method_verifier.cc revision f832284dd847ff077577bb5712225430bbbb3b67
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "handle_scope-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  const DexFile& dex_file = klass->GetDexFile();
97  const DexFile::ClassDef* class_def = klass->GetClassDef();
98  mirror::Class* super = klass->GetSuperClass();
99  if (super == NULL && "Ljava/lang/Object;" != klass->GetDescriptor()) {
100    early_failure = true;
101    failure_message = " that has no super class";
102  } else if (super != NULL && super->IsFinal()) {
103    early_failure = true;
104    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
105  } else if (class_def == NULL) {
106    early_failure = true;
107    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
108  }
109  if (early_failure) {
110    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
111    if (Runtime::Current()->IsCompiler()) {
112      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
113      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
114    }
115    return kHardFailure;
116  }
117  StackHandleScope<2> hs(Thread::Current());
118  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
119  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
120  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
121}
122
123MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
124                                                        Handle<mirror::DexCache>& dex_cache,
125                                                        Handle<mirror::ClassLoader>& class_loader,
126                                                        const DexFile::ClassDef* class_def,
127                                                        bool allow_soft_failures,
128                                                        std::string* error) {
129  DCHECK(class_def != nullptr);
130  const byte* class_data = dex_file->GetClassData(*class_def);
131  if (class_data == NULL) {
132    // empty class, probably a marker interface
133    return kNoFailure;
134  }
135  ClassDataItemIterator it(*dex_file, class_data);
136  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
137    it.Next();
138  }
139  size_t error_count = 0;
140  bool hard_fail = false;
141  ClassLinker* linker = Runtime::Current()->GetClassLinker();
142  int64_t previous_direct_method_idx = -1;
143  while (it.HasNextDirectMethod()) {
144    uint32_t method_idx = it.GetMemberIndex();
145    if (method_idx == previous_direct_method_idx) {
146      // smali can create dex files with two encoded_methods sharing the same method_idx
147      // http://code.google.com/p/smali/issues/detail?id=119
148      it.Next();
149      continue;
150    }
151    previous_direct_method_idx = method_idx;
152    InvokeType type = it.GetMethodInvokeType(*class_def);
153    mirror::ArtMethod* method =
154        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
155    if (method == NULL) {
156      DCHECK(Thread::Current()->IsExceptionPending());
157      // We couldn't resolve the method, but continue regardless.
158      Thread::Current()->ClearException();
159    }
160    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
161                                                      dex_file,
162                                                      dex_cache,
163                                                      class_loader,
164                                                      class_def,
165                                                      it.GetMethodCodeItem(),
166                                                      method,
167                                                      it.GetMemberAccessFlags(),
168                                                      allow_soft_failures);
169    if (result != kNoFailure) {
170      if (result == kHardFailure) {
171        hard_fail = true;
172        if (error_count > 0) {
173          *error += "\n";
174        }
175        *error = "Verifier rejected class ";
176        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
177        *error += " due to bad method ";
178        *error += PrettyMethod(method_idx, *dex_file);
179      }
180      ++error_count;
181    }
182    it.Next();
183  }
184  int64_t previous_virtual_method_idx = -1;
185  while (it.HasNextVirtualMethod()) {
186    uint32_t method_idx = it.GetMemberIndex();
187    if (method_idx == previous_virtual_method_idx) {
188      // smali can create dex files with two encoded_methods sharing the same method_idx
189      // http://code.google.com/p/smali/issues/detail?id=119
190      it.Next();
191      continue;
192    }
193    previous_virtual_method_idx = method_idx;
194    InvokeType type = it.GetMethodInvokeType(*class_def);
195    mirror::ArtMethod* method =
196        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
197    if (method == NULL) {
198      DCHECK(Thread::Current()->IsExceptionPending());
199      // We couldn't resolve the method, but continue regardless.
200      Thread::Current()->ClearException();
201    }
202    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
203                                                      dex_file,
204                                                      dex_cache,
205                                                      class_loader,
206                                                      class_def,
207                                                      it.GetMethodCodeItem(),
208                                                      method,
209                                                      it.GetMemberAccessFlags(),
210                                                      allow_soft_failures);
211    if (result != kNoFailure) {
212      if (result == kHardFailure) {
213        hard_fail = true;
214        if (error_count > 0) {
215          *error += "\n";
216        }
217        *error = "Verifier rejected class ";
218        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
219        *error += " due to bad method ";
220        *error += PrettyMethod(method_idx, *dex_file);
221      }
222      ++error_count;
223    }
224    it.Next();
225  }
226  if (error_count == 0) {
227    return kNoFailure;
228  } else {
229    return hard_fail ? kHardFailure : kSoftFailure;
230  }
231}
232
233MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
234                                                         const DexFile* dex_file,
235                                                         Handle<mirror::DexCache>& dex_cache,
236                                                         Handle<mirror::ClassLoader>& class_loader,
237                                                         const DexFile::ClassDef* class_def,
238                                                         const DexFile::CodeItem* code_item,
239                                                         mirror::ArtMethod* method,
240                                                         uint32_t method_access_flags,
241                                                         bool allow_soft_failures) {
242  MethodVerifier::FailureKind result = kNoFailure;
243  uint64_t start_ns = NanoTime();
244
245  MethodVerifier verifier_(dex_file, &dex_cache, &class_loader, class_def, code_item,
246                           method_idx, method, method_access_flags, true, allow_soft_failures);
247  if (verifier_.Verify()) {
248    // Verification completed, however failures may be pending that didn't cause the verification
249    // to hard fail.
250    CHECK(!verifier_.have_pending_hard_failure_);
251    if (verifier_.failures_.size() != 0) {
252      if (VLOG_IS_ON(verifier)) {
253          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
254                                << PrettyMethod(method_idx, *dex_file) << "\n");
255      }
256      result = kSoftFailure;
257    }
258  } else {
259    // Bad method data.
260    CHECK_NE(verifier_.failures_.size(), 0U);
261    CHECK(verifier_.have_pending_hard_failure_);
262    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
263                                    << PrettyMethod(method_idx, *dex_file) << "\n");
264    if (gDebugVerify) {
265      std::cout << "\n" << verifier_.info_messages_.str();
266      verifier_.Dump(std::cout);
267    }
268    result = kHardFailure;
269  }
270  uint64_t duration_ns = NanoTime() - start_ns;
271  if (duration_ns > MsToNs(100)) {
272    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
273                 << " took " << PrettyDuration(duration_ns);
274  }
275  return result;
276}
277
278void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
279                                         const DexFile* dex_file,
280                                         Handle<mirror::DexCache>& dex_cache,
281                                         Handle<mirror::ClassLoader>& class_loader,
282                                         const DexFile::ClassDef* class_def,
283                                         const DexFile::CodeItem* code_item,
284                                         mirror::ArtMethod* method,
285                                         uint32_t method_access_flags) {
286  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
287                          dex_method_idx, method, method_access_flags, true, true);
288  verifier.Verify();
289  verifier.DumpFailures(os);
290  os << verifier.info_messages_.str();
291  verifier.Dump(os);
292}
293
294MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
295                               Handle<mirror::ClassLoader>* class_loader,
296                               const DexFile::ClassDef* class_def,
297                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
298                               mirror::ArtMethod* method, uint32_t method_access_flags,
299                               bool can_load_classes, bool allow_soft_failures)
300    : reg_types_(can_load_classes),
301      work_insn_idx_(-1),
302      dex_method_idx_(dex_method_idx),
303      mirror_method_(method),
304      method_access_flags_(method_access_flags),
305      return_type_(nullptr),
306      dex_file_(dex_file),
307      dex_cache_(dex_cache),
308      class_loader_(class_loader),
309      class_def_(class_def),
310      code_item_(code_item),
311      declaring_class_(NULL),
312      interesting_dex_pc_(-1),
313      monitor_enter_dex_pcs_(nullptr),
314      have_pending_hard_failure_(false),
315      have_pending_runtime_throw_failure_(false),
316      new_instance_count_(0),
317      monitor_enter_count_(0),
318      can_load_classes_(can_load_classes),
319      allow_soft_failures_(allow_soft_failures),
320      has_check_casts_(false),
321      has_virtual_or_interface_invokes_(false) {
322  Runtime::Current()->AddMethodVerifier(this);
323  DCHECK(class_def != nullptr);
324}
325
326MethodVerifier::~MethodVerifier() {
327  Runtime::Current()->RemoveMethodVerifier(this);
328  STLDeleteElements(&failure_messages_);
329}
330
331void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
332                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
333  MethodHelper mh(m);
334  StackHandleScope<2> hs(Thread::Current());
335  Handle<mirror::DexCache> dex_cache(hs.NewHandle(mh.GetDexCache()));
336  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(mh.GetClassLoader()));
337  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
338                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
339                          true);
340  verifier.interesting_dex_pc_ = dex_pc;
341  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
342  verifier.FindLocksAtDexPc();
343}
344
345void MethodVerifier::FindLocksAtDexPc() {
346  CHECK(monitor_enter_dex_pcs_ != NULL);
347  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
348
349  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
350  // verification. In practice, the phase we want relies on data structures set up by all the
351  // earlier passes, so we just run the full method verification and bail out early when we've
352  // got what we wanted.
353  Verify();
354}
355
356mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
357                                                        uint32_t dex_pc) {
358  MethodHelper mh(m);
359  StackHandleScope<2> hs(Thread::Current());
360  Handle<mirror::DexCache> dex_cache(hs.NewHandle(mh.GetDexCache()));
361  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(mh.GetClassLoader()));
362  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
363                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
364                          true);
365  return verifier.FindAccessedFieldAtDexPc(dex_pc);
366}
367
368mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
369  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
370
371  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
372  // verification. In practice, the phase we want relies on data structures set up by all the
373  // earlier passes, so we just run the full method verification and bail out early when we've
374  // got what we wanted.
375  bool success = Verify();
376  if (!success) {
377    return nullptr;
378  }
379  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
380  if (register_line == NULL) {
381    return nullptr;
382  }
383  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
384  return GetQuickFieldAccess(inst, register_line);
385}
386
387mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
388                                                            uint32_t dex_pc) {
389  MethodHelper mh(m);
390  StackHandleScope<2> hs(Thread::Current());
391  Handle<mirror::DexCache> dex_cache(hs.NewHandle(mh.GetDexCache()));
392  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(mh.GetClassLoader()));
393  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
394                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
395                          true);
396  return verifier.FindInvokedMethodAtDexPc(dex_pc);
397}
398
399mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
400  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
401
402  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
403  // verification. In practice, the phase we want relies on data structures set up by all the
404  // earlier passes, so we just run the full method verification and bail out early when we've
405  // got what we wanted.
406  bool success = Verify();
407  if (!success) {
408    return NULL;
409  }
410  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
411  if (register_line == NULL) {
412    return NULL;
413  }
414  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
415  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
416  return GetQuickInvokedMethod(inst, register_line, is_range);
417}
418
419bool MethodVerifier::Verify() {
420  // If there aren't any instructions, make sure that's expected, then exit successfully.
421  if (code_item_ == NULL) {
422    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
423      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
424      return false;
425    } else {
426      return true;
427    }
428  }
429  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
430  if (code_item_->ins_size_ > code_item_->registers_size_) {
431    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
432                                      << " regs=" << code_item_->registers_size_;
433    return false;
434  }
435  // Allocate and initialize an array to hold instruction data.
436  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
437  // Run through the instructions and see if the width checks out.
438  bool result = ComputeWidthsAndCountOps();
439  // Flag instructions guarded by a "try" block and check exception handlers.
440  result = result && ScanTryCatchBlocks();
441  // Perform static instruction verification.
442  result = result && VerifyInstructions();
443  // Perform code-flow analysis and return.
444  result = result && VerifyCodeFlow();
445  // Compute information for compiler.
446  if (result && Runtime::Current()->IsCompiler()) {
447    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
448  }
449  return result;
450}
451
452std::ostream& MethodVerifier::Fail(VerifyError error) {
453  switch (error) {
454    case VERIFY_ERROR_NO_CLASS:
455    case VERIFY_ERROR_NO_FIELD:
456    case VERIFY_ERROR_NO_METHOD:
457    case VERIFY_ERROR_ACCESS_CLASS:
458    case VERIFY_ERROR_ACCESS_FIELD:
459    case VERIFY_ERROR_ACCESS_METHOD:
460    case VERIFY_ERROR_INSTANTIATION:
461    case VERIFY_ERROR_CLASS_CHANGE:
462      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
463        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
464        // class change and instantiation errors into soft verification errors so that we re-verify
465        // at runtime. We may fail to find or to agree on access because of not yet available class
466        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
467        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
468        // paths" that dynamically perform the verification and cause the behavior to be that akin
469        // to an interpreter.
470        error = VERIFY_ERROR_BAD_CLASS_SOFT;
471      } else {
472        // If we fail again at runtime, mark that this instruction would throw and force this
473        // method to be executed using the interpreter with checks.
474        have_pending_runtime_throw_failure_ = true;
475      }
476      break;
477      // Indication that verification should be retried at runtime.
478    case VERIFY_ERROR_BAD_CLASS_SOFT:
479      if (!allow_soft_failures_) {
480        have_pending_hard_failure_ = true;
481      }
482      break;
483      // Hard verification failures at compile time will still fail at runtime, so the class is
484      // marked as rejected to prevent it from being compiled.
485    case VERIFY_ERROR_BAD_CLASS_HARD: {
486      if (Runtime::Current()->IsCompiler()) {
487        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
488        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
489      }
490      have_pending_hard_failure_ = true;
491      break;
492    }
493  }
494  failures_.push_back(error);
495  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
496                                    work_insn_idx_));
497  std::ostringstream* failure_message = new std::ostringstream(location);
498  failure_messages_.push_back(failure_message);
499  return *failure_message;
500}
501
502void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
503  size_t failure_num = failure_messages_.size();
504  DCHECK_NE(failure_num, 0U);
505  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
506  prepend += last_fail_message->str();
507  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
508  delete last_fail_message;
509}
510
511void MethodVerifier::AppendToLastFailMessage(std::string append) {
512  size_t failure_num = failure_messages_.size();
513  DCHECK_NE(failure_num, 0U);
514  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
515  (*last_fail_message) << append;
516}
517
518bool MethodVerifier::ComputeWidthsAndCountOps() {
519  const uint16_t* insns = code_item_->insns_;
520  size_t insns_size = code_item_->insns_size_in_code_units_;
521  const Instruction* inst = Instruction::At(insns);
522  size_t new_instance_count = 0;
523  size_t monitor_enter_count = 0;
524  size_t dex_pc = 0;
525
526  while (dex_pc < insns_size) {
527    Instruction::Code opcode = inst->Opcode();
528    switch (opcode) {
529      case Instruction::APUT_OBJECT:
530      case Instruction::CHECK_CAST:
531        has_check_casts_ = true;
532        break;
533      case Instruction::INVOKE_VIRTUAL:
534      case Instruction::INVOKE_VIRTUAL_RANGE:
535      case Instruction::INVOKE_INTERFACE:
536      case Instruction::INVOKE_INTERFACE_RANGE:
537        has_virtual_or_interface_invokes_ = true;
538        break;
539      case Instruction::MONITOR_ENTER:
540        monitor_enter_count++;
541        break;
542      case Instruction::NEW_INSTANCE:
543        new_instance_count++;
544        break;
545      default:
546        break;
547    }
548    size_t inst_size = inst->SizeInCodeUnits();
549    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
550    dex_pc += inst_size;
551    inst = inst->Next();
552  }
553
554  if (dex_pc != insns_size) {
555    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
556                                      << dex_pc << " vs. " << insns_size << ")";
557    return false;
558  }
559
560  new_instance_count_ = new_instance_count;
561  monitor_enter_count_ = monitor_enter_count;
562  return true;
563}
564
565bool MethodVerifier::ScanTryCatchBlocks() {
566  uint32_t tries_size = code_item_->tries_size_;
567  if (tries_size == 0) {
568    return true;
569  }
570  uint32_t insns_size = code_item_->insns_size_in_code_units_;
571  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
572
573  for (uint32_t idx = 0; idx < tries_size; idx++) {
574    const DexFile::TryItem* try_item = &tries[idx];
575    uint32_t start = try_item->start_addr_;
576    uint32_t end = start + try_item->insn_count_;
577    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
578      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
579                                        << " endAddr=" << end << " (size=" << insns_size << ")";
580      return false;
581    }
582    if (!insn_flags_[start].IsOpcode()) {
583      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
584          << "'try' block starts inside an instruction (" << start << ")";
585      return false;
586    }
587    for (uint32_t dex_pc = start; dex_pc < end;
588        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
589      insn_flags_[dex_pc].SetInTry();
590    }
591  }
592  // Iterate over each of the handlers to verify target addresses.
593  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
594  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
595  ClassLinker* linker = Runtime::Current()->GetClassLinker();
596  for (uint32_t idx = 0; idx < handlers_size; idx++) {
597    CatchHandlerIterator iterator(handlers_ptr);
598    for (; iterator.HasNext(); iterator.Next()) {
599      uint32_t dex_pc= iterator.GetHandlerAddress();
600      if (!insn_flags_[dex_pc].IsOpcode()) {
601        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
602            << "exception handler starts at bad address (" << dex_pc << ")";
603        return false;
604      }
605      insn_flags_[dex_pc].SetBranchTarget();
606      // Ensure exception types are resolved so that they don't need resolution to be delivered,
607      // unresolved exception types will be ignored by exception delivery
608      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
609        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
610                                                            iterator.GetHandlerTypeIndex(),
611                                                            *dex_cache_, *class_loader_);
612        if (exception_type == NULL) {
613          DCHECK(Thread::Current()->IsExceptionPending());
614          Thread::Current()->ClearException();
615        }
616      }
617    }
618    handlers_ptr = iterator.EndDataPointer();
619  }
620  return true;
621}
622
623bool MethodVerifier::VerifyInstructions() {
624  const Instruction* inst = Instruction::At(code_item_->insns_);
625
626  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
627  insn_flags_[0].SetBranchTarget();
628  insn_flags_[0].SetCompileTimeInfoPoint();
629
630  uint32_t insns_size = code_item_->insns_size_in_code_units_;
631  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
632    if (!VerifyInstruction(inst, dex_pc)) {
633      DCHECK_NE(failures_.size(), 0U);
634      return false;
635    }
636    /* Flag instructions that are garbage collection points */
637    // All invoke points are marked as "Throw" points already.
638    // We are relying on this to also count all the invokes as interesting.
639    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
640      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
641    } else if (inst->IsReturn()) {
642      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
643    }
644    dex_pc += inst->SizeInCodeUnits();
645    inst = inst->Next();
646  }
647  return true;
648}
649
650bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
651  bool result = true;
652  switch (inst->GetVerifyTypeArgumentA()) {
653    case Instruction::kVerifyRegA:
654      result = result && CheckRegisterIndex(inst->VRegA());
655      break;
656    case Instruction::kVerifyRegAWide:
657      result = result && CheckWideRegisterIndex(inst->VRegA());
658      break;
659  }
660  switch (inst->GetVerifyTypeArgumentB()) {
661    case Instruction::kVerifyRegB:
662      result = result && CheckRegisterIndex(inst->VRegB());
663      break;
664    case Instruction::kVerifyRegBField:
665      result = result && CheckFieldIndex(inst->VRegB());
666      break;
667    case Instruction::kVerifyRegBMethod:
668      result = result && CheckMethodIndex(inst->VRegB());
669      break;
670    case Instruction::kVerifyRegBNewInstance:
671      result = result && CheckNewInstance(inst->VRegB());
672      break;
673    case Instruction::kVerifyRegBString:
674      result = result && CheckStringIndex(inst->VRegB());
675      break;
676    case Instruction::kVerifyRegBType:
677      result = result && CheckTypeIndex(inst->VRegB());
678      break;
679    case Instruction::kVerifyRegBWide:
680      result = result && CheckWideRegisterIndex(inst->VRegB());
681      break;
682  }
683  switch (inst->GetVerifyTypeArgumentC()) {
684    case Instruction::kVerifyRegC:
685      result = result && CheckRegisterIndex(inst->VRegC());
686      break;
687    case Instruction::kVerifyRegCField:
688      result = result && CheckFieldIndex(inst->VRegC());
689      break;
690    case Instruction::kVerifyRegCNewArray:
691      result = result && CheckNewArray(inst->VRegC());
692      break;
693    case Instruction::kVerifyRegCType:
694      result = result && CheckTypeIndex(inst->VRegC());
695      break;
696    case Instruction::kVerifyRegCWide:
697      result = result && CheckWideRegisterIndex(inst->VRegC());
698      break;
699  }
700  switch (inst->GetVerifyExtraFlags()) {
701    case Instruction::kVerifyArrayData:
702      result = result && CheckArrayData(code_offset);
703      break;
704    case Instruction::kVerifyBranchTarget:
705      result = result && CheckBranchTarget(code_offset);
706      break;
707    case Instruction::kVerifySwitchTargets:
708      result = result && CheckSwitchTargets(code_offset);
709      break;
710    case Instruction::kVerifyVarArg: {
711      uint32_t args[Instruction::kMaxVarArgRegs];
712      inst->GetVarArgs(args);
713      result = result && CheckVarArgRegs(inst->VRegA(), args);
714      break;
715    }
716    case Instruction::kVerifyVarArgRange:
717      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
718      break;
719    case Instruction::kVerifyError:
720      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
721      result = false;
722      break;
723  }
724  return result;
725}
726
727bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
728  if (idx >= code_item_->registers_size_) {
729    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
730                                      << code_item_->registers_size_ << ")";
731    return false;
732  }
733  return true;
734}
735
736bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
737  if (idx + 1 >= code_item_->registers_size_) {
738    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
739                                      << "+1 >= " << code_item_->registers_size_ << ")";
740    return false;
741  }
742  return true;
743}
744
745bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
746  if (idx >= dex_file_->GetHeader().field_ids_size_) {
747    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
748                                      << dex_file_->GetHeader().field_ids_size_ << ")";
749    return false;
750  }
751  return true;
752}
753
754bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
755  if (idx >= dex_file_->GetHeader().method_ids_size_) {
756    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
757                                      << dex_file_->GetHeader().method_ids_size_ << ")";
758    return false;
759  }
760  return true;
761}
762
763bool MethodVerifier::CheckNewInstance(uint32_t idx) {
764  if (idx >= dex_file_->GetHeader().type_ids_size_) {
765    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
766                                      << dex_file_->GetHeader().type_ids_size_ << ")";
767    return false;
768  }
769  // We don't need the actual class, just a pointer to the class name.
770  const char* descriptor = dex_file_->StringByTypeIdx(idx);
771  if (descriptor[0] != 'L') {
772    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
773    return false;
774  }
775  return true;
776}
777
778bool MethodVerifier::CheckStringIndex(uint32_t idx) {
779  if (idx >= dex_file_->GetHeader().string_ids_size_) {
780    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
781                                      << dex_file_->GetHeader().string_ids_size_ << ")";
782    return false;
783  }
784  return true;
785}
786
787bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
788  if (idx >= dex_file_->GetHeader().type_ids_size_) {
789    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
790                                      << dex_file_->GetHeader().type_ids_size_ << ")";
791    return false;
792  }
793  return true;
794}
795
796bool MethodVerifier::CheckNewArray(uint32_t idx) {
797  if (idx >= dex_file_->GetHeader().type_ids_size_) {
798    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
799                                      << dex_file_->GetHeader().type_ids_size_ << ")";
800    return false;
801  }
802  int bracket_count = 0;
803  const char* descriptor = dex_file_->StringByTypeIdx(idx);
804  const char* cp = descriptor;
805  while (*cp++ == '[') {
806    bracket_count++;
807  }
808  if (bracket_count == 0) {
809    /* The given class must be an array type. */
810    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
811        << "can't new-array class '" << descriptor << "' (not an array)";
812    return false;
813  } else if (bracket_count > 255) {
814    /* It is illegal to create an array of more than 255 dimensions. */
815    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
816        << "can't new-array class '" << descriptor << "' (exceeds limit)";
817    return false;
818  }
819  return true;
820}
821
822bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
823  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
824  const uint16_t* insns = code_item_->insns_ + cur_offset;
825  const uint16_t* array_data;
826  int32_t array_data_offset;
827
828  DCHECK_LT(cur_offset, insn_count);
829  /* make sure the start of the array data table is in range */
830  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
831  if ((int32_t) cur_offset + array_data_offset < 0 ||
832      cur_offset + array_data_offset + 2 >= insn_count) {
833    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
834                                      << ", data offset " << array_data_offset
835                                      << ", count " << insn_count;
836    return false;
837  }
838  /* offset to array data table is a relative branch-style offset */
839  array_data = insns + array_data_offset;
840  /* make sure the table is 32-bit aligned */
841  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
842    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
843                                      << ", data offset " << array_data_offset;
844    return false;
845  }
846  uint32_t value_width = array_data[1];
847  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
848  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
849  /* make sure the end of the switch is in range */
850  if (cur_offset + array_data_offset + table_size > insn_count) {
851    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
852                                      << ", data offset " << array_data_offset << ", end "
853                                      << cur_offset + array_data_offset + table_size
854                                      << ", count " << insn_count;
855    return false;
856  }
857  return true;
858}
859
860bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
861  int32_t offset;
862  bool isConditional, selfOkay;
863  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
864    return false;
865  }
866  if (!selfOkay && offset == 0) {
867    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
868                                      << reinterpret_cast<void*>(cur_offset);
869    return false;
870  }
871  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
872  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
873  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
874    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
875                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
876    return false;
877  }
878  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
879  int32_t abs_offset = cur_offset + offset;
880  if (abs_offset < 0 ||
881      (uint32_t) abs_offset >= insn_count ||
882      !insn_flags_[abs_offset].IsOpcode()) {
883    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
884                                      << reinterpret_cast<void*>(abs_offset) << ") at "
885                                      << reinterpret_cast<void*>(cur_offset);
886    return false;
887  }
888  insn_flags_[abs_offset].SetBranchTarget();
889  return true;
890}
891
892bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
893                                  bool* selfOkay) {
894  const uint16_t* insns = code_item_->insns_ + cur_offset;
895  *pConditional = false;
896  *selfOkay = false;
897  switch (*insns & 0xff) {
898    case Instruction::GOTO:
899      *pOffset = ((int16_t) *insns) >> 8;
900      break;
901    case Instruction::GOTO_32:
902      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
903      *selfOkay = true;
904      break;
905    case Instruction::GOTO_16:
906      *pOffset = (int16_t) insns[1];
907      break;
908    case Instruction::IF_EQ:
909    case Instruction::IF_NE:
910    case Instruction::IF_LT:
911    case Instruction::IF_GE:
912    case Instruction::IF_GT:
913    case Instruction::IF_LE:
914    case Instruction::IF_EQZ:
915    case Instruction::IF_NEZ:
916    case Instruction::IF_LTZ:
917    case Instruction::IF_GEZ:
918    case Instruction::IF_GTZ:
919    case Instruction::IF_LEZ:
920      *pOffset = (int16_t) insns[1];
921      *pConditional = true;
922      break;
923    default:
924      return false;
925      break;
926  }
927  return true;
928}
929
930bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
931  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
932  DCHECK_LT(cur_offset, insn_count);
933  const uint16_t* insns = code_item_->insns_ + cur_offset;
934  /* make sure the start of the switch is in range */
935  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
936  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
937    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
938                                      << ", switch offset " << switch_offset
939                                      << ", count " << insn_count;
940    return false;
941  }
942  /* offset to switch table is a relative branch-style offset */
943  const uint16_t* switch_insns = insns + switch_offset;
944  /* make sure the table is 32-bit aligned */
945  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
946    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
947                                      << ", switch offset " << switch_offset;
948    return false;
949  }
950  uint32_t switch_count = switch_insns[1];
951  int32_t keys_offset, targets_offset;
952  uint16_t expected_signature;
953  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
954    /* 0=sig, 1=count, 2/3=firstKey */
955    targets_offset = 4;
956    keys_offset = -1;
957    expected_signature = Instruction::kPackedSwitchSignature;
958  } else {
959    /* 0=sig, 1=count, 2..count*2 = keys */
960    keys_offset = 2;
961    targets_offset = 2 + 2 * switch_count;
962    expected_signature = Instruction::kSparseSwitchSignature;
963  }
964  uint32_t table_size = targets_offset + switch_count * 2;
965  if (switch_insns[0] != expected_signature) {
966    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
967        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
968                        switch_insns[0], expected_signature);
969    return false;
970  }
971  /* make sure the end of the switch is in range */
972  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
973    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
974                                      << ", switch offset " << switch_offset
975                                      << ", end " << (cur_offset + switch_offset + table_size)
976                                      << ", count " << insn_count;
977    return false;
978  }
979  /* for a sparse switch, verify the keys are in ascending order */
980  if (keys_offset > 0 && switch_count > 1) {
981    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
982    for (uint32_t targ = 1; targ < switch_count; targ++) {
983      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
984                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
985      if (key <= last_key) {
986        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
987                                          << ", this=" << key;
988        return false;
989      }
990      last_key = key;
991    }
992  }
993  /* verify each switch target */
994  for (uint32_t targ = 0; targ < switch_count; targ++) {
995    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
996                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
997    int32_t abs_offset = cur_offset + offset;
998    if (abs_offset < 0 ||
999        abs_offset >= (int32_t) insn_count ||
1000        !insn_flags_[abs_offset].IsOpcode()) {
1001      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1002                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1003                                        << reinterpret_cast<void*>(cur_offset)
1004                                        << "[" << targ << "]";
1005      return false;
1006    }
1007    insn_flags_[abs_offset].SetBranchTarget();
1008  }
1009  return true;
1010}
1011
1012bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1013  if (vA > Instruction::kMaxVarArgRegs) {
1014    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1015    return false;
1016  }
1017  uint16_t registers_size = code_item_->registers_size_;
1018  for (uint32_t idx = 0; idx < vA; idx++) {
1019    if (arg[idx] >= registers_size) {
1020      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1021                                        << ") in non-range invoke (>= " << registers_size << ")";
1022      return false;
1023    }
1024  }
1025
1026  return true;
1027}
1028
1029bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1030  uint16_t registers_size = code_item_->registers_size_;
1031  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1032  // integer overflow when adding them here.
1033  if (vA + vC > registers_size) {
1034    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1035                                      << " in range invoke (> " << registers_size << ")";
1036    return false;
1037  }
1038  return true;
1039}
1040
1041bool MethodVerifier::VerifyCodeFlow() {
1042  uint16_t registers_size = code_item_->registers_size_;
1043  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1044
1045  if (registers_size * insns_size > 4*1024*1024) {
1046    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1047                 << " insns_size=" << insns_size << ")";
1048  }
1049  /* Create and initialize table holding register status */
1050  reg_table_.Init(kTrackCompilerInterestPoints,
1051                  insn_flags_.get(),
1052                  insns_size,
1053                  registers_size,
1054                  this);
1055
1056
1057  work_line_.reset(RegisterLine::Create(registers_size, this));
1058  saved_line_.reset(RegisterLine::Create(registers_size, this));
1059
1060  /* Initialize register types of method arguments. */
1061  if (!SetTypesFromSignature()) {
1062    DCHECK_NE(failures_.size(), 0U);
1063    std::string prepend("Bad signature in ");
1064    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1065    PrependToLastFailMessage(prepend);
1066    return false;
1067  }
1068  /* Perform code flow verification. */
1069  if (!CodeFlowVerifyMethod()) {
1070    DCHECK_NE(failures_.size(), 0U);
1071    return false;
1072  }
1073  return true;
1074}
1075
1076std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1077  DCHECK_EQ(failures_.size(), failure_messages_.size());
1078  for (size_t i = 0; i < failures_.size(); ++i) {
1079      os << failure_messages_[i]->str() << "\n";
1080  }
1081  return os;
1082}
1083
1084extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1085    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1086  v->Dump(std::cerr);
1087}
1088
1089void MethodVerifier::Dump(std::ostream& os) {
1090  if (code_item_ == NULL) {
1091    os << "Native method\n";
1092    return;
1093  }
1094  {
1095    os << "Register Types:\n";
1096    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1097    std::ostream indent_os(&indent_filter);
1098    reg_types_.Dump(indent_os);
1099  }
1100  os << "Dumping instructions and register lines:\n";
1101  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1102  std::ostream indent_os(&indent_filter);
1103  const Instruction* inst = Instruction::At(code_item_->insns_);
1104  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1105      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1106    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1107    if (reg_line != NULL) {
1108      indent_os << reg_line->Dump() << "\n";
1109    }
1110    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1111    const bool kDumpHexOfInstruction = false;
1112    if (kDumpHexOfInstruction) {
1113      indent_os << inst->DumpHex(5) << " ";
1114    }
1115    indent_os << inst->DumpString(dex_file_) << "\n";
1116    inst = inst->Next();
1117  }
1118}
1119
1120static bool IsPrimitiveDescriptor(char descriptor) {
1121  switch (descriptor) {
1122    case 'I':
1123    case 'C':
1124    case 'S':
1125    case 'B':
1126    case 'Z':
1127    case 'F':
1128    case 'D':
1129    case 'J':
1130      return true;
1131    default:
1132      return false;
1133  }
1134}
1135
1136bool MethodVerifier::SetTypesFromSignature() {
1137  RegisterLine* reg_line = reg_table_.GetLine(0);
1138  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1139  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1140
1141  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1142  // Include the "this" pointer.
1143  size_t cur_arg = 0;
1144  if (!IsStatic()) {
1145    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1146    // argument as uninitialized. This restricts field access until the superclass constructor is
1147    // called.
1148    const RegType& declaring_class = GetDeclaringClass();
1149    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1150      reg_line->SetRegisterType(arg_start + cur_arg,
1151                                reg_types_.UninitializedThisArgument(declaring_class));
1152    } else {
1153      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1154    }
1155    cur_arg++;
1156  }
1157
1158  const DexFile::ProtoId& proto_id =
1159      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1160  DexFileParameterIterator iterator(*dex_file_, proto_id);
1161
1162  for (; iterator.HasNext(); iterator.Next()) {
1163    const char* descriptor = iterator.GetDescriptor();
1164    if (descriptor == NULL) {
1165      LOG(FATAL) << "Null descriptor";
1166    }
1167    if (cur_arg >= expected_args) {
1168      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1169                                        << " args, found more (" << descriptor << ")";
1170      return false;
1171    }
1172    switch (descriptor[0]) {
1173      case 'L':
1174      case '[':
1175        // We assume that reference arguments are initialized. The only way it could be otherwise
1176        // (assuming the caller was verified) is if the current method is <init>, but in that case
1177        // it's effectively considered initialized the instant we reach here (in the sense that we
1178        // can return without doing anything or call virtual methods).
1179        {
1180          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1181          if (!reg_type.IsNonZeroReferenceTypes()) {
1182            DCHECK(HasFailures());
1183            return false;
1184          }
1185          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1186        }
1187        break;
1188      case 'Z':
1189        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1190        break;
1191      case 'C':
1192        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1193        break;
1194      case 'B':
1195        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1196        break;
1197      case 'I':
1198        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1199        break;
1200      case 'S':
1201        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1202        break;
1203      case 'F':
1204        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1205        break;
1206      case 'J':
1207      case 'D': {
1208        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1209        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1210        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1211        cur_arg++;
1212        break;
1213      }
1214      default:
1215        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1216                                          << descriptor << "'";
1217        return false;
1218    }
1219    cur_arg++;
1220  }
1221  if (cur_arg != expected_args) {
1222    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1223                                      << " arguments, found " << cur_arg;
1224    return false;
1225  }
1226  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1227  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1228  // format. Only major difference from the method argument format is that 'V' is supported.
1229  bool result;
1230  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1231    result = descriptor[1] == '\0';
1232  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1233    size_t i = 0;
1234    do {
1235      i++;
1236    } while (descriptor[i] == '[');  // process leading [
1237    if (descriptor[i] == 'L') {  // object array
1238      do {
1239        i++;  // find closing ;
1240      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1241      result = descriptor[i] == ';';
1242    } else {  // primitive array
1243      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1244    }
1245  } else if (descriptor[0] == 'L') {
1246    // could be more thorough here, but shouldn't be required
1247    size_t i = 0;
1248    do {
1249      i++;
1250    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1251    result = descriptor[i] == ';';
1252  } else {
1253    result = false;
1254  }
1255  if (!result) {
1256    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1257                                      << descriptor << "'";
1258  }
1259  return result;
1260}
1261
1262bool MethodVerifier::CodeFlowVerifyMethod() {
1263  const uint16_t* insns = code_item_->insns_;
1264  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1265
1266  /* Begin by marking the first instruction as "changed". */
1267  insn_flags_[0].SetChanged();
1268  uint32_t start_guess = 0;
1269
1270  /* Continue until no instructions are marked "changed". */
1271  while (true) {
1272    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1273    uint32_t insn_idx = start_guess;
1274    for (; insn_idx < insns_size; insn_idx++) {
1275      if (insn_flags_[insn_idx].IsChanged())
1276        break;
1277    }
1278    if (insn_idx == insns_size) {
1279      if (start_guess != 0) {
1280        /* try again, starting from the top */
1281        start_guess = 0;
1282        continue;
1283      } else {
1284        /* all flags are clear */
1285        break;
1286      }
1287    }
1288    // We carry the working set of registers from instruction to instruction. If this address can
1289    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1290    // "changed" flags, we need to load the set of registers from the table.
1291    // Because we always prefer to continue on to the next instruction, we should never have a
1292    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1293    // target.
1294    work_insn_idx_ = insn_idx;
1295    if (insn_flags_[insn_idx].IsBranchTarget()) {
1296      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1297    } else {
1298#ifndef NDEBUG
1299      /*
1300       * Sanity check: retrieve the stored register line (assuming
1301       * a full table) and make sure it actually matches.
1302       */
1303      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1304      if (register_line != NULL) {
1305        if (work_line_->CompareLine(register_line) != 0) {
1306          Dump(std::cout);
1307          std::cout << info_messages_.str();
1308          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1309                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1310                     << " work_line=" << *work_line_ << "\n"
1311                     << "  expected=" << *register_line;
1312        }
1313      }
1314#endif
1315    }
1316    if (!CodeFlowVerifyInstruction(&start_guess)) {
1317      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1318      prepend += " failed to verify: ";
1319      PrependToLastFailMessage(prepend);
1320      return false;
1321    }
1322    /* Clear "changed" and mark as visited. */
1323    insn_flags_[insn_idx].SetVisited();
1324    insn_flags_[insn_idx].ClearChanged();
1325  }
1326
1327  if (gDebugVerify) {
1328    /*
1329     * Scan for dead code. There's nothing "evil" about dead code
1330     * (besides the wasted space), but it indicates a flaw somewhere
1331     * down the line, possibly in the verifier.
1332     *
1333     * If we've substituted "always throw" instructions into the stream,
1334     * we are almost certainly going to have some dead code.
1335     */
1336    int dead_start = -1;
1337    uint32_t insn_idx = 0;
1338    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1339      /*
1340       * Switch-statement data doesn't get "visited" by scanner. It
1341       * may or may not be preceded by a padding NOP (for alignment).
1342       */
1343      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1344          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1345          insns[insn_idx] == Instruction::kArrayDataSignature ||
1346          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1347           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1348            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1349            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1350        insn_flags_[insn_idx].SetVisited();
1351      }
1352
1353      if (!insn_flags_[insn_idx].IsVisited()) {
1354        if (dead_start < 0)
1355          dead_start = insn_idx;
1356      } else if (dead_start >= 0) {
1357        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1358                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1359        dead_start = -1;
1360      }
1361    }
1362    if (dead_start >= 0) {
1363      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1364                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1365    }
1366    // To dump the state of the verify after a method, do something like:
1367    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1368    //     "boolean java.lang.String.equals(java.lang.Object)") {
1369    //   LOG(INFO) << info_messages_.str();
1370    // }
1371  }
1372  return true;
1373}
1374
1375bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1376  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1377  // We want the state _before_ the instruction, for the case where the dex pc we're
1378  // interested in is itself a monitor-enter instruction (which is a likely place
1379  // for a thread to be suspended).
1380  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1381    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1382    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1383      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1384    }
1385  }
1386
1387  /*
1388   * Once we finish decoding the instruction, we need to figure out where
1389   * we can go from here. There are three possible ways to transfer
1390   * control to another statement:
1391   *
1392   * (1) Continue to the next instruction. Applies to all but
1393   *     unconditional branches, method returns, and exception throws.
1394   * (2) Branch to one or more possible locations. Applies to branches
1395   *     and switch statements.
1396   * (3) Exception handlers. Applies to any instruction that can
1397   *     throw an exception that is handled by an encompassing "try"
1398   *     block.
1399   *
1400   * We can also return, in which case there is no successor instruction
1401   * from this point.
1402   *
1403   * The behavior can be determined from the opcode flags.
1404   */
1405  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1406  const Instruction* inst = Instruction::At(insns);
1407  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1408
1409  int32_t branch_target = 0;
1410  bool just_set_result = false;
1411  if (gDebugVerify) {
1412    // Generate processing back trace to debug verifier
1413    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1414                    << *work_line_.get() << "\n";
1415  }
1416
1417  /*
1418   * Make a copy of the previous register state. If the instruction
1419   * can throw an exception, we will copy/merge this into the "catch"
1420   * address rather than work_line, because we don't want the result
1421   * from the "successful" code path (e.g. a check-cast that "improves"
1422   * a type) to be visible to the exception handler.
1423   */
1424  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1425    saved_line_->CopyFromLine(work_line_.get());
1426  } else {
1427#ifndef NDEBUG
1428    saved_line_->FillWithGarbage();
1429#endif
1430  }
1431
1432
1433  // We need to ensure the work line is consistent while performing validation. When we spot a
1434  // peephole pattern we compute a new line for either the fallthrough instruction or the
1435  // branch target.
1436  UniquePtr<RegisterLine> branch_line;
1437  UniquePtr<RegisterLine> fallthrough_line;
1438
1439  // We need precise constant types only for deoptimization which happens at runtime.
1440  const bool need_precise_constant = !Runtime::Current()->IsCompiler();
1441
1442  switch (inst->Opcode()) {
1443    case Instruction::NOP:
1444      /*
1445       * A "pure" NOP has no effect on anything. Data tables start with
1446       * a signature that looks like a NOP; if we see one of these in
1447       * the course of executing code then we have a problem.
1448       */
1449      if (inst->VRegA_10x() != 0) {
1450        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1451      }
1452      break;
1453
1454    case Instruction::MOVE:
1455      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1456      break;
1457    case Instruction::MOVE_FROM16:
1458      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1459      break;
1460    case Instruction::MOVE_16:
1461      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1462      break;
1463    case Instruction::MOVE_WIDE:
1464      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1465      break;
1466    case Instruction::MOVE_WIDE_FROM16:
1467      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1468      break;
1469    case Instruction::MOVE_WIDE_16:
1470      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1471      break;
1472    case Instruction::MOVE_OBJECT:
1473      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1474      break;
1475    case Instruction::MOVE_OBJECT_FROM16:
1476      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1477      break;
1478    case Instruction::MOVE_OBJECT_16:
1479      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1480      break;
1481
1482    /*
1483     * The move-result instructions copy data out of a "pseudo-register"
1484     * with the results from the last method invocation. In practice we
1485     * might want to hold the result in an actual CPU register, so the
1486     * Dalvik spec requires that these only appear immediately after an
1487     * invoke or filled-new-array.
1488     *
1489     * These calls invalidate the "result" register. (This is now
1490     * redundant with the reset done below, but it can make the debug info
1491     * easier to read in some cases.)
1492     */
1493    case Instruction::MOVE_RESULT:
1494      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1495      break;
1496    case Instruction::MOVE_RESULT_WIDE:
1497      work_line_->CopyResultRegister2(inst->VRegA_11x());
1498      break;
1499    case Instruction::MOVE_RESULT_OBJECT:
1500      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1501      break;
1502
1503    case Instruction::MOVE_EXCEPTION: {
1504      /*
1505       * This statement can only appear as the first instruction in an exception handler. We verify
1506       * that as part of extracting the exception type from the catch block list.
1507       */
1508      const RegType& res_type = GetCaughtExceptionType();
1509      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1510      break;
1511    }
1512    case Instruction::RETURN_VOID:
1513      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1514        if (!GetMethodReturnType().IsConflict()) {
1515          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1516        }
1517      }
1518      break;
1519    case Instruction::RETURN:
1520      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1521        /* check the method signature */
1522        const RegType& return_type = GetMethodReturnType();
1523        if (!return_type.IsCategory1Types()) {
1524          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1525                                            << return_type;
1526        } else {
1527          // Compilers may generate synthetic functions that write byte values into boolean fields.
1528          // Also, it may use integer values for boolean, byte, short, and character return types.
1529          const uint32_t vregA = inst->VRegA_11x();
1530          const RegType& src_type = work_line_->GetRegisterType(vregA);
1531          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1532                          ((return_type.IsBoolean() || return_type.IsByte() ||
1533                           return_type.IsShort() || return_type.IsChar()) &&
1534                           src_type.IsInteger()));
1535          /* check the register contents */
1536          bool success =
1537              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1538          if (!success) {
1539            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1540          }
1541        }
1542      }
1543      break;
1544    case Instruction::RETURN_WIDE:
1545      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1546        /* check the method signature */
1547        const RegType& return_type = GetMethodReturnType();
1548        if (!return_type.IsCategory2Types()) {
1549          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1550        } else {
1551          /* check the register contents */
1552          const uint32_t vregA = inst->VRegA_11x();
1553          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1554          if (!success) {
1555            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1556          }
1557        }
1558      }
1559      break;
1560    case Instruction::RETURN_OBJECT:
1561      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1562        const RegType& return_type = GetMethodReturnType();
1563        if (!return_type.IsReferenceTypes()) {
1564          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1565        } else {
1566          /* return_type is the *expected* return type, not register value */
1567          DCHECK(!return_type.IsZero());
1568          DCHECK(!return_type.IsUninitializedReference());
1569          const uint32_t vregA = inst->VRegA_11x();
1570          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1571          // Disallow returning uninitialized values and verify that the reference in vAA is an
1572          // instance of the "return_type"
1573          if (reg_type.IsUninitializedTypes()) {
1574            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1575                                              << reg_type << "'";
1576          } else if (!return_type.IsAssignableFrom(reg_type)) {
1577            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1578              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1579                  << "' or '" << reg_type << "'";
1580            } else {
1581              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1582                  << "', but expected from declaration '" << return_type << "'";
1583            }
1584          }
1585        }
1586      }
1587      break;
1588
1589      /* could be boolean, int, float, or a null reference */
1590    case Instruction::CONST_4: {
1591      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1592      work_line_->SetRegisterType(inst->VRegA_11n(),
1593                                  DetermineCat1Constant(val, need_precise_constant));
1594      break;
1595    }
1596    case Instruction::CONST_16: {
1597      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1598      work_line_->SetRegisterType(inst->VRegA_21s(),
1599                                  DetermineCat1Constant(val, need_precise_constant));
1600      break;
1601    }
1602    case Instruction::CONST: {
1603      int32_t val = inst->VRegB_31i();
1604      work_line_->SetRegisterType(inst->VRegA_31i(),
1605                                  DetermineCat1Constant(val, need_precise_constant));
1606      break;
1607    }
1608    case Instruction::CONST_HIGH16: {
1609      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1610      work_line_->SetRegisterType(inst->VRegA_21h(),
1611                                  DetermineCat1Constant(val, need_precise_constant));
1612      break;
1613    }
1614      /* could be long or double; resolved upon use */
1615    case Instruction::CONST_WIDE_16: {
1616      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1617      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1618      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1619      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1620      break;
1621    }
1622    case Instruction::CONST_WIDE_32: {
1623      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1624      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1625      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1626      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1627      break;
1628    }
1629    case Instruction::CONST_WIDE: {
1630      int64_t val = inst->VRegB_51l();
1631      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1632      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1633      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1634      break;
1635    }
1636    case Instruction::CONST_WIDE_HIGH16: {
1637      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1638      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1639      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1640      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1641      break;
1642    }
1643    case Instruction::CONST_STRING:
1644      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1645      break;
1646    case Instruction::CONST_STRING_JUMBO:
1647      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1648      break;
1649    case Instruction::CONST_CLASS: {
1650      // Get type from instruction if unresolved then we need an access check
1651      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1652      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1653      // Register holds class, ie its type is class, on error it will hold Conflict.
1654      work_line_->SetRegisterType(inst->VRegA_21c(),
1655                                  res_type.IsConflict() ? res_type
1656                                                        : reg_types_.JavaLangClass(true));
1657      break;
1658    }
1659    case Instruction::MONITOR_ENTER:
1660      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1661      break;
1662    case Instruction::MONITOR_EXIT:
1663      /*
1664       * monitor-exit instructions are odd. They can throw exceptions,
1665       * but when they do they act as if they succeeded and the PC is
1666       * pointing to the following instruction. (This behavior goes back
1667       * to the need to handle asynchronous exceptions, a now-deprecated
1668       * feature that Dalvik doesn't support.)
1669       *
1670       * In practice we don't need to worry about this. The only
1671       * exceptions that can be thrown from monitor-exit are for a
1672       * null reference and -exit without a matching -enter. If the
1673       * structured locking checks are working, the former would have
1674       * failed on the -enter instruction, and the latter is impossible.
1675       *
1676       * This is fortunate, because issue 3221411 prevents us from
1677       * chasing the "can throw" path when monitor verification is
1678       * enabled. If we can fully verify the locking we can ignore
1679       * some catch blocks (which will show up as "dead" code when
1680       * we skip them here); if we can't, then the code path could be
1681       * "live" so we still need to check it.
1682       */
1683      opcode_flags &= ~Instruction::kThrow;
1684      work_line_->PopMonitor(inst->VRegA_11x());
1685      break;
1686
1687    case Instruction::CHECK_CAST:
1688    case Instruction::INSTANCE_OF: {
1689      /*
1690       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1691       * could be a "upcast" -- not expected, so we don't try to address it.)
1692       *
1693       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1694       * dec_insn.vA when branching to a handler.
1695       */
1696      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1697      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1698      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1699      if (res_type.IsConflict()) {
1700        DCHECK_NE(failures_.size(), 0U);
1701        if (!is_checkcast) {
1702          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1703        }
1704        break;  // bad class
1705      }
1706      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1707      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1708      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1709      if (!res_type.IsNonZeroReferenceTypes()) {
1710        if (is_checkcast) {
1711          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1712        } else {
1713          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1714        }
1715      } else if (!orig_type.IsReferenceTypes()) {
1716        if (is_checkcast) {
1717          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1718        } else {
1719          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1720        }
1721      } else {
1722        if (is_checkcast) {
1723          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1724        } else {
1725          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1726        }
1727      }
1728      break;
1729    }
1730    case Instruction::ARRAY_LENGTH: {
1731      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1732      if (res_type.IsReferenceTypes()) {
1733        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1734          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1735        } else {
1736          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1737        }
1738      }
1739      break;
1740    }
1741    case Instruction::NEW_INSTANCE: {
1742      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1743      if (res_type.IsConflict()) {
1744        DCHECK_NE(failures_.size(), 0U);
1745        break;  // bad class
1746      }
1747      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1748      // can't create an instance of an interface or abstract class */
1749      if (!res_type.IsInstantiableTypes()) {
1750        Fail(VERIFY_ERROR_INSTANTIATION)
1751            << "new-instance on primitive, interface or abstract class" << res_type;
1752        // Soft failure so carry on to set register type.
1753      }
1754      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1755      // Any registers holding previous allocations from this address that have not yet been
1756      // initialized must be marked invalid.
1757      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1758      // add the new uninitialized reference to the register state
1759      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1760      break;
1761    }
1762    case Instruction::NEW_ARRAY:
1763      VerifyNewArray(inst, false, false);
1764      break;
1765    case Instruction::FILLED_NEW_ARRAY:
1766      VerifyNewArray(inst, true, false);
1767      just_set_result = true;  // Filled new array sets result register
1768      break;
1769    case Instruction::FILLED_NEW_ARRAY_RANGE:
1770      VerifyNewArray(inst, true, true);
1771      just_set_result = true;  // Filled new array range sets result register
1772      break;
1773    case Instruction::CMPL_FLOAT:
1774    case Instruction::CMPG_FLOAT:
1775      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1776        break;
1777      }
1778      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1779        break;
1780      }
1781      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1782      break;
1783    case Instruction::CMPL_DOUBLE:
1784    case Instruction::CMPG_DOUBLE:
1785      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1786                                              reg_types_.DoubleHi())) {
1787        break;
1788      }
1789      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1790                                              reg_types_.DoubleHi())) {
1791        break;
1792      }
1793      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1794      break;
1795    case Instruction::CMP_LONG:
1796      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1797                                              reg_types_.LongHi())) {
1798        break;
1799      }
1800      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1801                                              reg_types_.LongHi())) {
1802        break;
1803      }
1804      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1805      break;
1806    case Instruction::THROW: {
1807      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1808      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1809        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1810            << "thrown class " << res_type << " not instanceof Throwable";
1811      }
1812      break;
1813    }
1814    case Instruction::GOTO:
1815    case Instruction::GOTO_16:
1816    case Instruction::GOTO_32:
1817      /* no effect on or use of registers */
1818      break;
1819
1820    case Instruction::PACKED_SWITCH:
1821    case Instruction::SPARSE_SWITCH:
1822      /* verify that vAA is an integer, or can be converted to one */
1823      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1824      break;
1825
1826    case Instruction::FILL_ARRAY_DATA: {
1827      /* Similar to the verification done for APUT */
1828      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1829      /* array_type can be null if the reg type is Zero */
1830      if (!array_type.IsZero()) {
1831        if (!array_type.IsArrayTypes()) {
1832          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1833                                            << array_type;
1834        } else {
1835          const RegType& component_type = reg_types_.GetComponentType(array_type,
1836                                                                      class_loader_->Get());
1837          DCHECK(!component_type.IsConflict());
1838          if (component_type.IsNonZeroReferenceTypes()) {
1839            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1840                                              << component_type;
1841          } else {
1842            // Now verify if the element width in the table matches the element width declared in
1843            // the array
1844            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1845            if (array_data[0] != Instruction::kArrayDataSignature) {
1846              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1847            } else {
1848              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1849              // Since we don't compress the data in Dex, expect to see equal width of data stored
1850              // in the table and expected from the array class.
1851              if (array_data[1] != elem_width) {
1852                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1853                                                  << " vs " << elem_width << ")";
1854              }
1855            }
1856          }
1857        }
1858      }
1859      break;
1860    }
1861    case Instruction::IF_EQ:
1862    case Instruction::IF_NE: {
1863      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1864      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1865      bool mismatch = false;
1866      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1867        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1868      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1869        mismatch = !reg_type2.IsReferenceTypes();
1870      } else {  // both integral?
1871        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1872      }
1873      if (mismatch) {
1874        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1875                                          << reg_type2 << ") must both be references or integral";
1876      }
1877      break;
1878    }
1879    case Instruction::IF_LT:
1880    case Instruction::IF_GE:
1881    case Instruction::IF_GT:
1882    case Instruction::IF_LE: {
1883      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1884      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1885      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1886        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1887                                          << reg_type2 << ") must be integral";
1888      }
1889      break;
1890    }
1891    case Instruction::IF_EQZ:
1892    case Instruction::IF_NEZ: {
1893      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1894      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1895        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1896                                          << " unexpected as arg to if-eqz/if-nez";
1897      }
1898
1899      // Find previous instruction - its existence is a precondition to peephole optimization.
1900      uint32_t instance_of_idx = 0;
1901      if (0 != work_insn_idx_) {
1902        instance_of_idx = work_insn_idx_ - 1;
1903        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1904          instance_of_idx--;
1905        }
1906        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1907      } else {
1908        break;
1909      }
1910
1911      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1912
1913      /* Check for peep-hole pattern of:
1914       *    ...;
1915       *    instance-of vX, vY, T;
1916       *    ifXXX vX, label ;
1917       *    ...;
1918       * label:
1919       *    ...;
1920       * and sharpen the type of vY to be type T.
1921       * Note, this pattern can't be if:
1922       *  - if there are other branches to this branch,
1923       *  - when vX == vY.
1924       */
1925      if (!CurrentInsnFlags()->IsBranchTarget() &&
1926          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1927          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1928          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1929        // Check that the we are not attempting conversion to interface types,
1930        // which is not done because of the multiple inheritance implications.
1931        // Also don't change the type if it would result in an upcast.
1932        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1933        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1934
1935        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1936            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1937          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1938          if (inst->Opcode() == Instruction::IF_EQZ) {
1939            fallthrough_line.reset(update_line);
1940          } else {
1941            branch_line.reset(update_line);
1942          }
1943          update_line->CopyFromLine(work_line_.get());
1944          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1945          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1946            // See if instance-of was preceded by a move-object operation, common due to the small
1947            // register encoding space of instance-of, and propagate type information to the source
1948            // of the move-object.
1949            uint32_t move_idx = instance_of_idx - 1;
1950            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1951              move_idx--;
1952            }
1953            CHECK(insn_flags_[move_idx].IsOpcode());
1954            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1955            switch (move_inst->Opcode()) {
1956              case Instruction::MOVE_OBJECT:
1957                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1958                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1959                }
1960                break;
1961              case Instruction::MOVE_OBJECT_FROM16:
1962                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1963                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1964                }
1965                break;
1966              case Instruction::MOVE_OBJECT_16:
1967                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1968                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1969                }
1970                break;
1971              default:
1972                break;
1973            }
1974          }
1975        }
1976      }
1977
1978      break;
1979    }
1980    case Instruction::IF_LTZ:
1981    case Instruction::IF_GEZ:
1982    case Instruction::IF_GTZ:
1983    case Instruction::IF_LEZ: {
1984      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1985      if (!reg_type.IsIntegralTypes()) {
1986        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1987                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1988      }
1989      break;
1990    }
1991    case Instruction::AGET_BOOLEAN:
1992      VerifyAGet(inst, reg_types_.Boolean(), true);
1993      break;
1994    case Instruction::AGET_BYTE:
1995      VerifyAGet(inst, reg_types_.Byte(), true);
1996      break;
1997    case Instruction::AGET_CHAR:
1998      VerifyAGet(inst, reg_types_.Char(), true);
1999      break;
2000    case Instruction::AGET_SHORT:
2001      VerifyAGet(inst, reg_types_.Short(), true);
2002      break;
2003    case Instruction::AGET:
2004      VerifyAGet(inst, reg_types_.Integer(), true);
2005      break;
2006    case Instruction::AGET_WIDE:
2007      VerifyAGet(inst, reg_types_.LongLo(), true);
2008      break;
2009    case Instruction::AGET_OBJECT:
2010      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2011      break;
2012
2013    case Instruction::APUT_BOOLEAN:
2014      VerifyAPut(inst, reg_types_.Boolean(), true);
2015      break;
2016    case Instruction::APUT_BYTE:
2017      VerifyAPut(inst, reg_types_.Byte(), true);
2018      break;
2019    case Instruction::APUT_CHAR:
2020      VerifyAPut(inst, reg_types_.Char(), true);
2021      break;
2022    case Instruction::APUT_SHORT:
2023      VerifyAPut(inst, reg_types_.Short(), true);
2024      break;
2025    case Instruction::APUT:
2026      VerifyAPut(inst, reg_types_.Integer(), true);
2027      break;
2028    case Instruction::APUT_WIDE:
2029      VerifyAPut(inst, reg_types_.LongLo(), true);
2030      break;
2031    case Instruction::APUT_OBJECT:
2032      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2033      break;
2034
2035    case Instruction::IGET_BOOLEAN:
2036      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2037      break;
2038    case Instruction::IGET_BYTE:
2039      VerifyISGet(inst, reg_types_.Byte(), true, false);
2040      break;
2041    case Instruction::IGET_CHAR:
2042      VerifyISGet(inst, reg_types_.Char(), true, false);
2043      break;
2044    case Instruction::IGET_SHORT:
2045      VerifyISGet(inst, reg_types_.Short(), true, false);
2046      break;
2047    case Instruction::IGET:
2048      VerifyISGet(inst, reg_types_.Integer(), true, false);
2049      break;
2050    case Instruction::IGET_WIDE:
2051      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2052      break;
2053    case Instruction::IGET_OBJECT:
2054      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2055      break;
2056
2057    case Instruction::IPUT_BOOLEAN:
2058      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2059      break;
2060    case Instruction::IPUT_BYTE:
2061      VerifyISPut(inst, reg_types_.Byte(), true, false);
2062      break;
2063    case Instruction::IPUT_CHAR:
2064      VerifyISPut(inst, reg_types_.Char(), true, false);
2065      break;
2066    case Instruction::IPUT_SHORT:
2067      VerifyISPut(inst, reg_types_.Short(), true, false);
2068      break;
2069    case Instruction::IPUT:
2070      VerifyISPut(inst, reg_types_.Integer(), true, false);
2071      break;
2072    case Instruction::IPUT_WIDE:
2073      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2074      break;
2075    case Instruction::IPUT_OBJECT:
2076      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2077      break;
2078
2079    case Instruction::SGET_BOOLEAN:
2080      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2081      break;
2082    case Instruction::SGET_BYTE:
2083      VerifyISGet(inst, reg_types_.Byte(), true, true);
2084      break;
2085    case Instruction::SGET_CHAR:
2086      VerifyISGet(inst, reg_types_.Char(), true, true);
2087      break;
2088    case Instruction::SGET_SHORT:
2089      VerifyISGet(inst, reg_types_.Short(), true, true);
2090      break;
2091    case Instruction::SGET:
2092      VerifyISGet(inst, reg_types_.Integer(), true, true);
2093      break;
2094    case Instruction::SGET_WIDE:
2095      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2096      break;
2097    case Instruction::SGET_OBJECT:
2098      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2099      break;
2100
2101    case Instruction::SPUT_BOOLEAN:
2102      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2103      break;
2104    case Instruction::SPUT_BYTE:
2105      VerifyISPut(inst, reg_types_.Byte(), true, true);
2106      break;
2107    case Instruction::SPUT_CHAR:
2108      VerifyISPut(inst, reg_types_.Char(), true, true);
2109      break;
2110    case Instruction::SPUT_SHORT:
2111      VerifyISPut(inst, reg_types_.Short(), true, true);
2112      break;
2113    case Instruction::SPUT:
2114      VerifyISPut(inst, reg_types_.Integer(), true, true);
2115      break;
2116    case Instruction::SPUT_WIDE:
2117      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2118      break;
2119    case Instruction::SPUT_OBJECT:
2120      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2121      break;
2122
2123    case Instruction::INVOKE_VIRTUAL:
2124    case Instruction::INVOKE_VIRTUAL_RANGE:
2125    case Instruction::INVOKE_SUPER:
2126    case Instruction::INVOKE_SUPER_RANGE: {
2127      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2128                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2129      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2130                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2131      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2132                                                                   is_range, is_super);
2133      const RegType* return_type = nullptr;
2134      if (called_method != nullptr) {
2135        MethodHelper mh(called_method);
2136        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2137        if (return_type_class != nullptr) {
2138          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2139                                              return_type_class->CannotBeAssignedFromOtherTypes());
2140        } else {
2141          Thread* self = Thread::Current();
2142          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2143          self->ClearException();
2144        }
2145      }
2146      if (return_type == nullptr) {
2147        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2148        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2149        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2150        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2151        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2152      }
2153      if (!return_type->IsLowHalf()) {
2154        work_line_->SetResultRegisterType(*return_type);
2155      } else {
2156        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2157      }
2158      just_set_result = true;
2159      break;
2160    }
2161    case Instruction::INVOKE_DIRECT:
2162    case Instruction::INVOKE_DIRECT_RANGE: {
2163      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2164      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2165                                                                   is_range, false);
2166      const char* return_type_descriptor;
2167      bool is_constructor;
2168      if (called_method == NULL) {
2169        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2170        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2171        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2172        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2173        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2174      } else {
2175        is_constructor = called_method->IsConstructor();
2176        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2177      }
2178      if (is_constructor) {
2179        /*
2180         * Some additional checks when calling a constructor. We know from the invocation arg check
2181         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2182         * that to require that called_method->klass is the same as this->klass or this->super,
2183         * allowing the latter only if the "this" argument is the same as the "this" argument to
2184         * this method (which implies that we're in a constructor ourselves).
2185         */
2186        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2187        if (this_type.IsConflict())  // failure.
2188          break;
2189
2190        /* no null refs allowed (?) */
2191        if (this_type.IsZero()) {
2192          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2193          break;
2194        }
2195
2196        /* must be in same class or in superclass */
2197        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2198        // TODO: re-enable constructor type verification
2199        // if (this_super_klass.IsConflict()) {
2200          // Unknown super class, fail so we re-check at runtime.
2201          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2202          // break;
2203        // }
2204
2205        /* arg must be an uninitialized reference */
2206        if (!this_type.IsUninitializedTypes()) {
2207          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2208              << this_type;
2209          break;
2210        }
2211
2212        /*
2213         * Replace the uninitialized reference with an initialized one. We need to do this for all
2214         * registers that have the same object instance in them, not just the "this" register.
2215         */
2216        work_line_->MarkRefsAsInitialized(this_type);
2217      }
2218      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(),
2219                                                             return_type_descriptor, false);
2220      if (!return_type.IsLowHalf()) {
2221        work_line_->SetResultRegisterType(return_type);
2222      } else {
2223        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2224      }
2225      just_set_result = true;
2226      break;
2227    }
2228    case Instruction::INVOKE_STATIC:
2229    case Instruction::INVOKE_STATIC_RANGE: {
2230        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2231        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2232                                                                     METHOD_STATIC,
2233                                                                     is_range,
2234                                                                     false);
2235        const char* descriptor;
2236        if (called_method == NULL) {
2237          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2238          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2239          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2240          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2241        } else {
2242          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2243        }
2244        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2245                                                                false);
2246        if (!return_type.IsLowHalf()) {
2247          work_line_->SetResultRegisterType(return_type);
2248        } else {
2249          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2250        }
2251        just_set_result = true;
2252      }
2253      break;
2254    case Instruction::INVOKE_INTERFACE:
2255    case Instruction::INVOKE_INTERFACE_RANGE: {
2256      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2257      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2258                                                                METHOD_INTERFACE,
2259                                                                is_range,
2260                                                                false);
2261      if (abs_method != NULL) {
2262        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2263        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2264          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2265              << PrettyMethod(abs_method) << "'";
2266          break;
2267        }
2268      }
2269      /* Get the type of the "this" arg, which should either be a sub-interface of called
2270       * interface or Object (see comments in RegType::JoinClass).
2271       */
2272      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2273      if (this_type.IsZero()) {
2274        /* null pointer always passes (and always fails at runtime) */
2275      } else {
2276        if (this_type.IsUninitializedTypes()) {
2277          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2278              << this_type;
2279          break;
2280        }
2281        // In the past we have tried to assert that "called_interface" is assignable
2282        // from "this_type.GetClass()", however, as we do an imprecise Join
2283        // (RegType::JoinClass) we don't have full information on what interfaces are
2284        // implemented by "this_type". For example, two classes may implement the same
2285        // interfaces and have a common parent that doesn't implement the interface. The
2286        // join will set "this_type" to the parent class and a test that this implements
2287        // the interface will incorrectly fail.
2288      }
2289      /*
2290       * We don't have an object instance, so we can't find the concrete method. However, all of
2291       * the type information is in the abstract method, so we're good.
2292       */
2293      const char* descriptor;
2294      if (abs_method == NULL) {
2295        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2296        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2297        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2298        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2299      } else {
2300        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2301      }
2302      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2303                                                             false);
2304      if (!return_type.IsLowHalf()) {
2305        work_line_->SetResultRegisterType(return_type);
2306      } else {
2307        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2308      }
2309      just_set_result = true;
2310      break;
2311    }
2312    case Instruction::NEG_INT:
2313    case Instruction::NOT_INT:
2314      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2315      break;
2316    case Instruction::NEG_LONG:
2317    case Instruction::NOT_LONG:
2318      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2319                                   reg_types_.LongLo(), reg_types_.LongHi());
2320      break;
2321    case Instruction::NEG_FLOAT:
2322      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2323      break;
2324    case Instruction::NEG_DOUBLE:
2325      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2326                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2327      break;
2328    case Instruction::INT_TO_LONG:
2329      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2330                                     reg_types_.Integer());
2331      break;
2332    case Instruction::INT_TO_FLOAT:
2333      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2334      break;
2335    case Instruction::INT_TO_DOUBLE:
2336      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2337                                     reg_types_.Integer());
2338      break;
2339    case Instruction::LONG_TO_INT:
2340      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2341                                       reg_types_.LongLo(), reg_types_.LongHi());
2342      break;
2343    case Instruction::LONG_TO_FLOAT:
2344      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2345                                       reg_types_.LongLo(), reg_types_.LongHi());
2346      break;
2347    case Instruction::LONG_TO_DOUBLE:
2348      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2349                                   reg_types_.LongLo(), reg_types_.LongHi());
2350      break;
2351    case Instruction::FLOAT_TO_INT:
2352      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2353      break;
2354    case Instruction::FLOAT_TO_LONG:
2355      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2356                                     reg_types_.Float());
2357      break;
2358    case Instruction::FLOAT_TO_DOUBLE:
2359      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2360                                     reg_types_.Float());
2361      break;
2362    case Instruction::DOUBLE_TO_INT:
2363      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2364                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2365      break;
2366    case Instruction::DOUBLE_TO_LONG:
2367      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2368                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2369      break;
2370    case Instruction::DOUBLE_TO_FLOAT:
2371      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2372                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2373      break;
2374    case Instruction::INT_TO_BYTE:
2375      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2376      break;
2377    case Instruction::INT_TO_CHAR:
2378      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2379      break;
2380    case Instruction::INT_TO_SHORT:
2381      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2382      break;
2383
2384    case Instruction::ADD_INT:
2385    case Instruction::SUB_INT:
2386    case Instruction::MUL_INT:
2387    case Instruction::REM_INT:
2388    case Instruction::DIV_INT:
2389    case Instruction::SHL_INT:
2390    case Instruction::SHR_INT:
2391    case Instruction::USHR_INT:
2392      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2393                                reg_types_.Integer(), false);
2394      break;
2395    case Instruction::AND_INT:
2396    case Instruction::OR_INT:
2397    case Instruction::XOR_INT:
2398      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2399                                reg_types_.Integer(), true);
2400      break;
2401    case Instruction::ADD_LONG:
2402    case Instruction::SUB_LONG:
2403    case Instruction::MUL_LONG:
2404    case Instruction::DIV_LONG:
2405    case Instruction::REM_LONG:
2406    case Instruction::AND_LONG:
2407    case Instruction::OR_LONG:
2408    case Instruction::XOR_LONG:
2409      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2410                                    reg_types_.LongLo(), reg_types_.LongHi(),
2411                                    reg_types_.LongLo(), reg_types_.LongHi());
2412      break;
2413    case Instruction::SHL_LONG:
2414    case Instruction::SHR_LONG:
2415    case Instruction::USHR_LONG:
2416      /* shift distance is Int, making these different from other binary operations */
2417      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2418                                         reg_types_.Integer());
2419      break;
2420    case Instruction::ADD_FLOAT:
2421    case Instruction::SUB_FLOAT:
2422    case Instruction::MUL_FLOAT:
2423    case Instruction::DIV_FLOAT:
2424    case Instruction::REM_FLOAT:
2425      work_line_->CheckBinaryOp(inst,
2426                                reg_types_.Float(),
2427                                reg_types_.Float(),
2428                                reg_types_.Float(),
2429                                false);
2430      break;
2431    case Instruction::ADD_DOUBLE:
2432    case Instruction::SUB_DOUBLE:
2433    case Instruction::MUL_DOUBLE:
2434    case Instruction::DIV_DOUBLE:
2435    case Instruction::REM_DOUBLE:
2436      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2437                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2438                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2439      break;
2440    case Instruction::ADD_INT_2ADDR:
2441    case Instruction::SUB_INT_2ADDR:
2442    case Instruction::MUL_INT_2ADDR:
2443    case Instruction::REM_INT_2ADDR:
2444    case Instruction::SHL_INT_2ADDR:
2445    case Instruction::SHR_INT_2ADDR:
2446    case Instruction::USHR_INT_2ADDR:
2447      work_line_->CheckBinaryOp2addr(inst,
2448                                     reg_types_.Integer(),
2449                                     reg_types_.Integer(),
2450                                     reg_types_.Integer(),
2451                                     false);
2452      break;
2453    case Instruction::AND_INT_2ADDR:
2454    case Instruction::OR_INT_2ADDR:
2455    case Instruction::XOR_INT_2ADDR:
2456      work_line_->CheckBinaryOp2addr(inst,
2457                                     reg_types_.Integer(),
2458                                     reg_types_.Integer(),
2459                                     reg_types_.Integer(),
2460                                     true);
2461      break;
2462    case Instruction::DIV_INT_2ADDR:
2463      work_line_->CheckBinaryOp2addr(inst,
2464                                     reg_types_.Integer(),
2465                                     reg_types_.Integer(),
2466                                     reg_types_.Integer(),
2467                                     false);
2468      break;
2469    case Instruction::ADD_LONG_2ADDR:
2470    case Instruction::SUB_LONG_2ADDR:
2471    case Instruction::MUL_LONG_2ADDR:
2472    case Instruction::DIV_LONG_2ADDR:
2473    case Instruction::REM_LONG_2ADDR:
2474    case Instruction::AND_LONG_2ADDR:
2475    case Instruction::OR_LONG_2ADDR:
2476    case Instruction::XOR_LONG_2ADDR:
2477      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2478                                         reg_types_.LongLo(), reg_types_.LongHi(),
2479                                         reg_types_.LongLo(), reg_types_.LongHi());
2480      break;
2481    case Instruction::SHL_LONG_2ADDR:
2482    case Instruction::SHR_LONG_2ADDR:
2483    case Instruction::USHR_LONG_2ADDR:
2484      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2485                                              reg_types_.Integer());
2486      break;
2487    case Instruction::ADD_FLOAT_2ADDR:
2488    case Instruction::SUB_FLOAT_2ADDR:
2489    case Instruction::MUL_FLOAT_2ADDR:
2490    case Instruction::DIV_FLOAT_2ADDR:
2491    case Instruction::REM_FLOAT_2ADDR:
2492      work_line_->CheckBinaryOp2addr(inst,
2493                                     reg_types_.Float(),
2494                                     reg_types_.Float(),
2495                                     reg_types_.Float(),
2496                                     false);
2497      break;
2498    case Instruction::ADD_DOUBLE_2ADDR:
2499    case Instruction::SUB_DOUBLE_2ADDR:
2500    case Instruction::MUL_DOUBLE_2ADDR:
2501    case Instruction::DIV_DOUBLE_2ADDR:
2502    case Instruction::REM_DOUBLE_2ADDR:
2503      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2504                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2505                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2506      break;
2507    case Instruction::ADD_INT_LIT16:
2508    case Instruction::RSUB_INT:
2509    case Instruction::MUL_INT_LIT16:
2510    case Instruction::DIV_INT_LIT16:
2511    case Instruction::REM_INT_LIT16:
2512      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2513      break;
2514    case Instruction::AND_INT_LIT16:
2515    case Instruction::OR_INT_LIT16:
2516    case Instruction::XOR_INT_LIT16:
2517      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2518      break;
2519    case Instruction::ADD_INT_LIT8:
2520    case Instruction::RSUB_INT_LIT8:
2521    case Instruction::MUL_INT_LIT8:
2522    case Instruction::DIV_INT_LIT8:
2523    case Instruction::REM_INT_LIT8:
2524    case Instruction::SHL_INT_LIT8:
2525    case Instruction::SHR_INT_LIT8:
2526    case Instruction::USHR_INT_LIT8:
2527      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2528      break;
2529    case Instruction::AND_INT_LIT8:
2530    case Instruction::OR_INT_LIT8:
2531    case Instruction::XOR_INT_LIT8:
2532      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2533      break;
2534
2535    // Special instructions.
2536    case Instruction::RETURN_VOID_BARRIER:
2537      if (!IsConstructor() || IsStatic()) {
2538          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2539      }
2540      break;
2541    // Note: the following instructions encode offsets derived from class linking.
2542    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2543    // meaning if the class linking and resolution were successful.
2544    case Instruction::IGET_QUICK:
2545      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2546      break;
2547    case Instruction::IGET_WIDE_QUICK:
2548      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2549      break;
2550    case Instruction::IGET_OBJECT_QUICK:
2551      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2552      break;
2553    case Instruction::IPUT_QUICK:
2554      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2555      break;
2556    case Instruction::IPUT_WIDE_QUICK:
2557      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2558      break;
2559    case Instruction::IPUT_OBJECT_QUICK:
2560      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2561      break;
2562    case Instruction::INVOKE_VIRTUAL_QUICK:
2563    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2564      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2565      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2566      if (called_method != NULL) {
2567        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2568        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2569                                                               false);
2570        if (!return_type.IsLowHalf()) {
2571          work_line_->SetResultRegisterType(return_type);
2572        } else {
2573          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2574        }
2575        just_set_result = true;
2576      }
2577      break;
2578    }
2579
2580    /* These should never appear during verification. */
2581    case Instruction::UNUSED_3E:
2582    case Instruction::UNUSED_3F:
2583    case Instruction::UNUSED_40:
2584    case Instruction::UNUSED_41:
2585    case Instruction::UNUSED_42:
2586    case Instruction::UNUSED_43:
2587    case Instruction::UNUSED_79:
2588    case Instruction::UNUSED_7A:
2589    case Instruction::UNUSED_EB:
2590    case Instruction::UNUSED_EC:
2591    case Instruction::UNUSED_ED:
2592    case Instruction::UNUSED_EE:
2593    case Instruction::UNUSED_EF:
2594    case Instruction::UNUSED_F0:
2595    case Instruction::UNUSED_F1:
2596    case Instruction::UNUSED_F2:
2597    case Instruction::UNUSED_F3:
2598    case Instruction::UNUSED_F4:
2599    case Instruction::UNUSED_F5:
2600    case Instruction::UNUSED_F6:
2601    case Instruction::UNUSED_F7:
2602    case Instruction::UNUSED_F8:
2603    case Instruction::UNUSED_F9:
2604    case Instruction::UNUSED_FA:
2605    case Instruction::UNUSED_FB:
2606    case Instruction::UNUSED_FC:
2607    case Instruction::UNUSED_FD:
2608    case Instruction::UNUSED_FE:
2609    case Instruction::UNUSED_FF:
2610      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2611      break;
2612
2613    /*
2614     * DO NOT add a "default" clause here. Without it the compiler will
2615     * complain if an instruction is missing (which is desirable).
2616     */
2617  }  // end - switch (dec_insn.opcode)
2618
2619  if (have_pending_hard_failure_) {
2620    if (Runtime::Current()->IsCompiler()) {
2621      /* When compiling, check that the last failure is a hard failure */
2622      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2623    }
2624    /* immediate failure, reject class */
2625    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2626    return false;
2627  } else if (have_pending_runtime_throw_failure_) {
2628    /* checking interpreter will throw, mark following code as unreachable */
2629    opcode_flags = Instruction::kThrow;
2630  }
2631  /*
2632   * If we didn't just set the result register, clear it out. This ensures that you can only use
2633   * "move-result" immediately after the result is set. (We could check this statically, but it's
2634   * not expensive and it makes our debugging output cleaner.)
2635   */
2636  if (!just_set_result) {
2637    work_line_->SetResultTypeToUnknown();
2638  }
2639
2640
2641
2642  /*
2643   * Handle "branch". Tag the branch target.
2644   *
2645   * NOTE: instructions like Instruction::EQZ provide information about the
2646   * state of the register when the branch is taken or not taken. For example,
2647   * somebody could get a reference field, check it for zero, and if the
2648   * branch is taken immediately store that register in a boolean field
2649   * since the value is known to be zero. We do not currently account for
2650   * that, and will reject the code.
2651   *
2652   * TODO: avoid re-fetching the branch target
2653   */
2654  if ((opcode_flags & Instruction::kBranch) != 0) {
2655    bool isConditional, selfOkay;
2656    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2657      /* should never happen after static verification */
2658      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2659      return false;
2660    }
2661    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2662    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2663      return false;
2664    }
2665    /* update branch target, set "changed" if appropriate */
2666    if (NULL != branch_line.get()) {
2667      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2668        return false;
2669      }
2670    } else {
2671      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2672        return false;
2673      }
2674    }
2675  }
2676
2677  /*
2678   * Handle "switch". Tag all possible branch targets.
2679   *
2680   * We've already verified that the table is structurally sound, so we
2681   * just need to walk through and tag the targets.
2682   */
2683  if ((opcode_flags & Instruction::kSwitch) != 0) {
2684    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2685    const uint16_t* switch_insns = insns + offset_to_switch;
2686    int switch_count = switch_insns[1];
2687    int offset_to_targets, targ;
2688
2689    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2690      /* 0 = sig, 1 = count, 2/3 = first key */
2691      offset_to_targets = 4;
2692    } else {
2693      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2694      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2695      offset_to_targets = 2 + 2 * switch_count;
2696    }
2697
2698    /* verify each switch target */
2699    for (targ = 0; targ < switch_count; targ++) {
2700      int offset;
2701      uint32_t abs_offset;
2702
2703      /* offsets are 32-bit, and only partly endian-swapped */
2704      offset = switch_insns[offset_to_targets + targ * 2] |
2705         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2706      abs_offset = work_insn_idx_ + offset;
2707      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2708      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2709        return false;
2710      }
2711      if (!UpdateRegisters(abs_offset, work_line_.get()))
2712        return false;
2713    }
2714  }
2715
2716  /*
2717   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2718   * "try" block when they throw, control transfers out of the method.)
2719   */
2720  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2721    bool within_catch_all = false;
2722    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2723
2724    for (; iterator.HasNext(); iterator.Next()) {
2725      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2726        within_catch_all = true;
2727      }
2728      /*
2729       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2730       * "work_regs", because at runtime the exception will be thrown before the instruction
2731       * modifies any registers.
2732       */
2733      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2734        return false;
2735      }
2736    }
2737
2738    /*
2739     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2740     * instruction. This does apply to monitor-exit because of async exception handling.
2741     */
2742    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2743      /*
2744       * The state in work_line reflects the post-execution state. If the current instruction is a
2745       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2746       * it will do so before grabbing the lock).
2747       */
2748      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2749        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2750            << "expected to be within a catch-all for an instruction where a monitor is held";
2751        return false;
2752      }
2753    }
2754  }
2755
2756  /* Handle "continue". Tag the next consecutive instruction.
2757   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2758   *        because it changes work_line_ when performing peephole optimization
2759   *        and this change should not be used in those cases.
2760   */
2761  if ((opcode_flags & Instruction::kContinue) != 0) {
2762    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2763    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2764      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2765      return false;
2766    }
2767    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2768    // next instruction isn't one.
2769    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2770      return false;
2771    }
2772    if (NULL != fallthrough_line.get()) {
2773      // Make workline consistent with fallthrough computed from peephole optimization.
2774      work_line_->CopyFromLine(fallthrough_line.get());
2775    }
2776    if (insn_flags_[next_insn_idx].IsReturn()) {
2777      // For returns we only care about the operand to the return, all other registers are dead.
2778      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2779      Instruction::Code opcode = ret_inst->Opcode();
2780      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2781        work_line_->MarkAllRegistersAsConflicts();
2782      } else {
2783        if (opcode == Instruction::RETURN_WIDE) {
2784          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2785        } else {
2786          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2787        }
2788      }
2789    }
2790    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2791    if (next_line != NULL) {
2792      // Merge registers into what we have for the next instruction,
2793      // and set the "changed" flag if needed.
2794      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2795        return false;
2796      }
2797    } else {
2798      /*
2799       * We're not recording register data for the next instruction, so we don't know what the
2800       * prior state was. We have to assume that something has changed and re-evaluate it.
2801       */
2802      insn_flags_[next_insn_idx].SetChanged();
2803    }
2804  }
2805
2806  /* If we're returning from the method, make sure monitor stack is empty. */
2807  if ((opcode_flags & Instruction::kReturn) != 0) {
2808    if (!work_line_->VerifyMonitorStackEmpty()) {
2809      return false;
2810    }
2811  }
2812
2813  /*
2814   * Update start_guess. Advance to the next instruction of that's
2815   * possible, otherwise use the branch target if one was found. If
2816   * neither of those exists we're in a return or throw; leave start_guess
2817   * alone and let the caller sort it out.
2818   */
2819  if ((opcode_flags & Instruction::kContinue) != 0) {
2820    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2821  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2822    /* we're still okay if branch_target is zero */
2823    *start_guess = work_insn_idx_ + branch_target;
2824  }
2825
2826  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2827  DCHECK(insn_flags_[*start_guess].IsOpcode());
2828
2829  return true;
2830}  // NOLINT(readability/fn_size)
2831
2832const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2833  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2834  const RegType& referrer = GetDeclaringClass();
2835  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2836  const RegType& result =
2837      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2838                                           klass->CannotBeAssignedFromOtherTypes())
2839                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2840  if (result.IsConflict()) {
2841    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2842        << "' in " << referrer;
2843    return result;
2844  }
2845  if (klass == NULL && !result.IsUnresolvedTypes()) {
2846    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2847  }
2848  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2849  // check at runtime if access is allowed and so pass here. If result is
2850  // primitive, skip the access check.
2851  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2852      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2853    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2854                                    << referrer << "' -> '" << result << "'";
2855  }
2856  return result;
2857}
2858
2859const RegType& MethodVerifier::GetCaughtExceptionType() {
2860  const RegType* common_super = NULL;
2861  if (code_item_->tries_size_ != 0) {
2862    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2863    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2864    for (uint32_t i = 0; i < handlers_size; i++) {
2865      CatchHandlerIterator iterator(handlers_ptr);
2866      for (; iterator.HasNext(); iterator.Next()) {
2867        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2868          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2869            common_super = &reg_types_.JavaLangThrowable(false);
2870          } else {
2871            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2872            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2873              if (exception.IsUnresolvedTypes()) {
2874                // We don't know enough about the type. Fail here and let runtime handle it.
2875                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2876                return exception;
2877              } else {
2878                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2879                return reg_types_.Conflict();
2880              }
2881            } else if (common_super == nullptr) {
2882              common_super = &exception;
2883            } else if (common_super->Equals(exception)) {
2884              // odd case, but nothing to do
2885            } else {
2886              common_super = &common_super->Merge(exception, &reg_types_);
2887              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2888            }
2889          }
2890        }
2891      }
2892      handlers_ptr = iterator.EndDataPointer();
2893    }
2894  }
2895  if (common_super == NULL) {
2896    /* no catch blocks, or no catches with classes we can find */
2897    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2898    return reg_types_.Conflict();
2899  }
2900  return *common_super;
2901}
2902
2903mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2904                                                               MethodType method_type) {
2905  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2906  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2907  if (klass_type.IsConflict()) {
2908    std::string append(" in attempt to access method ");
2909    append += dex_file_->GetMethodName(method_id);
2910    AppendToLastFailMessage(append);
2911    return NULL;
2912  }
2913  if (klass_type.IsUnresolvedTypes()) {
2914    return NULL;  // Can't resolve Class so no more to do here
2915  }
2916  mirror::Class* klass = klass_type.GetClass();
2917  const RegType& referrer = GetDeclaringClass();
2918  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2919  if (res_method == NULL) {
2920    const char* name = dex_file_->GetMethodName(method_id);
2921    const Signature signature = dex_file_->GetMethodSignature(method_id);
2922
2923    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2924      res_method = klass->FindDirectMethod(name, signature);
2925    } else if (method_type == METHOD_INTERFACE) {
2926      res_method = klass->FindInterfaceMethod(name, signature);
2927    } else {
2928      res_method = klass->FindVirtualMethod(name, signature);
2929    }
2930    if (res_method != NULL) {
2931      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2932    } else {
2933      // If a virtual or interface method wasn't found with the expected type, look in
2934      // the direct methods. This can happen when the wrong invoke type is used or when
2935      // a class has changed, and will be flagged as an error in later checks.
2936      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2937        res_method = klass->FindDirectMethod(name, signature);
2938      }
2939      if (res_method == NULL) {
2940        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2941                                     << PrettyDescriptor(klass) << "." << name
2942                                     << " " << signature;
2943        return NULL;
2944      }
2945    }
2946  }
2947  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2948  // enforce them here.
2949  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2950    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2951                                      << PrettyMethod(res_method);
2952    return NULL;
2953  }
2954  // Disallow any calls to class initializers.
2955  if (MethodHelper(res_method).IsClassInitializer()) {
2956    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2957                                      << PrettyMethod(res_method);
2958    return NULL;
2959  }
2960  // Check if access is allowed.
2961  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2962    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2963                                     << " from " << referrer << ")";
2964    return res_method;
2965  }
2966  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2967  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2968    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2969                                      << PrettyMethod(res_method);
2970    return NULL;
2971  }
2972  // Check that interface methods match interface classes.
2973  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2974    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2975                                    << " is in an interface class " << PrettyClass(klass);
2976    return NULL;
2977  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2978    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2979                                    << " is in a non-interface class " << PrettyClass(klass);
2980    return NULL;
2981  }
2982  // See if the method type implied by the invoke instruction matches the access flags for the
2983  // target method.
2984  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2985      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2986      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2987      ) {
2988    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2989                                       " type of " << PrettyMethod(res_method);
2990    return NULL;
2991  }
2992  return res_method;
2993}
2994
2995mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2996                                                             MethodType method_type,
2997                                                             bool is_range,
2998                                                             bool is_super) {
2999  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3000  // we're making.
3001  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3002  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3003  if (res_method == NULL) {  // error or class is unresolved
3004    return NULL;
3005  }
3006
3007  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3008  // has a vtable entry for the target method.
3009  if (is_super) {
3010    DCHECK(method_type == METHOD_VIRTUAL);
3011    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3012    if (super.IsUnresolvedTypes()) {
3013      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3014                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3015                                   << " to super " << PrettyMethod(res_method);
3016      return NULL;
3017    }
3018    mirror::Class* super_klass = super.GetClass();
3019    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3020      MethodHelper mh(res_method);
3021      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3022                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3023                                   << " to super " << super
3024                                   << "." << mh.GetName()
3025                                   << mh.GetSignature();
3026      return NULL;
3027    }
3028  }
3029  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3030  // match the call to the signature. Also, we might be calling through an abstract method
3031  // definition (which doesn't have register count values).
3032  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3033  /* caught by static verifier */
3034  DCHECK(is_range || expected_args <= 5);
3035  if (expected_args > code_item_->outs_size_) {
3036    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3037        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3038    return NULL;
3039  }
3040
3041  /*
3042   * Check the "this" argument, which must be an instance of the class that declared the method.
3043   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3044   * rigorous check here (which is okay since we have to do it at runtime).
3045   */
3046  size_t actual_args = 0;
3047  if (!res_method->IsStatic()) {
3048    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3049    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3050      return NULL;
3051    }
3052    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3053      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3054      return NULL;
3055    }
3056    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3057      mirror::Class* klass = res_method->GetDeclaringClass();
3058      const RegType& res_method_class =
3059          reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3060                               klass->CannotBeAssignedFromOtherTypes());
3061      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3062        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3063            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3064            << "' not instance of '" << res_method_class << "'";
3065        return NULL;
3066      }
3067    }
3068    actual_args++;
3069  }
3070  /*
3071   * Process the target method's signature. This signature may or may not
3072   * have been verified, so we can't assume it's properly formed.
3073   */
3074  MethodHelper mh(res_method);
3075  const DexFile::TypeList* params = mh.GetParameterTypeList();
3076  size_t params_size = params == NULL ? 0 : params->Size();
3077  uint32_t arg[5];
3078  if (!is_range) {
3079    inst->GetVarArgs(arg);
3080  }
3081  for (size_t param_index = 0; param_index < params_size; param_index++) {
3082    if (actual_args >= expected_args) {
3083      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3084          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3085          << " (where longs/doubles count twice).";
3086      return NULL;
3087    }
3088    const char* descriptor =
3089        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3090    if (descriptor == NULL) {
3091      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3092          << " missing signature component";
3093      return NULL;
3094    }
3095    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3096    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3097    if (reg_type.IsIntegralTypes()) {
3098      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3099      if (!src_type.IsIntegralTypes()) {
3100        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3101                                          << " but expected " << reg_type;
3102        return res_method;
3103      }
3104    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3105      return res_method;
3106    }
3107    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3108  }
3109  if (actual_args != expected_args) {
3110    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3111        << " expected " << expected_args << " arguments, found " << actual_args;
3112    return NULL;
3113  } else {
3114    return res_method;
3115  }
3116}
3117
3118mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3119                                                         RegisterLine* reg_line, bool is_range) {
3120  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3121         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3122  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3123  if (!actual_arg_type.HasClass()) {
3124    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3125    return nullptr;
3126  }
3127  mirror::ObjectArray<mirror::ArtMethod>* vtable = nullptr;
3128  mirror::Class* klass = actual_arg_type.GetClass();
3129  if (klass->IsInterface()) {
3130    // Derive Object.class from Class.class.getSuperclass().
3131    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3132    CHECK(object_klass->IsObjectClass());
3133    vtable = object_klass->GetVTable();
3134  } else {
3135    vtable = klass->GetVTable();
3136  }
3137  CHECK(vtable != nullptr) << PrettyDescriptor(klass);
3138  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3139  CHECK_LT(static_cast<int32_t>(vtable_index), vtable->GetLength()) << PrettyDescriptor(klass);
3140  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3141  CHECK(!Thread::Current()->IsExceptionPending());
3142  return res_method;
3143}
3144
3145mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3146                                                                     bool is_range) {
3147  DCHECK(Runtime::Current()->IsStarted());
3148  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3149                                                             is_range);
3150  if (res_method == NULL) {
3151    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3152    return NULL;
3153  }
3154  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3155
3156  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3157  // match the call to the signature. Also, we might be calling through an abstract method
3158  // definition (which doesn't have register count values).
3159  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3160  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3161    return NULL;
3162  }
3163  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3164  /* caught by static verifier */
3165  DCHECK(is_range || expected_args <= 5);
3166  if (expected_args > code_item_->outs_size_) {
3167    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3168        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3169    return NULL;
3170  }
3171
3172  /*
3173   * Check the "this" argument, which must be an instance of the class that declared the method.
3174   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3175   * rigorous check here (which is okay since we have to do it at runtime).
3176   */
3177  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3178    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3179    return NULL;
3180  }
3181  if (!actual_arg_type.IsZero()) {
3182    mirror::Class* klass = res_method->GetDeclaringClass();
3183    const RegType& res_method_class =
3184        reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3185                             klass->CannotBeAssignedFromOtherTypes());
3186    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3187      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3188          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3189          << "' not instance of '" << res_method_class << "'";
3190      return NULL;
3191    }
3192  }
3193  /*
3194   * Process the target method's signature. This signature may or may not
3195   * have been verified, so we can't assume it's properly formed.
3196   */
3197  MethodHelper mh(res_method);
3198  const DexFile::TypeList* params = mh.GetParameterTypeList();
3199  size_t params_size = params == NULL ? 0 : params->Size();
3200  uint32_t arg[5];
3201  if (!is_range) {
3202    inst->GetVarArgs(arg);
3203  }
3204  size_t actual_args = 1;
3205  for (size_t param_index = 0; param_index < params_size; param_index++) {
3206    if (actual_args >= expected_args) {
3207      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3208                                        << "'. Expected " << expected_args
3209                                         << " arguments, processing argument " << actual_args
3210                                        << " (where longs/doubles count twice).";
3211      return NULL;
3212    }
3213    const char* descriptor =
3214        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3215    if (descriptor == NULL) {
3216      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3217                                        << " missing signature component";
3218      return NULL;
3219    }
3220    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3221    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3222    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3223      return res_method;
3224    }
3225    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3226  }
3227  if (actual_args != expected_args) {
3228    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3229              << " expected " << expected_args << " arguments, found " << actual_args;
3230    return NULL;
3231  } else {
3232    return res_method;
3233  }
3234}
3235
3236void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3237  uint32_t type_idx;
3238  if (!is_filled) {
3239    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3240    type_idx = inst->VRegC_22c();
3241  } else if (!is_range) {
3242    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3243    type_idx = inst->VRegB_35c();
3244  } else {
3245    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3246    type_idx = inst->VRegB_3rc();
3247  }
3248  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3249  if (res_type.IsConflict()) {  // bad class
3250    DCHECK_NE(failures_.size(), 0U);
3251  } else {
3252    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3253    if (!res_type.IsArrayTypes()) {
3254      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3255    } else if (!is_filled) {
3256      /* make sure "size" register is valid type */
3257      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3258      /* set register type to array class */
3259      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3260      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3261    } else {
3262      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3263      // the list and fail. It's legal, if silly, for arg_count to be zero.
3264      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3265      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3266      uint32_t arg[5];
3267      if (!is_range) {
3268        inst->GetVarArgs(arg);
3269      }
3270      for (size_t ui = 0; ui < arg_count; ui++) {
3271        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3272        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3273          work_line_->SetResultRegisterType(reg_types_.Conflict());
3274          return;
3275        }
3276      }
3277      // filled-array result goes into "result" register
3278      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3279      work_line_->SetResultRegisterType(precise_type);
3280    }
3281  }
3282}
3283
3284void MethodVerifier::VerifyAGet(const Instruction* inst,
3285                                const RegType& insn_type, bool is_primitive) {
3286  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3287  if (!index_type.IsArrayIndexTypes()) {
3288    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3289  } else {
3290    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3291    if (array_type.IsZero()) {
3292      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3293      // instruction type. TODO: have a proper notion of bottom here.
3294      if (!is_primitive || insn_type.IsCategory1Types()) {
3295        // Reference or category 1
3296        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3297      } else {
3298        // Category 2
3299        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3300                                        reg_types_.FromCat2ConstHi(0, false));
3301      }
3302    } else if (!array_type.IsArrayTypes()) {
3303      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3304    } else {
3305      /* verify the class */
3306      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3307      if (!component_type.IsReferenceTypes() && !is_primitive) {
3308        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3309            << " source for aget-object";
3310      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3311        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3312            << " source for category 1 aget";
3313      } else if (is_primitive && !insn_type.Equals(component_type) &&
3314                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3315                 (insn_type.IsLong() && component_type.IsDouble()))) {
3316        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3317            << " incompatible with aget of type " << insn_type;
3318      } else {
3319        // Use knowledge of the field type which is stronger than the type inferred from the
3320        // instruction, which can't differentiate object types and ints from floats, longs from
3321        // doubles.
3322        if (!component_type.IsLowHalf()) {
3323          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3324        } else {
3325          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3326                                          component_type.HighHalf(&reg_types_));
3327        }
3328      }
3329    }
3330  }
3331}
3332
3333void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3334                                        const uint32_t vregA) {
3335  // Primitive assignability rules are weaker than regular assignability rules.
3336  bool instruction_compatible;
3337  bool value_compatible;
3338  const RegType& value_type = work_line_->GetRegisterType(vregA);
3339  if (target_type.IsIntegralTypes()) {
3340    instruction_compatible = target_type.Equals(insn_type);
3341    value_compatible = value_type.IsIntegralTypes();
3342  } else if (target_type.IsFloat()) {
3343    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3344    value_compatible = value_type.IsFloatTypes();
3345  } else if (target_type.IsLong()) {
3346    instruction_compatible = insn_type.IsLong();
3347    value_compatible = value_type.IsLongTypes();
3348  } else if (target_type.IsDouble()) {
3349    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3350    value_compatible = value_type.IsDoubleTypes();
3351  } else {
3352    instruction_compatible = false;  // reference with primitive store
3353    value_compatible = false;  // unused
3354  }
3355  if (!instruction_compatible) {
3356    // This is a global failure rather than a class change failure as the instructions and
3357    // the descriptors for the type should have been consistent within the same file at
3358    // compile time.
3359    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3360        << "' but expected type '" << target_type << "'";
3361    return;
3362  }
3363  if (!value_compatible) {
3364    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3365        << " of type " << value_type << " but expected " << target_type << " for put";
3366    return;
3367  }
3368}
3369
3370void MethodVerifier::VerifyAPut(const Instruction* inst,
3371                                const RegType& insn_type, bool is_primitive) {
3372  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3373  if (!index_type.IsArrayIndexTypes()) {
3374    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3375  } else {
3376    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3377    if (array_type.IsZero()) {
3378      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3379      // instruction type.
3380    } else if (!array_type.IsArrayTypes()) {
3381      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3382    } else {
3383      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3384      const uint32_t vregA = inst->VRegA_23x();
3385      if (is_primitive) {
3386        VerifyPrimitivePut(component_type, insn_type, vregA);
3387      } else {
3388        if (!component_type.IsReferenceTypes()) {
3389          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3390              << " source for aput-object";
3391        } else {
3392          // The instruction agrees with the type of array, confirm the value to be stored does too
3393          // Note: we use the instruction type (rather than the component type) for aput-object as
3394          // incompatible classes will be caught at runtime as an array store exception
3395          work_line_->VerifyRegisterType(vregA, insn_type);
3396        }
3397      }
3398    }
3399  }
3400}
3401
3402mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3403  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3404  // Check access to class
3405  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3406  if (klass_type.IsConflict()) {  // bad class
3407    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3408                                         field_idx, dex_file_->GetFieldName(field_id),
3409                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3410    return NULL;
3411  }
3412  if (klass_type.IsUnresolvedTypes()) {
3413    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3414  }
3415  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3416  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3417                                                          *class_loader_);
3418  if (field == NULL) {
3419    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3420              << dex_file_->GetFieldName(field_id) << ") in "
3421              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3422    DCHECK(Thread::Current()->IsExceptionPending());
3423    Thread::Current()->ClearException();
3424    return NULL;
3425  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3426                                                  field->GetAccessFlags())) {
3427    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3428                                    << " from " << GetDeclaringClass();
3429    return NULL;
3430  } else if (!field->IsStatic()) {
3431    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3432    return NULL;
3433  }
3434  return field;
3435}
3436
3437mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3438  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3439  // Check access to class
3440  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3441  if (klass_type.IsConflict()) {
3442    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3443                                         field_idx, dex_file_->GetFieldName(field_id),
3444                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3445    return NULL;
3446  }
3447  if (klass_type.IsUnresolvedTypes()) {
3448    return NULL;  // Can't resolve Class so no more to do here
3449  }
3450  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3451  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3452                                                          *class_loader_);
3453  if (field == NULL) {
3454    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3455              << dex_file_->GetFieldName(field_id) << ") in "
3456              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3457    DCHECK(Thread::Current()->IsExceptionPending());
3458    Thread::Current()->ClearException();
3459    return NULL;
3460  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3461                                                  field->GetAccessFlags())) {
3462    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3463                                    << " from " << GetDeclaringClass();
3464    return NULL;
3465  } else if (field->IsStatic()) {
3466    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3467                                    << " to not be static";
3468    return NULL;
3469  } else if (obj_type.IsZero()) {
3470    // Cannot infer and check type, however, access will cause null pointer exception
3471    return field;
3472  } else {
3473    mirror::Class* klass = field->GetDeclaringClass();
3474    const RegType& field_klass =
3475        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3476                             klass, klass->CannotBeAssignedFromOtherTypes());
3477    if (obj_type.IsUninitializedTypes() &&
3478        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3479            !field_klass.Equals(GetDeclaringClass()))) {
3480      // Field accesses through uninitialized references are only allowable for constructors where
3481      // the field is declared in this class
3482      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3483                                        << " of a not fully initialized object within the context"
3484                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3485      return NULL;
3486    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3487      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3488      // of C1. For resolution to occur the declared class of the field must be compatible with
3489      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3490      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3491                                  << " from object of type " << obj_type;
3492      return NULL;
3493    } else {
3494      return field;
3495    }
3496  }
3497}
3498
3499void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3500                                 bool is_primitive, bool is_static) {
3501  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3502  mirror::ArtField* field;
3503  if (is_static) {
3504    field = GetStaticField(field_idx);
3505  } else {
3506    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3507    field = GetInstanceField(object_type, field_idx);
3508  }
3509  const RegType* field_type = nullptr;
3510  if (field != NULL) {
3511    FieldHelper fh(field);
3512    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3513    if (field_type_class != nullptr) {
3514      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3515                                         field_type_class->CannotBeAssignedFromOtherTypes());
3516    } else {
3517      Thread* self = Thread::Current();
3518      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3519      self->ClearException();
3520    }
3521  }
3522  if (field_type == nullptr) {
3523    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3524    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3525    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3526  }
3527  DCHECK(field_type != nullptr);
3528  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3529  if (is_primitive) {
3530    if (field_type->Equals(insn_type) ||
3531        (field_type->IsFloat() && insn_type.IsInteger()) ||
3532        (field_type->IsDouble() && insn_type.IsLong())) {
3533      // expected that read is of the correct primitive type or that int reads are reading
3534      // floats or long reads are reading doubles
3535    } else {
3536      // This is a global failure rather than a class change failure as the instructions and
3537      // the descriptors for the type should have been consistent within the same file at
3538      // compile time
3539      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3540                                        << " to be of type '" << insn_type
3541                                        << "' but found type '" << *field_type << "' in get";
3542      return;
3543    }
3544  } else {
3545    if (!insn_type.IsAssignableFrom(*field_type)) {
3546      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3547                                        << " to be compatible with type '" << insn_type
3548                                        << "' but found type '" << *field_type
3549                                        << "' in Get-object";
3550      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3551      return;
3552    }
3553  }
3554  if (!field_type->IsLowHalf()) {
3555    work_line_->SetRegisterType(vregA, *field_type);
3556  } else {
3557    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3558  }
3559}
3560
3561void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3562                                 bool is_primitive, bool is_static) {
3563  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3564  mirror::ArtField* field;
3565  if (is_static) {
3566    field = GetStaticField(field_idx);
3567  } else {
3568    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3569    field = GetInstanceField(object_type, field_idx);
3570  }
3571  const RegType* field_type = nullptr;
3572  if (field != NULL) {
3573    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3574      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3575                                      << " from other class " << GetDeclaringClass();
3576      return;
3577    }
3578    FieldHelper fh(field);
3579    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3580    if (field_type_class != nullptr) {
3581      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3582                                         field_type_class->CannotBeAssignedFromOtherTypes());
3583    } else {
3584      Thread* self = Thread::Current();
3585      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3586      self->ClearException();
3587    }
3588  }
3589  if (field_type == nullptr) {
3590    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3591    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3592    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3593  }
3594  DCHECK(field_type != nullptr);
3595  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3596  if (is_primitive) {
3597    VerifyPrimitivePut(*field_type, insn_type, vregA);
3598  } else {
3599    if (!insn_type.IsAssignableFrom(*field_type)) {
3600      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3601                                        << " to be compatible with type '" << insn_type
3602                                        << "' but found type '" << *field_type
3603                                        << "' in put-object";
3604      return;
3605    }
3606    work_line_->VerifyRegisterType(vregA, *field_type);
3607  }
3608}
3609
3610mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3611                                                      RegisterLine* reg_line) {
3612  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3613         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3614         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3615         inst->Opcode() == Instruction::IPUT_QUICK ||
3616         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3617         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3618  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3619  if (!object_type.HasClass()) {
3620    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3621    return nullptr;
3622  }
3623  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3624  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3625                                                                      field_offset);
3626  if (f == nullptr) {
3627    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3628                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3629  }
3630  return f;
3631}
3632
3633void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3634                                     bool is_primitive) {
3635  DCHECK(Runtime::Current()->IsStarted());
3636  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3637  if (field == NULL) {
3638    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3639    return;
3640  }
3641  FieldHelper fh(field);
3642  mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3643  const RegType* field_type;
3644  if (field_type_class != nullptr) {
3645    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3646                                       field_type_class->CannotBeAssignedFromOtherTypes());
3647  } else {
3648    Thread* self = Thread::Current();
3649    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3650    self->ClearException();
3651    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3652                                            fh.GetTypeDescriptor(), false);
3653  }
3654  DCHECK(field_type != nullptr);
3655  const uint32_t vregA = inst->VRegA_22c();
3656  if (is_primitive) {
3657    if (field_type->Equals(insn_type) ||
3658        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3659        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3660      // expected that read is of the correct primitive type or that int reads are reading
3661      // floats or long reads are reading doubles
3662    } else {
3663      // This is a global failure rather than a class change failure as the instructions and
3664      // the descriptors for the type should have been consistent within the same file at
3665      // compile time
3666      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3667                                        << " to be of type '" << insn_type
3668                                        << "' but found type '" << *field_type << "' in Get";
3669      return;
3670    }
3671  } else {
3672    if (!insn_type.IsAssignableFrom(*field_type)) {
3673      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3674                                        << " to be compatible with type '" << insn_type
3675                                        << "' but found type '" << *field_type
3676                                        << "' in get-object";
3677      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3678      return;
3679    }
3680  }
3681  if (!field_type->IsLowHalf()) {
3682    work_line_->SetRegisterType(vregA, *field_type);
3683  } else {
3684    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3685  }
3686}
3687
3688void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3689                                     bool is_primitive) {
3690  DCHECK(Runtime::Current()->IsStarted());
3691  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3692  if (field == NULL) {
3693    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3694    return;
3695  }
3696  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3697  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3698  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3699  if (field != NULL) {
3700    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3701      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3702                                      << " from other class " << GetDeclaringClass();
3703      return;
3704    }
3705  }
3706  const uint32_t vregA = inst->VRegA_22c();
3707  if (is_primitive) {
3708    // Primitive field assignability rules are weaker than regular assignability rules
3709    bool instruction_compatible;
3710    bool value_compatible;
3711    const RegType& value_type = work_line_->GetRegisterType(vregA);
3712    if (field_type.IsIntegralTypes()) {
3713      instruction_compatible = insn_type.IsIntegralTypes();
3714      value_compatible = value_type.IsIntegralTypes();
3715    } else if (field_type.IsFloat()) {
3716      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3717      value_compatible = value_type.IsFloatTypes();
3718    } else if (field_type.IsLong()) {
3719      instruction_compatible = insn_type.IsLong();
3720      value_compatible = value_type.IsLongTypes();
3721    } else if (field_type.IsDouble()) {
3722      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3723      value_compatible = value_type.IsDoubleTypes();
3724    } else {
3725      instruction_compatible = false;  // reference field with primitive store
3726      value_compatible = false;  // unused
3727    }
3728    if (!instruction_compatible) {
3729      // This is a global failure rather than a class change failure as the instructions and
3730      // the descriptors for the type should have been consistent within the same file at
3731      // compile time
3732      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3733                                        << " to be of type '" << insn_type
3734                                        << "' but found type '" << field_type
3735                                        << "' in put";
3736      return;
3737    }
3738    if (!value_compatible) {
3739      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3740          << " of type " << value_type
3741          << " but expected " << field_type
3742          << " for store to " << PrettyField(field) << " in put";
3743      return;
3744    }
3745  } else {
3746    if (!insn_type.IsAssignableFrom(field_type)) {
3747      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3748                                        << " to be compatible with type '" << insn_type
3749                                        << "' but found type '" << field_type
3750                                        << "' in put-object";
3751      return;
3752    }
3753    work_line_->VerifyRegisterType(vregA, field_type);
3754  }
3755}
3756
3757bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3758  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3759    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3760    return false;
3761  }
3762  return true;
3763}
3764
3765bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3766  bool changed = true;
3767  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3768  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3769    /*
3770     * We haven't processed this instruction before, and we haven't touched the registers here, so
3771     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3772     * only way a register can transition out of "unknown", so this is not just an optimization.)
3773     */
3774    if (!insn_flags_[next_insn].IsReturn()) {
3775      target_line->CopyFromLine(merge_line);
3776    } else {
3777      // Verify that the monitor stack is empty on return.
3778      if (!merge_line->VerifyMonitorStackEmpty()) {
3779        return false;
3780      }
3781      // For returns we only care about the operand to the return, all other registers are dead.
3782      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3783      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3784      Instruction::Code opcode = ret_inst->Opcode();
3785      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3786        target_line->MarkAllRegistersAsConflicts();
3787      } else {
3788        target_line->CopyFromLine(merge_line);
3789        if (opcode == Instruction::RETURN_WIDE) {
3790          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3791        } else {
3792          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3793        }
3794      }
3795    }
3796  } else {
3797    UniquePtr<RegisterLine> copy(gDebugVerify ?
3798                                 RegisterLine::Create(target_line->NumRegs(), this) :
3799                                 NULL);
3800    if (gDebugVerify) {
3801      copy->CopyFromLine(target_line);
3802    }
3803    changed = target_line->MergeRegisters(merge_line);
3804    if (have_pending_hard_failure_) {
3805      return false;
3806    }
3807    if (gDebugVerify && changed) {
3808      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3809                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3810                      << *copy.get() << "  MERGE\n"
3811                      << *merge_line << "  ==\n"
3812                      << *target_line << "\n";
3813    }
3814  }
3815  if (changed) {
3816    insn_flags_[next_insn].SetChanged();
3817  }
3818  return true;
3819}
3820
3821InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3822  return &insn_flags_[work_insn_idx_];
3823}
3824
3825const RegType& MethodVerifier::GetMethodReturnType() {
3826  if (return_type_ == nullptr) {
3827    if (mirror_method_ != NULL) {
3828      MethodHelper mh(mirror_method_);
3829      mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
3830      if (return_type_class != nullptr) {
3831        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3832                                             return_type_class->CannotBeAssignedFromOtherTypes());
3833      } else {
3834        Thread* self = Thread::Current();
3835        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3836        self->ClearException();
3837      }
3838    }
3839    if (return_type_ == nullptr) {
3840      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3841      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3842      uint16_t return_type_idx = proto_id.return_type_idx_;
3843      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3844      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3845    }
3846  }
3847  return *return_type_;
3848}
3849
3850const RegType& MethodVerifier::GetDeclaringClass() {
3851  if (declaring_class_ == NULL) {
3852    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3853    const char* descriptor
3854        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3855    if (mirror_method_ != NULL) {
3856      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3857      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3858                                               klass->CannotBeAssignedFromOtherTypes());
3859    } else {
3860      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3861    }
3862  }
3863  return *declaring_class_;
3864}
3865
3866std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3867  RegisterLine* line = reg_table_.GetLine(dex_pc);
3868  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3869  std::vector<int32_t> result;
3870  for (size_t i = 0; i < line->NumRegs(); ++i) {
3871    const RegType& type = line->GetRegisterType(i);
3872    if (type.IsConstant()) {
3873      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3874      result.push_back(type.ConstantValue());
3875    } else if (type.IsConstantLo()) {
3876      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3877      result.push_back(type.ConstantValueLo());
3878    } else if (type.IsConstantHi()) {
3879      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3880      result.push_back(type.ConstantValueHi());
3881    } else if (type.IsIntegralTypes()) {
3882      result.push_back(kIntVReg);
3883      result.push_back(0);
3884    } else if (type.IsFloat()) {
3885      result.push_back(kFloatVReg);
3886      result.push_back(0);
3887    } else if (type.IsLong()) {
3888      result.push_back(kLongLoVReg);
3889      result.push_back(0);
3890      result.push_back(kLongHiVReg);
3891      result.push_back(0);
3892      ++i;
3893    } else if (type.IsDouble()) {
3894      result.push_back(kDoubleLoVReg);
3895      result.push_back(0);
3896      result.push_back(kDoubleHiVReg);
3897      result.push_back(0);
3898      ++i;
3899    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
3900      result.push_back(kUndefined);
3901      result.push_back(0);
3902    } else {
3903      CHECK(type.IsNonZeroReferenceTypes());
3904      result.push_back(kReferenceVReg);
3905      result.push_back(0);
3906    }
3907  }
3908  return result;
3909}
3910
3911const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
3912  if (precise) {
3913    // Precise constant type.
3914    return reg_types_.FromCat1Const(value, true);
3915  } else {
3916    // Imprecise constant type.
3917    if (value < -32768) {
3918      return reg_types_.IntConstant();
3919    } else if (value < -128) {
3920      return reg_types_.ShortConstant();
3921    } else if (value < 0) {
3922      return reg_types_.ByteConstant();
3923    } else if (value == 0) {
3924      return reg_types_.Zero();
3925    } else if (value == 1) {
3926      return reg_types_.One();
3927    } else if (value < 128) {
3928      return reg_types_.PosByteConstant();
3929    } else if (value < 32768) {
3930      return reg_types_.PosShortConstant();
3931    } else if (value < 65536) {
3932      return reg_types_.CharConstant();
3933    } else {
3934      return reg_types_.IntConstant();
3935    }
3936  }
3937}
3938
3939void MethodVerifier::Init() {
3940  art::verifier::RegTypeCache::Init();
3941}
3942
3943void MethodVerifier::Shutdown() {
3944  verifier::RegTypeCache::ShutDown();
3945}
3946
3947void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
3948  reg_types_.VisitRoots(callback, arg);
3949}
3950
3951}  // namespace verifier
3952}  // namespace art
3953