SHORT:
2020      VerifyAPut(inst, reg_types_.Short(), true);
2021      break;
2022    case Instruction::APUT:
2023      VerifyAPut(inst, reg_types_.Integer(), true);
2024      break;
2025    case Instruction::APUT_WIDE:
2026      VerifyAPut(inst, reg_types_.LongLo(), true);
2027      break;
2028    case Instruction::APUT_OBJECT:
2029      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2030      break;
2031
2032    case Instruction::IGET_BOOLEAN:
2033      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2034      break;
2035    case Instruction::IGET_BYTE:
2036      VerifyISGet(inst, reg_types_.Byte(), true, false);
2037      break;
2038    case Instruction::IGET_CHAR:
2039      VerifyISGet(inst, reg_types_.Char(), true, false);
2040      break;
2041    case Instruction::IGET_SHORT:
2042      VerifyISGet(inst, reg_types_.Short(), true, false);
2043      break;
2044    case Instruction::IGET:
2045      VerifyISGet(inst, reg_types_.Integer(), true, false);
2046      break;
2047    case Instruction::IGET_WIDE:
2048      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2049      break;
2050    case Instruction::IGET_OBJECT:
2051      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2052      break;
2053
2054    case Instruction::IPUT_BOOLEAN:
2055      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2056      break;
2057    case Instruction::IPUT_BYTE:
2058      VerifyISPut(inst, reg_types_.Byte(), true, false);
2059      break;
2060    case Instruction::IPUT_CHAR:
2061      VerifyISPut(inst, reg_types_.Char(), true, false);
2062      break;
2063    case Instruction::IPUT_SHORT:
2064      VerifyISPut(inst, reg_types_.Short(), true, false);
2065      break;
2066    case Instruction::IPUT:
2067      VerifyISPut(inst, reg_types_.Integer(), true, false);
2068      break;
2069    case Instruction::IPUT_WIDE:
2070      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2071      break;
2072    case Instruction::IPUT_OBJECT:
2073      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2074      break;
2075
2076    case Instruction::SGET_BOOLEAN:
2077      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2078      break;
2079    case Instruction::SGET_BYTE:
2080      VerifyISGet(inst, reg_types_.Byte(), true, true);
2081      break;
2082    case Instruction::SGET_CHAR:
2083      VerifyISGet(inst, reg_types_.Char(), true, true);
2084      break;
2085    case Instruction::SGET_SHORT:
2086      VerifyISGet(inst, reg_types_.Short(), true, true);
2087      break;
2088    case Instruction::SGET:
2089      VerifyISGet(inst, reg_types_.Integer(), true, true);
2090      break;
2091    case Instruction::SGET_WIDE:
2092      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2093      break;
2094    case Instruction::SGET_OBJECT:
2095      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2096      break;
2097
2098    case Instruction::SPUT_BOOLEAN:
2099      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2100      break;
2101    case Instruction::SPUT_BYTE:
2102      VerifyISPut(inst, reg_types_.Byte(), true, true);
2103      break;
2104    case Instruction::SPUT_CHAR:
2105      VerifyISPut(inst, reg_types_.Char(), true, true);
2106      break;
2107    case Instruction::SPUT_SHORT:
2108      VerifyISPut(inst, reg_types_.Short(), true, true);
2109      break;
2110    case Instruction::SPUT:
2111      VerifyISPut(inst, reg_types_.Integer(), true, true);
2112      break;
2113    case Instruction::SPUT_WIDE:
2114      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2115      break;
2116    case Instruction::SPUT_OBJECT:
2117      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2118      break;
2119
2120    case Instruction::INVOKE_VIRTUAL:
2121    case Instruction::INVOKE_VIRTUAL_RANGE:
2122    case Instruction::INVOKE_SUPER:
2123    case Instruction::INVOKE_SUPER_RANGE: {
2124      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2125                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2126      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2127                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2128      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2129                                                                   is_range, is_super);
2130      const char* descriptor;
2131      if (called_method == NULL) {
2132        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2133        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2134        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2135        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2136      } else {
2137        descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2138      }
2139      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2140      if (!return_type.IsLowHalf()) {
2141        work_line_->SetResultRegisterType(return_type);
2142      } else {
2143        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2144      }
2145      just_set_result = true;
2146      break;
2147    }
2148    case Instruction::INVOKE_DIRECT:
2149    case Instruction::INVOKE_DIRECT_RANGE: {
2150      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2151      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2152                                                                   is_range, false);
2153      const char* return_type_descriptor;
2154      bool is_constructor;
2155      if (called_method == NULL) {
2156        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2157        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2158        is_constructor = StringPiece(dex_file_->GetMethodName(method_id)) == "<init>";
2159        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2160        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2161      } else {
2162        is_constructor = called_method->IsConstructor();
2163        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2164      }
2165      if (is_constructor) {
2166        /*
2167         * Some additional checks when calling a constructor. We know from the invocation arg check
2168         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2169         * that to require that called_method->klass is the same as this->klass or this->super,
2170         * allowing the latter only if the "this" argument is the same as the "this" argument to
2171         * this method (which implies that we're in a constructor ourselves).
2172         */
2173        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2174        if (this_type.IsConflict())  // failure.
2175          break;
2176
2177        /* no null refs allowed (?) */
2178        if (this_type.IsZero()) {
2179          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2180          break;
2181        }
2182
2183        /* must be in same class or in superclass */
2184        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2185        // TODO: re-enable constructor type verification
2186        // if (this_super_klass.IsConflict()) {
2187          // Unknown super class, fail so we re-check at runtime.
2188          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2189          // break;
2190        // }
2191
2192        /* arg must be an uninitialized reference */
2193        if (!this_type.IsUninitializedTypes()) {
2194          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2195              << this_type;
2196          break;
2197        }
2198
2199        /*
2200         * Replace the uninitialized reference with an initialized one. We need to do this for all
2201         * registers that have the same object instance in them, not just the "this" register.
2202         */
2203        work_line_->MarkRefsAsInitialized(this_type);
2204      }
2205      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, return_type_descriptor,
2206                                                             false);
2207      if (!return_type.IsLowHalf()) {
2208        work_line_->SetResultRegisterType(return_type);
2209      } else {
2210        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2211      }
2212      just_set_result = true;
2213      break;
2214    }
2215    case Instruction::INVOKE_STATIC:
2216    case Instruction::INVOKE_STATIC_RANGE: {
2217        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2218        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2219                                                                     METHOD_STATIC,
2220                                                                     is_range,
2221                                                                     false);
2222        const char* descriptor;
2223        if (called_method == NULL) {
2224          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2225          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2226          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2227          descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2228        } else {
2229          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2230        }
2231        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_, descriptor, false);
2232        if (!return_type.IsLowHalf()) {
2233          work_line_->SetResultRegisterType(return_type);
2234        } else {
2235          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2236        }
2237        just_set_result = true;
2238      }
2239      break;
2240    case Instruction::INVOKE_INTERFACE:
2241    case Instruction::INVOKE_INTERFACE_RANGE: {
2242      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2243      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2244                                                                METHOD_INTERFACE,
2245                                                                is_range,
2246                                                                false);
2247      if (abs_method != NULL) {
2248        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2249        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2250          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2251              << PrettyMethod(abs_method) << "'";
2252          break;
2253        }
2254      }
2255      /* Get the type of the "this" arg, which should either be a sub-interface of called
2256       * interface or Object (see comments in RegType::JoinClass).
2257       */
2258      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2259      if (this_type.IsZero()) {
2260        /* null pointer always passes (and always fails at runtime) */
2261      } else {
2262        if (this_type.IsUninitializedTypes()) {
2263          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2264              << this_type;
2265          break;
2266        }
2267        // In the past we have tried to assert that "called_interface" is assignable
2268        // from "this_type.GetClass()", however, as we do an imprecise Join
2269        // (RegType::JoinClass) we don't have full information on what interfaces are
2270        // implemented by "this_type". For example, two classes may implement the same
2271        // interfaces and have a common parent that doesn't implement the interface. The
2272        // join will set "this_type" to the parent class and a test that this implements
2273        // the interface will incorrectly fail.
2274      }
2275      /*
2276       * We don't have an object instance, so we can't find the concrete method. However, all of
2277       * the type information is in the abstract method, so we're good.
2278       */
2279      const char* descriptor;
2280      if (abs_method == NULL) {
2281        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2282        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2283        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2284        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2285      } else {
2286        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2287      }
2288      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2289      if (!return_type.IsLowHalf()) {
2290        work_line_->SetResultRegisterType(return_type);
2291      } else {
2292        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2293      }
2294      just_set_result = true;
2295      break;
2296    }
2297    case Instruction::NEG_INT:
2298    case Instruction::NOT_INT:
2299      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2300      break;
2301    case Instruction::NEG_LONG:
2302    case Instruction::NOT_LONG:
2303      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2304                                   reg_types_.LongLo(), reg_types_.LongHi());
2305      break;
2306    case Instruction::NEG_FLOAT:
2307      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2308      break;
2309    case Instruction::NEG_DOUBLE:
2310      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2311                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2312      break;
2313    case Instruction::INT_TO_LONG:
2314      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2315                                     reg_types_.Integer());
2316      break;
2317    case Instruction::INT_TO_FLOAT:
2318      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2319      break;
2320    case Instruction::INT_TO_DOUBLE:
2321      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2322                                     reg_types_.Integer());
2323      break;
2324    case Instruction::LONG_TO_INT:
2325      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2326                                       reg_types_.LongLo(), reg_types_.LongHi());
2327      break;
2328    case Instruction::LONG_TO_FLOAT:
2329      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2330                                       reg_types_.LongLo(), reg_types_.LongHi());
2331      break;
2332    case Instruction::LONG_TO_DOUBLE:
2333      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2334                                   reg_types_.LongLo(), reg_types_.LongHi());
2335      break;
2336    case Instruction::FLOAT_TO_INT:
2337      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2338      break;
2339    case Instruction::FLOAT_TO_LONG:
2340      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2341                                     reg_types_.Float());
2342      break;
2343    case Instruction::FLOAT_TO_DOUBLE:
2344      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2345                                     reg_types_.Float());
2346      break;
2347    case Instruction::DOUBLE_TO_INT:
2348      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2349                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2350      break;
2351    case Instruction::DOUBLE_TO_LONG:
2352      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2353                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2354      break;
2355    case Instruction::DOUBLE_TO_FLOAT:
2356      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2357                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2358      break;
2359    case Instruction::INT_TO_BYTE:
2360      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2361      break;
2362    case Instruction::INT_TO_CHAR:
2363      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2364      break;
2365    case Instruction::INT_TO_SHORT:
2366      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2367      break;
2368
2369    case Instruction::ADD_INT:
2370    case Instruction::SUB_INT:
2371    case Instruction::MUL_INT:
2372    case Instruction::REM_INT:
2373    case Instruction::DIV_INT:
2374    case Instruction::SHL_INT:
2375    case Instruction::SHR_INT:
2376    case Instruction::USHR_INT:
2377      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2378                                reg_types_.Integer(), false);
2379      break;
2380    case Instruction::AND_INT:
2381    case Instruction::OR_INT:
2382    case Instruction::XOR_INT:
2383      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2384                                reg_types_.Integer(), true);
2385      break;
2386    case Instruction::ADD_LONG:
2387    case Instruction::SUB_LONG:
2388    case Instruction::MUL_LONG:
2389    case Instruction::DIV_LONG:
2390    case Instruction::REM_LONG:
2391    case Instruction::AND_LONG:
2392    case Instruction::OR_LONG:
2393    case Instruction::XOR_LONG:
2394      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2395                                    reg_types_.LongLo(), reg_types_.LongHi(),
2396                                    reg_types_.LongLo(), reg_types_.LongHi());
2397      break;
2398    case Instruction::SHL_LONG:
2399    case Instruction::SHR_LONG:
2400    case Instruction::USHR_LONG:
2401      /* shift distance is Int, making these different from other binary operations */
2402      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2403                                         reg_types_.Integer());
2404      break;
2405    case Instruction::ADD_FLOAT:
2406    case Instruction::SUB_FLOAT:
2407    case Instruction::MUL_FLOAT:
2408    case Instruction::DIV_FLOAT:
2409    case Instruction::REM_FLOAT:
2410      work_line_->CheckBinaryOp(inst,
2411                                reg_types_.Float(),
2412                                reg_types_.Float(),
2413                                reg_types_.Float(),
2414                                false);
2415      break;
2416    case Instruction::ADD_DOUBLE:
2417    case Instruction::SUB_DOUBLE:
2418    case Instruction::MUL_DOUBLE:
2419    case Instruction::DIV_DOUBLE:
2420    case Instruction::REM_DOUBLE:
2421      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2422                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2423                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2424      break;
2425    case Instruction::ADD_INT_2ADDR:
2426    case Instruction::SUB_INT_2ADDR:
2427    case Instruction::MUL_INT_2ADDR:
2428    case Instruction::REM_INT_2ADDR:
2429    case Instruction::SHL_INT_2ADDR:
2430    case Instruction::SHR_INT_2ADDR:
2431    case Instruction::USHR_INT_2ADDR:
2432      work_line_->CheckBinaryOp2addr(inst,
2433                                     reg_types_.Integer(),
2434                                     reg_types_.Integer(),
2435                                     reg_types_.Integer(),
2436                                     false);
2437      break;
2438    case Instruction::AND_INT_2ADDR:
2439    case Instruction::OR_INT_2ADDR:
2440    case Instruction::XOR_INT_2ADDR:
2441      work_line_->CheckBinaryOp2addr(inst,
2442                                     reg_types_.Integer(),
2443                                     reg_types_.Integer(),
2444                                     reg_types_.Integer(),
2445                                     true);
2446      break;
2447    case Instruction::DIV_INT_2ADDR:
2448      work_line_->CheckBinaryOp2addr(inst,
2449                                     reg_types_.Integer(),
2450                                     reg_types_.Integer(),
2451                                     reg_types_.Integer(),
2452                                     false);
2453      break;
2454    case Instruction::ADD_LONG_2ADDR:
2455    case Instruction::SUB_LONG_2ADDR:
2456    case Instruction::MUL_LONG_2ADDR:
2457    case Instruction::DIV_LONG_2ADDR:
2458    case Instruction::REM_LONG_2ADDR:
2459    case Instruction::AND_LONG_2ADDR:
2460    case Instruction::OR_LONG_2ADDR:
2461    case Instruction::XOR_LONG_2ADDR:
2462      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2463                                         reg_types_.LongLo(), reg_types_.LongHi(),
2464                                         reg_types_.LongLo(), reg_types_.LongHi());
2465      break;
2466    case Instruction::SHL_LONG_2ADDR:
2467    case Instruction::SHR_LONG_2ADDR:
2468    case Instruction::USHR_LONG_2ADDR:
2469      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2470                                              reg_types_.Integer());
2471      break;
2472    case Instruction::ADD_FLOAT_2ADDR:
2473    case Instruction::SUB_FLOAT_2ADDR:
2474    case Instruction::MUL_FLOAT_2ADDR:
2475    case Instruction::DIV_FLOAT_2ADDR:
2476    case Instruction::REM_FLOAT_2ADDR:
2477      work_line_->CheckBinaryOp2addr(inst,
2478                                     reg_types_.Float(),
2479                                     reg_types_.Float(),
2480                                     reg_types_.Float(),
2481                                     false);
2482      break;
2483    case Instruction::ADD_DOUBLE_2ADDR:
2484    case Instruction::SUB_DOUBLE_2ADDR:
2485    case Instruction::MUL_DOUBLE_2ADDR:
2486    case Instruction::DIV_DOUBLE_2ADDR:
2487    case Instruction::REM_DOUBLE_2ADDR:
2488      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2489                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2490                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2491      break;
2492    case Instruction::ADD_INT_LIT16:
2493    case Instruction::RSUB_INT:
2494    case Instruction::MUL_INT_LIT16:
2495    case Instruction::DIV_INT_LIT16:
2496    case Instruction::REM_INT_LIT16:
2497      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2498      break;
2499    case Instruction::AND_INT_LIT16:
2500    case Instruction::OR_INT_LIT16:
2501    case Instruction::XOR_INT_LIT16:
2502      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2503      break;
2504    case Instruction::ADD_INT_LIT8:
2505    case Instruction::RSUB_INT_LIT8:
2506    case Instruction::MUL_INT_LIT8:
2507    case Instruction::DIV_INT_LIT8:
2508    case Instruction::REM_INT_LIT8:
2509    case Instruction::SHL_INT_LIT8:
2510    case Instruction::SHR_INT_LIT8:
2511    case Instruction::USHR_INT_LIT8:
2512      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2513      break;
2514    case Instruction::AND_INT_LIT8:
2515    case Instruction::OR_INT_LIT8:
2516    case Instruction::XOR_INT_LIT8:
2517      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2518      break;
2519
2520    // Special instructions.
2521    case Instruction::RETURN_VOID_BARRIER:
2522      DCHECK(Runtime::Current()->IsStarted()) << PrettyMethod(dex_method_idx_, *dex_file_);
2523      if (!IsConstructor() || IsStatic()) {
2524          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2525      }
2526      break;
2527    // Note: the following instructions encode offsets derived from class linking.
2528    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2529    // meaning if the class linking and resolution were successful.
2530    case Instruction::IGET_QUICK:
2531      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2532      break;
2533    case Instruction::IGET_WIDE_QUICK:
2534      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2535      break;
2536    case Instruction::IGET_OBJECT_QUICK:
2537      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2538      break;
2539    case Instruction::IPUT_QUICK:
2540      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2541      break;
2542    case Instruction::IPUT_WIDE_QUICK:
2543      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2544      break;
2545    case Instruction::IPUT_OBJECT_QUICK:
2546      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2547      break;
2548    case Instruction::INVOKE_VIRTUAL_QUICK:
2549    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2550      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2551      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2552      if (called_method != NULL) {
2553        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2554        const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2555        if (!return_type.IsLowHalf()) {
2556          work_line_->SetResultRegisterType(return_type);
2557        } else {
2558          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2559        }
2560        just_set_result = true;
2561      }
2562      break;
2563    }
2564
2565    /* These should never appear during verification. */
2566    case Instruction::UNUSED_3E:
2567    case Instruction::UNUSED_3F:
2568    case Instruction::UNUSED_40:
2569    case Instruction::UNUSED_41:
2570    case Instruction::UNUSED_42:
2571    case Instruction::UNUSED_43:
2572    case Instruction::UNUSED_79:
2573    case Instruction::UNUSED_7A:
2574    case Instruction::UNUSED_EB:
2575    case Instruction::UNUSED_EC:
2576    case Instruction::UNUSED_ED:
2577    case Instruction::UNUSED_EE:
2578    case Instruction::UNUSED_EF:
2579    case Instruction::UNUSED_F0:
2580    case Instruction::UNUSED_F1:
2581    case Instruction::UNUSED_F2:
2582    case Instruction::UNUSED_F3:
2583    case Instruction::UNUSED_F4:
2584    case Instruction::UNUSED_F5:
2585    case Instruction::UNUSED_F6:
2586    case Instruction::UNUSED_F7:
2587    case Instruction::UNUSED_F8:
2588    case Instruction::UNUSED_F9:
2589    case Instruction::UNUSED_FA:
2590    case Instruction::UNUSED_FB:
2591    case Instruction::UNUSED_FC:
2592    case Instruction::UNUSED_FD:
2593    case Instruction::UNUSED_FE:
2594    case Instruction::UNUSED_FF:
2595      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2596      break;
2597
2598    /*
2599     * DO NOT add a "default" clause here. Without it the compiler will
2600     * complain if an instruction is missing (which is desirable).
2601     */
2602  }  // end - switch (dec_insn.opcode)
2603
2604  if (have_pending_hard_failure_) {
2605    if (Runtime::Current()->IsCompiler()) {
2606      /* When compiling, check that the last failure is a hard failure */
2607      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2608    }
2609    /* immediate failure, reject class */
2610    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2611    return false;
2612  } else if (have_pending_runtime_throw_failure_) {
2613    /* slow path will throw, mark following code as unreachable */
2614    opcode_flags = Instruction::kThrow;
2615  }
2616  /*
2617   * If we didn't just set the result register, clear it out. This ensures that you can only use
2618   * "move-result" immediately after the result is set. (We could check this statically, but it's
2619   * not expensive and it makes our debugging output cleaner.)
2620   */
2621  if (!just_set_result) {
2622    work_line_->SetResultTypeToUnknown();
2623  }
2624
2625
2626
2627  /*
2628   * Handle "branch". Tag the branch target.
2629   *
2630   * NOTE: instructions like Instruction::EQZ provide information about the
2631   * state of the register when the branch is taken or not taken. For example,
2632   * somebody could get a reference field, check it for zero, and if the
2633   * branch is taken immediately store that register in a boolean field
2634   * since the value is known to be zero. We do not currently account for
2635   * that, and will reject the code.
2636   *
2637   * TODO: avoid re-fetching the branch target
2638   */
2639  if ((opcode_flags & Instruction::kBranch) != 0) {
2640    bool isConditional, selfOkay;
2641    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2642      /* should never happen after static verification */
2643      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2644      return false;
2645    }
2646    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2647    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2648      return false;
2649    }
2650    /* update branch target, set "changed" if appropriate */
2651    if (NULL != branch_line.get()) {
2652      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2653        return false;
2654      }
2655    } else {
2656      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2657        return false;
2658      }
2659    }
2660  }
2661
2662  /*
2663   * Handle "switch". Tag all possible branch targets.
2664   *
2665   * We've already verified that the table is structurally sound, so we
2666   * just need to walk through and tag the targets.
2667   */
2668  if ((opcode_flags & Instruction::kSwitch) != 0) {
2669    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2670    const uint16_t* switch_insns = insns + offset_to_switch;
2671    int switch_count = switch_insns[1];
2672    int offset_to_targets, targ;
2673
2674    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2675      /* 0 = sig, 1 = count, 2/3 = first key */
2676      offset_to_targets = 4;
2677    } else {
2678      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2679      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2680      offset_to_targets = 2 + 2 * switch_count;
2681    }
2682
2683    /* verify each switch target */
2684    for (targ = 0; targ < switch_count; targ++) {
2685      int offset;
2686      uint32_t abs_offset;
2687
2688      /* offsets are 32-bit, and only partly endian-swapped */
2689      offset = switch_insns[offset_to_targets + targ * 2] |
2690         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2691      abs_offset = work_insn_idx_ + offset;
2692      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2693      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2694        return false;
2695      }
2696      if (!UpdateRegisters(abs_offset, work_line_.get()))
2697        return false;
2698    }
2699  }
2700
2701  /*
2702   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2703   * "try" block when they throw, control transfers out of the method.)
2704   */
2705  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2706    bool within_catch_all = false;
2707    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2708
2709    for (; iterator.HasNext(); iterator.Next()) {
2710      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2711        within_catch_all = true;
2712      }
2713      /*
2714       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2715       * "work_regs", because at runtime the exception will be thrown before the instruction
2716       * modifies any registers.
2717       */
2718      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2719        return false;
2720      }
2721    }
2722
2723    /*
2724     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2725     * instruction. This does apply to monitor-exit because of async exception handling.
2726     */
2727    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2728      /*
2729       * The state in work_line reflects the post-execution state. If the current instruction is a
2730       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2731       * it will do so before grabbing the lock).
2732       */
2733      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2734        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2735            << "expected to be within a catch-all for an instruction where a monitor is held";
2736        return false;
2737      }
2738    }
2739  }
2740
2741  /* Handle "continue". Tag the next consecutive instruction.
2742   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2743   *        because it changes work_line_ when performing peephole optimization
2744   *        and this change should not be used in those cases.
2745   */
2746  if ((opcode_flags & Instruction::kContinue) != 0) {
2747    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2748    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2749      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2750      return false;
2751    }
2752    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2753    // next instruction isn't one.
2754    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2755      return false;
2756    }
2757    if (NULL != fallthrough_line.get()) {
2758      // Make workline consistent with fallthrough computed from peephole optimization.
2759      work_line_->CopyFromLine(fallthrough_line.get());
2760    }
2761    if (insn_flags_[next_insn_idx].IsReturn()) {
2762      // For returns we only care about the operand to the return, all other registers are dead.
2763      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2764      Instruction::Code opcode = ret_inst->Opcode();
2765      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2766        work_line_->MarkAllRegistersAsConflicts();
2767      } else {
2768        if (opcode == Instruction::RETURN_WIDE) {
2769          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2770        } else {
2771          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2772        }
2773      }
2774    }
2775    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2776    if (next_line != NULL) {
2777      // Merge registers into what we have for the next instruction,
2778      // and set the "changed" flag if needed.
2779      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2780        return false;
2781      }
2782    } else {
2783      /*
2784       * We're not recording register data for the next instruction, so we don't know what the
2785       * prior state was. We have to assume that something has changed and re-evaluate it.
2786       */
2787      insn_flags_[next_insn_idx].SetChanged();
2788    }
2789  }
2790
2791  /* If we're returning from the method, make sure monitor stack is empty. */
2792  if ((opcode_flags & Instruction::kReturn) != 0) {
2793    if (!work_line_->VerifyMonitorStackEmpty()) {
2794      return false;
2795    }
2796  }
2797
2798  /*
2799   * Update start_guess. Advance to the next instruction of that's
2800   * possible, otherwise use the branch target if one was found. If
2801   * neither of those exists we're in a return or throw; leave start_guess
2802   * alone and let the caller sort it out.
2803   */
2804  if ((opcode_flags & Instruction::kContinue) != 0) {
2805    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2806  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2807    /* we're still okay if branch_target is zero */
2808    *start_guess = work_insn_idx_ + branch_target;
2809  }
2810
2811  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2812  DCHECK(insn_flags_[*start_guess].IsOpcode());
2813
2814  return true;
2815}  // NOLINT(readability/fn_size)
2816
2817const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2818  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2819  const RegType& referrer = GetDeclaringClass();
2820  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2821  const RegType& result =
2822      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2823                                           klass->CannotBeAssignedFromOtherTypes())
2824                    : reg_types_.FromDescriptor(class_loader_, descriptor, false);
2825  if (result.IsConflict()) {
2826    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2827        << "' in " << referrer;
2828    return result;
2829  }
2830  if (klass == NULL && !result.IsUnresolvedTypes()) {
2831    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2832  }
2833  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2834  // check at runtime if access is allowed and so pass here. If result is
2835  // primitive, skip the access check.
2836  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2837      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2838    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2839                                    << referrer << "' -> '" << result << "'";
2840  }
2841  return result;
2842}
2843
2844const RegType& MethodVerifier::GetCaughtExceptionType() {
2845  const RegType* common_super = NULL;
2846  if (code_item_->tries_size_ != 0) {
2847    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2848    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2849    for (uint32_t i = 0; i < handlers_size; i++) {
2850      CatchHandlerIterator iterator(handlers_ptr);
2851      for (; iterator.HasNext(); iterator.Next()) {
2852        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2853          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2854            common_super = &reg_types_.JavaLangThrowable(false);
2855          } else {
2856            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2857            if (common_super == NULL) {
2858              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2859              // as that is caught at runtime
2860              common_super = &exception;
2861            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2862              // We don't know enough about the type and the common path merge will result in
2863              // Conflict. Fail here knowing the correct thing can be done at runtime.
2864              Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2865              return reg_types_.Conflict();
2866            } else if (common_super->Equals(exception)) {
2867              // odd case, but nothing to do
2868            } else {
2869              common_super = &common_super->Merge(exception, &reg_types_);
2870              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2871            }
2872          }
2873        }
2874      }
2875      handlers_ptr = iterator.EndDataPointer();
2876    }
2877  }
2878  if (common_super == NULL) {
2879    /* no catch blocks, or no catches with classes we can find */
2880    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2881    return reg_types_.Conflict();
2882  }
2883  return *common_super;
2884}
2885
2886mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2887                                                                    MethodType method_type) {
2888  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2889  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2890  if (klass_type.IsConflict()) {
2891    std::string append(" in attempt to access method ");
2892    append += dex_file_->GetMethodName(method_id);
2893    AppendToLastFailMessage(append);
2894    return NULL;
2895  }
2896  if (klass_type.IsUnresolvedTypes()) {
2897    return NULL;  // Can't resolve Class so no more to do here
2898  }
2899  mirror::Class* klass = klass_type.GetClass();
2900  const RegType& referrer = GetDeclaringClass();
2901  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
2902  if (res_method == NULL) {
2903    const char* name = dex_file_->GetMethodName(method_id);
2904    std::string signature(dex_file_->CreateMethodSignature(method_id.proto_idx_, NULL));
2905
2906    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2907      res_method = klass->FindDirectMethod(name, signature);
2908    } else if (method_type == METHOD_INTERFACE) {
2909      res_method = klass->FindInterfaceMethod(name, signature);
2910    } else {
2911      res_method = klass->FindVirtualMethod(name, signature);
2912    }
2913    if (res_method != NULL) {
2914      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
2915    } else {
2916      // If a virtual or interface method wasn't found with the expected type, look in
2917      // the direct methods. This can happen when the wrong invoke type is used or when
2918      // a class has changed, and will be flagged as an error in later checks.
2919      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2920        res_method = klass->FindDirectMethod(name, signature);
2921      }
2922      if (res_method == NULL) {
2923        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2924                                     << PrettyDescriptor(klass) << "." << name
2925                                     << " " << signature;
2926        return NULL;
2927      }
2928    }
2929  }
2930  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2931  // enforce them here.
2932  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2933    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2934                                      << PrettyMethod(res_method);
2935    return NULL;
2936  }
2937  // Disallow any calls to class initializers.
2938  if (MethodHelper(res_method).IsClassInitializer()) {
2939    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2940                                      << PrettyMethod(res_method);
2941    return NULL;
2942  }
2943  // Check if access is allowed.
2944  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2945    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2946                                     << " from " << referrer << ")";
2947    return res_method;
2948  }
2949  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2950  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2952                                      << PrettyMethod(res_method);
2953    return NULL;
2954  }
2955  // Check that interface methods match interface classes.
2956  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2957    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2958                                    << " is in an interface class " << PrettyClass(klass);
2959    return NULL;
2960  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2961    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2962                                    << " is in a non-interface class " << PrettyClass(klass);
2963    return NULL;
2964  }
2965  // See if the method type implied by the invoke instruction matches the access flags for the
2966  // target method.
2967  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2968      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2969      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2970      ) {
2971    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2972                                       " type of " << PrettyMethod(res_method);
2973    return NULL;
2974  }
2975  return res_method;
2976}
2977
2978mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2979                                                             MethodType method_type,
2980                                                             bool is_range,
2981                                                             bool is_super) {
2982  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
2983  // we're making.
2984  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2985  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
2986  if (res_method == NULL) {  // error or class is unresolved
2987    return NULL;
2988  }
2989
2990  // If we're using invoke-super(method), make sure that the executing method's class' superclass
2991  // has a vtable entry for the target method.
2992  if (is_super) {
2993    DCHECK(method_type == METHOD_VIRTUAL);
2994    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
2995    if (super.IsUnresolvedTypes()) {
2996      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
2997                                   << PrettyMethod(dex_method_idx_, *dex_file_)
2998                                   << " to super " << PrettyMethod(res_method);
2999      return NULL;
3000    }
3001    mirror::Class* super_klass = super.GetClass();
3002    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3003      MethodHelper mh(res_method);
3004      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3005                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3006                                   << " to super " << super
3007                                   << "." << mh.GetName()
3008                                   << mh.GetSignature();
3009      return NULL;
3010    }
3011  }
3012  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3013  // match the call to the signature. Also, we might be calling through an abstract method
3014  // definition (which doesn't have register count values).
3015  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3016  /* caught by static verifier */
3017  DCHECK(is_range || expected_args <= 5);
3018  if (expected_args > code_item_->outs_size_) {
3019    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3020        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3021    return NULL;
3022  }
3023
3024  /*
3025   * Check the "this" argument, which must be an instance of the class that declared the method.
3026   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3027   * rigorous check here (which is okay since we have to do it at runtime).
3028   */
3029  size_t actual_args = 0;
3030  if (!res_method->IsStatic()) {
3031    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3032    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3033      return NULL;
3034    }
3035    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3036      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3037      return NULL;
3038    }
3039    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3040      mirror::Class* klass = res_method->GetDeclaringClass();
3041      const RegType& res_method_class =
3042          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3043                               klass->CannotBeAssignedFromOtherTypes());
3044      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3045        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3046            << "' not instance of '" << res_method_class << "'";
3047        return NULL;
3048      }
3049    }
3050    actual_args++;
3051  }
3052  /*
3053   * Process the target method's signature. This signature may or may not
3054   * have been verified, so we can't assume it's properly formed.
3055   */
3056  MethodHelper mh(res_method);
3057  const DexFile::TypeList* params = mh.GetParameterTypeList();
3058  size_t params_size = params == NULL ? 0 : params->Size();
3059  uint32_t arg[5];
3060  if (!is_range) {
3061    inst->GetArgs(arg);
3062  }
3063  for (size_t param_index = 0; param_index < params_size; param_index++) {
3064    if (actual_args >= expected_args) {
3065      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3066          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3067          << " (where longs/doubles count twice).";
3068      return NULL;
3069    }
3070    const char* descriptor =
3071        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3072    if (descriptor == NULL) {
3073      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3074          << " missing signature component";
3075      return NULL;
3076    }
3077    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3078    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3079    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3080      return res_method;
3081    }
3082    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3083  }
3084  if (actual_args != expected_args) {
3085    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3086        << " expected " << expected_args << " arguments, found " << actual_args;
3087    return NULL;
3088  } else {
3089    return res_method;
3090  }
3091}
3092
3093mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3094                                                              RegisterLine* reg_line,
3095                                                              bool is_range) {
3096  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3097         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3098  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3099  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3100    return NULL;
3101  }
3102  mirror::Class* this_class = NULL;
3103  if (!actual_arg_type.IsUnresolvedTypes()) {
3104    this_class = actual_arg_type.GetClass();
3105  } else {
3106    const std::string& descriptor(actual_arg_type.GetDescriptor());
3107    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3108    this_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3109    if (this_class == NULL) {
3110      Thread::Current()->ClearException();
3111      // Look for a system class
3112      this_class = class_linker->FindClass(descriptor.c_str(), NULL);
3113    }
3114  }
3115  if (this_class == NULL) {
3116    return NULL;
3117  }
3118  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3119  CHECK(vtable != NULL);
3120  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3121  CHECK(vtable_index < vtable->GetLength());
3122  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3123  CHECK(!Thread::Current()->IsExceptionPending());
3124  return res_method;
3125}
3126
3127mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3128                                                                     bool is_range) {
3129  DCHECK(Runtime::Current()->IsStarted());
3130  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3131                                                             is_range);
3132  if (res_method == NULL) {
3133    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3134    return NULL;
3135  }
3136  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3137
3138  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3139  // match the call to the signature. Also, we might be calling through an abstract method
3140  // definition (which doesn't have register count values).
3141  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3142  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3143    return NULL;
3144  }
3145  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3146  /* caught by static verifier */
3147  DCHECK(is_range || expected_args <= 5);
3148  if (expected_args > code_item_->outs_size_) {
3149    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3150        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3151    return NULL;
3152  }
3153
3154  /*
3155   * Check the "this" argument, which must be an instance of the class that declared the method.
3156   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3157   * rigorous check here (which is okay since we have to do it at runtime).
3158   */
3159  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3160    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3161    return NULL;
3162  }
3163  if (!actual_arg_type.IsZero()) {
3164    mirror::Class* klass = res_method->GetDeclaringClass();
3165    const RegType& res_method_class =
3166        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3167                             klass->CannotBeAssignedFromOtherTypes());
3168    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3169      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3170          << "' not instance of '" << res_method_class << "'";
3171      return NULL;
3172    }
3173  }
3174  /*
3175   * Process the target method's signature. This signature may or may not
3176   * have been verified, so we can't assume it's properly formed.
3177   */
3178  MethodHelper mh(res_method);
3179  const DexFile::TypeList* params = mh.GetParameterTypeList();
3180  size_t params_size = params == NULL ? 0 : params->Size();
3181  uint32_t arg[5];
3182  if (!is_range) {
3183    inst->GetArgs(arg);
3184  }
3185  size_t actual_args = 1;
3186  for (size_t param_index = 0; param_index < params_size; param_index++) {
3187    if (actual_args >= expected_args) {
3188      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3189                                        << "'. Expected " << expected_args
3190                                         << " arguments, processing argument " << actual_args
3191                                        << " (where longs/doubles count twice).";
3192      return NULL;
3193    }
3194    const char* descriptor =
3195        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3196    if (descriptor == NULL) {
3197      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3198                                        << " missing signature component";
3199      return NULL;
3200    }
3201    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3202    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3203    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3204      return res_method;
3205    }
3206    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3207  }
3208  if (actual_args != expected_args) {
3209    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3210              << " expected " << expected_args << " arguments, found " << actual_args;
3211    return NULL;
3212  } else {
3213    return res_method;
3214  }
3215}
3216
3217void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3218  uint32_t type_idx;
3219  if (!is_filled) {
3220    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3221    type_idx = inst->VRegC_22c();
3222  } else if (!is_range) {
3223    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3224    type_idx = inst->VRegB_35c();
3225  } else {
3226    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3227    type_idx = inst->VRegB_3rc();
3228  }
3229  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3230  if (res_type.IsConflict()) {  // bad class
3231    DCHECK_NE(failures_.size(), 0U);
3232  } else {
3233    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3234    if (!res_type.IsArrayTypes()) {
3235      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3236    } else if (!is_filled) {
3237      /* make sure "size" register is valid type */
3238      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3239      /* set register type to array class */
3240      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3241      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3242    } else {
3243      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3244      // the list and fail. It's legal, if silly, for arg_count to be zero.
3245      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_);
3246      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3247      uint32_t arg[5];
3248      if (!is_range) {
3249        inst->GetArgs(arg);
3250      }
3251      for (size_t ui = 0; ui < arg_count; ui++) {
3252        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3253        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3254          work_line_->SetResultRegisterType(reg_types_.Conflict());
3255          return;
3256        }
3257      }
3258      // filled-array result goes into "result" register
3259      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3260      work_line_->SetResultRegisterType(precise_type);
3261    }
3262  }
3263}
3264
3265void MethodVerifier::VerifyAGet(const Instruction* inst,
3266                                const RegType& insn_type, bool is_primitive) {
3267  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3268  if (!index_type.IsArrayIndexTypes()) {
3269    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3270  } else {
3271    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3272    if (array_type.IsZero()) {
3273      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3274      // instruction type. TODO: have a proper notion of bottom here.
3275      if (!is_primitive || insn_type.IsCategory1Types()) {
3276        // Reference or category 1
3277        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3278      } else {
3279        // Category 2
3280        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3281                                        reg_types_.FromCat2ConstHi(0, false));
3282      }
3283    } else if (!array_type.IsArrayTypes()) {
3284      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3285    } else {
3286      /* verify the class */
3287      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3288      if (!component_type.IsReferenceTypes() && !is_primitive) {
3289        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3290            << " source for aget-object";
3291      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3292        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3293            << " source for category 1 aget";
3294      } else if (is_primitive && !insn_type.Equals(component_type) &&
3295                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3296                 (insn_type.IsLong() && component_type.IsDouble()))) {
3297        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3298            << " incompatible with aget of type " << insn_type;
3299      } else {
3300        // Use knowledge of the field type which is stronger than the type inferred from the
3301        // instruction, which can't differentiate object types and ints from floats, longs from
3302        // doubles.
3303        if (!component_type.IsLowHalf()) {
3304          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3305        } else {
3306          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3307                                          component_type.HighHalf(&reg_types_));
3308        }
3309      }
3310    }
3311  }
3312}
3313
3314void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3315                                        const uint32_t vregA) {
3316  // Primitive assignability rules are weaker than regular assignability rules.
3317  bool instruction_compatible;
3318  bool value_compatible;
3319  const RegType& value_type = work_line_->GetRegisterType(vregA);
3320  if (target_type.IsIntegralTypes()) {
3321    instruction_compatible = target_type.Equals(insn_type);
3322    value_compatible = value_type.IsIntegralTypes();
3323  } else if (target_type.IsFloat()) {
3324    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3325    value_compatible = value_type.IsFloatTypes();
3326  } else if (target_type.IsLong()) {
3327    instruction_compatible = insn_type.IsLong();
3328    value_compatible = value_type.IsLongTypes();
3329  } else if (target_type.IsDouble()) {
3330    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3331    value_compatible = value_type.IsDoubleTypes();
3332  } else {
3333    instruction_compatible = false;  // reference with primitive store
3334    value_compatible = false;  // unused
3335  }
3336  if (!instruction_compatible) {
3337    // This is a global failure rather than a class change failure as the instructions and
3338    // the descriptors for the type should have been consistent within the same file at
3339    // compile time.
3340    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3341        << "' but expected type '" << target_type << "'";
3342    return;
3343  }
3344  if (!value_compatible) {
3345    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3346        << " of type " << value_type << " but expected " << target_type << " for put";
3347    return;
3348  }
3349}
3350
3351void MethodVerifier::VerifyAPut(const Instruction* inst,
3352                             const RegType& insn_type, bool is_primitive) {
3353  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3354  if (!index_type.IsArrayIndexTypes()) {
3355    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3356  } else {
3357    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3358    if (array_type.IsZero()) {
3359      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3360      // instruction type.
3361    } else if (!array_type.IsArrayTypes()) {
3362      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3363    } else {
3364      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3365      const uint32_t vregA = inst->VRegA_23x();
3366      if (is_primitive) {
3367        VerifyPrimitivePut(component_type, insn_type, vregA);
3368      } else {
3369        if (!component_type.IsReferenceTypes()) {
3370          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3371              << " source for aput-object";
3372        } else {
3373          // The instruction agrees with the type of array, confirm the value to be stored does too
3374          // Note: we use the instruction type (rather than the component type) for aput-object as
3375          // incompatible classes will be caught at runtime as an array store exception
3376          work_line_->VerifyRegisterType(vregA, insn_type);
3377        }
3378      }
3379    }
3380  }
3381}
3382
3383mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3384  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3385  // Check access to class
3386  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3387  if (klass_type.IsConflict()) {  // bad class
3388    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3389                                         field_idx, dex_file_->GetFieldName(field_id),
3390                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3391    return NULL;
3392  }
3393  if (klass_type.IsUnresolvedTypes()) {
3394    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3395  }
3396  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3397                                                                               field_idx,
3398                                                                               dex_cache_,
3399                                                                               class_loader_);
3400  if (field == NULL) {
3401    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3402              << dex_file_->GetFieldName(field_id) << ") in "
3403              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3404    DCHECK(Thread::Current()->IsExceptionPending());
3405    Thread::Current()->ClearException();
3406    return NULL;
3407  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3408                                                  field->GetAccessFlags())) {
3409    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3410                                    << " from " << GetDeclaringClass();
3411    return NULL;
3412  } else if (!field->IsStatic()) {
3413    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3414    return NULL;
3415  } else {
3416    return field;
3417  }
3418}
3419
3420mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3421  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3422  // Check access to class
3423  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3424  if (klass_type.IsConflict()) {
3425    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3426                                         field_idx, dex_file_->GetFieldName(field_id),
3427                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3428    return NULL;
3429  }
3430  if (klass_type.IsUnresolvedTypes()) {
3431    return NULL;  // Can't resolve Class so no more to do here
3432  }
3433  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3434                                                                               field_idx,
3435                                                                               dex_cache_,
3436                                                                               class_loader_);
3437  if (field == NULL) {
3438    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3439              << dex_file_->GetFieldName(field_id) << ") in "
3440              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3441    DCHECK(Thread::Current()->IsExceptionPending());
3442    Thread::Current()->ClearException();
3443    return NULL;
3444  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3445                                                  field->GetAccessFlags())) {
3446    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3447                                    << " from " << GetDeclaringClass();
3448    return NULL;
3449  } else if (field->IsStatic()) {
3450    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3451                                    << " to not be static";
3452    return NULL;
3453  } else if (obj_type.IsZero()) {
3454    // Cannot infer and check type, however, access will cause null pointer exception
3455    return field;
3456  } else {
3457    mirror::Class* klass = field->GetDeclaringClass();
3458    const RegType& field_klass =
3459        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3460                             klass, klass->CannotBeAssignedFromOtherTypes());
3461    if (obj_type.IsUninitializedTypes() &&
3462        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3463            !field_klass.Equals(GetDeclaringClass()))) {
3464      // Field accesses through uninitialized references are only allowable for constructors where
3465      // the field is declared in this class
3466      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3467                                        << " of a not fully initialized object within the context"
3468                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3469      return NULL;
3470    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3471      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3472      // of C1. For resolution to occur the declared class of the field must be compatible with
3473      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3474      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3475                                  << " from object of type " << obj_type;
3476      return NULL;
3477    } else {
3478      return field;
3479    }
3480  }
3481}
3482
3483void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3484                                 bool is_primitive, bool is_static) {
3485  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3486  mirror::ArtField* field;
3487  if (is_static) {
3488    field = GetStaticField(field_idx);
3489  } else {
3490    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3491    field = GetInstanceField(object_type, field_idx);
3492  }
3493  const char* descriptor;
3494  mirror::ClassLoader* loader;
3495  if (field != NULL) {
3496    descriptor = FieldHelper(field).GetTypeDescriptor();
3497    loader = field->GetDeclaringClass()->GetClassLoader();
3498  } else {
3499    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3500    descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3501    loader = class_loader_;
3502  }
3503  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3504  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3505  if (is_primitive) {
3506    if (field_type.Equals(insn_type) ||
3507        (field_type.IsFloat() && insn_type.IsInteger()) ||
3508        (field_type.IsDouble() && insn_type.IsLong())) {
3509      // expected that read is of the correct primitive type or that int reads are reading
3510      // floats or long reads are reading doubles
3511    } else {
3512      // This is a global failure rather than a class change failure as the instructions and
3513      // the descriptors for the type should have been consistent within the same file at
3514      // compile time
3515      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3516                                        << " to be of type '" << insn_type
3517                                        << "' but found type '" << field_type << "' in get";
3518      return;
3519    }
3520  } else {
3521    if (!insn_type.IsAssignableFrom(field_type)) {
3522      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3523                                        << " to be compatible with type '" << insn_type
3524                                        << "' but found type '" << field_type
3525                                        << "' in get-object";
3526      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3527      return;
3528    }
3529  }
3530  if (!field_type.IsLowHalf()) {
3531    work_line_->SetRegisterType(vregA, field_type);
3532  } else {
3533    work_line_->SetRegisterTypeWide(vregA, field_type, field_type.HighHalf(&reg_types_));
3534  }
3535}
3536
3537void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3538                                 bool is_primitive, bool is_static) {
3539  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3540  mirror::ArtField* field;
3541  if (is_static) {
3542    field = GetStaticField(field_idx);
3543  } else {
3544    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3545    field = GetInstanceField(object_type, field_idx);
3546  }
3547  const char* descriptor;
3548  mirror::ClassLoader* loader;
3549  if (field != NULL) {
3550    descriptor = FieldHelper(field).GetTypeDescriptor();
3551    loader = field->GetDeclaringClass()->GetClassLoader();
3552  } else {
3553    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3554    descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3555    loader = class_loader_;
3556  }
3557  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3558  if (field != NULL) {
3559    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3560      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3561                                      << " from other class " << GetDeclaringClass();
3562      return;
3563    }
3564  }
3565  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3566  if (is_primitive) {
3567    VerifyPrimitivePut(field_type, insn_type, vregA);
3568  } else {
3569    if (!insn_type.IsAssignableFrom(field_type)) {
3570      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3571                                        << " to be compatible with type '" << insn_type
3572                                        << "' but found type '" << field_type
3573                                        << "' in put-object";
3574      return;
3575    }
3576    work_line_->VerifyRegisterType(vregA, field_type);
3577  }
3578}
3579
3580// Look for an instance field with this offset.
3581// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3582static mirror::ArtField* FindInstanceFieldWithOffset(const mirror::Class* klass,
3583                                                  uint32_t field_offset)
3584    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3585  const mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3586  if (instance_fields != NULL) {
3587    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3588      mirror::ArtField* field = instance_fields->Get(i);
3589      if (field->GetOffset().Uint32Value() == field_offset) {
3590        return field;
3591      }
3592    }
3593  }
3594  // We did not find field in class: look into superclass.
3595  if (klass->GetSuperClass() != NULL) {
3596    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3597  } else {
3598    return NULL;
3599  }
3600}
3601
3602// Returns the access field of a quick field access (iget/iput-quick) or NULL
3603// if it cannot be found.
3604mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3605                                                   RegisterLine* reg_line) {
3606  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3607         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3608         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3609         inst->Opcode() == Instruction::IPUT_QUICK ||
3610         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3611         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3612  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3613  mirror::Class* object_class = NULL;
3614  if (!object_type.IsUnresolvedTypes()) {
3615    object_class = object_type.GetClass();
3616  } else {
3617    // We need to resolve the class from its descriptor.
3618    const std::string& descriptor(object_type.GetDescriptor());
3619    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3620    object_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3621    if (object_class == NULL) {
3622      Thread::Current()->ClearException();
3623      // Look for a system class
3624      object_class = class_linker->FindClass(descriptor.c_str(), NULL);
3625    }
3626  }
3627  if (object_class == NULL) {
3628    // Failed to get the Class* from reg type.
3629    LOG(WARNING) << "Failed to get Class* from " << object_type;
3630    return NULL;
3631  }
3632  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3633  return FindInstanceFieldWithOffset(object_class, field_offset);
3634}
3635
3636void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3637                                     bool is_primitive) {
3638  DCHECK(Runtime::Current()->IsStarted());
3639  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3640  if (field == NULL) {
3641    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3642    return;
3643  }
3644  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3645  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3646  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3647  const uint32_t vregA = inst->VRegA_22c();
3648  if (is_primitive) {
3649    if (field_type.Equals(insn_type) ||
3650        (field_type.IsFloat() && insn_type.IsIntegralTypes()) ||
3651        (field_type.IsDouble() && insn_type.IsLongTypes())) {
3652      // expected that read is of the correct primitive type or that int reads are reading
3653      // floats or long reads are reading doubles
3654    } else {
3655      // This is a global failure rather than a class change failure as the instructions and
3656      // the descriptors for the type should have been consistent within the same file at
3657      // compile time
3658      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3659                                        << " to be of type '" << insn_type
3660                                        << "' but found type '" << field_type << "' in get";
3661      return;
3662    }
3663  } else {
3664    if (!insn_type.IsAssignableFrom(field_type)) {
3665      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3666                                        << " to be compatible with type '" << insn_type
3667                                        << "' but found type '" << field_type
3668                                        << "' in get-object";
3669      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3670      return;
3671    }
3672  }
3673  if (!field_type.IsLowHalf()) {
3674    work_line_->SetRegisterType(vregA, field_type);
3675  } else {
3676    work_line_->SetRegisterTypeWide(vregA, field_type, field_type.HighHalf(&reg_types_));
3677  }
3678}
3679
3680void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3681                                     bool is_primitive) {
3682  DCHECK(Runtime::Current()->IsStarted());
3683  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3684  if (field == NULL) {
3685    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3686    return;
3687  }
3688  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3689  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3690  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3691  if (field != NULL) {
3692    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3693      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3694                                      << " from other class " << GetDeclaringClass();
3695      return;
3696    }
3697  }
3698  const uint32_t vregA = inst->VRegA_22c();
3699  if (is_primitive) {
3700    // Primitive field assignability rules are weaker than regular assignability rules
3701    bool instruction_compatible;
3702    bool value_compatible;
3703    const RegType& value_type = work_line_->GetRegisterType(vregA);
3704    if (field_type.IsIntegralTypes()) {
3705      instruction_compatible = insn_type.IsIntegralTypes();
3706      value_compatible = value_type.IsIntegralTypes();
3707    } else if (field_type.IsFloat()) {
3708      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3709      value_compatible = value_type.IsFloatTypes();
3710    } else if (field_type.IsLong()) {
3711      instruction_compatible = insn_type.IsLong();
3712      value_compatible = value_type.IsLongTypes();
3713    } else if (field_type.IsDouble()) {
3714      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3715      value_compatible = value_type.IsDoubleTypes();
3716    } else {
3717      instruction_compatible = false;  // reference field with primitive store
3718      value_compatible = false;  // unused
3719    }
3720    if (!instruction_compatible) {
3721      // This is a global failure rather than a class change failure as the instructions and
3722      // the descriptors for the type should have been consistent within the same file at
3723      // compile time
3724      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3725                                        << " to be of type '" << insn_type
3726                                        << "' but found type '" << field_type
3727                                        << "' in put";
3728      return;
3729    }
3730    if (!value_compatible) {
3731      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3732          << " of type " << value_type
3733          << " but expected " << field_type
3734          << " for store to " << PrettyField(field) << " in put";
3735      return;
3736    }
3737  } else {
3738    if (!insn_type.IsAssignableFrom(field_type)) {
3739      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3740                                        << " to be compatible with type '" << insn_type
3741                                        << "' but found type '" << field_type
3742                                        << "' in put-object";
3743      return;
3744    }
3745    work_line_->VerifyRegisterType(vregA, field_type);
3746  }
3747}
3748
3749bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3750  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3751    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3752    return false;
3753  }
3754  return true;
3755}
3756
3757bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3758  bool changed = true;
3759  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3760  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3761    /*
3762     * We haven't processed this instruction before, and we haven't touched the registers here, so
3763     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3764     * only way a register can transition out of "unknown", so this is not just an optimization.)
3765     */
3766    if (!insn_flags_[next_insn].IsReturn()) {
3767      target_line->CopyFromLine(merge_line);
3768    } else {
3769      // Verify that the monitor stack is empty on return.
3770      if (!merge_line->VerifyMonitorStackEmpty()) {
3771        return false;
3772      }
3773      // For returns we only care about the operand to the return, all other registers are dead.
3774      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3775      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3776      Instruction::Code opcode = ret_inst->Opcode();
3777      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3778        target_line->MarkAllRegistersAsConflicts();
3779      } else {
3780        target_line->CopyFromLine(merge_line);
3781        if (opcode == Instruction::RETURN_WIDE) {
3782          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3783        } else {
3784          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3785        }
3786      }
3787    }
3788  } else {
3789    UniquePtr<RegisterLine> copy(gDebugVerify ?
3790                                 new RegisterLine(target_line->NumRegs(), this) :
3791                                 NULL);
3792    if (gDebugVerify) {
3793      copy->CopyFromLine(target_line);
3794    }
3795    changed = target_line->MergeRegisters(merge_line);
3796    if (have_pending_hard_failure_) {
3797      return false;
3798    }
3799    if (gDebugVerify && changed) {
3800      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3801                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3802                      << *copy.get() << "  MERGE\n"
3803                      << *merge_line << "  ==\n"
3804                      << *target_line << "\n";
3805    }
3806  }
3807  if (changed) {
3808    insn_flags_[next_insn].SetChanged();
3809  }
3810  return true;
3811}
3812
3813InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3814  return &insn_flags_[work_insn_idx_];
3815}
3816
3817const RegType& MethodVerifier::GetMethodReturnType() {
3818  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3819  const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3820  uint16_t return_type_idx = proto_id.return_type_idx_;
3821  const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3822  return reg_types_.FromDescriptor(class_loader_, descriptor, false);
3823}
3824
3825const RegType& MethodVerifier::GetDeclaringClass() {
3826  if (declaring_class_ == NULL) {
3827    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3828    const char* descriptor
3829        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3830    if (mirror_method_ != NULL) {
3831      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3832      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3833                                               klass->CannotBeAssignedFromOtherTypes());
3834    } else {
3835      declaring_class_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3836    }
3837  }
3838  return *declaring_class_;
3839}
3840
3841void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3842                                       size_t* log2_max_gc_pc) {
3843  size_t local_gc_points = 0;
3844  size_t max_insn = 0;
3845  size_t max_ref_reg = -1;
3846  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3847    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3848      local_gc_points++;
3849      max_insn = i;
3850      RegisterLine* line = reg_table_.GetLine(i);
3851      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3852    }
3853  }
3854  *gc_points = local_gc_points;
3855  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3856  size_t i = 0;
3857  while ((1U << i) <= max_insn) {
3858    i++;
3859  }
3860  *log2_max_gc_pc = i;
3861}
3862
3863MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3864  /*
3865   * Walks over the method code and adds any cast instructions in which
3866   * the type cast is implicit to a set, which is used in the code generation
3867   * to elide these casts.
3868   */
3869  if (!failure_messages_.empty()) {
3870    return NULL;
3871  }
3872  UniquePtr<MethodSafeCastSet> mscs;
3873  const Instruction* inst = Instruction::At(code_item_->insns_);
3874  const Instruction* end = Instruction::At(code_item_->insns_ +
3875                                           code_item_->insns_size_in_code_units_);
3876
3877  for (; inst < end; inst = inst->Next()) {
3878    if (Instruction::CHECK_CAST != inst->Opcode()) {
3879      continue;
3880    }
3881    uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3882    RegisterLine* line = reg_table_.GetLine(dex_pc);
3883    const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3884    const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3885    if (cast_type.IsStrictlyAssignableFrom(reg_type)) {
3886      if (mscs.get() == NULL) {
3887        mscs.reset(new MethodSafeCastSet());
3888      }
3889      mscs->insert(dex_pc);
3890    }
3891  }
3892  return mscs.release();
3893}
3894
3895MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
3896  // It is risky to rely on reg_types for sharpening in cases of soft
3897  // verification, we might end up sharpening to a wrong implementation. Just abort.
3898  if (!failure_messages_.empty()) {
3899    return NULL;
3900  }
3901
3902  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
3903  const uint16_t* insns = code_item_->insns_;
3904  const Instruction* inst = Instruction::At(insns);
3905  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
3906
3907  for (; inst < end; inst = inst->Next()) {
3908    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
3909        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
3910    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
3911        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3912
3913    if (!is_interface && !is_virtual) {
3914      continue;
3915    }
3916    // Get reg type for register holding the reference to the object that will be dispatched upon.
3917    uint32_t dex_pc = inst->GetDexPc(insns);
3918    RegisterLine* line = reg_table_.GetLine(dex_pc);
3919    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
3920        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
3921    const RegType&
3922        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
3923
3924    if (!reg_type.HasClass()) {
3925      // We will compute devirtualization information only when we know the Class of the reg type.
3926      continue;
3927    }
3928    mirror::Class* reg_class = reg_type.GetClass();
3929    if (reg_class->IsInterface()) {
3930      // We can't devirtualize when the known type of the register is an interface.
3931      continue;
3932    }
3933    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
3934      // We can't devirtualize abstract classes except on arrays of abstract classes.
3935      continue;
3936    }
3937    mirror::ArtMethod* abstract_method =
3938        dex_cache_->GetResolvedMethod(is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
3939    if (abstract_method == NULL) {
3940      // If the method is not found in the cache this means that it was never found
3941      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
3942      continue;
3943    }
3944    // Find the concrete method.
3945    mirror::ArtMethod* concrete_method = NULL;
3946    if (is_interface) {
3947      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
3948    }
3949    if (is_virtual) {
3950      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
3951    }
3952    if (concrete_method == NULL || concrete_method->IsAbstract()) {
3953      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
3954      continue;
3955    }
3956    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
3957        concrete_method->GetDeclaringClass()->IsFinal()) {
3958      // If we knew exactly the class being dispatched upon, or if the target method cannot be
3959      // overridden record the target to be used in the compiler driver.
3960      if (pc_to_concrete_method_map.get() == NULL) {
3961        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
3962      }
3963      MethodReference concrete_ref(
3964          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
3965          concrete_method->GetDexMethodIndex());
3966      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
3967    }
3968  }
3969  return pc_to_concrete_method_map.release();
3970}
3971
3972const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
3973  size_t num_entries, ref_bitmap_bits, pc_bits;
3974  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
3975  // There's a single byte to encode the size of each bitmap
3976  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
3977    // TODO: either a better GC map format or per method failures
3978    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3979       << ref_bitmap_bits << " registers";
3980    return NULL;
3981  }
3982  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
3983  // There are 2 bytes to encode the number of entries
3984  if (num_entries >= 65536) {
3985    // TODO: either a better GC map format or per method failures
3986    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3987       << num_entries << " entries";
3988    return NULL;
3989  }
3990  size_t pc_bytes;
3991  RegisterMapFormat format;
3992  if (pc_bits <= 8) {
3993    format = kRegMapFormatCompact8;
3994    pc_bytes = 1;
3995  } else if (pc_bits <= 16) {
3996    format = kRegMapFormatCompact16;
3997    pc_bytes = 2;
3998  } else {
3999    // TODO: either a better GC map format or per method failures
4000    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4001       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
4002    return NULL;
4003  }
4004  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
4005  std::vector<uint8_t>* table = new std::vector<uint8_t>;
4006  if (table == NULL) {
4007    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
4008    return NULL;
4009  }
4010  table->reserve(table_size);
4011  // Write table header
4012  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
4013                             ~DexPcToReferenceMap::kRegMapFormatMask));
4014  table->push_back(ref_bitmap_bytes & 0xFF);
4015  table->push_back(num_entries & 0xFF);
4016  table->push_back((num_entries >> 8) & 0xFF);
4017  // Write table data
4018  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4019    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4020      table->push_back(i & 0xFF);
4021      if (pc_bytes == 2) {
4022        table->push_back((i >> 8) & 0xFF);
4023      }
4024      RegisterLine* line = reg_table_.GetLine(i);
4025      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
4026    }
4027  }
4028  DCHECK_EQ(table->size(), table_size);
4029  return table;
4030}
4031
4032void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
4033  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
4034  // that the table data is well formed and all references are marked (or not) in the bitmap
4035  DexPcToReferenceMap map(&data[0], data.size());
4036  size_t map_index = 0;
4037  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4038    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
4039    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4040      CHECK_LT(map_index, map.NumEntries());
4041      CHECK_EQ(map.GetDexPc(map_index), i);
4042      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
4043      map_index++;
4044      RegisterLine* line = reg_table_.GetLine(i);
4045      for (size_t j = 0; j < code_item_->registers_size_; j++) {
4046        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
4047          CHECK_LT(j / 8, map.RegWidth());
4048          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
4049        } else if ((j / 8) < map.RegWidth()) {
4050          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
4051        } else {
4052          // If a register doesn't contain a reference then the bitmap may be shorter than the line
4053        }
4054      }
4055    } else {
4056      CHECK(reg_bitmap == NULL);
4057    }
4058  }
4059}
4060
4061void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>& gc_map) {
4062  DCHECK(Runtime::Current()->IsCompiler());
4063  {
4064    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4065    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
4066    if (it != dex_gc_maps_->end()) {
4067      delete it->second;
4068      dex_gc_maps_->erase(it);
4069    }
4070    dex_gc_maps_->Put(ref, &gc_map);
4071  }
4072  DCHECK(GetDexGcMap(ref) != NULL);
4073}
4074
4075
4076void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
4077  DCHECK(Runtime::Current()->IsCompiler());
4078  WriterMutexLock mu(Thread::Current(), *safecast_map_lock_);
4079  SafeCastMap::iterator it = safecast_map_->find(ref);
4080  if (it != safecast_map_->end()) {
4081    delete it->second;
4082    safecast_map_->erase(it);
4083  }
4084  safecast_map_->Put(ref, cast_set);
4085  DCHECK(safecast_map_->find(ref) != safecast_map_->end());
4086}
4087
4088bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
4089  DCHECK(Runtime::Current()->IsCompiler());
4090  ReaderMutexLock mu(Thread::Current(), *safecast_map_lock_);
4091  SafeCastMap::const_iterator it = safecast_map_->find(ref);
4092  if (it == safecast_map_->end()) {
4093    return false;
4094  }
4095
4096  // Look up the cast address in the set of safe casts
4097  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
4098  return cast_it != it->second->end();
4099}
4100
4101const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
4102  DCHECK(Runtime::Current()->IsCompiler());
4103  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4104  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
4105  CHECK(it != dex_gc_maps_->end())
4106    << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
4107  CHECK(it->second != NULL);
4108  return it->second;
4109}
4110
4111void  MethodVerifier::SetDevirtMap(MethodReference ref,
4112                                   const PcToConcreteMethodMap* devirt_map) {
4113  DCHECK(Runtime::Current()->IsCompiler());
4114  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4115  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
4116  if (it != devirt_maps_->end()) {
4117    delete it->second;
4118    devirt_maps_->erase(it);
4119  }
4120
4121  devirt_maps_->Put(ref, devirt_map);
4122  DCHECK(devirt_maps_->find(ref) != devirt_maps_->end());
4123}
4124
4125const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
4126                                                                    uint32_t dex_pc) {
4127  DCHECK(Runtime::Current()->IsCompiler());
4128  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4129  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
4130  if (it == devirt_maps_->end()) {
4131    return NULL;
4132  }
4133
4134  // Look up the PC in the map, get the concrete method to execute and return its reference.
4135  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method
4136      = it->second->find(dex_pc);
4137  if (pc_to_concrete_method != it->second->end()) {
4138    return &(pc_to_concrete_method->second);
4139  } else {
4140    return NULL;
4141  }
4142}
4143
4144std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4145  RegisterLine* line = reg_table_.GetLine(dex_pc);
4146  std::vector<int32_t> result;
4147  for (size_t i = 0; i < line->NumRegs(); ++i) {
4148    const RegType& type = line->GetRegisterType(i);
4149    if (type.IsConstant()) {
4150      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4151      result.push_back(type.ConstantValue());
4152    } else if (type.IsConstantLo()) {
4153      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4154      result.push_back(type.ConstantValueLo());
4155    } else if (type.IsConstantHi()) {
4156      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4157      result.push_back(type.ConstantValueHi());
4158    } else if (type.IsIntegralTypes()) {
4159      result.push_back(kIntVReg);
4160      result.push_back(0);
4161    } else if (type.IsFloat()) {
4162      result.push_back(kFloatVReg);
4163      result.push_back(0);
4164    } else if (type.IsLong()) {
4165      result.push_back(kLongLoVReg);
4166      result.push_back(0);
4167      result.push_back(kLongHiVReg);
4168      result.push_back(0);
4169      ++i;
4170    } else if (type.IsDouble()) {
4171      result.push_back(kDoubleLoVReg);
4172      result.push_back(0);
4173      result.push_back(kDoubleHiVReg);
4174      result.push_back(0);
4175      ++i;
4176    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4177      result.push_back(kUndefined);
4178      result.push_back(0);
4179    } else {
4180      CHECK(type.IsNonZeroReferenceTypes());
4181      result.push_back(kReferenceVReg);
4182      result.push_back(0);
4183    }
4184  }
4185  return result;
4186}
4187
4188bool MethodVerifier::IsCandidateForCompilation(MethodReference& method_ref,
4189                                               const uint32_t access_flags) {
4190#ifdef ART_SEA_IR_MODE
4191    bool use_sea = Runtime::Current()->IsSeaIRMode();
4192    use_sea = use_sea && (std::string::npos != PrettyMethod(
4193                          method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci"));
4194    if (use_sea) return true;
4195#endif
4196  // Don't compile class initializers, ever.
4197  if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) {
4198    return false;
4199  }
4200  return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly);
4201}
4202
4203ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4204MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4205
4206ReaderWriterMutex* MethodVerifier::safecast_map_lock_ = NULL;
4207MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4208
4209ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4210MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4211
4212ReaderWriterMutex* MethodVerifier::rejected_classes_lock_ = NULL;
4213MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4214
4215void MethodVerifier::Init() {
4216  if (Runtime::Current()->IsCompiler()) {
4217    dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4218    Thread* self = Thread::Current();
4219    {
4220      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4221      dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4222    }
4223
4224    safecast_map_lock_ = new ReaderWriterMutex("verifier Cast Elision lock");
4225    {
4226      WriterMutexLock mu(self, *safecast_map_lock_);
4227      safecast_map_ = new MethodVerifier::SafeCastMap();
4228    }
4229
4230    devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4231
4232    {
4233      WriterMutexLock mu(self, *devirt_maps_lock_);
4234      devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4235    }
4236
4237    rejected_classes_lock_ = new ReaderWriterMutex("verifier rejected classes lock");
4238    {
4239      WriterMutexLock mu(self, *rejected_classes_lock_);
4240      rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4241    }
4242  }
4243  art::verifier::RegTypeCache::Init();
4244}
4245
4246void MethodVerifier::Shutdown() {
4247  if (Runtime::Current()->IsCompiler()) {
4248    Thread* self = Thread::Current();
4249    {
4250      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4251      STLDeleteValues(dex_gc_maps_);
4252      delete dex_gc_maps_;
4253      dex_gc_maps_ = NULL;
4254    }
4255    delete dex_gc_maps_lock_;
4256    dex_gc_maps_lock_ = NULL;
4257
4258    {
4259      WriterMutexLock mu(self, *safecast_map_lock_);
4260      STLDeleteValues(safecast_map_);
4261      delete safecast_map_;
4262      safecast_map_ = NULL;
4263    }
4264    delete safecast_map_lock_;
4265    safecast_map_lock_ = NULL;
4266
4267    {
4268      WriterMutexLock mu(self, *devirt_maps_lock_);
4269      STLDeleteValues(devirt_maps_);
4270      delete devirt_maps_;
4271      devirt_maps_ = NULL;
4272    }
4273    delete devirt_maps_lock_;
4274    devirt_maps_lock_ = NULL;
4275
4276    {
4277      WriterMutexLock mu(self, *rejected_classes_lock_);
4278      delete rejected_classes_;
4279      rejected_classes_ = NULL;
4280    }
4281    delete rejected_classes_lock_;
4282    rejected_classes_lock_ = NULL;
4283  }
4284  verifier::RegTypeCache::ShutDown();
4285}
4286
4287void MethodVerifier::AddRejectedClass(ClassReference ref) {
4288  DCHECK(Runtime::Current()->IsCompiler());
4289  {
4290    WriterMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4291    rejected_classes_->insert(ref);
4292  }
4293  CHECK(IsClassRejected(ref));
4294}
4295
4296bool MethodVerifier::IsClassRejected(ClassReference ref) {
4297  DCHECK(Runtime::Current()->IsCompiler());
4298  ReaderMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4299  return (rejected_classes_->find(ref) != rejected_classes_->end());
4300}
4301
4302}  // namespace verifier
4303}  // namespace art
4304