method_verifier.cc revision f72a11dd4b0dd86bc4b1baa37bfa47fc8d5572b5
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "handle_scope-inl.h"
46#include "verifier/dex_gc_map.h"
47
48namespace art {
49namespace verifier {
50
51static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
52static constexpr bool gDebugVerify = false;
53// TODO: Add a constant to method_verifier to turn on verbose logging?
54
55void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
56                                 uint32_t insns_size, uint16_t registers_size,
57                                 MethodVerifier* verifier) {
58  DCHECK_GT(insns_size, 0U);
59  register_lines_.reset(new RegisterLine*[insns_size]());
60  size_ = insns_size;
61  for (uint32_t i = 0; i < insns_size; i++) {
62    bool interesting = false;
63    switch (mode) {
64      case kTrackRegsAll:
65        interesting = flags[i].IsOpcode();
66        break;
67      case kTrackCompilerInterestPoints:
68        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
69        break;
70      case kTrackRegsBranches:
71        interesting = flags[i].IsBranchTarget();
72        break;
73      default:
74        break;
75    }
76    if (interesting) {
77      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
78    }
79  }
80}
81
82PcToRegisterLineTable::~PcToRegisterLineTable() {
83  for (size_t i = 0; i < size_; i++) {
84    delete register_lines_[i];
85    if (kIsDebugBuild) {
86      register_lines_[i] = nullptr;
87    }
88  }
89}
90
91// Note: returns true on failure.
92ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
93                                             const char* error_msg, uint32_t work_insn_idx) {
94  if (kIsDebugBuild) {
95    // In a debug build, abort if the error condition is wrong.
96    DCHECK(condition) << error_msg << work_insn_idx;
97  } else {
98    // In a non-debug build, just fail the class.
99    if (!condition) {
100      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
101      return true;
102    }
103  }
104
105  return false;
106}
107
108MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
109                                                        mirror::Class* klass,
110                                                        bool allow_soft_failures,
111                                                        std::string* error) {
112  if (klass->IsVerified()) {
113    return kNoFailure;
114  }
115  bool early_failure = false;
116  std::string failure_message;
117  const DexFile& dex_file = klass->GetDexFile();
118  const DexFile::ClassDef* class_def = klass->GetClassDef();
119  mirror::Class* super = klass->GetSuperClass();
120  std::string temp;
121  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
122    early_failure = true;
123    failure_message = " that has no super class";
124  } else if (super != nullptr && super->IsFinal()) {
125    early_failure = true;
126    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
127  } else if (class_def == nullptr) {
128    early_failure = true;
129    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
130  }
131  if (early_failure) {
132    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
133    if (Runtime::Current()->IsCompiler()) {
134      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
135      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
136    }
137    return kHardFailure;
138  }
139  StackHandleScope<2> hs(self);
140  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
141  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
142  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
143}
144
145MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
146                                                        const DexFile* dex_file,
147                                                        Handle<mirror::DexCache> dex_cache,
148                                                        Handle<mirror::ClassLoader> class_loader,
149                                                        const DexFile::ClassDef* class_def,
150                                                        bool allow_soft_failures,
151                                                        std::string* error) {
152  DCHECK(class_def != nullptr);
153  const uint8_t* class_data = dex_file->GetClassData(*class_def);
154  if (class_data == nullptr) {
155    // empty class, probably a marker interface
156    return kNoFailure;
157  }
158  ClassDataItemIterator it(*dex_file, class_data);
159  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
160    it.Next();
161  }
162  size_t error_count = 0;
163  bool hard_fail = false;
164  ClassLinker* linker = Runtime::Current()->GetClassLinker();
165  int64_t previous_direct_method_idx = -1;
166  while (it.HasNextDirectMethod()) {
167    self->AllowThreadSuspension();
168    uint32_t method_idx = it.GetMemberIndex();
169    if (method_idx == previous_direct_method_idx) {
170      // smali can create dex files with two encoded_methods sharing the same method_idx
171      // http://code.google.com/p/smali/issues/detail?id=119
172      it.Next();
173      continue;
174    }
175    previous_direct_method_idx = method_idx;
176    InvokeType type = it.GetMethodInvokeType(*class_def);
177    mirror::ArtMethod* method =
178        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
179                              NullHandle<mirror::ArtMethod>(), type);
180    if (method == nullptr) {
181      DCHECK(self->IsExceptionPending());
182      // We couldn't resolve the method, but continue regardless.
183      self->ClearException();
184    }
185    StackHandleScope<1> hs(self);
186    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
187    MethodVerifier::FailureKind result = VerifyMethod(self,
188                                                      method_idx,
189                                                      dex_file,
190                                                      dex_cache,
191                                                      class_loader,
192                                                      class_def,
193                                                      it.GetMethodCodeItem(),
194                                                      h_method,
195                                                      it.GetMethodAccessFlags(),
196                                                      allow_soft_failures,
197                                                      false);
198    if (result != kNoFailure) {
199      if (result == kHardFailure) {
200        hard_fail = true;
201        if (error_count > 0) {
202          *error += "\n";
203        }
204        *error = "Verifier rejected class ";
205        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
206        *error += " due to bad method ";
207        *error += PrettyMethod(method_idx, *dex_file);
208      }
209      ++error_count;
210    }
211    it.Next();
212  }
213  int64_t previous_virtual_method_idx = -1;
214  while (it.HasNextVirtualMethod()) {
215    self->AllowThreadSuspension();
216    uint32_t method_idx = it.GetMemberIndex();
217    if (method_idx == previous_virtual_method_idx) {
218      // smali can create dex files with two encoded_methods sharing the same method_idx
219      // http://code.google.com/p/smali/issues/detail?id=119
220      it.Next();
221      continue;
222    }
223    previous_virtual_method_idx = method_idx;
224    InvokeType type = it.GetMethodInvokeType(*class_def);
225    mirror::ArtMethod* method =
226        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
227                              NullHandle<mirror::ArtMethod>(), type);
228    if (method == nullptr) {
229      DCHECK(self->IsExceptionPending());
230      // We couldn't resolve the method, but continue regardless.
231      self->ClearException();
232    }
233    StackHandleScope<1> hs(self);
234    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
235    MethodVerifier::FailureKind result = VerifyMethod(self,
236                                                      method_idx,
237                                                      dex_file,
238                                                      dex_cache,
239                                                      class_loader,
240                                                      class_def,
241                                                      it.GetMethodCodeItem(),
242                                                      h_method,
243                                                      it.GetMethodAccessFlags(),
244                                                      allow_soft_failures,
245                                                      false);
246    if (result != kNoFailure) {
247      if (result == kHardFailure) {
248        hard_fail = true;
249        if (error_count > 0) {
250          *error += "\n";
251        }
252        *error = "Verifier rejected class ";
253        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
254        *error += " due to bad method ";
255        *error += PrettyMethod(method_idx, *dex_file);
256      }
257      ++error_count;
258    }
259    it.Next();
260  }
261  if (error_count == 0) {
262    return kNoFailure;
263  } else {
264    return hard_fail ? kHardFailure : kSoftFailure;
265  }
266}
267
268MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
269                                                         const DexFile* dex_file,
270                                                         Handle<mirror::DexCache> dex_cache,
271                                                         Handle<mirror::ClassLoader> class_loader,
272                                                         const DexFile::ClassDef* class_def,
273                                                         const DexFile::CodeItem* code_item,
274                                                         Handle<mirror::ArtMethod> method,
275                                                         uint32_t method_access_flags,
276                                                         bool allow_soft_failures,
277                                                         bool need_precise_constants) {
278  MethodVerifier::FailureKind result = kNoFailure;
279  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
280
281  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
282                          method_idx, method, method_access_flags, true, allow_soft_failures,
283                          need_precise_constants);
284  if (verifier.Verify()) {
285    // Verification completed, however failures may be pending that didn't cause the verification
286    // to hard fail.
287    CHECK(!verifier.have_pending_hard_failure_);
288    if (verifier.failures_.size() != 0) {
289      if (VLOG_IS_ON(verifier)) {
290          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
291                                << PrettyMethod(method_idx, *dex_file) << "\n");
292      }
293      result = kSoftFailure;
294    }
295  } else {
296    // Bad method data.
297    CHECK_NE(verifier.failures_.size(), 0U);
298    CHECK(verifier.have_pending_hard_failure_);
299    verifier.DumpFailures(LOG(INFO) << "Verification error in "
300                                    << PrettyMethod(method_idx, *dex_file) << "\n");
301    if (gDebugVerify) {
302      std::cout << "\n" << verifier.info_messages_.str();
303      verifier.Dump(std::cout);
304    }
305    result = kHardFailure;
306  }
307  if (kTimeVerifyMethod) {
308    uint64_t duration_ns = NanoTime() - start_ns;
309    if (duration_ns > MsToNs(100)) {
310      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
311                   << " took " << PrettyDuration(duration_ns);
312    }
313  }
314  return result;
315}
316
317MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
318                                         const DexFile* dex_file,
319                                         Handle<mirror::DexCache> dex_cache,
320                                         Handle<mirror::ClassLoader> class_loader,
321                                         const DexFile::ClassDef* class_def,
322                                         const DexFile::CodeItem* code_item,
323                                         Handle<mirror::ArtMethod> method,
324                                         uint32_t method_access_flags) {
325  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
326                                                class_def, code_item, dex_method_idx, method,
327                                                method_access_flags, true, true, true, true);
328  verifier->Verify();
329  verifier->DumpFailures(os);
330  os << verifier->info_messages_.str();
331  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
332  // and querying any info is dangerous/can abort.
333  if (verifier->have_pending_hard_failure_) {
334    delete verifier;
335    return nullptr;
336  } else {
337    verifier->Dump(os);
338    return verifier;
339  }
340}
341
342MethodVerifier::MethodVerifier(Thread* self,
343                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
344                               Handle<mirror::ClassLoader> class_loader,
345                               const DexFile::ClassDef* class_def,
346                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
347                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
348                               bool can_load_classes, bool allow_soft_failures,
349                               bool need_precise_constants, bool verify_to_dump)
350    : self_(self),
351      reg_types_(can_load_classes),
352      work_insn_idx_(-1),
353      dex_method_idx_(dex_method_idx),
354      mirror_method_(method),
355      method_access_flags_(method_access_flags),
356      return_type_(nullptr),
357      dex_file_(dex_file),
358      dex_cache_(dex_cache),
359      class_loader_(class_loader),
360      class_def_(class_def),
361      code_item_(code_item),
362      declaring_class_(nullptr),
363      interesting_dex_pc_(-1),
364      monitor_enter_dex_pcs_(nullptr),
365      have_pending_hard_failure_(false),
366      have_pending_runtime_throw_failure_(false),
367      new_instance_count_(0),
368      monitor_enter_count_(0),
369      can_load_classes_(can_load_classes),
370      allow_soft_failures_(allow_soft_failures),
371      need_precise_constants_(need_precise_constants),
372      has_check_casts_(false),
373      has_virtual_or_interface_invokes_(false),
374      verify_to_dump_(verify_to_dump) {
375  Runtime::Current()->AddMethodVerifier(this);
376  DCHECK(class_def != nullptr);
377}
378
379MethodVerifier::~MethodVerifier() {
380  Runtime::Current()->RemoveMethodVerifier(this);
381  STLDeleteElements(&failure_messages_);
382}
383
384void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
385                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
386  Thread* self = Thread::Current();
387  StackHandleScope<3> hs(self);
388  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
389  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
390  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
391  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
392                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
393                          false, true, false);
394  verifier.interesting_dex_pc_ = dex_pc;
395  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
396  verifier.FindLocksAtDexPc();
397}
398
399static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
400  const Instruction* inst = Instruction::At(code_item->insns_);
401
402  uint32_t insns_size = code_item->insns_size_in_code_units_;
403  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
404    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
405      return true;
406    }
407
408    dex_pc += inst->SizeInCodeUnits();
409    inst = inst->Next();
410  }
411
412  return false;
413}
414
415void MethodVerifier::FindLocksAtDexPc() {
416  CHECK(monitor_enter_dex_pcs_ != nullptr);
417  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
418
419  // Quick check whether there are any monitor_enter instructions at all.
420  if (!HasMonitorEnterInstructions(code_item_)) {
421    return;
422  }
423
424  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
425  // verification. In practice, the phase we want relies on data structures set up by all the
426  // earlier passes, so we just run the full method verification and bail out early when we've
427  // got what we wanted.
428  Verify();
429}
430
431mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
432                                                           uint32_t dex_pc) {
433  Thread* self = Thread::Current();
434  StackHandleScope<3> hs(self);
435  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
436  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
437  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
438  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
439                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
440                          true, true, false);
441  return verifier.FindAccessedFieldAtDexPc(dex_pc);
442}
443
444mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
445  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
446
447  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
448  // verification. In practice, the phase we want relies on data structures set up by all the
449  // earlier passes, so we just run the full method verification and bail out early when we've
450  // got what we wanted.
451  bool success = Verify();
452  if (!success) {
453    return nullptr;
454  }
455  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
456  if (register_line == nullptr) {
457    return nullptr;
458  }
459  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
460  return GetQuickFieldAccess(inst, register_line);
461}
462
463mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
464                                                            uint32_t dex_pc) {
465  Thread* self = Thread::Current();
466  StackHandleScope<3> hs(self);
467  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
468  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
469  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
470  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
471                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
472                          true, true, false);
473  return verifier.FindInvokedMethodAtDexPc(dex_pc);
474}
475
476mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
477  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
478
479  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
480  // verification. In practice, the phase we want relies on data structures set up by all the
481  // earlier passes, so we just run the full method verification and bail out early when we've
482  // got what we wanted.
483  bool success = Verify();
484  if (!success) {
485    return nullptr;
486  }
487  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
488  if (register_line == nullptr) {
489    return nullptr;
490  }
491  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
492  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
493  return GetQuickInvokedMethod(inst, register_line, is_range);
494}
495
496bool MethodVerifier::Verify() {
497  // If there aren't any instructions, make sure that's expected, then exit successfully.
498  if (code_item_ == nullptr) {
499    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
500      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
501      return false;
502    } else {
503      return true;
504    }
505  }
506  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
507  if (code_item_->ins_size_ > code_item_->registers_size_) {
508    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
509                                      << " regs=" << code_item_->registers_size_;
510    return false;
511  }
512  // Allocate and initialize an array to hold instruction data.
513  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
514  // Run through the instructions and see if the width checks out.
515  bool result = ComputeWidthsAndCountOps();
516  // Flag instructions guarded by a "try" block and check exception handlers.
517  result = result && ScanTryCatchBlocks();
518  // Perform static instruction verification.
519  result = result && VerifyInstructions();
520  // Perform code-flow analysis and return.
521  result = result && VerifyCodeFlow();
522  // Compute information for compiler.
523  if (result && Runtime::Current()->IsCompiler()) {
524    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
525  }
526  return result;
527}
528
529std::ostream& MethodVerifier::Fail(VerifyError error) {
530  switch (error) {
531    case VERIFY_ERROR_NO_CLASS:
532    case VERIFY_ERROR_NO_FIELD:
533    case VERIFY_ERROR_NO_METHOD:
534    case VERIFY_ERROR_ACCESS_CLASS:
535    case VERIFY_ERROR_ACCESS_FIELD:
536    case VERIFY_ERROR_ACCESS_METHOD:
537    case VERIFY_ERROR_INSTANTIATION:
538    case VERIFY_ERROR_CLASS_CHANGE:
539      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
540        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
541        // class change and instantiation errors into soft verification errors so that we re-verify
542        // at runtime. We may fail to find or to agree on access because of not yet available class
543        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
544        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
545        // paths" that dynamically perform the verification and cause the behavior to be that akin
546        // to an interpreter.
547        error = VERIFY_ERROR_BAD_CLASS_SOFT;
548      } else {
549        // If we fail again at runtime, mark that this instruction would throw and force this
550        // method to be executed using the interpreter with checks.
551        have_pending_runtime_throw_failure_ = true;
552      }
553      break;
554      // Indication that verification should be retried at runtime.
555    case VERIFY_ERROR_BAD_CLASS_SOFT:
556      if (!allow_soft_failures_) {
557        have_pending_hard_failure_ = true;
558      }
559      break;
560      // Hard verification failures at compile time will still fail at runtime, so the class is
561      // marked as rejected to prevent it from being compiled.
562    case VERIFY_ERROR_BAD_CLASS_HARD: {
563      if (Runtime::Current()->IsCompiler()) {
564        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
565        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
566      }
567      have_pending_hard_failure_ = true;
568      break;
569    }
570  }
571  failures_.push_back(error);
572  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
573                                    work_insn_idx_));
574  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
575  failure_messages_.push_back(failure_message);
576  return *failure_message;
577}
578
579std::ostream& MethodVerifier::LogVerifyInfo() {
580  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
581                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
582}
583
584void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
585  size_t failure_num = failure_messages_.size();
586  DCHECK_NE(failure_num, 0U);
587  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
588  prepend += last_fail_message->str();
589  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
590  delete last_fail_message;
591}
592
593void MethodVerifier::AppendToLastFailMessage(std::string append) {
594  size_t failure_num = failure_messages_.size();
595  DCHECK_NE(failure_num, 0U);
596  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
597  (*last_fail_message) << append;
598}
599
600bool MethodVerifier::ComputeWidthsAndCountOps() {
601  const uint16_t* insns = code_item_->insns_;
602  size_t insns_size = code_item_->insns_size_in_code_units_;
603  const Instruction* inst = Instruction::At(insns);
604  size_t new_instance_count = 0;
605  size_t monitor_enter_count = 0;
606  size_t dex_pc = 0;
607
608  while (dex_pc < insns_size) {
609    Instruction::Code opcode = inst->Opcode();
610    switch (opcode) {
611      case Instruction::APUT_OBJECT:
612      case Instruction::CHECK_CAST:
613        has_check_casts_ = true;
614        break;
615      case Instruction::INVOKE_VIRTUAL:
616      case Instruction::INVOKE_VIRTUAL_RANGE:
617      case Instruction::INVOKE_INTERFACE:
618      case Instruction::INVOKE_INTERFACE_RANGE:
619        has_virtual_or_interface_invokes_ = true;
620        break;
621      case Instruction::MONITOR_ENTER:
622        monitor_enter_count++;
623        break;
624      case Instruction::NEW_INSTANCE:
625        new_instance_count++;
626        break;
627      default:
628        break;
629    }
630    size_t inst_size = inst->SizeInCodeUnits();
631    insn_flags_[dex_pc].SetIsOpcode();
632    dex_pc += inst_size;
633    inst = inst->RelativeAt(inst_size);
634  }
635
636  if (dex_pc != insns_size) {
637    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
638                                      << dex_pc << " vs. " << insns_size << ")";
639    return false;
640  }
641
642  new_instance_count_ = new_instance_count;
643  monitor_enter_count_ = monitor_enter_count;
644  return true;
645}
646
647bool MethodVerifier::ScanTryCatchBlocks() {
648  uint32_t tries_size = code_item_->tries_size_;
649  if (tries_size == 0) {
650    return true;
651  }
652  uint32_t insns_size = code_item_->insns_size_in_code_units_;
653  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
654
655  for (uint32_t idx = 0; idx < tries_size; idx++) {
656    const DexFile::TryItem* try_item = &tries[idx];
657    uint32_t start = try_item->start_addr_;
658    uint32_t end = start + try_item->insn_count_;
659    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
660      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
661                                        << " endAddr=" << end << " (size=" << insns_size << ")";
662      return false;
663    }
664    if (!insn_flags_[start].IsOpcode()) {
665      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
666          << "'try' block starts inside an instruction (" << start << ")";
667      return false;
668    }
669    uint32_t dex_pc = start;
670    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
671    while (dex_pc < end) {
672      insn_flags_[dex_pc].SetInTry();
673      size_t insn_size = inst->SizeInCodeUnits();
674      dex_pc += insn_size;
675      inst = inst->RelativeAt(insn_size);
676    }
677  }
678  // Iterate over each of the handlers to verify target addresses.
679  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
680  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
681  ClassLinker* linker = Runtime::Current()->GetClassLinker();
682  for (uint32_t idx = 0; idx < handlers_size; idx++) {
683    CatchHandlerIterator iterator(handlers_ptr);
684    for (; iterator.HasNext(); iterator.Next()) {
685      uint32_t dex_pc= iterator.GetHandlerAddress();
686      if (!insn_flags_[dex_pc].IsOpcode()) {
687        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
688            << "exception handler starts at bad address (" << dex_pc << ")";
689        return false;
690      }
691      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
692        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
693            << "exception handler begins with move-result* (" << dex_pc << ")";
694        return false;
695      }
696      insn_flags_[dex_pc].SetBranchTarget();
697      // Ensure exception types are resolved so that they don't need resolution to be delivered,
698      // unresolved exception types will be ignored by exception delivery
699      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
700        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
701                                                            iterator.GetHandlerTypeIndex(),
702                                                            dex_cache_, class_loader_);
703        if (exception_type == nullptr) {
704          DCHECK(self_->IsExceptionPending());
705          self_->ClearException();
706        }
707      }
708    }
709    handlers_ptr = iterator.EndDataPointer();
710  }
711  return true;
712}
713
714bool MethodVerifier::VerifyInstructions() {
715  const Instruction* inst = Instruction::At(code_item_->insns_);
716
717  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
718  insn_flags_[0].SetBranchTarget();
719  insn_flags_[0].SetCompileTimeInfoPoint();
720
721  uint32_t insns_size = code_item_->insns_size_in_code_units_;
722  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
723    if (!VerifyInstruction(inst, dex_pc)) {
724      DCHECK_NE(failures_.size(), 0U);
725      return false;
726    }
727    /* Flag instructions that are garbage collection points */
728    // All invoke points are marked as "Throw" points already.
729    // We are relying on this to also count all the invokes as interesting.
730    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
731      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
732    } else if (inst->IsReturn()) {
733      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
734    }
735    dex_pc += inst->SizeInCodeUnits();
736    inst = inst->Next();
737  }
738  return true;
739}
740
741bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
742  bool result = true;
743  switch (inst->GetVerifyTypeArgumentA()) {
744    case Instruction::kVerifyRegA:
745      result = result && CheckRegisterIndex(inst->VRegA());
746      break;
747    case Instruction::kVerifyRegAWide:
748      result = result && CheckWideRegisterIndex(inst->VRegA());
749      break;
750  }
751  switch (inst->GetVerifyTypeArgumentB()) {
752    case Instruction::kVerifyRegB:
753      result = result && CheckRegisterIndex(inst->VRegB());
754      break;
755    case Instruction::kVerifyRegBField:
756      result = result && CheckFieldIndex(inst->VRegB());
757      break;
758    case Instruction::kVerifyRegBMethod:
759      result = result && CheckMethodIndex(inst->VRegB());
760      break;
761    case Instruction::kVerifyRegBNewInstance:
762      result = result && CheckNewInstance(inst->VRegB());
763      break;
764    case Instruction::kVerifyRegBString:
765      result = result && CheckStringIndex(inst->VRegB());
766      break;
767    case Instruction::kVerifyRegBType:
768      result = result && CheckTypeIndex(inst->VRegB());
769      break;
770    case Instruction::kVerifyRegBWide:
771      result = result && CheckWideRegisterIndex(inst->VRegB());
772      break;
773  }
774  switch (inst->GetVerifyTypeArgumentC()) {
775    case Instruction::kVerifyRegC:
776      result = result && CheckRegisterIndex(inst->VRegC());
777      break;
778    case Instruction::kVerifyRegCField:
779      result = result && CheckFieldIndex(inst->VRegC());
780      break;
781    case Instruction::kVerifyRegCNewArray:
782      result = result && CheckNewArray(inst->VRegC());
783      break;
784    case Instruction::kVerifyRegCType:
785      result = result && CheckTypeIndex(inst->VRegC());
786      break;
787    case Instruction::kVerifyRegCWide:
788      result = result && CheckWideRegisterIndex(inst->VRegC());
789      break;
790  }
791  switch (inst->GetVerifyExtraFlags()) {
792    case Instruction::kVerifyArrayData:
793      result = result && CheckArrayData(code_offset);
794      break;
795    case Instruction::kVerifyBranchTarget:
796      result = result && CheckBranchTarget(code_offset);
797      break;
798    case Instruction::kVerifySwitchTargets:
799      result = result && CheckSwitchTargets(code_offset);
800      break;
801    case Instruction::kVerifyVarArgNonZero:
802      // Fall-through.
803    case Instruction::kVerifyVarArg: {
804      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
805        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
806                                             "non-range invoke";
807        return false;
808      }
809      uint32_t args[Instruction::kMaxVarArgRegs];
810      inst->GetVarArgs(args);
811      result = result && CheckVarArgRegs(inst->VRegA(), args);
812      break;
813    }
814    case Instruction::kVerifyVarArgRangeNonZero:
815      // Fall-through.
816    case Instruction::kVerifyVarArgRange:
817      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
818          inst->VRegA() <= 0) {
819        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
820                                             "range invoke";
821        return false;
822      }
823      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
824      break;
825    case Instruction::kVerifyError:
826      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
827      result = false;
828      break;
829  }
830  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
831    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
832    result = false;
833  }
834  return result;
835}
836
837inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
838  if (idx >= code_item_->registers_size_) {
839    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
840                                      << code_item_->registers_size_ << ")";
841    return false;
842  }
843  return true;
844}
845
846inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
847  if (idx + 1 >= code_item_->registers_size_) {
848    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
849                                      << "+1 >= " << code_item_->registers_size_ << ")";
850    return false;
851  }
852  return true;
853}
854
855inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
856  if (idx >= dex_file_->GetHeader().field_ids_size_) {
857    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
858                                      << dex_file_->GetHeader().field_ids_size_ << ")";
859    return false;
860  }
861  return true;
862}
863
864inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
865  if (idx >= dex_file_->GetHeader().method_ids_size_) {
866    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
867                                      << dex_file_->GetHeader().method_ids_size_ << ")";
868    return false;
869  }
870  return true;
871}
872
873inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
874  if (idx >= dex_file_->GetHeader().type_ids_size_) {
875    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
876                                      << dex_file_->GetHeader().type_ids_size_ << ")";
877    return false;
878  }
879  // We don't need the actual class, just a pointer to the class name.
880  const char* descriptor = dex_file_->StringByTypeIdx(idx);
881  if (descriptor[0] != 'L') {
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
883    return false;
884  }
885  return true;
886}
887
888inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
889  if (idx >= dex_file_->GetHeader().string_ids_size_) {
890    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
891                                      << dex_file_->GetHeader().string_ids_size_ << ")";
892    return false;
893  }
894  return true;
895}
896
897inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
898  if (idx >= dex_file_->GetHeader().type_ids_size_) {
899    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
900                                      << dex_file_->GetHeader().type_ids_size_ << ")";
901    return false;
902  }
903  return true;
904}
905
906bool MethodVerifier::CheckNewArray(uint32_t idx) {
907  if (idx >= dex_file_->GetHeader().type_ids_size_) {
908    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
909                                      << dex_file_->GetHeader().type_ids_size_ << ")";
910    return false;
911  }
912  int bracket_count = 0;
913  const char* descriptor = dex_file_->StringByTypeIdx(idx);
914  const char* cp = descriptor;
915  while (*cp++ == '[') {
916    bracket_count++;
917  }
918  if (bracket_count == 0) {
919    /* The given class must be an array type. */
920    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
921        << "can't new-array class '" << descriptor << "' (not an array)";
922    return false;
923  } else if (bracket_count > 255) {
924    /* It is illegal to create an array of more than 255 dimensions. */
925    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
926        << "can't new-array class '" << descriptor << "' (exceeds limit)";
927    return false;
928  }
929  return true;
930}
931
932bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
933  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
934  const uint16_t* insns = code_item_->insns_ + cur_offset;
935  const uint16_t* array_data;
936  int32_t array_data_offset;
937
938  DCHECK_LT(cur_offset, insn_count);
939  /* make sure the start of the array data table is in range */
940  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
941  if ((int32_t) cur_offset + array_data_offset < 0 ||
942      cur_offset + array_data_offset + 2 >= insn_count) {
943    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
944                                      << ", data offset " << array_data_offset
945                                      << ", count " << insn_count;
946    return false;
947  }
948  /* offset to array data table is a relative branch-style offset */
949  array_data = insns + array_data_offset;
950  /* make sure the table is 32-bit aligned */
951  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
952    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
953                                      << ", data offset " << array_data_offset;
954    return false;
955  }
956  uint32_t value_width = array_data[1];
957  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
958  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
959  /* make sure the end of the switch is in range */
960  if (cur_offset + array_data_offset + table_size > insn_count) {
961    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
962                                      << ", data offset " << array_data_offset << ", end "
963                                      << cur_offset + array_data_offset + table_size
964                                      << ", count " << insn_count;
965    return false;
966  }
967  return true;
968}
969
970bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
971  int32_t offset;
972  bool isConditional, selfOkay;
973  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
974    return false;
975  }
976  if (!selfOkay && offset == 0) {
977    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
978                                      << reinterpret_cast<void*>(cur_offset);
979    return false;
980  }
981  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
982  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
983  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
984    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
985                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
986    return false;
987  }
988  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
989  int32_t abs_offset = cur_offset + offset;
990  if (abs_offset < 0 ||
991      (uint32_t) abs_offset >= insn_count ||
992      !insn_flags_[abs_offset].IsOpcode()) {
993    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
994                                      << reinterpret_cast<void*>(abs_offset) << ") at "
995                                      << reinterpret_cast<void*>(cur_offset);
996    return false;
997  }
998  insn_flags_[abs_offset].SetBranchTarget();
999  return true;
1000}
1001
1002bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1003                                  bool* selfOkay) {
1004  const uint16_t* insns = code_item_->insns_ + cur_offset;
1005  *pConditional = false;
1006  *selfOkay = false;
1007  switch (*insns & 0xff) {
1008    case Instruction::GOTO:
1009      *pOffset = ((int16_t) *insns) >> 8;
1010      break;
1011    case Instruction::GOTO_32:
1012      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1013      *selfOkay = true;
1014      break;
1015    case Instruction::GOTO_16:
1016      *pOffset = (int16_t) insns[1];
1017      break;
1018    case Instruction::IF_EQ:
1019    case Instruction::IF_NE:
1020    case Instruction::IF_LT:
1021    case Instruction::IF_GE:
1022    case Instruction::IF_GT:
1023    case Instruction::IF_LE:
1024    case Instruction::IF_EQZ:
1025    case Instruction::IF_NEZ:
1026    case Instruction::IF_LTZ:
1027    case Instruction::IF_GEZ:
1028    case Instruction::IF_GTZ:
1029    case Instruction::IF_LEZ:
1030      *pOffset = (int16_t) insns[1];
1031      *pConditional = true;
1032      break;
1033    default:
1034      return false;
1035      break;
1036  }
1037  return true;
1038}
1039
1040bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1041  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1042  DCHECK_LT(cur_offset, insn_count);
1043  const uint16_t* insns = code_item_->insns_ + cur_offset;
1044  /* make sure the start of the switch is in range */
1045  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1046  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
1047    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1048                                      << ", switch offset " << switch_offset
1049                                      << ", count " << insn_count;
1050    return false;
1051  }
1052  /* offset to switch table is a relative branch-style offset */
1053  const uint16_t* switch_insns = insns + switch_offset;
1054  /* make sure the table is 32-bit aligned */
1055  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1056    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1057                                      << ", switch offset " << switch_offset;
1058    return false;
1059  }
1060  uint32_t switch_count = switch_insns[1];
1061  int32_t keys_offset, targets_offset;
1062  uint16_t expected_signature;
1063  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1064    /* 0=sig, 1=count, 2/3=firstKey */
1065    targets_offset = 4;
1066    keys_offset = -1;
1067    expected_signature = Instruction::kPackedSwitchSignature;
1068  } else {
1069    /* 0=sig, 1=count, 2..count*2 = keys */
1070    keys_offset = 2;
1071    targets_offset = 2 + 2 * switch_count;
1072    expected_signature = Instruction::kSparseSwitchSignature;
1073  }
1074  uint32_t table_size = targets_offset + switch_count * 2;
1075  if (switch_insns[0] != expected_signature) {
1076    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1077        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1078                        switch_insns[0], expected_signature);
1079    return false;
1080  }
1081  /* make sure the end of the switch is in range */
1082  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1083    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1084                                      << ", switch offset " << switch_offset
1085                                      << ", end " << (cur_offset + switch_offset + table_size)
1086                                      << ", count " << insn_count;
1087    return false;
1088  }
1089  /* for a sparse switch, verify the keys are in ascending order */
1090  if (keys_offset > 0 && switch_count > 1) {
1091    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1092    for (uint32_t targ = 1; targ < switch_count; targ++) {
1093      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1094                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1095      if (key <= last_key) {
1096        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1097                                          << ", this=" << key;
1098        return false;
1099      }
1100      last_key = key;
1101    }
1102  }
1103  /* verify each switch target */
1104  for (uint32_t targ = 0; targ < switch_count; targ++) {
1105    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1106                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1107    int32_t abs_offset = cur_offset + offset;
1108    if (abs_offset < 0 ||
1109        abs_offset >= (int32_t) insn_count ||
1110        !insn_flags_[abs_offset].IsOpcode()) {
1111      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1112                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1113                                        << reinterpret_cast<void*>(cur_offset)
1114                                        << "[" << targ << "]";
1115      return false;
1116    }
1117    insn_flags_[abs_offset].SetBranchTarget();
1118  }
1119  return true;
1120}
1121
1122bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1123  if (vA > Instruction::kMaxVarArgRegs) {
1124    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1125    return false;
1126  }
1127  uint16_t registers_size = code_item_->registers_size_;
1128  for (uint32_t idx = 0; idx < vA; idx++) {
1129    if (arg[idx] >= registers_size) {
1130      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1131                                        << ") in non-range invoke (>= " << registers_size << ")";
1132      return false;
1133    }
1134  }
1135
1136  return true;
1137}
1138
1139bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1140  uint16_t registers_size = code_item_->registers_size_;
1141  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1142  // integer overflow when adding them here.
1143  if (vA + vC > registers_size) {
1144    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1145                                      << " in range invoke (> " << registers_size << ")";
1146    return false;
1147  }
1148  return true;
1149}
1150
1151bool MethodVerifier::VerifyCodeFlow() {
1152  uint16_t registers_size = code_item_->registers_size_;
1153  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1154
1155  if (registers_size * insns_size > 4*1024*1024) {
1156    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1157                 << " insns_size=" << insns_size << ")";
1158  }
1159  /* Create and initialize table holding register status */
1160  reg_table_.Init(kTrackCompilerInterestPoints,
1161                  insn_flags_.get(),
1162                  insns_size,
1163                  registers_size,
1164                  this);
1165
1166
1167  work_line_.reset(RegisterLine::Create(registers_size, this));
1168  saved_line_.reset(RegisterLine::Create(registers_size, this));
1169
1170  /* Initialize register types of method arguments. */
1171  if (!SetTypesFromSignature()) {
1172    DCHECK_NE(failures_.size(), 0U);
1173    std::string prepend("Bad signature in ");
1174    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1175    PrependToLastFailMessage(prepend);
1176    return false;
1177  }
1178  /* Perform code flow verification. */
1179  if (!CodeFlowVerifyMethod()) {
1180    DCHECK_NE(failures_.size(), 0U);
1181    return false;
1182  }
1183  return true;
1184}
1185
1186std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1187  DCHECK_EQ(failures_.size(), failure_messages_.size());
1188  for (size_t i = 0; i < failures_.size(); ++i) {
1189      os << failure_messages_[i]->str() << "\n";
1190  }
1191  return os;
1192}
1193
1194extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1195    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1196  v->Dump(std::cerr);
1197}
1198
1199void MethodVerifier::Dump(std::ostream& os) {
1200  if (code_item_ == nullptr) {
1201    os << "Native method\n";
1202    return;
1203  }
1204  {
1205    os << "Register Types:\n";
1206    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1207    std::ostream indent_os(&indent_filter);
1208    reg_types_.Dump(indent_os);
1209  }
1210  os << "Dumping instructions and register lines:\n";
1211  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1212  std::ostream indent_os(&indent_filter);
1213  const Instruction* inst = Instruction::At(code_item_->insns_);
1214  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1215      dex_pc += inst->SizeInCodeUnits()) {
1216    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1217    if (reg_line != nullptr) {
1218      indent_os << reg_line->Dump(this) << "\n";
1219    }
1220    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1221    const bool kDumpHexOfInstruction = false;
1222    if (kDumpHexOfInstruction) {
1223      indent_os << inst->DumpHex(5) << " ";
1224    }
1225    indent_os << inst->DumpString(dex_file_) << "\n";
1226    inst = inst->Next();
1227  }
1228}
1229
1230static bool IsPrimitiveDescriptor(char descriptor) {
1231  switch (descriptor) {
1232    case 'I':
1233    case 'C':
1234    case 'S':
1235    case 'B':
1236    case 'Z':
1237    case 'F':
1238    case 'D':
1239    case 'J':
1240      return true;
1241    default:
1242      return false;
1243  }
1244}
1245
1246bool MethodVerifier::SetTypesFromSignature() {
1247  RegisterLine* reg_line = reg_table_.GetLine(0);
1248  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1249  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1250
1251  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1252  // Include the "this" pointer.
1253  size_t cur_arg = 0;
1254  if (!IsStatic()) {
1255    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1256    // argument as uninitialized. This restricts field access until the superclass constructor is
1257    // called.
1258    const RegType& declaring_class = GetDeclaringClass();
1259    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1260      reg_line->SetRegisterType(this, arg_start + cur_arg,
1261                                reg_types_.UninitializedThisArgument(declaring_class));
1262    } else {
1263      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1264    }
1265    cur_arg++;
1266  }
1267
1268  const DexFile::ProtoId& proto_id =
1269      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1270  DexFileParameterIterator iterator(*dex_file_, proto_id);
1271
1272  for (; iterator.HasNext(); iterator.Next()) {
1273    const char* descriptor = iterator.GetDescriptor();
1274    if (descriptor == nullptr) {
1275      LOG(FATAL) << "Null descriptor";
1276    }
1277    if (cur_arg >= expected_args) {
1278      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1279                                        << " args, found more (" << descriptor << ")";
1280      return false;
1281    }
1282    switch (descriptor[0]) {
1283      case 'L':
1284      case '[':
1285        // We assume that reference arguments are initialized. The only way it could be otherwise
1286        // (assuming the caller was verified) is if the current method is <init>, but in that case
1287        // it's effectively considered initialized the instant we reach here (in the sense that we
1288        // can return without doing anything or call virtual methods).
1289        {
1290          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1291          if (!reg_type.IsNonZeroReferenceTypes()) {
1292            DCHECK(HasFailures());
1293            return false;
1294          }
1295          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1296        }
1297        break;
1298      case 'Z':
1299        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1300        break;
1301      case 'C':
1302        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1303        break;
1304      case 'B':
1305        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1306        break;
1307      case 'I':
1308        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1309        break;
1310      case 'S':
1311        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1312        break;
1313      case 'F':
1314        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1315        break;
1316      case 'J':
1317      case 'D': {
1318        if (cur_arg + 1 >= expected_args) {
1319          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1320              << " args, found more (" << descriptor << ")";
1321          return false;
1322        }
1323
1324        const RegType* lo_half;
1325        const RegType* hi_half;
1326        if (descriptor[0] == 'J') {
1327          lo_half = &reg_types_.LongLo();
1328          hi_half = &reg_types_.LongHi();
1329        } else {
1330          lo_half = &reg_types_.DoubleLo();
1331          hi_half = &reg_types_.DoubleHi();
1332        }
1333        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1334        cur_arg++;
1335        break;
1336      }
1337      default:
1338        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1339                                          << descriptor << "'";
1340        return false;
1341    }
1342    cur_arg++;
1343  }
1344  if (cur_arg != expected_args) {
1345    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1346                                      << " arguments, found " << cur_arg;
1347    return false;
1348  }
1349  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1350  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1351  // format. Only major difference from the method argument format is that 'V' is supported.
1352  bool result;
1353  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1354    result = descriptor[1] == '\0';
1355  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1356    size_t i = 0;
1357    do {
1358      i++;
1359    } while (descriptor[i] == '[');  // process leading [
1360    if (descriptor[i] == 'L') {  // object array
1361      do {
1362        i++;  // find closing ;
1363      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1364      result = descriptor[i] == ';';
1365    } else {  // primitive array
1366      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1367    }
1368  } else if (descriptor[0] == 'L') {
1369    // could be more thorough here, but shouldn't be required
1370    size_t i = 0;
1371    do {
1372      i++;
1373    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1374    result = descriptor[i] == ';';
1375  } else {
1376    result = false;
1377  }
1378  if (!result) {
1379    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1380                                      << descriptor << "'";
1381  }
1382  return result;
1383}
1384
1385bool MethodVerifier::CodeFlowVerifyMethod() {
1386  const uint16_t* insns = code_item_->insns_;
1387  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1388
1389  /* Begin by marking the first instruction as "changed". */
1390  insn_flags_[0].SetChanged();
1391  uint32_t start_guess = 0;
1392
1393  /* Continue until no instructions are marked "changed". */
1394  while (true) {
1395    self_->AllowThreadSuspension();
1396    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1397    uint32_t insn_idx = start_guess;
1398    for (; insn_idx < insns_size; insn_idx++) {
1399      if (insn_flags_[insn_idx].IsChanged())
1400        break;
1401    }
1402    if (insn_idx == insns_size) {
1403      if (start_guess != 0) {
1404        /* try again, starting from the top */
1405        start_guess = 0;
1406        continue;
1407      } else {
1408        /* all flags are clear */
1409        break;
1410      }
1411    }
1412    // We carry the working set of registers from instruction to instruction. If this address can
1413    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1414    // "changed" flags, we need to load the set of registers from the table.
1415    // Because we always prefer to continue on to the next instruction, we should never have a
1416    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1417    // target.
1418    work_insn_idx_ = insn_idx;
1419    if (insn_flags_[insn_idx].IsBranchTarget()) {
1420      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1421    } else if (kIsDebugBuild) {
1422      /*
1423       * Sanity check: retrieve the stored register line (assuming
1424       * a full table) and make sure it actually matches.
1425       */
1426      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1427      if (register_line != nullptr) {
1428        if (work_line_->CompareLine(register_line) != 0) {
1429          Dump(std::cout);
1430          std::cout << info_messages_.str();
1431          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1432                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1433                     << " work_line=" << work_line_->Dump(this) << "\n"
1434                     << "  expected=" << register_line->Dump(this);
1435        }
1436      }
1437    }
1438    if (!CodeFlowVerifyInstruction(&start_guess)) {
1439      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1440      prepend += " failed to verify: ";
1441      PrependToLastFailMessage(prepend);
1442      return false;
1443    }
1444    /* Clear "changed" and mark as visited. */
1445    insn_flags_[insn_idx].SetVisited();
1446    insn_flags_[insn_idx].ClearChanged();
1447  }
1448
1449  if (gDebugVerify) {
1450    /*
1451     * Scan for dead code. There's nothing "evil" about dead code
1452     * (besides the wasted space), but it indicates a flaw somewhere
1453     * down the line, possibly in the verifier.
1454     *
1455     * If we've substituted "always throw" instructions into the stream,
1456     * we are almost certainly going to have some dead code.
1457     */
1458    int dead_start = -1;
1459    uint32_t insn_idx = 0;
1460    for (; insn_idx < insns_size;
1461         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1462      /*
1463       * Switch-statement data doesn't get "visited" by scanner. It
1464       * may or may not be preceded by a padding NOP (for alignment).
1465       */
1466      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1467          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1468          insns[insn_idx] == Instruction::kArrayDataSignature ||
1469          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1470           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1471            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1472            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1473        insn_flags_[insn_idx].SetVisited();
1474      }
1475
1476      if (!insn_flags_[insn_idx].IsVisited()) {
1477        if (dead_start < 0)
1478          dead_start = insn_idx;
1479      } else if (dead_start >= 0) {
1480        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1481                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1482        dead_start = -1;
1483      }
1484    }
1485    if (dead_start >= 0) {
1486      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1487                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1488    }
1489    // To dump the state of the verify after a method, do something like:
1490    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1491    //     "boolean java.lang.String.equals(java.lang.Object)") {
1492    //   LOG(INFO) << info_messages_.str();
1493    // }
1494  }
1495  return true;
1496}
1497
1498bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1499  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1500  // We want the state _before_ the instruction, for the case where the dex pc we're
1501  // interested in is itself a monitor-enter instruction (which is a likely place
1502  // for a thread to be suspended).
1503  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1504    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1505    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1506      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1507    }
1508  }
1509
1510  /*
1511   * Once we finish decoding the instruction, we need to figure out where
1512   * we can go from here. There are three possible ways to transfer
1513   * control to another statement:
1514   *
1515   * (1) Continue to the next instruction. Applies to all but
1516   *     unconditional branches, method returns, and exception throws.
1517   * (2) Branch to one or more possible locations. Applies to branches
1518   *     and switch statements.
1519   * (3) Exception handlers. Applies to any instruction that can
1520   *     throw an exception that is handled by an encompassing "try"
1521   *     block.
1522   *
1523   * We can also return, in which case there is no successor instruction
1524   * from this point.
1525   *
1526   * The behavior can be determined from the opcode flags.
1527   */
1528  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1529  const Instruction* inst = Instruction::At(insns);
1530  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1531
1532  int32_t branch_target = 0;
1533  bool just_set_result = false;
1534  if (gDebugVerify) {
1535    // Generate processing back trace to debug verifier
1536    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1537                    << work_line_->Dump(this) << "\n";
1538  }
1539
1540  /*
1541   * Make a copy of the previous register state. If the instruction
1542   * can throw an exception, we will copy/merge this into the "catch"
1543   * address rather than work_line, because we don't want the result
1544   * from the "successful" code path (e.g. a check-cast that "improves"
1545   * a type) to be visible to the exception handler.
1546   */
1547  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1548    saved_line_->CopyFromLine(work_line_.get());
1549  } else if (kIsDebugBuild) {
1550    saved_line_->FillWithGarbage();
1551  }
1552
1553
1554  // We need to ensure the work line is consistent while performing validation. When we spot a
1555  // peephole pattern we compute a new line for either the fallthrough instruction or the
1556  // branch target.
1557  std::unique_ptr<RegisterLine> branch_line;
1558  std::unique_ptr<RegisterLine> fallthrough_line;
1559
1560  switch (inst->Opcode()) {
1561    case Instruction::NOP:
1562      /*
1563       * A "pure" NOP has no effect on anything. Data tables start with
1564       * a signature that looks like a NOP; if we see one of these in
1565       * the course of executing code then we have a problem.
1566       */
1567      if (inst->VRegA_10x() != 0) {
1568        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1569      }
1570      break;
1571
1572    case Instruction::MOVE:
1573      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1574      break;
1575    case Instruction::MOVE_FROM16:
1576      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1577      break;
1578    case Instruction::MOVE_16:
1579      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1580      break;
1581    case Instruction::MOVE_WIDE:
1582      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1583      break;
1584    case Instruction::MOVE_WIDE_FROM16:
1585      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1586      break;
1587    case Instruction::MOVE_WIDE_16:
1588      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1589      break;
1590    case Instruction::MOVE_OBJECT:
1591      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1592      break;
1593    case Instruction::MOVE_OBJECT_FROM16:
1594      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1595      break;
1596    case Instruction::MOVE_OBJECT_16:
1597      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1598      break;
1599
1600    /*
1601     * The move-result instructions copy data out of a "pseudo-register"
1602     * with the results from the last method invocation. In practice we
1603     * might want to hold the result in an actual CPU register, so the
1604     * Dalvik spec requires that these only appear immediately after an
1605     * invoke or filled-new-array.
1606     *
1607     * These calls invalidate the "result" register. (This is now
1608     * redundant with the reset done below, but it can make the debug info
1609     * easier to read in some cases.)
1610     */
1611    case Instruction::MOVE_RESULT:
1612      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1613      break;
1614    case Instruction::MOVE_RESULT_WIDE:
1615      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1616      break;
1617    case Instruction::MOVE_RESULT_OBJECT:
1618      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1619      break;
1620
1621    case Instruction::MOVE_EXCEPTION: {
1622      /*
1623       * This statement can only appear as the first instruction in an exception handler. We verify
1624       * that as part of extracting the exception type from the catch block list.
1625       */
1626      const RegType& res_type = GetCaughtExceptionType();
1627      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1628      break;
1629    }
1630    case Instruction::RETURN_VOID:
1631      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1632        if (!GetMethodReturnType().IsConflict()) {
1633          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1634        }
1635      }
1636      break;
1637    case Instruction::RETURN:
1638      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1639        /* check the method signature */
1640        const RegType& return_type = GetMethodReturnType();
1641        if (!return_type.IsCategory1Types()) {
1642          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1643                                            << return_type;
1644        } else {
1645          // Compilers may generate synthetic functions that write byte values into boolean fields.
1646          // Also, it may use integer values for boolean, byte, short, and character return types.
1647          const uint32_t vregA = inst->VRegA_11x();
1648          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1649          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1650                          ((return_type.IsBoolean() || return_type.IsByte() ||
1651                           return_type.IsShort() || return_type.IsChar()) &&
1652                           src_type.IsInteger()));
1653          /* check the register contents */
1654          bool success =
1655              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1656          if (!success) {
1657            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1658          }
1659        }
1660      }
1661      break;
1662    case Instruction::RETURN_WIDE:
1663      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1664        /* check the method signature */
1665        const RegType& return_type = GetMethodReturnType();
1666        if (!return_type.IsCategory2Types()) {
1667          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1668        } else {
1669          /* check the register contents */
1670          const uint32_t vregA = inst->VRegA_11x();
1671          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1672          if (!success) {
1673            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1674          }
1675        }
1676      }
1677      break;
1678    case Instruction::RETURN_OBJECT:
1679      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1680        const RegType& return_type = GetMethodReturnType();
1681        if (!return_type.IsReferenceTypes()) {
1682          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1683        } else {
1684          /* return_type is the *expected* return type, not register value */
1685          DCHECK(!return_type.IsZero());
1686          DCHECK(!return_type.IsUninitializedReference());
1687          const uint32_t vregA = inst->VRegA_11x();
1688          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1689          // Disallow returning uninitialized values and verify that the reference in vAA is an
1690          // instance of the "return_type"
1691          if (reg_type.IsUninitializedTypes()) {
1692            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1693                                              << reg_type << "'";
1694          } else if (!return_type.IsAssignableFrom(reg_type)) {
1695            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1696              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1697                  << "' or '" << reg_type << "'";
1698            } else {
1699              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1700                  << "', but expected from declaration '" << return_type << "'";
1701            }
1702          }
1703        }
1704      }
1705      break;
1706
1707      /* could be boolean, int, float, or a null reference */
1708    case Instruction::CONST_4: {
1709      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1710      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1711                                  DetermineCat1Constant(val, need_precise_constants_));
1712      break;
1713    }
1714    case Instruction::CONST_16: {
1715      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1716      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1717                                  DetermineCat1Constant(val, need_precise_constants_));
1718      break;
1719    }
1720    case Instruction::CONST: {
1721      int32_t val = inst->VRegB_31i();
1722      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1723                                  DetermineCat1Constant(val, need_precise_constants_));
1724      break;
1725    }
1726    case Instruction::CONST_HIGH16: {
1727      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1728      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1729                                  DetermineCat1Constant(val, need_precise_constants_));
1730      break;
1731    }
1732      /* could be long or double; resolved upon use */
1733    case Instruction::CONST_WIDE_16: {
1734      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1735      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1736      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1737      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1738      break;
1739    }
1740    case Instruction::CONST_WIDE_32: {
1741      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1742      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1743      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1744      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1745      break;
1746    }
1747    case Instruction::CONST_WIDE: {
1748      int64_t val = inst->VRegB_51l();
1749      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1750      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1751      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1752      break;
1753    }
1754    case Instruction::CONST_WIDE_HIGH16: {
1755      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1756      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1757      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1758      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1759      break;
1760    }
1761    case Instruction::CONST_STRING:
1762      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1763      break;
1764    case Instruction::CONST_STRING_JUMBO:
1765      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1766      break;
1767    case Instruction::CONST_CLASS: {
1768      // Get type from instruction if unresolved then we need an access check
1769      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1770      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1771      // Register holds class, ie its type is class, on error it will hold Conflict.
1772      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1773                                  res_type.IsConflict() ? res_type
1774                                                        : reg_types_.JavaLangClass());
1775      break;
1776    }
1777    case Instruction::MONITOR_ENTER:
1778      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1779      break;
1780    case Instruction::MONITOR_EXIT:
1781      /*
1782       * monitor-exit instructions are odd. They can throw exceptions,
1783       * but when they do they act as if they succeeded and the PC is
1784       * pointing to the following instruction. (This behavior goes back
1785       * to the need to handle asynchronous exceptions, a now-deprecated
1786       * feature that Dalvik doesn't support.)
1787       *
1788       * In practice we don't need to worry about this. The only
1789       * exceptions that can be thrown from monitor-exit are for a
1790       * null reference and -exit without a matching -enter. If the
1791       * structured locking checks are working, the former would have
1792       * failed on the -enter instruction, and the latter is impossible.
1793       *
1794       * This is fortunate, because issue 3221411 prevents us from
1795       * chasing the "can throw" path when monitor verification is
1796       * enabled. If we can fully verify the locking we can ignore
1797       * some catch blocks (which will show up as "dead" code when
1798       * we skip them here); if we can't, then the code path could be
1799       * "live" so we still need to check it.
1800       */
1801      opcode_flags &= ~Instruction::kThrow;
1802      work_line_->PopMonitor(this, inst->VRegA_11x());
1803      break;
1804
1805    case Instruction::CHECK_CAST:
1806    case Instruction::INSTANCE_OF: {
1807      /*
1808       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1809       * could be a "upcast" -- not expected, so we don't try to address it.)
1810       *
1811       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1812       * dec_insn.vA when branching to a handler.
1813       */
1814      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1815      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1816      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1817      if (res_type.IsConflict()) {
1818        // If this is a primitive type, fail HARD.
1819        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1820        if (klass != nullptr && klass->IsPrimitive()) {
1821          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1822              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1823              << GetDeclaringClass();
1824          break;
1825        }
1826
1827        DCHECK_NE(failures_.size(), 0U);
1828        if (!is_checkcast) {
1829          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1830        }
1831        break;  // bad class
1832      }
1833      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1834      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1835      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1836      if (!res_type.IsNonZeroReferenceTypes()) {
1837        if (is_checkcast) {
1838          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1839        } else {
1840          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1841        }
1842      } else if (!orig_type.IsReferenceTypes()) {
1843        if (is_checkcast) {
1844          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1845        } else {
1846          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1847        }
1848      } else {
1849        if (is_checkcast) {
1850          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1851        } else {
1852          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1853        }
1854      }
1855      break;
1856    }
1857    case Instruction::ARRAY_LENGTH: {
1858      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1859      if (res_type.IsReferenceTypes()) {
1860        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1861          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1862        } else {
1863          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1864        }
1865      } else {
1866        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1867      }
1868      break;
1869    }
1870    case Instruction::NEW_INSTANCE: {
1871      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1872      if (res_type.IsConflict()) {
1873        DCHECK_NE(failures_.size(), 0U);
1874        break;  // bad class
1875      }
1876      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1877      // can't create an instance of an interface or abstract class */
1878      if (!res_type.IsInstantiableTypes()) {
1879        Fail(VERIFY_ERROR_INSTANTIATION)
1880            << "new-instance on primitive, interface or abstract class" << res_type;
1881        // Soft failure so carry on to set register type.
1882      }
1883      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1884      // Any registers holding previous allocations from this address that have not yet been
1885      // initialized must be marked invalid.
1886      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1887      // add the new uninitialized reference to the register state
1888      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1889      break;
1890    }
1891    case Instruction::NEW_ARRAY:
1892      VerifyNewArray(inst, false, false);
1893      break;
1894    case Instruction::FILLED_NEW_ARRAY:
1895      VerifyNewArray(inst, true, false);
1896      just_set_result = true;  // Filled new array sets result register
1897      break;
1898    case Instruction::FILLED_NEW_ARRAY_RANGE:
1899      VerifyNewArray(inst, true, true);
1900      just_set_result = true;  // Filled new array range sets result register
1901      break;
1902    case Instruction::CMPL_FLOAT:
1903    case Instruction::CMPG_FLOAT:
1904      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1905        break;
1906      }
1907      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1908        break;
1909      }
1910      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1911      break;
1912    case Instruction::CMPL_DOUBLE:
1913    case Instruction::CMPG_DOUBLE:
1914      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1915                                              reg_types_.DoubleHi())) {
1916        break;
1917      }
1918      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1919                                              reg_types_.DoubleHi())) {
1920        break;
1921      }
1922      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1923      break;
1924    case Instruction::CMP_LONG:
1925      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
1926                                              reg_types_.LongHi())) {
1927        break;
1928      }
1929      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
1930                                              reg_types_.LongHi())) {
1931        break;
1932      }
1933      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1934      break;
1935    case Instruction::THROW: {
1936      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
1937      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1938        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1939            << "thrown class " << res_type << " not instanceof Throwable";
1940      }
1941      break;
1942    }
1943    case Instruction::GOTO:
1944    case Instruction::GOTO_16:
1945    case Instruction::GOTO_32:
1946      /* no effect on or use of registers */
1947      break;
1948
1949    case Instruction::PACKED_SWITCH:
1950    case Instruction::SPARSE_SWITCH:
1951      /* verify that vAA is an integer, or can be converted to one */
1952      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
1953      break;
1954
1955    case Instruction::FILL_ARRAY_DATA: {
1956      /* Similar to the verification done for APUT */
1957      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
1958      /* array_type can be null if the reg type is Zero */
1959      if (!array_type.IsZero()) {
1960        if (!array_type.IsArrayTypes()) {
1961          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1962                                            << array_type;
1963        } else {
1964          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
1965          DCHECK(!component_type.IsConflict());
1966          if (component_type.IsNonZeroReferenceTypes()) {
1967            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1968                                              << component_type;
1969          } else {
1970            // Now verify if the element width in the table matches the element width declared in
1971            // the array
1972            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1973            if (array_data[0] != Instruction::kArrayDataSignature) {
1974              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1975            } else {
1976              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1977              // Since we don't compress the data in Dex, expect to see equal width of data stored
1978              // in the table and expected from the array class.
1979              if (array_data[1] != elem_width) {
1980                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1981                                                  << " vs " << elem_width << ")";
1982              }
1983            }
1984          }
1985        }
1986      }
1987      break;
1988    }
1989    case Instruction::IF_EQ:
1990    case Instruction::IF_NE: {
1991      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
1992      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
1993      bool mismatch = false;
1994      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1995        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1996      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1997        mismatch = !reg_type2.IsReferenceTypes();
1998      } else {  // both integral?
1999        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2000      }
2001      if (mismatch) {
2002        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2003                                          << reg_type2 << ") must both be references or integral";
2004      }
2005      break;
2006    }
2007    case Instruction::IF_LT:
2008    case Instruction::IF_GE:
2009    case Instruction::IF_GT:
2010    case Instruction::IF_LE: {
2011      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2012      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2013      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2014        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2015                                          << reg_type2 << ") must be integral";
2016      }
2017      break;
2018    }
2019    case Instruction::IF_EQZ:
2020    case Instruction::IF_NEZ: {
2021      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2022      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2023        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2024                                          << " unexpected as arg to if-eqz/if-nez";
2025      }
2026
2027      // Find previous instruction - its existence is a precondition to peephole optimization.
2028      uint32_t instance_of_idx = 0;
2029      if (0 != work_insn_idx_) {
2030        instance_of_idx = work_insn_idx_ - 1;
2031        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2032          instance_of_idx--;
2033        }
2034        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2035                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2036                        work_insn_idx_)) {
2037          break;
2038        }
2039      } else {
2040        break;
2041      }
2042
2043      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2044
2045      /* Check for peep-hole pattern of:
2046       *    ...;
2047       *    instance-of vX, vY, T;
2048       *    ifXXX vX, label ;
2049       *    ...;
2050       * label:
2051       *    ...;
2052       * and sharpen the type of vY to be type T.
2053       * Note, this pattern can't be if:
2054       *  - if there are other branches to this branch,
2055       *  - when vX == vY.
2056       */
2057      if (!CurrentInsnFlags()->IsBranchTarget() &&
2058          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2059          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2060          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2061        // Check the type of the instance-of is different than that of registers type, as if they
2062        // are the same there is no work to be done here. Check that the conversion is not to or
2063        // from an unresolved type as type information is imprecise. If the instance-of is to an
2064        // interface then ignore the type information as interfaces can only be treated as Objects
2065        // and we don't want to disallow field and other operations on the object. If the value
2066        // being instance-of checked against is known null (zero) then allow the optimization as
2067        // we didn't have type information. If the merge of the instance-of type with the original
2068        // type is assignable to the original then allow optimization. This check is performed to
2069        // ensure that subsequent merges don't lose type information - such as becoming an
2070        // interface from a class that would lose information relevant to field checks.
2071        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2072        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2073
2074        if (!orig_type.Equals(cast_type) &&
2075            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2076            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2077            !cast_type.GetClass()->IsInterface() &&
2078            (orig_type.IsZero() ||
2079                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2080          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2081          if (inst->Opcode() == Instruction::IF_EQZ) {
2082            fallthrough_line.reset(update_line);
2083          } else {
2084            branch_line.reset(update_line);
2085          }
2086          update_line->CopyFromLine(work_line_.get());
2087          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2088          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2089            // See if instance-of was preceded by a move-object operation, common due to the small
2090            // register encoding space of instance-of, and propagate type information to the source
2091            // of the move-object.
2092            uint32_t move_idx = instance_of_idx - 1;
2093            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2094              move_idx--;
2095            }
2096            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2097                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2098                            work_insn_idx_)) {
2099              break;
2100            }
2101            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2102            switch (move_inst->Opcode()) {
2103              case Instruction::MOVE_OBJECT:
2104                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2105                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2106                }
2107                break;
2108              case Instruction::MOVE_OBJECT_FROM16:
2109                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2110                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2111                }
2112                break;
2113              case Instruction::MOVE_OBJECT_16:
2114                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2115                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2116                }
2117                break;
2118              default:
2119                break;
2120            }
2121          }
2122        }
2123      }
2124
2125      break;
2126    }
2127    case Instruction::IF_LTZ:
2128    case Instruction::IF_GEZ:
2129    case Instruction::IF_GTZ:
2130    case Instruction::IF_LEZ: {
2131      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2132      if (!reg_type.IsIntegralTypes()) {
2133        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2134                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2135      }
2136      break;
2137    }
2138    case Instruction::AGET_BOOLEAN:
2139      VerifyAGet(inst, reg_types_.Boolean(), true);
2140      break;
2141    case Instruction::AGET_BYTE:
2142      VerifyAGet(inst, reg_types_.Byte(), true);
2143      break;
2144    case Instruction::AGET_CHAR:
2145      VerifyAGet(inst, reg_types_.Char(), true);
2146      break;
2147    case Instruction::AGET_SHORT:
2148      VerifyAGet(inst, reg_types_.Short(), true);
2149      break;
2150    case Instruction::AGET:
2151      VerifyAGet(inst, reg_types_.Integer(), true);
2152      break;
2153    case Instruction::AGET_WIDE:
2154      VerifyAGet(inst, reg_types_.LongLo(), true);
2155      break;
2156    case Instruction::AGET_OBJECT:
2157      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2158      break;
2159
2160    case Instruction::APUT_BOOLEAN:
2161      VerifyAPut(inst, reg_types_.Boolean(), true);
2162      break;
2163    case Instruction::APUT_BYTE:
2164      VerifyAPut(inst, reg_types_.Byte(), true);
2165      break;
2166    case Instruction::APUT_CHAR:
2167      VerifyAPut(inst, reg_types_.Char(), true);
2168      break;
2169    case Instruction::APUT_SHORT:
2170      VerifyAPut(inst, reg_types_.Short(), true);
2171      break;
2172    case Instruction::APUT:
2173      VerifyAPut(inst, reg_types_.Integer(), true);
2174      break;
2175    case Instruction::APUT_WIDE:
2176      VerifyAPut(inst, reg_types_.LongLo(), true);
2177      break;
2178    case Instruction::APUT_OBJECT:
2179      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2180      break;
2181
2182    case Instruction::IGET_BOOLEAN:
2183      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2184      break;
2185    case Instruction::IGET_BYTE:
2186      VerifyISGet(inst, reg_types_.Byte(), true, false);
2187      break;
2188    case Instruction::IGET_CHAR:
2189      VerifyISGet(inst, reg_types_.Char(), true, false);
2190      break;
2191    case Instruction::IGET_SHORT:
2192      VerifyISGet(inst, reg_types_.Short(), true, false);
2193      break;
2194    case Instruction::IGET:
2195      VerifyISGet(inst, reg_types_.Integer(), true, false);
2196      break;
2197    case Instruction::IGET_WIDE:
2198      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2199      break;
2200    case Instruction::IGET_OBJECT:
2201      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2202      break;
2203
2204    case Instruction::IPUT_BOOLEAN:
2205      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2206      break;
2207    case Instruction::IPUT_BYTE:
2208      VerifyISPut(inst, reg_types_.Byte(), true, false);
2209      break;
2210    case Instruction::IPUT_CHAR:
2211      VerifyISPut(inst, reg_types_.Char(), true, false);
2212      break;
2213    case Instruction::IPUT_SHORT:
2214      VerifyISPut(inst, reg_types_.Short(), true, false);
2215      break;
2216    case Instruction::IPUT:
2217      VerifyISPut(inst, reg_types_.Integer(), true, false);
2218      break;
2219    case Instruction::IPUT_WIDE:
2220      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2221      break;
2222    case Instruction::IPUT_OBJECT:
2223      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2224      break;
2225
2226    case Instruction::SGET_BOOLEAN:
2227      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2228      break;
2229    case Instruction::SGET_BYTE:
2230      VerifyISGet(inst, reg_types_.Byte(), true, true);
2231      break;
2232    case Instruction::SGET_CHAR:
2233      VerifyISGet(inst, reg_types_.Char(), true, true);
2234      break;
2235    case Instruction::SGET_SHORT:
2236      VerifyISGet(inst, reg_types_.Short(), true, true);
2237      break;
2238    case Instruction::SGET:
2239      VerifyISGet(inst, reg_types_.Integer(), true, true);
2240      break;
2241    case Instruction::SGET_WIDE:
2242      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2243      break;
2244    case Instruction::SGET_OBJECT:
2245      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2246      break;
2247
2248    case Instruction::SPUT_BOOLEAN:
2249      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2250      break;
2251    case Instruction::SPUT_BYTE:
2252      VerifyISPut(inst, reg_types_.Byte(), true, true);
2253      break;
2254    case Instruction::SPUT_CHAR:
2255      VerifyISPut(inst, reg_types_.Char(), true, true);
2256      break;
2257    case Instruction::SPUT_SHORT:
2258      VerifyISPut(inst, reg_types_.Short(), true, true);
2259      break;
2260    case Instruction::SPUT:
2261      VerifyISPut(inst, reg_types_.Integer(), true, true);
2262      break;
2263    case Instruction::SPUT_WIDE:
2264      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2265      break;
2266    case Instruction::SPUT_OBJECT:
2267      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2268      break;
2269
2270    case Instruction::INVOKE_VIRTUAL:
2271    case Instruction::INVOKE_VIRTUAL_RANGE:
2272    case Instruction::INVOKE_SUPER:
2273    case Instruction::INVOKE_SUPER_RANGE: {
2274      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2275                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2276      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2277                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2278      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2279                                                              is_super);
2280      const RegType* return_type = nullptr;
2281      if (called_method != nullptr) {
2282        StackHandleScope<1> hs(self_);
2283        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2284        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2285        if (return_type_class != nullptr) {
2286          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2287                                              return_type_class,
2288                                              return_type_class->CannotBeAssignedFromOtherTypes());
2289        } else {
2290          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2291          self_->ClearException();
2292        }
2293      }
2294      if (return_type == nullptr) {
2295        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2296        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2297        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2298        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2299        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2300      }
2301      if (!return_type->IsLowHalf()) {
2302        work_line_->SetResultRegisterType(this, *return_type);
2303      } else {
2304        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2305      }
2306      just_set_result = true;
2307      break;
2308    }
2309    case Instruction::INVOKE_DIRECT:
2310    case Instruction::INVOKE_DIRECT_RANGE: {
2311      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2312      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2313                                                                   is_range, false);
2314      const char* return_type_descriptor;
2315      bool is_constructor;
2316      const RegType* return_type = nullptr;
2317      if (called_method == nullptr) {
2318        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2319        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2320        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2321        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2322        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2323      } else {
2324        is_constructor = called_method->IsConstructor();
2325        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2326        StackHandleScope<1> hs(self_);
2327        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2328        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2329        if (return_type_class != nullptr) {
2330          return_type = &reg_types_.FromClass(return_type_descriptor,
2331                                              return_type_class,
2332                                              return_type_class->CannotBeAssignedFromOtherTypes());
2333        } else {
2334          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2335          self_->ClearException();
2336        }
2337      }
2338      if (is_constructor) {
2339        /*
2340         * Some additional checks when calling a constructor. We know from the invocation arg check
2341         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2342         * that to require that called_method->klass is the same as this->klass or this->super,
2343         * allowing the latter only if the "this" argument is the same as the "this" argument to
2344         * this method (which implies that we're in a constructor ourselves).
2345         */
2346        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2347        if (this_type.IsConflict())  // failure.
2348          break;
2349
2350        /* no null refs allowed (?) */
2351        if (this_type.IsZero()) {
2352          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2353          break;
2354        }
2355
2356        /* must be in same class or in superclass */
2357        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2358        // TODO: re-enable constructor type verification
2359        // if (this_super_klass.IsConflict()) {
2360          // Unknown super class, fail so we re-check at runtime.
2361          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2362          // break;
2363        // }
2364
2365        /* arg must be an uninitialized reference */
2366        if (!this_type.IsUninitializedTypes()) {
2367          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2368              << this_type;
2369          break;
2370        }
2371
2372        /*
2373         * Replace the uninitialized reference with an initialized one. We need to do this for all
2374         * registers that have the same object instance in them, not just the "this" register.
2375         */
2376        work_line_->MarkRefsAsInitialized(this, this_type);
2377      }
2378      if (return_type == nullptr) {
2379        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2380                                                 false);
2381      }
2382      if (!return_type->IsLowHalf()) {
2383        work_line_->SetResultRegisterType(this, *return_type);
2384      } else {
2385        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2386      }
2387      just_set_result = true;
2388      break;
2389    }
2390    case Instruction::INVOKE_STATIC:
2391    case Instruction::INVOKE_STATIC_RANGE: {
2392        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2393        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2394                                                                     METHOD_STATIC,
2395                                                                     is_range,
2396                                                                     false);
2397        const char* descriptor;
2398        if (called_method == nullptr) {
2399          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2400          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2401          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2402          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2403        } else {
2404          descriptor = called_method->GetReturnTypeDescriptor();
2405        }
2406        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2407        if (!return_type.IsLowHalf()) {
2408          work_line_->SetResultRegisterType(this, return_type);
2409        } else {
2410          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2411        }
2412        just_set_result = true;
2413      }
2414      break;
2415    case Instruction::INVOKE_INTERFACE:
2416    case Instruction::INVOKE_INTERFACE_RANGE: {
2417      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2418      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2419                                                                METHOD_INTERFACE,
2420                                                                is_range,
2421                                                                false);
2422      if (abs_method != nullptr) {
2423        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2424        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2425          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2426              << PrettyMethod(abs_method) << "'";
2427          break;
2428        }
2429      }
2430      /* Get the type of the "this" arg, which should either be a sub-interface of called
2431       * interface or Object (see comments in RegType::JoinClass).
2432       */
2433      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2434      if (this_type.IsZero()) {
2435        /* null pointer always passes (and always fails at runtime) */
2436      } else {
2437        if (this_type.IsUninitializedTypes()) {
2438          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2439              << this_type;
2440          break;
2441        }
2442        // In the past we have tried to assert that "called_interface" is assignable
2443        // from "this_type.GetClass()", however, as we do an imprecise Join
2444        // (RegType::JoinClass) we don't have full information on what interfaces are
2445        // implemented by "this_type". For example, two classes may implement the same
2446        // interfaces and have a common parent that doesn't implement the interface. The
2447        // join will set "this_type" to the parent class and a test that this implements
2448        // the interface will incorrectly fail.
2449      }
2450      /*
2451       * We don't have an object instance, so we can't find the concrete method. However, all of
2452       * the type information is in the abstract method, so we're good.
2453       */
2454      const char* descriptor;
2455      if (abs_method == nullptr) {
2456        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2457        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2458        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2459        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2460      } else {
2461        descriptor = abs_method->GetReturnTypeDescriptor();
2462      }
2463      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2464      if (!return_type.IsLowHalf()) {
2465        work_line_->SetResultRegisterType(this, return_type);
2466      } else {
2467        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2468      }
2469      just_set_result = true;
2470      break;
2471    }
2472    case Instruction::NEG_INT:
2473    case Instruction::NOT_INT:
2474      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2475      break;
2476    case Instruction::NEG_LONG:
2477    case Instruction::NOT_LONG:
2478      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2479                                   reg_types_.LongLo(), reg_types_.LongHi());
2480      break;
2481    case Instruction::NEG_FLOAT:
2482      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2483      break;
2484    case Instruction::NEG_DOUBLE:
2485      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2486                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2487      break;
2488    case Instruction::INT_TO_LONG:
2489      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2490                                     reg_types_.Integer());
2491      break;
2492    case Instruction::INT_TO_FLOAT:
2493      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2494      break;
2495    case Instruction::INT_TO_DOUBLE:
2496      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2497                                     reg_types_.Integer());
2498      break;
2499    case Instruction::LONG_TO_INT:
2500      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2501                                       reg_types_.LongLo(), reg_types_.LongHi());
2502      break;
2503    case Instruction::LONG_TO_FLOAT:
2504      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2505                                       reg_types_.LongLo(), reg_types_.LongHi());
2506      break;
2507    case Instruction::LONG_TO_DOUBLE:
2508      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2509                                   reg_types_.LongLo(), reg_types_.LongHi());
2510      break;
2511    case Instruction::FLOAT_TO_INT:
2512      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2513      break;
2514    case Instruction::FLOAT_TO_LONG:
2515      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2516                                     reg_types_.Float());
2517      break;
2518    case Instruction::FLOAT_TO_DOUBLE:
2519      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2520                                     reg_types_.Float());
2521      break;
2522    case Instruction::DOUBLE_TO_INT:
2523      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2524                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2525      break;
2526    case Instruction::DOUBLE_TO_LONG:
2527      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2528                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2529      break;
2530    case Instruction::DOUBLE_TO_FLOAT:
2531      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2532                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2533      break;
2534    case Instruction::INT_TO_BYTE:
2535      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2536      break;
2537    case Instruction::INT_TO_CHAR:
2538      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2539      break;
2540    case Instruction::INT_TO_SHORT:
2541      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2542      break;
2543
2544    case Instruction::ADD_INT:
2545    case Instruction::SUB_INT:
2546    case Instruction::MUL_INT:
2547    case Instruction::REM_INT:
2548    case Instruction::DIV_INT:
2549    case Instruction::SHL_INT:
2550    case Instruction::SHR_INT:
2551    case Instruction::USHR_INT:
2552      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2553                                reg_types_.Integer(), false);
2554      break;
2555    case Instruction::AND_INT:
2556    case Instruction::OR_INT:
2557    case Instruction::XOR_INT:
2558      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2559                                reg_types_.Integer(), true);
2560      break;
2561    case Instruction::ADD_LONG:
2562    case Instruction::SUB_LONG:
2563    case Instruction::MUL_LONG:
2564    case Instruction::DIV_LONG:
2565    case Instruction::REM_LONG:
2566    case Instruction::AND_LONG:
2567    case Instruction::OR_LONG:
2568    case Instruction::XOR_LONG:
2569      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2570                                    reg_types_.LongLo(), reg_types_.LongHi(),
2571                                    reg_types_.LongLo(), reg_types_.LongHi());
2572      break;
2573    case Instruction::SHL_LONG:
2574    case Instruction::SHR_LONG:
2575    case Instruction::USHR_LONG:
2576      /* shift distance is Int, making these different from other binary operations */
2577      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2578                                         reg_types_.Integer());
2579      break;
2580    case Instruction::ADD_FLOAT:
2581    case Instruction::SUB_FLOAT:
2582    case Instruction::MUL_FLOAT:
2583    case Instruction::DIV_FLOAT:
2584    case Instruction::REM_FLOAT:
2585      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2586                                reg_types_.Float(), false);
2587      break;
2588    case Instruction::ADD_DOUBLE:
2589    case Instruction::SUB_DOUBLE:
2590    case Instruction::MUL_DOUBLE:
2591    case Instruction::DIV_DOUBLE:
2592    case Instruction::REM_DOUBLE:
2593      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2594                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2595                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2596      break;
2597    case Instruction::ADD_INT_2ADDR:
2598    case Instruction::SUB_INT_2ADDR:
2599    case Instruction::MUL_INT_2ADDR:
2600    case Instruction::REM_INT_2ADDR:
2601    case Instruction::SHL_INT_2ADDR:
2602    case Instruction::SHR_INT_2ADDR:
2603    case Instruction::USHR_INT_2ADDR:
2604      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2605                                     reg_types_.Integer(), false);
2606      break;
2607    case Instruction::AND_INT_2ADDR:
2608    case Instruction::OR_INT_2ADDR:
2609    case Instruction::XOR_INT_2ADDR:
2610      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2611                                     reg_types_.Integer(), true);
2612      break;
2613    case Instruction::DIV_INT_2ADDR:
2614      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2615                                     reg_types_.Integer(), false);
2616      break;
2617    case Instruction::ADD_LONG_2ADDR:
2618    case Instruction::SUB_LONG_2ADDR:
2619    case Instruction::MUL_LONG_2ADDR:
2620    case Instruction::DIV_LONG_2ADDR:
2621    case Instruction::REM_LONG_2ADDR:
2622    case Instruction::AND_LONG_2ADDR:
2623    case Instruction::OR_LONG_2ADDR:
2624    case Instruction::XOR_LONG_2ADDR:
2625      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2626                                         reg_types_.LongLo(), reg_types_.LongHi(),
2627                                         reg_types_.LongLo(), reg_types_.LongHi());
2628      break;
2629    case Instruction::SHL_LONG_2ADDR:
2630    case Instruction::SHR_LONG_2ADDR:
2631    case Instruction::USHR_LONG_2ADDR:
2632      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2633                                              reg_types_.Integer());
2634      break;
2635    case Instruction::ADD_FLOAT_2ADDR:
2636    case Instruction::SUB_FLOAT_2ADDR:
2637    case Instruction::MUL_FLOAT_2ADDR:
2638    case Instruction::DIV_FLOAT_2ADDR:
2639    case Instruction::REM_FLOAT_2ADDR:
2640      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2641                                     reg_types_.Float(), false);
2642      break;
2643    case Instruction::ADD_DOUBLE_2ADDR:
2644    case Instruction::SUB_DOUBLE_2ADDR:
2645    case Instruction::MUL_DOUBLE_2ADDR:
2646    case Instruction::DIV_DOUBLE_2ADDR:
2647    case Instruction::REM_DOUBLE_2ADDR:
2648      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2649                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2650                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2651      break;
2652    case Instruction::ADD_INT_LIT16:
2653    case Instruction::RSUB_INT_LIT16:
2654    case Instruction::MUL_INT_LIT16:
2655    case Instruction::DIV_INT_LIT16:
2656    case Instruction::REM_INT_LIT16:
2657      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2658                                 true);
2659      break;
2660    case Instruction::AND_INT_LIT16:
2661    case Instruction::OR_INT_LIT16:
2662    case Instruction::XOR_INT_LIT16:
2663      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2664                                 true);
2665      break;
2666    case Instruction::ADD_INT_LIT8:
2667    case Instruction::RSUB_INT_LIT8:
2668    case Instruction::MUL_INT_LIT8:
2669    case Instruction::DIV_INT_LIT8:
2670    case Instruction::REM_INT_LIT8:
2671    case Instruction::SHL_INT_LIT8:
2672    case Instruction::SHR_INT_LIT8:
2673    case Instruction::USHR_INT_LIT8:
2674      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2675                                 false);
2676      break;
2677    case Instruction::AND_INT_LIT8:
2678    case Instruction::OR_INT_LIT8:
2679    case Instruction::XOR_INT_LIT8:
2680      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2681                                 false);
2682      break;
2683
2684    // Special instructions.
2685    case Instruction::RETURN_VOID_BARRIER:
2686      if (!IsConstructor() || IsStatic()) {
2687          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2688      }
2689      break;
2690    // Note: the following instructions encode offsets derived from class linking.
2691    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2692    // meaning if the class linking and resolution were successful.
2693    case Instruction::IGET_QUICK:
2694      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2695      break;
2696    case Instruction::IGET_WIDE_QUICK:
2697      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2698      break;
2699    case Instruction::IGET_OBJECT_QUICK:
2700      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2701      break;
2702    case Instruction::IPUT_QUICK:
2703      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2704      break;
2705    case Instruction::IPUT_BOOLEAN_QUICK:
2706        VerifyIPutQuick(inst, reg_types_.Boolean(), true);
2707      break;
2708    case Instruction::IPUT_BYTE_QUICK:
2709        VerifyIPutQuick(inst, reg_types_.Byte(), true);
2710      break;
2711    case Instruction::IPUT_CHAR_QUICK:
2712        VerifyIPutQuick(inst, reg_types_.Char(), true);
2713      break;
2714    case Instruction::IPUT_SHORT_QUICK:
2715        VerifyIPutQuick(inst, reg_types_.Short(), true);
2716      break;
2717    case Instruction::IPUT_WIDE_QUICK:
2718      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2719      break;
2720    case Instruction::IPUT_OBJECT_QUICK:
2721      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2722      break;
2723    case Instruction::INVOKE_VIRTUAL_QUICK:
2724    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2725      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2726      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2727      if (called_method != nullptr) {
2728        const char* descriptor = called_method->GetReturnTypeDescriptor();
2729        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2730        if (!return_type.IsLowHalf()) {
2731          work_line_->SetResultRegisterType(this, return_type);
2732        } else {
2733          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2734        }
2735        just_set_result = true;
2736      }
2737      break;
2738    }
2739
2740    /* These should never appear during verification. */
2741    case Instruction::UNUSED_3E:
2742    case Instruction::UNUSED_3F:
2743    case Instruction::UNUSED_40:
2744    case Instruction::UNUSED_41:
2745    case Instruction::UNUSED_42:
2746    case Instruction::UNUSED_43:
2747    case Instruction::UNUSED_79:
2748    case Instruction::UNUSED_7A:
2749    case Instruction::UNUSED_EF:
2750    case Instruction::UNUSED_F0:
2751    case Instruction::UNUSED_F1:
2752    case Instruction::UNUSED_F2:
2753    case Instruction::UNUSED_F3:
2754    case Instruction::UNUSED_F4:
2755    case Instruction::UNUSED_F5:
2756    case Instruction::UNUSED_F6:
2757    case Instruction::UNUSED_F7:
2758    case Instruction::UNUSED_F8:
2759    case Instruction::UNUSED_F9:
2760    case Instruction::UNUSED_FA:
2761    case Instruction::UNUSED_FB:
2762    case Instruction::UNUSED_FC:
2763    case Instruction::UNUSED_FD:
2764    case Instruction::UNUSED_FE:
2765    case Instruction::UNUSED_FF:
2766      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2767      break;
2768
2769    /*
2770     * DO NOT add a "default" clause here. Without it the compiler will
2771     * complain if an instruction is missing (which is desirable).
2772     */
2773  }  // end - switch (dec_insn.opcode)
2774
2775  if (have_pending_hard_failure_) {
2776    if (Runtime::Current()->IsCompiler()) {
2777      /* When compiling, check that the last failure is a hard failure */
2778      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2779    }
2780    /* immediate failure, reject class */
2781    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2782    return false;
2783  } else if (have_pending_runtime_throw_failure_) {
2784    /* checking interpreter will throw, mark following code as unreachable */
2785    opcode_flags = Instruction::kThrow;
2786  }
2787  /*
2788   * If we didn't just set the result register, clear it out. This ensures that you can only use
2789   * "move-result" immediately after the result is set. (We could check this statically, but it's
2790   * not expensive and it makes our debugging output cleaner.)
2791   */
2792  if (!just_set_result) {
2793    work_line_->SetResultTypeToUnknown(this);
2794  }
2795
2796
2797
2798  /*
2799   * Handle "branch". Tag the branch target.
2800   *
2801   * NOTE: instructions like Instruction::EQZ provide information about the
2802   * state of the register when the branch is taken or not taken. For example,
2803   * somebody could get a reference field, check it for zero, and if the
2804   * branch is taken immediately store that register in a boolean field
2805   * since the value is known to be zero. We do not currently account for
2806   * that, and will reject the code.
2807   *
2808   * TODO: avoid re-fetching the branch target
2809   */
2810  if ((opcode_flags & Instruction::kBranch) != 0) {
2811    bool isConditional, selfOkay;
2812    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2813      /* should never happen after static verification */
2814      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2815      return false;
2816    }
2817    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2818    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2819      return false;
2820    }
2821    /* update branch target, set "changed" if appropriate */
2822    if (nullptr != branch_line.get()) {
2823      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2824        return false;
2825      }
2826    } else {
2827      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2828        return false;
2829      }
2830    }
2831  }
2832
2833  /*
2834   * Handle "switch". Tag all possible branch targets.
2835   *
2836   * We've already verified that the table is structurally sound, so we
2837   * just need to walk through and tag the targets.
2838   */
2839  if ((opcode_flags & Instruction::kSwitch) != 0) {
2840    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2841    const uint16_t* switch_insns = insns + offset_to_switch;
2842    int switch_count = switch_insns[1];
2843    int offset_to_targets, targ;
2844
2845    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2846      /* 0 = sig, 1 = count, 2/3 = first key */
2847      offset_to_targets = 4;
2848    } else {
2849      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2850      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2851      offset_to_targets = 2 + 2 * switch_count;
2852    }
2853
2854    /* verify each switch target */
2855    for (targ = 0; targ < switch_count; targ++) {
2856      int offset;
2857      uint32_t abs_offset;
2858
2859      /* offsets are 32-bit, and only partly endian-swapped */
2860      offset = switch_insns[offset_to_targets + targ * 2] |
2861         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2862      abs_offset = work_insn_idx_ + offset;
2863      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2864      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2865        return false;
2866      }
2867      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2868        return false;
2869      }
2870    }
2871  }
2872
2873  /*
2874   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2875   * "try" block when they throw, control transfers out of the method.)
2876   */
2877  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2878    bool has_catch_all_handler = false;
2879    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2880
2881    // Need the linker to try and resolve the handled class to check if it's Throwable.
2882    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2883
2884    for (; iterator.HasNext(); iterator.Next()) {
2885      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2886      if (handler_type_idx == DexFile::kDexNoIndex16) {
2887        has_catch_all_handler = true;
2888      } else {
2889        // It is also a catch-all if it is java.lang.Throwable.
2890        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2891                                                   class_loader_);
2892        if (klass != nullptr) {
2893          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2894            has_catch_all_handler = true;
2895          }
2896        } else {
2897          // Clear exception.
2898          DCHECK(self_->IsExceptionPending());
2899          self_->ClearException();
2900        }
2901      }
2902      /*
2903       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2904       * "work_regs", because at runtime the exception will be thrown before the instruction
2905       * modifies any registers.
2906       */
2907      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2908        return false;
2909      }
2910    }
2911
2912    /*
2913     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2914     * instruction. This does apply to monitor-exit because of async exception handling.
2915     */
2916    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2917      /*
2918       * The state in work_line reflects the post-execution state. If the current instruction is a
2919       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2920       * it will do so before grabbing the lock).
2921       */
2922      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2923        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2924            << "expected to be within a catch-all for an instruction where a monitor is held";
2925        return false;
2926      }
2927    }
2928  }
2929
2930  /* Handle "continue". Tag the next consecutive instruction.
2931   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2932   *        because it changes work_line_ when performing peephole optimization
2933   *        and this change should not be used in those cases.
2934   */
2935  if ((opcode_flags & Instruction::kContinue) != 0) {
2936    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2937    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
2938    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2939      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2940      return false;
2941    }
2942    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2943    // next instruction isn't one.
2944    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2945      return false;
2946    }
2947    if (nullptr != fallthrough_line.get()) {
2948      // Make workline consistent with fallthrough computed from peephole optimization.
2949      work_line_->CopyFromLine(fallthrough_line.get());
2950    }
2951    if (insn_flags_[next_insn_idx].IsReturn()) {
2952      // For returns we only care about the operand to the return, all other registers are dead.
2953      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2954      Instruction::Code opcode = ret_inst->Opcode();
2955      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2956        work_line_->MarkAllRegistersAsConflicts(this);
2957      } else {
2958        if (opcode == Instruction::RETURN_WIDE) {
2959          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
2960        } else {
2961          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
2962        }
2963      }
2964    }
2965    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2966    if (next_line != nullptr) {
2967      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2968      // needed. If the merge changes the state of the registers then the work line will be
2969      // updated.
2970      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2971        return false;
2972      }
2973    } else {
2974      /*
2975       * We're not recording register data for the next instruction, so we don't know what the
2976       * prior state was. We have to assume that something has changed and re-evaluate it.
2977       */
2978      insn_flags_[next_insn_idx].SetChanged();
2979    }
2980  }
2981
2982  /* If we're returning from the method, make sure monitor stack is empty. */
2983  if ((opcode_flags & Instruction::kReturn) != 0) {
2984    if (!work_line_->VerifyMonitorStackEmpty(this)) {
2985      return false;
2986    }
2987  }
2988
2989  /*
2990   * Update start_guess. Advance to the next instruction of that's
2991   * possible, otherwise use the branch target if one was found. If
2992   * neither of those exists we're in a return or throw; leave start_guess
2993   * alone and let the caller sort it out.
2994   */
2995  if ((opcode_flags & Instruction::kContinue) != 0) {
2996    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2997    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
2998  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2999    /* we're still okay if branch_target is zero */
3000    *start_guess = work_insn_idx_ + branch_target;
3001  }
3002
3003  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3004  DCHECK(insn_flags_[*start_guess].IsOpcode());
3005
3006  return true;
3007}  // NOLINT(readability/fn_size)
3008
3009const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3010  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3011  const RegType& referrer = GetDeclaringClass();
3012  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3013  const RegType& result = klass != nullptr ?
3014      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3015      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3016  if (result.IsConflict()) {
3017    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3018        << "' in " << referrer;
3019    return result;
3020  }
3021  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3022    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3023  }
3024  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3025  // check at runtime if access is allowed and so pass here. If result is
3026  // primitive, skip the access check.
3027  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3028      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3029    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3030                                    << referrer << "' -> '" << result << "'";
3031  }
3032  return result;
3033}
3034
3035const RegType& MethodVerifier::GetCaughtExceptionType() {
3036  const RegType* common_super = nullptr;
3037  if (code_item_->tries_size_ != 0) {
3038    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3039    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3040    for (uint32_t i = 0; i < handlers_size; i++) {
3041      CatchHandlerIterator iterator(handlers_ptr);
3042      for (; iterator.HasNext(); iterator.Next()) {
3043        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3044          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3045            common_super = &reg_types_.JavaLangThrowable(false);
3046          } else {
3047            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3048            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3049              if (exception.IsUnresolvedTypes()) {
3050                // We don't know enough about the type. Fail here and let runtime handle it.
3051                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3052                return exception;
3053              } else {
3054                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3055                return reg_types_.Conflict();
3056              }
3057            } else if (common_super == nullptr) {
3058              common_super = &exception;
3059            } else if (common_super->Equals(exception)) {
3060              // odd case, but nothing to do
3061            } else {
3062              common_super = &common_super->Merge(exception, &reg_types_);
3063              if (FailOrAbort(this,
3064                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3065                              "java.lang.Throwable is not assignable-from common_super at ",
3066                              work_insn_idx_)) {
3067                break;
3068              }
3069            }
3070          }
3071        }
3072      }
3073      handlers_ptr = iterator.EndDataPointer();
3074    }
3075  }
3076  if (common_super == nullptr) {
3077    /* no catch blocks, or no catches with classes we can find */
3078    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3079    return reg_types_.Conflict();
3080  }
3081  return *common_super;
3082}
3083
3084mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3085                                                               MethodType method_type) {
3086  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3087  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3088  if (klass_type.IsConflict()) {
3089    std::string append(" in attempt to access method ");
3090    append += dex_file_->GetMethodName(method_id);
3091    AppendToLastFailMessage(append);
3092    return nullptr;
3093  }
3094  if (klass_type.IsUnresolvedTypes()) {
3095    return nullptr;  // Can't resolve Class so no more to do here
3096  }
3097  mirror::Class* klass = klass_type.GetClass();
3098  const RegType& referrer = GetDeclaringClass();
3099  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3100  if (res_method == nullptr) {
3101    const char* name = dex_file_->GetMethodName(method_id);
3102    const Signature signature = dex_file_->GetMethodSignature(method_id);
3103
3104    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3105      res_method = klass->FindDirectMethod(name, signature);
3106    } else if (method_type == METHOD_INTERFACE) {
3107      res_method = klass->FindInterfaceMethod(name, signature);
3108    } else {
3109      res_method = klass->FindVirtualMethod(name, signature);
3110    }
3111    if (res_method != nullptr) {
3112      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3113    } else {
3114      // If a virtual or interface method wasn't found with the expected type, look in
3115      // the direct methods. This can happen when the wrong invoke type is used or when
3116      // a class has changed, and will be flagged as an error in later checks.
3117      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3118        res_method = klass->FindDirectMethod(name, signature);
3119      }
3120      if (res_method == nullptr) {
3121        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3122                                     << PrettyDescriptor(klass) << "." << name
3123                                     << " " << signature;
3124        return nullptr;
3125      }
3126    }
3127  }
3128  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3129  // enforce them here.
3130  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3131    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3132                                      << PrettyMethod(res_method);
3133    return nullptr;
3134  }
3135  // Disallow any calls to class initializers.
3136  if (res_method->IsClassInitializer()) {
3137    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3138                                      << PrettyMethod(res_method);
3139    return nullptr;
3140  }
3141  // Check if access is allowed.
3142  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3143    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3144                                     << " from " << referrer << ")";
3145    return res_method;
3146  }
3147  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3148  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3149    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3150                                      << PrettyMethod(res_method);
3151    return nullptr;
3152  }
3153  // Check that interface methods match interface classes.
3154  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3155    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3156                                    << " is in an interface class " << PrettyClass(klass);
3157    return nullptr;
3158  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3159    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3160                                    << " is in a non-interface class " << PrettyClass(klass);
3161    return nullptr;
3162  }
3163  // See if the method type implied by the invoke instruction matches the access flags for the
3164  // target method.
3165  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3166      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3167      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3168      ) {
3169    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3170                                       " type of " << PrettyMethod(res_method);
3171    return nullptr;
3172  }
3173  return res_method;
3174}
3175
3176template <class T>
3177mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3178                                                                    MethodType method_type,
3179                                                                    bool is_range,
3180                                                                    mirror::ArtMethod* res_method) {
3181  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3182  // match the call to the signature. Also, we might be calling through an abstract method
3183  // definition (which doesn't have register count values).
3184  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3185  /* caught by static verifier */
3186  DCHECK(is_range || expected_args <= 5);
3187  if (expected_args > code_item_->outs_size_) {
3188    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3189        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3190    return nullptr;
3191  }
3192
3193  uint32_t arg[5];
3194  if (!is_range) {
3195    inst->GetVarArgs(arg);
3196  }
3197  uint32_t sig_registers = 0;
3198
3199  /*
3200   * Check the "this" argument, which must be an instance of the class that declared the method.
3201   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3202   * rigorous check here (which is okay since we have to do it at runtime).
3203   */
3204  if (method_type != METHOD_STATIC) {
3205    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3206    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3207      CHECK(have_pending_hard_failure_);
3208      return nullptr;
3209    }
3210    if (actual_arg_type.IsUninitializedReference()) {
3211      if (res_method) {
3212        if (!res_method->IsConstructor()) {
3213          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3214          return nullptr;
3215        }
3216      } else {
3217        // Check whether the name of the called method is "<init>"
3218        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3219        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3220          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3221          return nullptr;
3222        }
3223      }
3224    }
3225    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3226      const RegType* res_method_class;
3227      if (res_method != nullptr) {
3228        mirror::Class* klass = res_method->GetDeclaringClass();
3229        std::string temp;
3230        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3231                                                 klass->CannotBeAssignedFromOtherTypes());
3232      } else {
3233        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3234        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3235        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3236                                                      dex_file_->StringByTypeIdx(class_idx),
3237                                                      false);
3238      }
3239      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3240        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3241            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3242                << "' not instance of '" << *res_method_class << "'";
3243        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3244        // the compiler.
3245        if (have_pending_hard_failure_) {
3246          return nullptr;
3247        }
3248      }
3249    }
3250    sig_registers = 1;
3251  }
3252
3253  for ( ; it->HasNext(); it->Next()) {
3254    if (sig_registers >= expected_args) {
3255      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3256          " arguments, found " << sig_registers << " or more.";
3257      return nullptr;
3258    }
3259
3260    const char* param_descriptor = it->GetDescriptor();
3261
3262    if (param_descriptor == nullptr) {
3263      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3264          "component";
3265      return nullptr;
3266    }
3267
3268    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3269    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3270        arg[sig_registers];
3271    if (reg_type.IsIntegralTypes()) {
3272      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3273      if (!src_type.IsIntegralTypes()) {
3274        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3275            << " but expected " << reg_type;
3276        return res_method;
3277      }
3278    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3279      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3280      // compiler.
3281      if (have_pending_hard_failure_) {
3282        return res_method;
3283      }
3284    }
3285    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3286  }
3287  if (expected_args != sig_registers) {
3288    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3289        " arguments, found " << sig_registers;
3290    return nullptr;
3291  }
3292  return res_method;
3293}
3294
3295void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3296                                                          MethodType method_type,
3297                                                          bool is_range) {
3298  // As the method may not have been resolved, make this static check against what we expect.
3299  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3300  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3301  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3302  DexFileParameterIterator it(*dex_file_,
3303                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3304  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3305                                                             nullptr);
3306}
3307
3308class MethodParamListDescriptorIterator {
3309 public:
3310  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3311      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3312      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3313  }
3314
3315  bool HasNext() {
3316    return pos_ < params_size_;
3317  }
3318
3319  void Next() {
3320    ++pos_;
3321  }
3322
3323  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3324    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3325  }
3326
3327 private:
3328  mirror::ArtMethod* res_method_;
3329  size_t pos_;
3330  const DexFile::TypeList* params_;
3331  const size_t params_size_;
3332};
3333
3334mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3335                                                             MethodType method_type,
3336                                                             bool is_range,
3337                                                             bool is_super) {
3338  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3339  // we're making.
3340  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3341
3342  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3343  if (res_method == nullptr) {  // error or class is unresolved
3344    // Check what we can statically.
3345    if (!have_pending_hard_failure_) {
3346      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3347    }
3348    return nullptr;
3349  }
3350
3351  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3352  // has a vtable entry for the target method.
3353  if (is_super) {
3354    DCHECK(method_type == METHOD_VIRTUAL);
3355    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3356    if (super.IsUnresolvedTypes()) {
3357      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3358                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3359                                   << " to super " << PrettyMethod(res_method);
3360      return nullptr;
3361    }
3362    mirror::Class* super_klass = super.GetClass();
3363    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3364      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3365                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3366                                   << " to super " << super
3367                                   << "." << res_method->GetName()
3368                                   << res_method->GetSignature();
3369      return nullptr;
3370    }
3371  }
3372
3373  // Process the target method's signature. This signature may or may not
3374  MethodParamListDescriptorIterator it(res_method);
3375  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3376                                                                             is_range, res_method);
3377}
3378
3379mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3380                                                         RegisterLine* reg_line, bool is_range) {
3381  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3382         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3383  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range);
3384  if (!actual_arg_type.HasClass()) {
3385    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3386    return nullptr;
3387  }
3388  mirror::Class* klass = actual_arg_type.GetClass();
3389  mirror::Class* dispatch_class;
3390  if (klass->IsInterface()) {
3391    // Derive Object.class from Class.class.getSuperclass().
3392    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3393    if (FailOrAbort(this, object_klass->IsObjectClass(),
3394                    "Failed to find Object class in quickened invoke receiver",
3395                    work_insn_idx_)) {
3396      return nullptr;
3397    }
3398    dispatch_class = object_klass;
3399  } else {
3400    dispatch_class = klass;
3401  }
3402  if (FailOrAbort(this, dispatch_class->HasVTable(),
3403                  "Receiver class has no vtable for quickened invoke at ",
3404                  work_insn_idx_)) {
3405    return nullptr;
3406  }
3407  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3408  if (FailOrAbort(this, static_cast<int32_t>(vtable_index) < dispatch_class->GetVTableLength(),
3409                  "Receiver class has not enough vtable slots for quickened invoke at ",
3410                  work_insn_idx_)) {
3411    return nullptr;
3412  }
3413  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3414  if (FailOrAbort(this, !Thread::Current()->IsExceptionPending(),
3415                  "Unexpected exception pending for quickened invoke at ",
3416                  work_insn_idx_)) {
3417    return nullptr;
3418  }
3419  return res_method;
3420}
3421
3422mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3423                                                                bool is_range) {
3424  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3425  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3426                                                             is_range);
3427  if (res_method == nullptr) {
3428    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3429    return nullptr;
3430  }
3431  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3432                  work_insn_idx_)) {
3433    return nullptr;
3434  }
3435  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3436                  work_insn_idx_)) {
3437    return nullptr;
3438  }
3439
3440  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3441  // match the call to the signature. Also, we might be calling through an abstract method
3442  // definition (which doesn't have register count values).
3443  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3444  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3445    return nullptr;
3446  }
3447  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3448  /* caught by static verifier */
3449  DCHECK(is_range || expected_args <= 5);
3450  if (expected_args > code_item_->outs_size_) {
3451    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3452        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3453    return nullptr;
3454  }
3455
3456  /*
3457   * Check the "this" argument, which must be an instance of the class that declared the method.
3458   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3459   * rigorous check here (which is okay since we have to do it at runtime).
3460   */
3461  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3462    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3463    return nullptr;
3464  }
3465  if (!actual_arg_type.IsZero()) {
3466    mirror::Class* klass = res_method->GetDeclaringClass();
3467    std::string temp;
3468    const RegType& res_method_class =
3469        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3470                             klass->CannotBeAssignedFromOtherTypes());
3471    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3472      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3473          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3474          << "' not instance of '" << res_method_class << "'";
3475      return nullptr;
3476    }
3477  }
3478  /*
3479   * Process the target method's signature. This signature may or may not
3480   * have been verified, so we can't assume it's properly formed.
3481   */
3482  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3483  size_t params_size = params == nullptr ? 0 : params->Size();
3484  uint32_t arg[5];
3485  if (!is_range) {
3486    inst->GetVarArgs(arg);
3487  }
3488  size_t actual_args = 1;
3489  for (size_t param_index = 0; param_index < params_size; param_index++) {
3490    if (actual_args >= expected_args) {
3491      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3492                                        << "'. Expected " << expected_args
3493                                         << " arguments, processing argument " << actual_args
3494                                        << " (where longs/doubles count twice).";
3495      return nullptr;
3496    }
3497    const char* descriptor =
3498        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3499    if (descriptor == nullptr) {
3500      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3501                                        << " missing signature component";
3502      return nullptr;
3503    }
3504    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3505    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3506    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3507      return res_method;
3508    }
3509    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3510  }
3511  if (actual_args != expected_args) {
3512    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3513              << " expected " << expected_args << " arguments, found " << actual_args;
3514    return nullptr;
3515  } else {
3516    return res_method;
3517  }
3518}
3519
3520void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3521  uint32_t type_idx;
3522  if (!is_filled) {
3523    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3524    type_idx = inst->VRegC_22c();
3525  } else if (!is_range) {
3526    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3527    type_idx = inst->VRegB_35c();
3528  } else {
3529    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3530    type_idx = inst->VRegB_3rc();
3531  }
3532  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3533  if (res_type.IsConflict()) {  // bad class
3534    DCHECK_NE(failures_.size(), 0U);
3535  } else {
3536    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3537    if (!res_type.IsArrayTypes()) {
3538      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3539    } else if (!is_filled) {
3540      /* make sure "size" register is valid type */
3541      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3542      /* set register type to array class */
3543      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3544      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3545    } else {
3546      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3547      // the list and fail. It's legal, if silly, for arg_count to be zero.
3548      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3549      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3550      uint32_t arg[5];
3551      if (!is_range) {
3552        inst->GetVarArgs(arg);
3553      }
3554      for (size_t ui = 0; ui < arg_count; ui++) {
3555        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3556        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3557          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3558          return;
3559        }
3560      }
3561      // filled-array result goes into "result" register
3562      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3563      work_line_->SetResultRegisterType(this, precise_type);
3564    }
3565  }
3566}
3567
3568void MethodVerifier::VerifyAGet(const Instruction* inst,
3569                                const RegType& insn_type, bool is_primitive) {
3570  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3571  if (!index_type.IsArrayIndexTypes()) {
3572    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3573  } else {
3574    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3575    if (array_type.IsZero()) {
3576      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3577      // instruction type. TODO: have a proper notion of bottom here.
3578      if (!is_primitive || insn_type.IsCategory1Types()) {
3579        // Reference or category 1
3580        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3581      } else {
3582        // Category 2
3583        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3584                                        reg_types_.FromCat2ConstLo(0, false),
3585                                        reg_types_.FromCat2ConstHi(0, false));
3586      }
3587    } else if (!array_type.IsArrayTypes()) {
3588      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3589    } else {
3590      /* verify the class */
3591      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3592      if (!component_type.IsReferenceTypes() && !is_primitive) {
3593        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3594            << " source for aget-object";
3595      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3596        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3597            << " source for category 1 aget";
3598      } else if (is_primitive && !insn_type.Equals(component_type) &&
3599                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3600                 (insn_type.IsLong() && component_type.IsDouble()))) {
3601        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3602            << " incompatible with aget of type " << insn_type;
3603      } else {
3604        // Use knowledge of the field type which is stronger than the type inferred from the
3605        // instruction, which can't differentiate object types and ints from floats, longs from
3606        // doubles.
3607        if (!component_type.IsLowHalf()) {
3608          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3609        } else {
3610          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3611                                          component_type.HighHalf(&reg_types_));
3612        }
3613      }
3614    }
3615  }
3616}
3617
3618void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3619                                        const uint32_t vregA) {
3620  // Primitive assignability rules are weaker than regular assignability rules.
3621  bool instruction_compatible;
3622  bool value_compatible;
3623  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3624  if (target_type.IsIntegralTypes()) {
3625    instruction_compatible = target_type.Equals(insn_type);
3626    value_compatible = value_type.IsIntegralTypes();
3627  } else if (target_type.IsFloat()) {
3628    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3629    value_compatible = value_type.IsFloatTypes();
3630  } else if (target_type.IsLong()) {
3631    instruction_compatible = insn_type.IsLong();
3632    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3633    // as target_type depends on the resolved type of the field.
3634    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3635      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3636      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3637    } else {
3638      value_compatible = false;
3639    }
3640  } else if (target_type.IsDouble()) {
3641    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3642    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3643    // as target_type depends on the resolved type of the field.
3644    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3645      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3646      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3647    } else {
3648      value_compatible = false;
3649    }
3650  } else {
3651    instruction_compatible = false;  // reference with primitive store
3652    value_compatible = false;  // unused
3653  }
3654  if (!instruction_compatible) {
3655    // This is a global failure rather than a class change failure as the instructions and
3656    // the descriptors for the type should have been consistent within the same file at
3657    // compile time.
3658    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3659        << "' but expected type '" << target_type << "'";
3660    return;
3661  }
3662  if (!value_compatible) {
3663    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3664        << " of type " << value_type << " but expected " << target_type << " for put";
3665    return;
3666  }
3667}
3668
3669void MethodVerifier::VerifyAPut(const Instruction* inst,
3670                                const RegType& insn_type, bool is_primitive) {
3671  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3672  if (!index_type.IsArrayIndexTypes()) {
3673    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3674  } else {
3675    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3676    if (array_type.IsZero()) {
3677      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3678      // instruction type.
3679    } else if (!array_type.IsArrayTypes()) {
3680      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3681    } else {
3682      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3683      const uint32_t vregA = inst->VRegA_23x();
3684      if (is_primitive) {
3685        VerifyPrimitivePut(component_type, insn_type, vregA);
3686      } else {
3687        if (!component_type.IsReferenceTypes()) {
3688          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3689              << " source for aput-object";
3690        } else {
3691          // The instruction agrees with the type of array, confirm the value to be stored does too
3692          // Note: we use the instruction type (rather than the component type) for aput-object as
3693          // incompatible classes will be caught at runtime as an array store exception
3694          work_line_->VerifyRegisterType(this, vregA, insn_type);
3695        }
3696      }
3697    }
3698  }
3699}
3700
3701mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3702  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3703  // Check access to class
3704  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3705  if (klass_type.IsConflict()) {  // bad class
3706    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3707                                         field_idx, dex_file_->GetFieldName(field_id),
3708                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3709    return nullptr;
3710  }
3711  if (klass_type.IsUnresolvedTypes()) {
3712    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3713  }
3714  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3715  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3716                                                          class_loader_);
3717  if (field == nullptr) {
3718    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3719              << dex_file_->GetFieldName(field_id) << ") in "
3720              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3721    DCHECK(self_->IsExceptionPending());
3722    self_->ClearException();
3723    return nullptr;
3724  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3725                                                  field->GetAccessFlags())) {
3726    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3727                                    << " from " << GetDeclaringClass();
3728    return nullptr;
3729  } else if (!field->IsStatic()) {
3730    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3731    return nullptr;
3732  }
3733  return field;
3734}
3735
3736mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3737  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3738  // Check access to class
3739  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3740  if (klass_type.IsConflict()) {
3741    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3742                                         field_idx, dex_file_->GetFieldName(field_id),
3743                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3744    return nullptr;
3745  }
3746  if (klass_type.IsUnresolvedTypes()) {
3747    return nullptr;  // Can't resolve Class so no more to do here
3748  }
3749  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3750  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3751                                                          class_loader_);
3752  if (field == nullptr) {
3753    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3754              << dex_file_->GetFieldName(field_id) << ") in "
3755              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3756    DCHECK(self_->IsExceptionPending());
3757    self_->ClearException();
3758    return nullptr;
3759  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3760                                                  field->GetAccessFlags())) {
3761    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3762                                    << " from " << GetDeclaringClass();
3763    return nullptr;
3764  } else if (field->IsStatic()) {
3765    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3766                                    << " to not be static";
3767    return nullptr;
3768  } else if (obj_type.IsZero()) {
3769    // Cannot infer and check type, however, access will cause null pointer exception
3770    return field;
3771  } else if (!obj_type.IsReferenceTypes()) {
3772    // Trying to read a field from something that isn't a reference
3773    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3774                                      << "non-reference type " << obj_type;
3775    return nullptr;
3776  } else {
3777    mirror::Class* klass = field->GetDeclaringClass();
3778    const RegType& field_klass =
3779        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3780                             klass, klass->CannotBeAssignedFromOtherTypes());
3781    if (obj_type.IsUninitializedTypes() &&
3782        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3783            !field_klass.Equals(GetDeclaringClass()))) {
3784      // Field accesses through uninitialized references are only allowable for constructors where
3785      // the field is declared in this class
3786      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3787                                        << " of a not fully initialized object within the context"
3788                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3789      return nullptr;
3790    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3791      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3792      // of C1. For resolution to occur the declared class of the field must be compatible with
3793      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3794      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3795                                  << " from object of type " << obj_type;
3796      return nullptr;
3797    } else {
3798      return field;
3799    }
3800  }
3801}
3802
3803void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3804                                 bool is_primitive, bool is_static) {
3805  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3806  mirror::ArtField* field;
3807  if (is_static) {
3808    field = GetStaticField(field_idx);
3809  } else {
3810    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3811    field = GetInstanceField(object_type, field_idx);
3812  }
3813  const RegType* field_type = nullptr;
3814  if (field != nullptr) {
3815    mirror::Class* field_type_class;
3816    {
3817      StackHandleScope<1> hs(self_);
3818      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3819      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3820    }
3821    if (field_type_class != nullptr) {
3822      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3823                                         field_type_class->CannotBeAssignedFromOtherTypes());
3824    } else {
3825      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3826      self_->ClearException();
3827    }
3828  }
3829  if (field_type == nullptr) {
3830    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3831    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3832    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3833  }
3834  DCHECK(field_type != nullptr);
3835  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3836  if (is_primitive) {
3837    if (field_type->Equals(insn_type) ||
3838        (field_type->IsFloat() && insn_type.IsInteger()) ||
3839        (field_type->IsDouble() && insn_type.IsLong())) {
3840      // expected that read is of the correct primitive type or that int reads are reading
3841      // floats or long reads are reading doubles
3842    } else {
3843      // This is a global failure rather than a class change failure as the instructions and
3844      // the descriptors for the type should have been consistent within the same file at
3845      // compile time
3846      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3847                                        << " to be of type '" << insn_type
3848                                        << "' but found type '" << *field_type << "' in get";
3849      return;
3850    }
3851  } else {
3852    if (!insn_type.IsAssignableFrom(*field_type)) {
3853      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3854                                        << " to be compatible with type '" << insn_type
3855                                        << "' but found type '" << *field_type
3856                                        << "' in Get-object";
3857      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3858      return;
3859    }
3860  }
3861  if (!field_type->IsLowHalf()) {
3862    work_line_->SetRegisterType(this, vregA, *field_type);
3863  } else {
3864    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3865  }
3866}
3867
3868void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3869                                 bool is_primitive, bool is_static) {
3870  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3871  mirror::ArtField* field;
3872  if (is_static) {
3873    field = GetStaticField(field_idx);
3874  } else {
3875    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3876    field = GetInstanceField(object_type, field_idx);
3877  }
3878  const RegType* field_type = nullptr;
3879  if (field != nullptr) {
3880    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3881      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3882                                      << " from other class " << GetDeclaringClass();
3883      return;
3884    }
3885    mirror::Class* field_type_class;
3886    {
3887      StackHandleScope<1> hs(self_);
3888      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3889      FieldHelper fh(h_field);
3890      field_type_class = fh.GetType(can_load_classes_);
3891    }
3892    if (field_type_class != nullptr) {
3893      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3894                                         field_type_class->CannotBeAssignedFromOtherTypes());
3895    } else {
3896      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3897      self_->ClearException();
3898    }
3899  }
3900  if (field_type == nullptr) {
3901    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3902    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3903    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3904  }
3905  DCHECK(field_type != nullptr);
3906  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3907  if (is_primitive) {
3908    VerifyPrimitivePut(*field_type, insn_type, vregA);
3909  } else {
3910    if (!insn_type.IsAssignableFrom(*field_type)) {
3911      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3912                                        << " to be compatible with type '" << insn_type
3913                                        << "' but found type '" << *field_type
3914                                        << "' in put-object";
3915      return;
3916    }
3917    work_line_->VerifyRegisterType(this, vregA, *field_type);
3918  }
3919}
3920
3921mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3922                                                      RegisterLine* reg_line) {
3923  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3924         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3925         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3926         inst->Opcode() == Instruction::IPUT_QUICK ||
3927         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3928         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK ||
3929         inst->Opcode() == Instruction::IPUT_BOOLEAN_QUICK ||
3930         inst->Opcode() == Instruction::IPUT_BYTE_QUICK ||
3931         inst->Opcode() == Instruction::IPUT_CHAR_QUICK ||
3932         inst->Opcode() == Instruction::IPUT_SHORT_QUICK);
3933  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
3934  if (!object_type.HasClass()) {
3935    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3936    return nullptr;
3937  }
3938  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3939  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3940                                                                      field_offset);
3941  if (f == nullptr) {
3942    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3943                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3944  }
3945  return f;
3946}
3947
3948void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3949                                     bool is_primitive) {
3950  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3951  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3952  if (field == nullptr) {
3953    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3954    return;
3955  }
3956  mirror::Class* field_type_class;
3957  {
3958    StackHandleScope<1> hs(self_);
3959    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3960    FieldHelper fh(h_field);
3961    field_type_class = fh.GetType(can_load_classes_);
3962  }
3963  const RegType* field_type;
3964  if (field_type_class != nullptr) {
3965    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3966                                       field_type_class->CannotBeAssignedFromOtherTypes());
3967  } else {
3968    DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3969    self_->ClearException();
3970    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3971                                            field->GetTypeDescriptor(), false);
3972  }
3973  DCHECK(field_type != nullptr);
3974  const uint32_t vregA = inst->VRegA_22c();
3975  if (is_primitive) {
3976    if (field_type->Equals(insn_type) ||
3977        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3978        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3979      // expected that read is of the correct primitive type or that int reads are reading
3980      // floats or long reads are reading doubles
3981    } else {
3982      // This is a global failure rather than a class change failure as the instructions and
3983      // the descriptors for the type should have been consistent within the same file at
3984      // compile time
3985      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3986                                        << " to be of type '" << insn_type
3987                                        << "' but found type '" << *field_type << "' in Get";
3988      return;
3989    }
3990  } else {
3991    if (!insn_type.IsAssignableFrom(*field_type)) {
3992      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3993                                        << " to be compatible with type '" << insn_type
3994                                        << "' but found type '" << *field_type
3995                                        << "' in get-object";
3996      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3997      return;
3998    }
3999  }
4000  if (!field_type->IsLowHalf()) {
4001    work_line_->SetRegisterType(this, vregA, *field_type);
4002  } else {
4003    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4004  }
4005}
4006
4007void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
4008                                     bool is_primitive) {
4009  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4010  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4011  if (field == nullptr) {
4012    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4013    return;
4014  }
4015  const char* descriptor = field->GetTypeDescriptor();
4016  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
4017  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
4018  if (field != nullptr) {
4019    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4020      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4021                                      << " from other class " << GetDeclaringClass();
4022      return;
4023    }
4024  }
4025  const uint32_t vregA = inst->VRegA_22c();
4026  if (is_primitive) {
4027    // Primitive field assignability rules are weaker than regular assignability rules
4028    bool instruction_compatible;
4029    bool value_compatible;
4030    const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4031    if (field_type.IsIntegralTypes()) {
4032      instruction_compatible = insn_type.IsIntegralTypes();
4033      value_compatible = value_type.IsIntegralTypes();
4034    } else if (field_type.IsFloat()) {
4035      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4036      value_compatible = value_type.IsFloatTypes();
4037    } else if (field_type.IsLong()) {
4038      instruction_compatible = insn_type.IsLong();
4039      value_compatible = value_type.IsLongTypes();
4040    } else if (field_type.IsDouble()) {
4041      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4042      value_compatible = value_type.IsDoubleTypes();
4043    } else {
4044      instruction_compatible = false;  // reference field with primitive store
4045      value_compatible = false;  // unused
4046    }
4047    if (!instruction_compatible) {
4048      // This is a global failure rather than a class change failure as the instructions and
4049      // the descriptors for the type should have been consistent within the same file at
4050      // compile time
4051      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4052                                        << " to be of type '" << insn_type
4053                                        << "' but found type '" << field_type
4054                                        << "' in put";
4055      return;
4056    }
4057    if (!value_compatible) {
4058      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4059          << " of type " << value_type
4060          << " but expected " << field_type
4061          << " for store to " << PrettyField(field) << " in put";
4062      return;
4063    }
4064  } else {
4065    if (!insn_type.IsAssignableFrom(field_type)) {
4066      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4067                                        << " to be compatible with type '" << insn_type
4068                                        << "' but found type '" << field_type
4069                                        << "' in put-object";
4070      return;
4071    }
4072    work_line_->VerifyRegisterType(this, vregA, field_type);
4073  }
4074}
4075
4076bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4077  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4078    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4079    return false;
4080  }
4081  return true;
4082}
4083
4084bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4085  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4086      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4087    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4088    return false;
4089  }
4090  return true;
4091}
4092
4093bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4094  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4095}
4096
4097bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4098                                     bool update_merge_line) {
4099  bool changed = true;
4100  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4101  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4102    /*
4103     * We haven't processed this instruction before, and we haven't touched the registers here, so
4104     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4105     * only way a register can transition out of "unknown", so this is not just an optimization.)
4106     */
4107    if (!insn_flags_[next_insn].IsReturn()) {
4108      target_line->CopyFromLine(merge_line);
4109    } else {
4110      // Verify that the monitor stack is empty on return.
4111      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4112        return false;
4113      }
4114      // For returns we only care about the operand to the return, all other registers are dead.
4115      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4116      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4117      Instruction::Code opcode = ret_inst->Opcode();
4118      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4119        target_line->MarkAllRegistersAsConflicts(this);
4120      } else {
4121        target_line->CopyFromLine(merge_line);
4122        if (opcode == Instruction::RETURN_WIDE) {
4123          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4124        } else {
4125          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4126        }
4127      }
4128    }
4129  } else {
4130    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4131                                 RegisterLine::Create(target_line->NumRegs(), this) :
4132                                 nullptr);
4133    if (gDebugVerify) {
4134      copy->CopyFromLine(target_line);
4135    }
4136    changed = target_line->MergeRegisters(this, merge_line);
4137    if (have_pending_hard_failure_) {
4138      return false;
4139    }
4140    if (gDebugVerify && changed) {
4141      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4142                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4143                      << copy->Dump(this) << "  MERGE\n"
4144                      << merge_line->Dump(this) << "  ==\n"
4145                      << target_line->Dump(this) << "\n";
4146    }
4147    if (update_merge_line && changed) {
4148      merge_line->CopyFromLine(target_line);
4149    }
4150  }
4151  if (changed) {
4152    insn_flags_[next_insn].SetChanged();
4153  }
4154  return true;
4155}
4156
4157InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4158  return &insn_flags_[work_insn_idx_];
4159}
4160
4161const RegType& MethodVerifier::GetMethodReturnType() {
4162  if (return_type_ == nullptr) {
4163    if (mirror_method_.Get() != nullptr) {
4164      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4165      if (return_type_class != nullptr) {
4166        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4167                                             return_type_class,
4168                                             return_type_class->CannotBeAssignedFromOtherTypes());
4169      } else {
4170        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4171        self_->ClearException();
4172      }
4173    }
4174    if (return_type_ == nullptr) {
4175      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4176      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4177      uint16_t return_type_idx = proto_id.return_type_idx_;
4178      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4179      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4180    }
4181  }
4182  return *return_type_;
4183}
4184
4185const RegType& MethodVerifier::GetDeclaringClass() {
4186  if (declaring_class_ == nullptr) {
4187    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4188    const char* descriptor
4189        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4190    if (mirror_method_.Get() != nullptr) {
4191      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4192      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4193                                               klass->CannotBeAssignedFromOtherTypes());
4194    } else {
4195      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4196    }
4197  }
4198  return *declaring_class_;
4199}
4200
4201std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4202  RegisterLine* line = reg_table_.GetLine(dex_pc);
4203  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4204  std::vector<int32_t> result;
4205  for (size_t i = 0; i < line->NumRegs(); ++i) {
4206    const RegType& type = line->GetRegisterType(this, i);
4207    if (type.IsConstant()) {
4208      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4209      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4210      result.push_back(const_val->ConstantValue());
4211    } else if (type.IsConstantLo()) {
4212      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4213      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4214      result.push_back(const_val->ConstantValueLo());
4215    } else if (type.IsConstantHi()) {
4216      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4217      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4218      result.push_back(const_val->ConstantValueHi());
4219    } else if (type.IsIntegralTypes()) {
4220      result.push_back(kIntVReg);
4221      result.push_back(0);
4222    } else if (type.IsFloat()) {
4223      result.push_back(kFloatVReg);
4224      result.push_back(0);
4225    } else if (type.IsLong()) {
4226      result.push_back(kLongLoVReg);
4227      result.push_back(0);
4228      result.push_back(kLongHiVReg);
4229      result.push_back(0);
4230      ++i;
4231    } else if (type.IsDouble()) {
4232      result.push_back(kDoubleLoVReg);
4233      result.push_back(0);
4234      result.push_back(kDoubleHiVReg);
4235      result.push_back(0);
4236      ++i;
4237    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4238      result.push_back(kUndefined);
4239      result.push_back(0);
4240    } else {
4241      CHECK(type.IsNonZeroReferenceTypes());
4242      result.push_back(kReferenceVReg);
4243      result.push_back(0);
4244    }
4245  }
4246  return result;
4247}
4248
4249const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4250  if (precise) {
4251    // Precise constant type.
4252    return reg_types_.FromCat1Const(value, true);
4253  } else {
4254    // Imprecise constant type.
4255    if (value < -32768) {
4256      return reg_types_.IntConstant();
4257    } else if (value < -128) {
4258      return reg_types_.ShortConstant();
4259    } else if (value < 0) {
4260      return reg_types_.ByteConstant();
4261    } else if (value == 0) {
4262      return reg_types_.Zero();
4263    } else if (value == 1) {
4264      return reg_types_.One();
4265    } else if (value < 128) {
4266      return reg_types_.PosByteConstant();
4267    } else if (value < 32768) {
4268      return reg_types_.PosShortConstant();
4269    } else if (value < 65536) {
4270      return reg_types_.CharConstant();
4271    } else {
4272      return reg_types_.IntConstant();
4273    }
4274  }
4275}
4276
4277void MethodVerifier::Init() {
4278  art::verifier::RegTypeCache::Init();
4279}
4280
4281void MethodVerifier::Shutdown() {
4282  verifier::RegTypeCache::ShutDown();
4283}
4284
4285void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4286  RegTypeCache::VisitStaticRoots(callback, arg);
4287}
4288
4289void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4290  reg_types_.VisitRoots(callback, arg);
4291}
4292
4293}  // namespace verifier
4294}  // namespace art
4295