method_verifier.cc revision fc0e94bed3f88ed7e50854fd8dfaf5dcb345250f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "verifier/dex_gc_map.h"
43
44namespace art {
45namespace verifier {
46
47static const bool gDebugVerify = false;
48// TODO: Add a constant to method_verifier to turn on verbose logging?
49
50void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
51                                 uint32_t insns_size, uint16_t registers_size,
52                                 MethodVerifier* verifier) {
53  DCHECK_GT(insns_size, 0U);
54
55  for (uint32_t i = 0; i < insns_size; i++) {
56    bool interesting = false;
57    switch (mode) {
58      case kTrackRegsAll:
59        interesting = flags[i].IsOpcode();
60        break;
61      case kTrackCompilerInterestPoints:
62        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
63        break;
64      case kTrackRegsBranches:
65        interesting = flags[i].IsBranchTarget();
66        break;
67      default:
68        break;
69    }
70    if (interesting) {
71      pc_to_register_line_.Put(i, new RegisterLine(registers_size, verifier));
72    }
73  }
74}
75
76MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
77                                                        bool allow_soft_failures,
78                                                        std::string* error) {
79  if (klass->IsVerified()) {
80    return kNoFailure;
81  }
82  mirror::Class* super = klass->GetSuperClass();
83  if (super == NULL && ClassHelper(klass).GetDescriptorAsStringPiece() != "Ljava/lang/Object;") {
84    *error = "Verifier rejected class ";
85    *error += PrettyDescriptor(klass);
86    *error += " that has no super class";
87    return kHardFailure;
88  }
89  if (super != NULL && super->IsFinal()) {
90    *error = "Verifier rejected class ";
91    *error += PrettyDescriptor(klass);
92    *error += " that attempts to sub-class final class ";
93    *error += PrettyDescriptor(super);
94    return kHardFailure;
95  }
96  ClassHelper kh(klass);
97  const DexFile& dex_file = kh.GetDexFile();
98  const DexFile::ClassDef* class_def = kh.GetClassDef();
99  if (class_def == NULL) {
100    *error = "Verifier rejected class ";
101    *error += PrettyDescriptor(klass);
102    *error += " that isn't present in dex file ";
103    *error += dex_file.GetLocation();
104    return kHardFailure;
105  }
106  return VerifyClass(&dex_file,
107                     kh.GetDexCache(),
108                     klass->GetClassLoader(),
109                     class_def,
110                     allow_soft_failures,
111                     error);
112}
113
114MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
115                                                        mirror::DexCache* dex_cache,
116                                                        mirror::ClassLoader* class_loader,
117                                                        const DexFile::ClassDef* class_def,
118                                                        bool allow_soft_failures,
119                                                        std::string* error) {
120  DCHECK(class_def != nullptr);
121  const byte* class_data = dex_file->GetClassData(*class_def);
122  if (class_data == NULL) {
123    // empty class, probably a marker interface
124    return kNoFailure;
125  }
126  ClassDataItemIterator it(*dex_file, class_data);
127  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
128    it.Next();
129  }
130  size_t error_count = 0;
131  bool hard_fail = false;
132  ClassLinker* linker = Runtime::Current()->GetClassLinker();
133  int64_t previous_direct_method_idx = -1;
134  while (it.HasNextDirectMethod()) {
135    uint32_t method_idx = it.GetMemberIndex();
136    if (method_idx == previous_direct_method_idx) {
137      // smali can create dex files with two encoded_methods sharing the same method_idx
138      // http://code.google.com/p/smali/issues/detail?id=119
139      it.Next();
140      continue;
141    }
142    previous_direct_method_idx = method_idx;
143    InvokeType type = it.GetMethodInvokeType(*class_def);
144    mirror::ArtMethod* method =
145        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
146    if (method == NULL) {
147      DCHECK(Thread::Current()->IsExceptionPending());
148      // We couldn't resolve the method, but continue regardless.
149      Thread::Current()->ClearException();
150    }
151    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
152                                                      dex_file,
153                                                      dex_cache,
154                                                      class_loader,
155                                                      class_def,
156                                                      it.GetMethodCodeItem(),
157                                                      method,
158                                                      it.GetMemberAccessFlags(),
159                                                      allow_soft_failures);
160    if (result != kNoFailure) {
161      if (result == kHardFailure) {
162        hard_fail = true;
163        if (error_count > 0) {
164          *error += "\n";
165        }
166        *error = "Verifier rejected class ";
167        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
168        *error += " due to bad method ";
169        *error += PrettyMethod(method_idx, *dex_file);
170      }
171      ++error_count;
172    }
173    it.Next();
174  }
175  int64_t previous_virtual_method_idx = -1;
176  while (it.HasNextVirtualMethod()) {
177    uint32_t method_idx = it.GetMemberIndex();
178    if (method_idx == previous_virtual_method_idx) {
179      // smali can create dex files with two encoded_methods sharing the same method_idx
180      // http://code.google.com/p/smali/issues/detail?id=119
181      it.Next();
182      continue;
183    }
184    previous_virtual_method_idx = method_idx;
185    InvokeType type = it.GetMethodInvokeType(*class_def);
186    mirror::ArtMethod* method =
187        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
188    if (method == NULL) {
189      DCHECK(Thread::Current()->IsExceptionPending());
190      // We couldn't resolve the method, but continue regardless.
191      Thread::Current()->ClearException();
192    }
193    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
194                                                      dex_file,
195                                                      dex_cache,
196                                                      class_loader,
197                                                      class_def,
198                                                      it.GetMethodCodeItem(),
199                                                      method,
200                                                      it.GetMemberAccessFlags(),
201                                                      allow_soft_failures);
202    if (result != kNoFailure) {
203      if (result == kHardFailure) {
204        hard_fail = true;
205        if (error_count > 0) {
206          *error += "\n";
207        }
208        *error = "Verifier rejected class ";
209        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
210        *error += " due to bad method ";
211        *error += PrettyMethod(method_idx, *dex_file);
212      }
213      ++error_count;
214    }
215    it.Next();
216  }
217  if (error_count == 0) {
218    return kNoFailure;
219  } else {
220    return hard_fail ? kHardFailure : kSoftFailure;
221  }
222}
223
224MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
225                                                         const DexFile* dex_file,
226                                                         mirror::DexCache* dex_cache,
227                                                         mirror::ClassLoader* class_loader,
228                                                         const DexFile::ClassDef* class_def,
229                                                         const DexFile::CodeItem* code_item,
230                                                         mirror::ArtMethod* method,
231                                                         uint32_t method_access_flags,
232                                                         bool allow_soft_failures) {
233  MethodVerifier::FailureKind result = kNoFailure;
234  uint64_t start_ns = NanoTime();
235
236  MethodVerifier verifier_(dex_file, dex_cache, class_loader, class_def, code_item, method_idx,
237                           method, method_access_flags, true, allow_soft_failures);
238  if (verifier_.Verify()) {
239    // Verification completed, however failures may be pending that didn't cause the verification
240    // to hard fail.
241    CHECK(!verifier_.have_pending_hard_failure_);
242    if (verifier_.failures_.size() != 0) {
243      if (VLOG_IS_ON(verifier)) {
244          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
245                                << PrettyMethod(method_idx, *dex_file) << "\n");
246      }
247      result = kSoftFailure;
248    }
249  } else {
250    // Bad method data.
251    CHECK_NE(verifier_.failures_.size(), 0U);
252    CHECK(verifier_.have_pending_hard_failure_);
253    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
254                                    << PrettyMethod(method_idx, *dex_file) << "\n");
255    if (gDebugVerify) {
256      std::cout << "\n" << verifier_.info_messages_.str();
257      verifier_.Dump(std::cout);
258    }
259    result = kHardFailure;
260  }
261  uint64_t duration_ns = NanoTime() - start_ns;
262  if (duration_ns > MsToNs(100)) {
263    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
264                 << " took " << PrettyDuration(duration_ns);
265  }
266  return result;
267}
268
269void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
270                                         const DexFile* dex_file, mirror::DexCache* dex_cache,
271                                         mirror::ClassLoader* class_loader,
272                                         const DexFile::ClassDef* class_def,
273                                         const DexFile::CodeItem* code_item,
274                                         mirror::ArtMethod* method,
275                                         uint32_t method_access_flags) {
276  MethodVerifier verifier(dex_file, dex_cache, class_loader, class_def, code_item,
277                          dex_method_idx, method, method_access_flags, true, true);
278  verifier.Verify();
279  verifier.DumpFailures(os);
280  os << verifier.info_messages_.str();
281  verifier.Dump(os);
282}
283
284MethodVerifier::MethodVerifier(const DexFile* dex_file, mirror::DexCache* dex_cache,
285                               mirror::ClassLoader* class_loader,
286                               const DexFile::ClassDef* class_def,
287                               const DexFile::CodeItem* code_item,
288                               uint32_t dex_method_idx, mirror::ArtMethod* method,
289                               uint32_t method_access_flags, bool can_load_classes,
290                               bool allow_soft_failures)
291    : reg_types_(can_load_classes),
292      work_insn_idx_(-1),
293      dex_method_idx_(dex_method_idx),
294      mirror_method_(method),
295      method_access_flags_(method_access_flags),
296      return_type_(nullptr),
297      dex_file_(dex_file),
298      dex_cache_(dex_cache),
299      class_loader_(class_loader),
300      class_def_(class_def),
301      code_item_(code_item),
302      declaring_class_(NULL),
303      interesting_dex_pc_(-1),
304      monitor_enter_dex_pcs_(nullptr),
305      have_pending_hard_failure_(false),
306      have_pending_runtime_throw_failure_(false),
307      new_instance_count_(0),
308      monitor_enter_count_(0),
309      can_load_classes_(can_load_classes),
310      allow_soft_failures_(allow_soft_failures),
311      has_check_casts_(false),
312      has_virtual_or_interface_invokes_(false) {
313  DCHECK(class_def != nullptr);
314}
315
316void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
317                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
318  MethodHelper mh(m);
319  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
320                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
321                          m, m->GetAccessFlags(), false, true);
322  verifier.interesting_dex_pc_ = dex_pc;
323  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
324  verifier.FindLocksAtDexPc();
325}
326
327void MethodVerifier::FindLocksAtDexPc() {
328  CHECK(monitor_enter_dex_pcs_ != NULL);
329  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
330
331  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
332  // verification. In practice, the phase we want relies on data structures set up by all the
333  // earlier passes, so we just run the full method verification and bail out early when we've
334  // got what we wanted.
335  Verify();
336}
337
338mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
339                                                        uint32_t dex_pc) {
340  MethodHelper mh(m);
341  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
342                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
343                          m, m->GetAccessFlags(), false, true);
344  return verifier.FindAccessedFieldAtDexPc(dex_pc);
345}
346
347mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
348  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
349
350  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
351  // verification. In practice, the phase we want relies on data structures set up by all the
352  // earlier passes, so we just run the full method verification and bail out early when we've
353  // got what we wanted.
354  bool success = Verify();
355  if (!success) {
356    return NULL;
357  }
358  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
359  if (register_line == NULL) {
360    return NULL;
361  }
362  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
363  return GetQuickFieldAccess(inst, register_line);
364}
365
366mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
367                                                                 uint32_t dex_pc) {
368  MethodHelper mh(m);
369  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
370                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
371                          m, m->GetAccessFlags(), false, true);
372  return verifier.FindInvokedMethodAtDexPc(dex_pc);
373}
374
375mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
376  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
377
378  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
379  // verification. In practice, the phase we want relies on data structures set up by all the
380  // earlier passes, so we just run the full method verification and bail out early when we've
381  // got what we wanted.
382  bool success = Verify();
383  if (!success) {
384    return NULL;
385  }
386  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
387  if (register_line == NULL) {
388    return NULL;
389  }
390  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
391  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
392  return GetQuickInvokedMethod(inst, register_line, is_range);
393}
394
395bool MethodVerifier::Verify() {
396  // If there aren't any instructions, make sure that's expected, then exit successfully.
397  if (code_item_ == NULL) {
398    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
399      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
400      return false;
401    } else {
402      return true;
403    }
404  }
405  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
406  if (code_item_->ins_size_ > code_item_->registers_size_) {
407    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
408                                      << " regs=" << code_item_->registers_size_;
409    return false;
410  }
411  // Allocate and initialize an array to hold instruction data.
412  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
413  // Run through the instructions and see if the width checks out.
414  bool result = ComputeWidthsAndCountOps();
415  // Flag instructions guarded by a "try" block and check exception handlers.
416  result = result && ScanTryCatchBlocks();
417  // Perform static instruction verification.
418  result = result && VerifyInstructions();
419  // Perform code-flow analysis and return.
420  return result && VerifyCodeFlow();
421}
422
423std::ostream& MethodVerifier::Fail(VerifyError error) {
424  switch (error) {
425    case VERIFY_ERROR_NO_CLASS:
426    case VERIFY_ERROR_NO_FIELD:
427    case VERIFY_ERROR_NO_METHOD:
428    case VERIFY_ERROR_ACCESS_CLASS:
429    case VERIFY_ERROR_ACCESS_FIELD:
430    case VERIFY_ERROR_ACCESS_METHOD:
431    case VERIFY_ERROR_INSTANTIATION:
432    case VERIFY_ERROR_CLASS_CHANGE:
433      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
434        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
435        // class change and instantiation errors into soft verification errors so that we re-verify
436        // at runtime. We may fail to find or to agree on access because of not yet available class
437        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
438        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
439        // paths" that dynamically perform the verification and cause the behavior to be that akin
440        // to an interpreter.
441        error = VERIFY_ERROR_BAD_CLASS_SOFT;
442      } else {
443        // If we fail again at runtime, mark that this instruction would throw and force this
444        // method to be executed using the interpreter with checks.
445        have_pending_runtime_throw_failure_ = true;
446      }
447      break;
448      // Indication that verification should be retried at runtime.
449    case VERIFY_ERROR_BAD_CLASS_SOFT:
450      if (!allow_soft_failures_) {
451        have_pending_hard_failure_ = true;
452      }
453      break;
454      // Hard verification failures at compile time will still fail at runtime, so the class is
455      // marked as rejected to prevent it from being compiled.
456    case VERIFY_ERROR_BAD_CLASS_HARD: {
457      if (Runtime::Current()->IsCompiler()) {
458        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
459        AddRejectedClass(ref);
460      }
461      have_pending_hard_failure_ = true;
462      break;
463    }
464  }
465  failures_.push_back(error);
466  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
467                                    work_insn_idx_));
468  std::ostringstream* failure_message = new std::ostringstream(location);
469  failure_messages_.push_back(failure_message);
470  return *failure_message;
471}
472
473void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
474  size_t failure_num = failure_messages_.size();
475  DCHECK_NE(failure_num, 0U);
476  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
477  prepend += last_fail_message->str();
478  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
479  delete last_fail_message;
480}
481
482void MethodVerifier::AppendToLastFailMessage(std::string append) {
483  size_t failure_num = failure_messages_.size();
484  DCHECK_NE(failure_num, 0U);
485  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
486  (*last_fail_message) << append;
487}
488
489bool MethodVerifier::ComputeWidthsAndCountOps() {
490  const uint16_t* insns = code_item_->insns_;
491  size_t insns_size = code_item_->insns_size_in_code_units_;
492  const Instruction* inst = Instruction::At(insns);
493  size_t new_instance_count = 0;
494  size_t monitor_enter_count = 0;
495  size_t dex_pc = 0;
496
497  while (dex_pc < insns_size) {
498    Instruction::Code opcode = inst->Opcode();
499    if (opcode == Instruction::NEW_INSTANCE) {
500      new_instance_count++;
501    } else if (opcode == Instruction::MONITOR_ENTER) {
502      monitor_enter_count++;
503    } else if (opcode == Instruction::CHECK_CAST) {
504      has_check_casts_ = true;
505    } else if ((inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
506              (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
507              (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
508              (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE)) {
509      has_virtual_or_interface_invokes_ = true;
510    }
511    size_t inst_size = inst->SizeInCodeUnits();
512    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
513    dex_pc += inst_size;
514    inst = inst->Next();
515  }
516
517  if (dex_pc != insns_size) {
518    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
519                                      << dex_pc << " vs. " << insns_size << ")";
520    return false;
521  }
522
523  new_instance_count_ = new_instance_count;
524  monitor_enter_count_ = monitor_enter_count;
525  return true;
526}
527
528bool MethodVerifier::ScanTryCatchBlocks() {
529  uint32_t tries_size = code_item_->tries_size_;
530  if (tries_size == 0) {
531    return true;
532  }
533  uint32_t insns_size = code_item_->insns_size_in_code_units_;
534  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
535
536  for (uint32_t idx = 0; idx < tries_size; idx++) {
537    const DexFile::TryItem* try_item = &tries[idx];
538    uint32_t start = try_item->start_addr_;
539    uint32_t end = start + try_item->insn_count_;
540    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
541      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
542                                        << " endAddr=" << end << " (size=" << insns_size << ")";
543      return false;
544    }
545    if (!insn_flags_[start].IsOpcode()) {
546      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
547          << "'try' block starts inside an instruction (" << start << ")";
548      return false;
549    }
550    for (uint32_t dex_pc = start; dex_pc < end;
551        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
552      insn_flags_[dex_pc].SetInTry();
553    }
554  }
555  // Iterate over each of the handlers to verify target addresses.
556  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
557  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
558  ClassLinker* linker = Runtime::Current()->GetClassLinker();
559  for (uint32_t idx = 0; idx < handlers_size; idx++) {
560    CatchHandlerIterator iterator(handlers_ptr);
561    for (; iterator.HasNext(); iterator.Next()) {
562      uint32_t dex_pc= iterator.GetHandlerAddress();
563      if (!insn_flags_[dex_pc].IsOpcode()) {
564        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
565            << "exception handler starts at bad address (" << dex_pc << ")";
566        return false;
567      }
568      insn_flags_[dex_pc].SetBranchTarget();
569      // Ensure exception types are resolved so that they don't need resolution to be delivered,
570      // unresolved exception types will be ignored by exception delivery
571      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
572        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
573                                                            iterator.GetHandlerTypeIndex(),
574                                                            dex_cache_, class_loader_);
575        if (exception_type == NULL) {
576          DCHECK(Thread::Current()->IsExceptionPending());
577          Thread::Current()->ClearException();
578        }
579      }
580    }
581    handlers_ptr = iterator.EndDataPointer();
582  }
583  return true;
584}
585
586bool MethodVerifier::VerifyInstructions() {
587  const Instruction* inst = Instruction::At(code_item_->insns_);
588
589  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
590  insn_flags_[0].SetBranchTarget();
591  insn_flags_[0].SetCompileTimeInfoPoint();
592
593  uint32_t insns_size = code_item_->insns_size_in_code_units_;
594  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
595    if (!VerifyInstruction(inst, dex_pc)) {
596      DCHECK_NE(failures_.size(), 0U);
597      return false;
598    }
599    /* Flag instructions that are garbage collection points */
600    // All invoke points are marked as "Throw" points already.
601    // We are relying on this to also count all the invokes as interesting.
602    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
603      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
604    } else if (inst->IsReturn()) {
605      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
606    }
607    dex_pc += inst->SizeInCodeUnits();
608    inst = inst->Next();
609  }
610  return true;
611}
612
613bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
614  DecodedInstruction dec_insn(inst);
615  bool result = true;
616  switch (inst->GetVerifyTypeArgumentA()) {
617    case Instruction::kVerifyRegA:
618      result = result && CheckRegisterIndex(dec_insn.vA);
619      break;
620    case Instruction::kVerifyRegAWide:
621      result = result && CheckWideRegisterIndex(dec_insn.vA);
622      break;
623  }
624  switch (inst->GetVerifyTypeArgumentB()) {
625    case Instruction::kVerifyRegB:
626      result = result && CheckRegisterIndex(dec_insn.vB);
627      break;
628    case Instruction::kVerifyRegBField:
629      result = result && CheckFieldIndex(dec_insn.vB);
630      break;
631    case Instruction::kVerifyRegBMethod:
632      result = result && CheckMethodIndex(dec_insn.vB);
633      break;
634    case Instruction::kVerifyRegBNewInstance:
635      result = result && CheckNewInstance(dec_insn.vB);
636      break;
637    case Instruction::kVerifyRegBString:
638      result = result && CheckStringIndex(dec_insn.vB);
639      break;
640    case Instruction::kVerifyRegBType:
641      result = result && CheckTypeIndex(dec_insn.vB);
642      break;
643    case Instruction::kVerifyRegBWide:
644      result = result && CheckWideRegisterIndex(dec_insn.vB);
645      break;
646  }
647  switch (inst->GetVerifyTypeArgumentC()) {
648    case Instruction::kVerifyRegC:
649      result = result && CheckRegisterIndex(dec_insn.vC);
650      break;
651    case Instruction::kVerifyRegCField:
652      result = result && CheckFieldIndex(dec_insn.vC);
653      break;
654    case Instruction::kVerifyRegCNewArray:
655      result = result && CheckNewArray(dec_insn.vC);
656      break;
657    case Instruction::kVerifyRegCType:
658      result = result && CheckTypeIndex(dec_insn.vC);
659      break;
660    case Instruction::kVerifyRegCWide:
661      result = result && CheckWideRegisterIndex(dec_insn.vC);
662      break;
663  }
664  switch (inst->GetVerifyExtraFlags()) {
665    case Instruction::kVerifyArrayData:
666      result = result && CheckArrayData(code_offset);
667      break;
668    case Instruction::kVerifyBranchTarget:
669      result = result && CheckBranchTarget(code_offset);
670      break;
671    case Instruction::kVerifySwitchTargets:
672      result = result && CheckSwitchTargets(code_offset);
673      break;
674    case Instruction::kVerifyVarArg:
675      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
676      break;
677    case Instruction::kVerifyVarArgRange:
678      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
679      break;
680    case Instruction::kVerifyError:
681      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
682      result = false;
683      break;
684  }
685  return result;
686}
687
688bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
689  if (idx >= code_item_->registers_size_) {
690    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
691                                      << code_item_->registers_size_ << ")";
692    return false;
693  }
694  return true;
695}
696
697bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
698  if (idx + 1 >= code_item_->registers_size_) {
699    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
700                                      << "+1 >= " << code_item_->registers_size_ << ")";
701    return false;
702  }
703  return true;
704}
705
706bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
707  if (idx >= dex_file_->GetHeader().field_ids_size_) {
708    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
709                                      << dex_file_->GetHeader().field_ids_size_ << ")";
710    return false;
711  }
712  return true;
713}
714
715bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
716  if (idx >= dex_file_->GetHeader().method_ids_size_) {
717    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
718                                      << dex_file_->GetHeader().method_ids_size_ << ")";
719    return false;
720  }
721  return true;
722}
723
724bool MethodVerifier::CheckNewInstance(uint32_t idx) {
725  if (idx >= dex_file_->GetHeader().type_ids_size_) {
726    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
727                                      << dex_file_->GetHeader().type_ids_size_ << ")";
728    return false;
729  }
730  // We don't need the actual class, just a pointer to the class name.
731  const char* descriptor = dex_file_->StringByTypeIdx(idx);
732  if (descriptor[0] != 'L') {
733    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
734    return false;
735  }
736  return true;
737}
738
739bool MethodVerifier::CheckStringIndex(uint32_t idx) {
740  if (idx >= dex_file_->GetHeader().string_ids_size_) {
741    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
742                                      << dex_file_->GetHeader().string_ids_size_ << ")";
743    return false;
744  }
745  return true;
746}
747
748bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
749  if (idx >= dex_file_->GetHeader().type_ids_size_) {
750    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
751                                      << dex_file_->GetHeader().type_ids_size_ << ")";
752    return false;
753  }
754  return true;
755}
756
757bool MethodVerifier::CheckNewArray(uint32_t idx) {
758  if (idx >= dex_file_->GetHeader().type_ids_size_) {
759    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
760                                      << dex_file_->GetHeader().type_ids_size_ << ")";
761    return false;
762  }
763  int bracket_count = 0;
764  const char* descriptor = dex_file_->StringByTypeIdx(idx);
765  const char* cp = descriptor;
766  while (*cp++ == '[') {
767    bracket_count++;
768  }
769  if (bracket_count == 0) {
770    /* The given class must be an array type. */
771    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
772        << "can't new-array class '" << descriptor << "' (not an array)";
773    return false;
774  } else if (bracket_count > 255) {
775    /* It is illegal to create an array of more than 255 dimensions. */
776    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
777        << "can't new-array class '" << descriptor << "' (exceeds limit)";
778    return false;
779  }
780  return true;
781}
782
783bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
784  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
785  const uint16_t* insns = code_item_->insns_ + cur_offset;
786  const uint16_t* array_data;
787  int32_t array_data_offset;
788
789  DCHECK_LT(cur_offset, insn_count);
790  /* make sure the start of the array data table is in range */
791  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
792  if ((int32_t) cur_offset + array_data_offset < 0 ||
793      cur_offset + array_data_offset + 2 >= insn_count) {
794    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
795                                      << ", data offset " << array_data_offset
796                                      << ", count " << insn_count;
797    return false;
798  }
799  /* offset to array data table is a relative branch-style offset */
800  array_data = insns + array_data_offset;
801  /* make sure the table is 32-bit aligned */
802  if ((((uint32_t) array_data) & 0x03) != 0) {
803    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
804                                      << ", data offset " << array_data_offset;
805    return false;
806  }
807  uint32_t value_width = array_data[1];
808  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
809  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
810  /* make sure the end of the switch is in range */
811  if (cur_offset + array_data_offset + table_size > insn_count) {
812    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
813                                      << ", data offset " << array_data_offset << ", end "
814                                      << cur_offset + array_data_offset + table_size
815                                      << ", count " << insn_count;
816    return false;
817  }
818  return true;
819}
820
821bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
822  int32_t offset;
823  bool isConditional, selfOkay;
824  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
825    return false;
826  }
827  if (!selfOkay && offset == 0) {
828    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
829                                      << reinterpret_cast<void*>(cur_offset);
830    return false;
831  }
832  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
833  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
834  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
835    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
836                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
837    return false;
838  }
839  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
840  int32_t abs_offset = cur_offset + offset;
841  if (abs_offset < 0 ||
842      (uint32_t) abs_offset >= insn_count ||
843      !insn_flags_[abs_offset].IsOpcode()) {
844    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
845                                      << reinterpret_cast<void*>(abs_offset) << ") at "
846                                      << reinterpret_cast<void*>(cur_offset);
847    return false;
848  }
849  insn_flags_[abs_offset].SetBranchTarget();
850  return true;
851}
852
853bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
854                                  bool* selfOkay) {
855  const uint16_t* insns = code_item_->insns_ + cur_offset;
856  *pConditional = false;
857  *selfOkay = false;
858  switch (*insns & 0xff) {
859    case Instruction::GOTO:
860      *pOffset = ((int16_t) *insns) >> 8;
861      break;
862    case Instruction::GOTO_32:
863      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
864      *selfOkay = true;
865      break;
866    case Instruction::GOTO_16:
867      *pOffset = (int16_t) insns[1];
868      break;
869    case Instruction::IF_EQ:
870    case Instruction::IF_NE:
871    case Instruction::IF_LT:
872    case Instruction::IF_GE:
873    case Instruction::IF_GT:
874    case Instruction::IF_LE:
875    case Instruction::IF_EQZ:
876    case Instruction::IF_NEZ:
877    case Instruction::IF_LTZ:
878    case Instruction::IF_GEZ:
879    case Instruction::IF_GTZ:
880    case Instruction::IF_LEZ:
881      *pOffset = (int16_t) insns[1];
882      *pConditional = true;
883      break;
884    default:
885      return false;
886      break;
887  }
888  return true;
889}
890
891bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
892  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
893  DCHECK_LT(cur_offset, insn_count);
894  const uint16_t* insns = code_item_->insns_ + cur_offset;
895  /* make sure the start of the switch is in range */
896  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
897  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
898    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
899                                      << ", switch offset " << switch_offset
900                                      << ", count " << insn_count;
901    return false;
902  }
903  /* offset to switch table is a relative branch-style offset */
904  const uint16_t* switch_insns = insns + switch_offset;
905  /* make sure the table is 32-bit aligned */
906  if ((((uint32_t) switch_insns) & 0x03) != 0) {
907    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
908                                      << ", switch offset " << switch_offset;
909    return false;
910  }
911  uint32_t switch_count = switch_insns[1];
912  int32_t keys_offset, targets_offset;
913  uint16_t expected_signature;
914  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
915    /* 0=sig, 1=count, 2/3=firstKey */
916    targets_offset = 4;
917    keys_offset = -1;
918    expected_signature = Instruction::kPackedSwitchSignature;
919  } else {
920    /* 0=sig, 1=count, 2..count*2 = keys */
921    keys_offset = 2;
922    targets_offset = 2 + 2 * switch_count;
923    expected_signature = Instruction::kSparseSwitchSignature;
924  }
925  uint32_t table_size = targets_offset + switch_count * 2;
926  if (switch_insns[0] != expected_signature) {
927    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
928        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
929                        switch_insns[0], expected_signature);
930    return false;
931  }
932  /* make sure the end of the switch is in range */
933  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
934    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
935                                      << ", switch offset " << switch_offset
936                                      << ", end " << (cur_offset + switch_offset + table_size)
937                                      << ", count " << insn_count;
938    return false;
939  }
940  /* for a sparse switch, verify the keys are in ascending order */
941  if (keys_offset > 0 && switch_count > 1) {
942    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
943    for (uint32_t targ = 1; targ < switch_count; targ++) {
944      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
945                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
946      if (key <= last_key) {
947        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
948                                          << ", this=" << key;
949        return false;
950      }
951      last_key = key;
952    }
953  }
954  /* verify each switch target */
955  for (uint32_t targ = 0; targ < switch_count; targ++) {
956    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
957                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
958    int32_t abs_offset = cur_offset + offset;
959    if (abs_offset < 0 ||
960        abs_offset >= (int32_t) insn_count ||
961        !insn_flags_[abs_offset].IsOpcode()) {
962      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
963                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
964                                        << reinterpret_cast<void*>(cur_offset)
965                                        << "[" << targ << "]";
966      return false;
967    }
968    insn_flags_[abs_offset].SetBranchTarget();
969  }
970  return true;
971}
972
973bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
974  if (vA > 5) {
975    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
976    return false;
977  }
978  uint16_t registers_size = code_item_->registers_size_;
979  for (uint32_t idx = 0; idx < vA; idx++) {
980    if (arg[idx] >= registers_size) {
981      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
982                                        << ") in non-range invoke (>= " << registers_size << ")";
983      return false;
984    }
985  }
986
987  return true;
988}
989
990bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
991  uint16_t registers_size = code_item_->registers_size_;
992  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
993  // integer overflow when adding them here.
994  if (vA + vC > registers_size) {
995    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
996                                      << " in range invoke (> " << registers_size << ")";
997    return false;
998  }
999  return true;
1000}
1001
1002static const std::vector<uint8_t>* CreateLengthPrefixedDexGcMap(
1003    const std::vector<uint8_t>& gc_map) {
1004  std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>;
1005  length_prefixed_gc_map->reserve(gc_map.size() + 4);
1006  length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24);
1007  length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16);
1008  length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8);
1009  length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0);
1010  length_prefixed_gc_map->insert(length_prefixed_gc_map->end(),
1011                                 gc_map.begin(),
1012                                 gc_map.end());
1013  DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size());
1014  DCHECK_EQ(gc_map.size(),
1015            static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) |
1016                                (length_prefixed_gc_map->at(1) << 16) |
1017                                (length_prefixed_gc_map->at(2) << 8) |
1018                                (length_prefixed_gc_map->at(3) << 0)));
1019  return length_prefixed_gc_map;
1020}
1021
1022bool MethodVerifier::VerifyCodeFlow() {
1023  uint16_t registers_size = code_item_->registers_size_;
1024  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1025
1026  if (registers_size * insns_size > 4*1024*1024) {
1027    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1028                 << " insns_size=" << insns_size << ")";
1029  }
1030  /* Create and initialize table holding register status */
1031  reg_table_.Init(kTrackCompilerInterestPoints,
1032                  insn_flags_.get(),
1033                  insns_size,
1034                  registers_size,
1035                  this);
1036
1037
1038  work_line_.reset(new RegisterLine(registers_size, this));
1039  saved_line_.reset(new RegisterLine(registers_size, this));
1040
1041  /* Initialize register types of method arguments. */
1042  if (!SetTypesFromSignature()) {
1043    DCHECK_NE(failures_.size(), 0U);
1044    std::string prepend("Bad signature in ");
1045    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1046    PrependToLastFailMessage(prepend);
1047    return false;
1048  }
1049  /* Perform code flow verification. */
1050  if (!CodeFlowVerifyMethod()) {
1051    DCHECK_NE(failures_.size(), 0U);
1052    return false;
1053  }
1054
1055  // Compute information for compiler.
1056  if (Runtime::Current()->IsCompiler()) {
1057    MethodReference ref(dex_file_, dex_method_idx_);
1058    bool compile = IsCandidateForCompilation(ref, method_access_flags_);
1059    if (compile) {
1060      /* Generate a register map and add it to the method. */
1061      UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap());
1062      if (map.get() == NULL) {
1063        DCHECK_NE(failures_.size(), 0U);
1064        return false;  // Not a real failure, but a failure to encode
1065      }
1066      if (kIsDebugBuild) {
1067        VerifyGcMap(*map);
1068      }
1069      const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
1070      verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
1071    }
1072
1073    if (has_check_casts_) {
1074      MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1075      if (method_to_safe_casts != NULL) {
1076        SetSafeCastMap(ref, method_to_safe_casts);
1077      }
1078    }
1079
1080    if (has_virtual_or_interface_invokes_) {
1081      MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1082      if (pc_to_concrete_method != NULL) {
1083        SetDevirtMap(ref, pc_to_concrete_method);
1084      }
1085    }
1086  }
1087  return true;
1088}
1089
1090std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1091  DCHECK_EQ(failures_.size(), failure_messages_.size());
1092  if (VLOG_IS_ON(verifier)) {
1093      for (size_t i = 0; i < failures_.size(); ++i) {
1094          os << failure_messages_[i]->str() << "\n";
1095      }
1096  }
1097  return os;
1098}
1099
1100extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1101    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1102  v->Dump(std::cerr);
1103}
1104
1105void MethodVerifier::Dump(std::ostream& os) {
1106  if (code_item_ == NULL) {
1107    os << "Native method\n";
1108    return;
1109  }
1110  {
1111    os << "Register Types:\n";
1112    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1113    std::ostream indent_os(&indent_filter);
1114    reg_types_.Dump(indent_os);
1115  }
1116  os << "Dumping instructions and register lines:\n";
1117  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1118  std::ostream indent_os(&indent_filter);
1119  const Instruction* inst = Instruction::At(code_item_->insns_);
1120  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1121      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1122    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1123    if (reg_line != NULL) {
1124      indent_os << reg_line->Dump() << "\n";
1125    }
1126    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1127    const bool kDumpHexOfInstruction = false;
1128    if (kDumpHexOfInstruction) {
1129      indent_os << inst->DumpHex(5) << " ";
1130    }
1131    indent_os << inst->DumpString(dex_file_) << "\n";
1132    inst = inst->Next();
1133  }
1134}
1135
1136static bool IsPrimitiveDescriptor(char descriptor) {
1137  switch (descriptor) {
1138    case 'I':
1139    case 'C':
1140    case 'S':
1141    case 'B':
1142    case 'Z':
1143    case 'F':
1144    case 'D':
1145    case 'J':
1146      return true;
1147    default:
1148      return false;
1149  }
1150}
1151
1152bool MethodVerifier::SetTypesFromSignature() {
1153  RegisterLine* reg_line = reg_table_.GetLine(0);
1154  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1155  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1156
1157  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1158  // Include the "this" pointer.
1159  size_t cur_arg = 0;
1160  if (!IsStatic()) {
1161    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1162    // argument as uninitialized. This restricts field access until the superclass constructor is
1163    // called.
1164    const RegType& declaring_class = GetDeclaringClass();
1165    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1166      reg_line->SetRegisterType(arg_start + cur_arg,
1167                                reg_types_.UninitializedThisArgument(declaring_class));
1168    } else {
1169      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1170    }
1171    cur_arg++;
1172  }
1173
1174  const DexFile::ProtoId& proto_id =
1175      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1176  DexFileParameterIterator iterator(*dex_file_, proto_id);
1177
1178  for (; iterator.HasNext(); iterator.Next()) {
1179    const char* descriptor = iterator.GetDescriptor();
1180    if (descriptor == NULL) {
1181      LOG(FATAL) << "Null descriptor";
1182    }
1183    if (cur_arg >= expected_args) {
1184      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1185                                        << " args, found more (" << descriptor << ")";
1186      return false;
1187    }
1188    switch (descriptor[0]) {
1189      case 'L':
1190      case '[':
1191        // We assume that reference arguments are initialized. The only way it could be otherwise
1192        // (assuming the caller was verified) is if the current method is <init>, but in that case
1193        // it's effectively considered initialized the instant we reach here (in the sense that we
1194        // can return without doing anything or call virtual methods).
1195        {
1196          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
1197          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1198        }
1199        break;
1200      case 'Z':
1201        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1202        break;
1203      case 'C':
1204        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1205        break;
1206      case 'B':
1207        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1208        break;
1209      case 'I':
1210        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1211        break;
1212      case 'S':
1213        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1214        break;
1215      case 'F':
1216        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1217        break;
1218      case 'J':
1219      case 'D': {
1220        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1221        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1222        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1223        cur_arg++;
1224        break;
1225      }
1226      default:
1227        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1228                                          << descriptor << "'";
1229        return false;
1230    }
1231    cur_arg++;
1232  }
1233  if (cur_arg != expected_args) {
1234    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1235                                      << " arguments, found " << cur_arg;
1236    return false;
1237  }
1238  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1239  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1240  // format. Only major difference from the method argument format is that 'V' is supported.
1241  bool result;
1242  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1243    result = descriptor[1] == '\0';
1244  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1245    size_t i = 0;
1246    do {
1247      i++;
1248    } while (descriptor[i] == '[');  // process leading [
1249    if (descriptor[i] == 'L') {  // object array
1250      do {
1251        i++;  // find closing ;
1252      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1253      result = descriptor[i] == ';';
1254    } else {  // primitive array
1255      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1256    }
1257  } else if (descriptor[0] == 'L') {
1258    // could be more thorough here, but shouldn't be required
1259    size_t i = 0;
1260    do {
1261      i++;
1262    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1263    result = descriptor[i] == ';';
1264  } else {
1265    result = false;
1266  }
1267  if (!result) {
1268    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1269                                      << descriptor << "'";
1270  }
1271  return result;
1272}
1273
1274bool MethodVerifier::CodeFlowVerifyMethod() {
1275  const uint16_t* insns = code_item_->insns_;
1276  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1277
1278  /* Begin by marking the first instruction as "changed". */
1279  insn_flags_[0].SetChanged();
1280  uint32_t start_guess = 0;
1281
1282  /* Continue until no instructions are marked "changed". */
1283  while (true) {
1284    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1285    uint32_t insn_idx = start_guess;
1286    for (; insn_idx < insns_size; insn_idx++) {
1287      if (insn_flags_[insn_idx].IsChanged())
1288        break;
1289    }
1290    if (insn_idx == insns_size) {
1291      if (start_guess != 0) {
1292        /* try again, starting from the top */
1293        start_guess = 0;
1294        continue;
1295      } else {
1296        /* all flags are clear */
1297        break;
1298      }
1299    }
1300    // We carry the working set of registers from instruction to instruction. If this address can
1301    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1302    // "changed" flags, we need to load the set of registers from the table.
1303    // Because we always prefer to continue on to the next instruction, we should never have a
1304    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1305    // target.
1306    work_insn_idx_ = insn_idx;
1307    if (insn_flags_[insn_idx].IsBranchTarget()) {
1308      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1309    } else {
1310#ifndef NDEBUG
1311      /*
1312       * Sanity check: retrieve the stored register line (assuming
1313       * a full table) and make sure it actually matches.
1314       */
1315      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1316      if (register_line != NULL) {
1317        if (work_line_->CompareLine(register_line) != 0) {
1318          Dump(std::cout);
1319          std::cout << info_messages_.str();
1320          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1321                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1322                     << " work_line=" << *work_line_ << "\n"
1323                     << "  expected=" << *register_line;
1324        }
1325      }
1326#endif
1327    }
1328    if (!CodeFlowVerifyInstruction(&start_guess)) {
1329      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1330      prepend += " failed to verify: ";
1331      PrependToLastFailMessage(prepend);
1332      return false;
1333    }
1334    /* Clear "changed" and mark as visited. */
1335    insn_flags_[insn_idx].SetVisited();
1336    insn_flags_[insn_idx].ClearChanged();
1337  }
1338
1339  if (gDebugVerify) {
1340    /*
1341     * Scan for dead code. There's nothing "evil" about dead code
1342     * (besides the wasted space), but it indicates a flaw somewhere
1343     * down the line, possibly in the verifier.
1344     *
1345     * If we've substituted "always throw" instructions into the stream,
1346     * we are almost certainly going to have some dead code.
1347     */
1348    int dead_start = -1;
1349    uint32_t insn_idx = 0;
1350    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1351      /*
1352       * Switch-statement data doesn't get "visited" by scanner. It
1353       * may or may not be preceded by a padding NOP (for alignment).
1354       */
1355      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1356          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1357          insns[insn_idx] == Instruction::kArrayDataSignature ||
1358          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1359           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1360            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1361            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1362        insn_flags_[insn_idx].SetVisited();
1363      }
1364
1365      if (!insn_flags_[insn_idx].IsVisited()) {
1366        if (dead_start < 0)
1367          dead_start = insn_idx;
1368      } else if (dead_start >= 0) {
1369        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1370                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1371        dead_start = -1;
1372      }
1373    }
1374    if (dead_start >= 0) {
1375      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1376                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1377    }
1378    // To dump the state of the verify after a method, do something like:
1379    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1380    //     "boolean java.lang.String.equals(java.lang.Object)") {
1381    //   LOG(INFO) << info_messages_.str();
1382    // }
1383  }
1384  return true;
1385}
1386
1387bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1388  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1389  // We want the state _before_ the instruction, for the case where the dex pc we're
1390  // interested in is itself a monitor-enter instruction (which is a likely place
1391  // for a thread to be suspended).
1392  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1393    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1394    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1395      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1396    }
1397  }
1398
1399  /*
1400   * Once we finish decoding the instruction, we need to figure out where
1401   * we can go from here. There are three possible ways to transfer
1402   * control to another statement:
1403   *
1404   * (1) Continue to the next instruction. Applies to all but
1405   *     unconditional branches, method returns, and exception throws.
1406   * (2) Branch to one or more possible locations. Applies to branches
1407   *     and switch statements.
1408   * (3) Exception handlers. Applies to any instruction that can
1409   *     throw an exception that is handled by an encompassing "try"
1410   *     block.
1411   *
1412   * We can also return, in which case there is no successor instruction
1413   * from this point.
1414   *
1415   * The behavior can be determined from the opcode flags.
1416   */
1417  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1418  const Instruction* inst = Instruction::At(insns);
1419  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1420
1421  int32_t branch_target = 0;
1422  bool just_set_result = false;
1423  if (gDebugVerify) {
1424    // Generate processing back trace to debug verifier
1425    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1426                    << *work_line_.get() << "\n";
1427  }
1428
1429  /*
1430   * Make a copy of the previous register state. If the instruction
1431   * can throw an exception, we will copy/merge this into the "catch"
1432   * address rather than work_line, because we don't want the result
1433   * from the "successful" code path (e.g. a check-cast that "improves"
1434   * a type) to be visible to the exception handler.
1435   */
1436  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1437    saved_line_->CopyFromLine(work_line_.get());
1438  } else {
1439#ifndef NDEBUG
1440    saved_line_->FillWithGarbage();
1441#endif
1442  }
1443
1444
1445  // We need to ensure the work line is consistent while performing validation. When we spot a
1446  // peephole pattern we compute a new line for either the fallthrough instruction or the
1447  // branch target.
1448  UniquePtr<RegisterLine> branch_line;
1449  UniquePtr<RegisterLine> fallthrough_line;
1450
1451  switch (inst->Opcode()) {
1452    case Instruction::NOP:
1453      /*
1454       * A "pure" NOP has no effect on anything. Data tables start with
1455       * a signature that looks like a NOP; if we see one of these in
1456       * the course of executing code then we have a problem.
1457       */
1458      if (inst->VRegA_10x() != 0) {
1459        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1460      }
1461      break;
1462
1463    case Instruction::MOVE:
1464      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1465      break;
1466    case Instruction::MOVE_FROM16:
1467      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1468      break;
1469    case Instruction::MOVE_16:
1470      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1471      break;
1472    case Instruction::MOVE_WIDE:
1473      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1474      break;
1475    case Instruction::MOVE_WIDE_FROM16:
1476      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1477      break;
1478    case Instruction::MOVE_WIDE_16:
1479      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1480      break;
1481    case Instruction::MOVE_OBJECT:
1482      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1483      break;
1484    case Instruction::MOVE_OBJECT_FROM16:
1485      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1486      break;
1487    case Instruction::MOVE_OBJECT_16:
1488      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1489      break;
1490
1491    /*
1492     * The move-result instructions copy data out of a "pseudo-register"
1493     * with the results from the last method invocation. In practice we
1494     * might want to hold the result in an actual CPU register, so the
1495     * Dalvik spec requires that these only appear immediately after an
1496     * invoke or filled-new-array.
1497     *
1498     * These calls invalidate the "result" register. (This is now
1499     * redundant with the reset done below, but it can make the debug info
1500     * easier to read in some cases.)
1501     */
1502    case Instruction::MOVE_RESULT:
1503      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1504      break;
1505    case Instruction::MOVE_RESULT_WIDE:
1506      work_line_->CopyResultRegister2(inst->VRegA_11x());
1507      break;
1508    case Instruction::MOVE_RESULT_OBJECT:
1509      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1510      break;
1511
1512    case Instruction::MOVE_EXCEPTION: {
1513      /*
1514       * This statement can only appear as the first instruction in an exception handler. We verify
1515       * that as part of extracting the exception type from the catch block list.
1516       */
1517      const RegType& res_type = GetCaughtExceptionType();
1518      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1519      break;
1520    }
1521    case Instruction::RETURN_VOID:
1522      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1523        if (!GetMethodReturnType().IsConflict()) {
1524          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1525        }
1526      }
1527      break;
1528    case Instruction::RETURN:
1529      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1530        /* check the method signature */
1531        const RegType& return_type = GetMethodReturnType();
1532        if (!return_type.IsCategory1Types()) {
1533          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1534                                            << return_type;
1535        } else {
1536          // Compilers may generate synthetic functions that write byte values into boolean fields.
1537          // Also, it may use integer values for boolean, byte, short, and character return types.
1538          const uint32_t vregA = inst->VRegA_11x();
1539          const RegType& src_type = work_line_->GetRegisterType(vregA);
1540          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1541                          ((return_type.IsBoolean() || return_type.IsByte() ||
1542                           return_type.IsShort() || return_type.IsChar()) &&
1543                           src_type.IsInteger()));
1544          /* check the register contents */
1545          bool success =
1546              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1547          if (!success) {
1548            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1549          }
1550        }
1551      }
1552      break;
1553    case Instruction::RETURN_WIDE:
1554      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1555        /* check the method signature */
1556        const RegType& return_type = GetMethodReturnType();
1557        if (!return_type.IsCategory2Types()) {
1558          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1559        } else {
1560          /* check the register contents */
1561          const uint32_t vregA = inst->VRegA_11x();
1562          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1563          if (!success) {
1564            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1565          }
1566        }
1567      }
1568      break;
1569    case Instruction::RETURN_OBJECT:
1570      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1571        const RegType& return_type = GetMethodReturnType();
1572        if (!return_type.IsReferenceTypes()) {
1573          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1574        } else {
1575          /* return_type is the *expected* return type, not register value */
1576          DCHECK(!return_type.IsZero());
1577          DCHECK(!return_type.IsUninitializedReference());
1578          const uint32_t vregA = inst->VRegA_11x();
1579          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1580          // Disallow returning uninitialized values and verify that the reference in vAA is an
1581          // instance of the "return_type"
1582          if (reg_type.IsUninitializedTypes()) {
1583            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1584                                              << reg_type << "'";
1585          } else if (!return_type.IsAssignableFrom(reg_type)) {
1586            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1587              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1588                  << "' or '" << reg_type << "'";
1589            } else {
1590              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1591                  << "', but expected from declaration '" << return_type << "'";
1592            }
1593          }
1594        }
1595      }
1596      break;
1597
1598      /* could be boolean, int, float, or a null reference */
1599    case Instruction::CONST_4: {
1600      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1601      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1602      break;
1603    }
1604    case Instruction::CONST_16: {
1605      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1606      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1607      break;
1608    }
1609    case Instruction::CONST:
1610      work_line_->SetRegisterType(inst->VRegA_31i(),
1611                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1612      break;
1613    case Instruction::CONST_HIGH16:
1614      work_line_->SetRegisterType(inst->VRegA_21h(),
1615                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1616      break;
1617      /* could be long or double; resolved upon use */
1618    case Instruction::CONST_WIDE_16: {
1619      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1620      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1621      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1622      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1623      break;
1624    }
1625    case Instruction::CONST_WIDE_32: {
1626      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1627      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1628      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1629      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1630      break;
1631    }
1632    case Instruction::CONST_WIDE: {
1633      int64_t val = inst->VRegB_51l();
1634      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1635      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1636      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1637      break;
1638    }
1639    case Instruction::CONST_WIDE_HIGH16: {
1640      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1641      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1642      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1643      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1644      break;
1645    }
1646    case Instruction::CONST_STRING:
1647      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1648      break;
1649    case Instruction::CONST_STRING_JUMBO:
1650      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1651      break;
1652    case Instruction::CONST_CLASS: {
1653      // Get type from instruction if unresolved then we need an access check
1654      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1655      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1656      // Register holds class, ie its type is class, on error it will hold Conflict.
1657      work_line_->SetRegisterType(inst->VRegA_21c(),
1658                                  res_type.IsConflict() ? res_type
1659                                                        : reg_types_.JavaLangClass(true));
1660      break;
1661    }
1662    case Instruction::MONITOR_ENTER:
1663      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1664      break;
1665    case Instruction::MONITOR_EXIT:
1666      /*
1667       * monitor-exit instructions are odd. They can throw exceptions,
1668       * but when they do they act as if they succeeded and the PC is
1669       * pointing to the following instruction. (This behavior goes back
1670       * to the need to handle asynchronous exceptions, a now-deprecated
1671       * feature that Dalvik doesn't support.)
1672       *
1673       * In practice we don't need to worry about this. The only
1674       * exceptions that can be thrown from monitor-exit are for a
1675       * null reference and -exit without a matching -enter. If the
1676       * structured locking checks are working, the former would have
1677       * failed on the -enter instruction, and the latter is impossible.
1678       *
1679       * This is fortunate, because issue 3221411 prevents us from
1680       * chasing the "can throw" path when monitor verification is
1681       * enabled. If we can fully verify the locking we can ignore
1682       * some catch blocks (which will show up as "dead" code when
1683       * we skip them here); if we can't, then the code path could be
1684       * "live" so we still need to check it.
1685       */
1686      opcode_flags &= ~Instruction::kThrow;
1687      work_line_->PopMonitor(inst->VRegA_11x());
1688      break;
1689
1690    case Instruction::CHECK_CAST:
1691    case Instruction::INSTANCE_OF: {
1692      /*
1693       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1694       * could be a "upcast" -- not expected, so we don't try to address it.)
1695       *
1696       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1697       * dec_insn.vA when branching to a handler.
1698       */
1699      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1700      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1701      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1702      if (res_type.IsConflict()) {
1703        DCHECK_NE(failures_.size(), 0U);
1704        if (!is_checkcast) {
1705          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1706        }
1707        break;  // bad class
1708      }
1709      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1710      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1711      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1712      if (!res_type.IsNonZeroReferenceTypes()) {
1713        if (is_checkcast) {
1714          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1715        } else {
1716          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1717        }
1718      } else if (!orig_type.IsReferenceTypes()) {
1719        if (is_checkcast) {
1720          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1721        } else {
1722          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1723        }
1724      } else {
1725        if (is_checkcast) {
1726          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1727        } else {
1728          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1729        }
1730      }
1731      break;
1732    }
1733    case Instruction::ARRAY_LENGTH: {
1734      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1735      if (res_type.IsReferenceTypes()) {
1736        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1737          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1738        } else {
1739          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1740        }
1741      }
1742      break;
1743    }
1744    case Instruction::NEW_INSTANCE: {
1745      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1746      if (res_type.IsConflict()) {
1747        DCHECK_NE(failures_.size(), 0U);
1748        break;  // bad class
1749      }
1750      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1751      // can't create an instance of an interface or abstract class */
1752      if (!res_type.IsInstantiableTypes()) {
1753        Fail(VERIFY_ERROR_INSTANTIATION)
1754            << "new-instance on primitive, interface or abstract class" << res_type;
1755        // Soft failure so carry on to set register type.
1756      }
1757      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1758      // Any registers holding previous allocations from this address that have not yet been
1759      // initialized must be marked invalid.
1760      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1761      // add the new uninitialized reference to the register state
1762      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1763      break;
1764    }
1765    case Instruction::NEW_ARRAY:
1766      VerifyNewArray(inst, false, false);
1767      break;
1768    case Instruction::FILLED_NEW_ARRAY:
1769      VerifyNewArray(inst, true, false);
1770      just_set_result = true;  // Filled new array sets result register
1771      break;
1772    case Instruction::FILLED_NEW_ARRAY_RANGE:
1773      VerifyNewArray(inst, true, true);
1774      just_set_result = true;  // Filled new array range sets result register
1775      break;
1776    case Instruction::CMPL_FLOAT:
1777    case Instruction::CMPG_FLOAT:
1778      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1779        break;
1780      }
1781      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1782        break;
1783      }
1784      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1785      break;
1786    case Instruction::CMPL_DOUBLE:
1787    case Instruction::CMPG_DOUBLE:
1788      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1789                                              reg_types_.DoubleHi())) {
1790        break;
1791      }
1792      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1793                                              reg_types_.DoubleHi())) {
1794        break;
1795      }
1796      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1797      break;
1798    case Instruction::CMP_LONG:
1799      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1800                                              reg_types_.LongHi())) {
1801        break;
1802      }
1803      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1804                                              reg_types_.LongHi())) {
1805        break;
1806      }
1807      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1808      break;
1809    case Instruction::THROW: {
1810      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1811      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1812        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1813            << "thrown class " << res_type << " not instanceof Throwable";
1814      }
1815      break;
1816    }
1817    case Instruction::GOTO:
1818    case Instruction::GOTO_16:
1819    case Instruction::GOTO_32:
1820      /* no effect on or use of registers */
1821      break;
1822
1823    case Instruction::PACKED_SWITCH:
1824    case Instruction::SPARSE_SWITCH:
1825      /* verify that vAA is an integer, or can be converted to one */
1826      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1827      break;
1828
1829    case Instruction::FILL_ARRAY_DATA: {
1830      /* Similar to the verification done for APUT */
1831      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1832      /* array_type can be null if the reg type is Zero */
1833      if (!array_type.IsZero()) {
1834        if (!array_type.IsArrayTypes()) {
1835          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1836                                            << array_type;
1837        } else {
1838          const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
1839          DCHECK(!component_type.IsConflict());
1840          if (component_type.IsNonZeroReferenceTypes()) {
1841            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1842                                              << component_type;
1843          } else {
1844            // Now verify if the element width in the table matches the element width declared in
1845            // the array
1846            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1847            if (array_data[0] != Instruction::kArrayDataSignature) {
1848              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1849            } else {
1850              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1851              // Since we don't compress the data in Dex, expect to see equal width of data stored
1852              // in the table and expected from the array class.
1853              if (array_data[1] != elem_width) {
1854                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1855                                                  << " vs " << elem_width << ")";
1856              }
1857            }
1858          }
1859        }
1860      }
1861      break;
1862    }
1863    case Instruction::IF_EQ:
1864    case Instruction::IF_NE: {
1865      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1866      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1867      bool mismatch = false;
1868      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1869        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1870      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1871        mismatch = !reg_type2.IsReferenceTypes();
1872      } else {  // both integral?
1873        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1874      }
1875      if (mismatch) {
1876        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1877                                          << reg_type2 << ") must both be references or integral";
1878      }
1879      break;
1880    }
1881    case Instruction::IF_LT:
1882    case Instruction::IF_GE:
1883    case Instruction::IF_GT:
1884    case Instruction::IF_LE: {
1885      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1886      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1887      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1888        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1889                                          << reg_type2 << ") must be integral";
1890      }
1891      break;
1892    }
1893    case Instruction::IF_EQZ:
1894    case Instruction::IF_NEZ: {
1895      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1896      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1897        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1898                                          << " unexpected as arg to if-eqz/if-nez";
1899      }
1900
1901      // Find previous instruction - its existence is a precondition to peephole optimization.
1902      uint32_t instance_of_idx = 0;
1903      if (0 != work_insn_idx_) {
1904        instance_of_idx = work_insn_idx_ - 1;
1905        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1906          instance_of_idx--;
1907        }
1908        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1909      } else {
1910        break;
1911      }
1912
1913      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1914
1915      /* Check for peep-hole pattern of:
1916       *    ...;
1917       *    instance-of vX, vY, T;
1918       *    ifXXX vX, label ;
1919       *    ...;
1920       * label:
1921       *    ...;
1922       * and sharpen the type of vY to be type T.
1923       * Note, this pattern can't be if:
1924       *  - if there are other branches to this branch,
1925       *  - when vX == vY.
1926       */
1927      if (!CurrentInsnFlags()->IsBranchTarget() &&
1928          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1929          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1930          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1931        // Check that the we are not attempting conversion to interface types,
1932        // which is not done because of the multiple inheritance implications.
1933        // Also don't change the type if it would result in an upcast.
1934        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1935        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1936
1937        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1938            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1939          RegisterLine* update_line = new RegisterLine(code_item_->registers_size_, this);
1940          if (inst->Opcode() == Instruction::IF_EQZ) {
1941            fallthrough_line.reset(update_line);
1942          } else {
1943            branch_line.reset(update_line);
1944          }
1945          update_line->CopyFromLine(work_line_.get());
1946          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1947          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1948            // See if instance-of was preceded by a move-object operation, common due to the small
1949            // register encoding space of instance-of, and propagate type information to the source
1950            // of the move-object.
1951            uint32_t move_idx = instance_of_idx - 1;
1952            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1953              move_idx--;
1954            }
1955            CHECK(insn_flags_[move_idx].IsOpcode());
1956            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1957            switch (move_inst->Opcode()) {
1958              case Instruction::MOVE_OBJECT:
1959                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1960                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1961                }
1962                break;
1963              case Instruction::MOVE_OBJECT_FROM16:
1964                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1965                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1966                }
1967                break;
1968              case Instruction::MOVE_OBJECT_16:
1969                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1970                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1971                }
1972                break;
1973              default:
1974                break;
1975            }
1976          }
1977        }
1978      }
1979
1980      break;
1981    }
1982    case Instruction::IF_LTZ:
1983    case Instruction::IF_GEZ:
1984    case Instruction::IF_GTZ:
1985    case Instruction::IF_LEZ: {
1986      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1987      if (!reg_type.IsIntegralTypes()) {
1988        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1989                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1990      }
1991      break;
1992    }
1993    case Instruction::AGET_BOOLEAN:
1994      VerifyAGet(inst, reg_types_.Boolean(), true);
1995      break;
1996    case Instruction::AGET_BYTE:
1997      VerifyAGet(inst, reg_types_.Byte(), true);
1998      break;
1999    case Instruction::AGET_CHAR:
2000      VerifyAGet(inst, reg_types_.Char(), true);
2001      break;
2002    case Instruction::AGET_SHORT:
2003      VerifyAGet(inst, reg_types_.Short(), true);
2004      break;
2005    case Instruction::AGET:
2006      VerifyAGet(inst, reg_types_.Integer(), true);
2007      break;
2008    case Instruction::AGET_WIDE:
2009      VerifyAGet(inst, reg_types_.LongLo(), true);
2010      break;
2011    case Instruction::AGET_OBJECT:
2012      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2013      break;
2014
2015    case Instruction::APUT_BOOLEAN:
2016      VerifyAPut(inst, reg_types_.Boolean(), true);
2017      break;
2018    case Instruction::APUT_BYTE:
2019      VerifyAPut(inst, reg_types_.Byte(), true);
2020      break;
2021    case Instruction::APUT_CHAR:
2022      VerifyAPut(inst, reg_types_.Char(), true);
2023      break;
2024    case Instruction::APUT_SHORT:
2025      VerifyAPut(inst, reg_types_.Short(), true);
2026      break;
2027    case Instruction::APUT:
2028      VerifyAPut(inst, reg_types_.Integer(), true);
2029      break;
2030    case Instruction::APUT_WIDE:
2031      VerifyAPut(inst, reg_types_.LongLo(), true);
2032      break;
2033    case Instruction::APUT_OBJECT:
2034      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2035      break;
2036
2037    case Instruction::IGET_BOOLEAN:
2038      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2039      break;
2040    case Instruction::IGET_BYTE:
2041      VerifyISGet(inst, reg_types_.Byte(), true, false);
2042      break;
2043    case Instruction::IGET_CHAR:
2044      VerifyISGet(inst, reg_types_.Char(), true, false);
2045      break;
2046    case Instruction::IGET_SHORT:
2047      VerifyISGet(inst, reg_types_.Short(), true, false);
2048      break;
2049    case Instruction::IGET:
2050      VerifyISGet(inst, reg_types_.Integer(), true, false);
2051      break;
2052    case Instruction::IGET_WIDE:
2053      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2054      break;
2055    case Instruction::IGET_OBJECT:
2056      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2057      break;
2058
2059    case Instruction::IPUT_BOOLEAN:
2060      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2061      break;
2062    case Instruction::IPUT_BYTE:
2063      VerifyISPut(inst, reg_types_.Byte(), true, false);
2064      break;
2065    case Instruction::IPUT_CHAR:
2066      VerifyISPut(inst, reg_types_.Char(), true, false);
2067      break;
2068    case Instruction::IPUT_SHORT:
2069      VerifyISPut(inst, reg_types_.Short(), true, false);
2070      break;
2071    case Instruction::IPUT:
2072      VerifyISPut(inst, reg_types_.Integer(), true, false);
2073      break;
2074    case Instruction::IPUT_WIDE:
2075      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2076      break;
2077    case Instruction::IPUT_OBJECT:
2078      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2079      break;
2080
2081    case Instruction::SGET_BOOLEAN:
2082      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2083      break;
2084    case Instruction::SGET_BYTE:
2085      VerifyISGet(inst, reg_types_.Byte(), true, true);
2086      break;
2087    case Instruction::SGET_CHAR:
2088      VerifyISGet(inst, reg_types_.Char(), true, true);
2089      break;
2090    case Instruction::SGET_SHORT:
2091      VerifyISGet(inst, reg_types_.Short(), true, true);
2092      break;
2093    case Instruction::SGET:
2094      VerifyISGet(inst, reg_types_.Integer(), true, true);
2095      break;
2096    case Instruction::SGET_WIDE:
2097      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2098      break;
2099    case Instruction::SGET_OBJECT:
2100      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2101      break;
2102
2103    case Instruction::SPUT_BOOLEAN:
2104      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2105      break;
2106    case Instruction::SPUT_BYTE:
2107      VerifyISPut(inst, reg_types_.Byte(), true, true);
2108      break;
2109    case Instruction::SPUT_CHAR:
2110      VerifyISPut(inst, reg_types_.Char(), true, true);
2111      break;
2112    case Instruction::SPUT_SHORT:
2113      VerifyISPut(inst, reg_types_.Short(), true, true);
2114      break;
2115    case Instruction::SPUT:
2116      VerifyISPut(inst, reg_types_.Integer(), true, true);
2117      break;
2118    case Instruction::SPUT_WIDE:
2119      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2120      break;
2121    case Instruction::SPUT_OBJECT:
2122      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2123      break;
2124
2125    case Instruction::INVOKE_VIRTUAL:
2126    case Instruction::INVOKE_VIRTUAL_RANGE:
2127    case Instruction::INVOKE_SUPER:
2128    case Instruction::INVOKE_SUPER_RANGE: {
2129      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2130                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2131      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2132                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2133      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2134                                                                   is_range, is_super);
2135      const RegType* return_type = nullptr;
2136      if (called_method != nullptr) {
2137        MethodHelper mh(called_method);
2138        mirror::Class* return_type_class = mh.GetReturnType();
2139        if (return_type_class != nullptr) {
2140          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2141                                              return_type_class->CannotBeAssignedFromOtherTypes());
2142        } else {
2143          Thread* self = Thread::Current();
2144          DCHECK(self->IsExceptionPending());
2145          self->ClearException();
2146        }
2147      }
2148      if (return_type == nullptr) {
2149        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2150        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2151        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2152        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2153        return_type = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
2154      }
2155      if (!return_type->IsLowHalf()) {
2156        work_line_->SetResultRegisterType(*return_type);
2157      } else {
2158        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2159      }
2160      just_set_result = true;
2161      break;
2162    }
2163    case Instruction::INVOKE_DIRECT:
2164    case Instruction::INVOKE_DIRECT_RANGE: {
2165      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2166      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2167                                                                   is_range, false);
2168      const char* return_type_descriptor;
2169      bool is_constructor;
2170      if (called_method == NULL) {
2171        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2172        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2173        is_constructor = dex_file_->StringDataAsStringPieceByIdx(method_id.name_idx_) == "<init>";
2174        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2175        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2176      } else {
2177        is_constructor = called_method->IsConstructor();
2178        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2179      }
2180      if (is_constructor) {
2181        /*
2182         * Some additional checks when calling a constructor. We know from the invocation arg check
2183         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2184         * that to require that called_method->klass is the same as this->klass or this->super,
2185         * allowing the latter only if the "this" argument is the same as the "this" argument to
2186         * this method (which implies that we're in a constructor ourselves).
2187         */
2188        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2189        if (this_type.IsConflict())  // failure.
2190          break;
2191
2192        /* no null refs allowed (?) */
2193        if (this_type.IsZero()) {
2194          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2195          break;
2196        }
2197
2198        /* must be in same class or in superclass */
2199        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2200        // TODO: re-enable constructor type verification
2201        // if (this_super_klass.IsConflict()) {
2202          // Unknown super class, fail so we re-check at runtime.
2203          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2204          // break;
2205        // }
2206
2207        /* arg must be an uninitialized reference */
2208        if (!this_type.IsUninitializedTypes()) {
2209          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2210              << this_type;
2211          break;
2212        }
2213
2214        /*
2215         * Replace the uninitialized reference with an initialized one. We need to do this for all
2216         * registers that have the same object instance in them, not just the "this" register.
2217         */
2218        work_line_->MarkRefsAsInitialized(this_type);
2219      }
2220      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, return_type_descriptor,
2221                                                             false);
2222      if (!return_type.IsLowHalf()) {
2223        work_line_->SetResultRegisterType(return_type);
2224      } else {
2225        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2226      }
2227      just_set_result = true;
2228      break;
2229    }
2230    case Instruction::INVOKE_STATIC:
2231    case Instruction::INVOKE_STATIC_RANGE: {
2232        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2233        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2234                                                                     METHOD_STATIC,
2235                                                                     is_range,
2236                                                                     false);
2237        const char* descriptor;
2238        if (called_method == NULL) {
2239          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2240          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2241          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2242          descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2243        } else {
2244          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2245        }
2246        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_, descriptor, false);
2247        if (!return_type.IsLowHalf()) {
2248          work_line_->SetResultRegisterType(return_type);
2249        } else {
2250          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2251        }
2252        just_set_result = true;
2253      }
2254      break;
2255    case Instruction::INVOKE_INTERFACE:
2256    case Instruction::INVOKE_INTERFACE_RANGE: {
2257      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2258      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2259                                                                METHOD_INTERFACE,
2260                                                                is_range,
2261                                                                false);
2262      if (abs_method != NULL) {
2263        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2264        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2265          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2266              << PrettyMethod(abs_method) << "'";
2267          break;
2268        }
2269      }
2270      /* Get the type of the "this" arg, which should either be a sub-interface of called
2271       * interface or Object (see comments in RegType::JoinClass).
2272       */
2273      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2274      if (this_type.IsZero()) {
2275        /* null pointer always passes (and always fails at runtime) */
2276      } else {
2277        if (this_type.IsUninitializedTypes()) {
2278          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2279              << this_type;
2280          break;
2281        }
2282        // In the past we have tried to assert that "called_interface" is assignable
2283        // from "this_type.GetClass()", however, as we do an imprecise Join
2284        // (RegType::JoinClass) we don't have full information on what interfaces are
2285        // implemented by "this_type". For example, two classes may implement the same
2286        // interfaces and have a common parent that doesn't implement the interface. The
2287        // join will set "this_type" to the parent class and a test that this implements
2288        // the interface will incorrectly fail.
2289      }
2290      /*
2291       * We don't have an object instance, so we can't find the concrete method. However, all of
2292       * the type information is in the abstract method, so we're good.
2293       */
2294      const char* descriptor;
2295      if (abs_method == NULL) {
2296        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2297        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2298        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2299        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2300      } else {
2301        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2302      }
2303      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2304      if (!return_type.IsLowHalf()) {
2305        work_line_->SetResultRegisterType(return_type);
2306      } else {
2307        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2308      }
2309      just_set_result = true;
2310      break;
2311    }
2312    case Instruction::NEG_INT:
2313    case Instruction::NOT_INT:
2314      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2315      break;
2316    case Instruction::NEG_LONG:
2317    case Instruction::NOT_LONG:
2318      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2319                                   reg_types_.LongLo(), reg_types_.LongHi());
2320      break;
2321    case Instruction::NEG_FLOAT:
2322      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2323      break;
2324    case Instruction::NEG_DOUBLE:
2325      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2326                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2327      break;
2328    case Instruction::INT_TO_LONG:
2329      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2330                                     reg_types_.Integer());
2331      break;
2332    case Instruction::INT_TO_FLOAT:
2333      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2334      break;
2335    case Instruction::INT_TO_DOUBLE:
2336      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2337                                     reg_types_.Integer());
2338      break;
2339    case Instruction::LONG_TO_INT:
2340      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2341                                       reg_types_.LongLo(), reg_types_.LongHi());
2342      break;
2343    case Instruction::LONG_TO_FLOAT:
2344      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2345                                       reg_types_.LongLo(), reg_types_.LongHi());
2346      break;
2347    case Instruction::LONG_TO_DOUBLE:
2348      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2349                                   reg_types_.LongLo(), reg_types_.LongHi());
2350      break;
2351    case Instruction::FLOAT_TO_INT:
2352      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2353      break;
2354    case Instruction::FLOAT_TO_LONG:
2355      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2356                                     reg_types_.Float());
2357      break;
2358    case Instruction::FLOAT_TO_DOUBLE:
2359      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2360                                     reg_types_.Float());
2361      break;
2362    case Instruction::DOUBLE_TO_INT:
2363      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2364                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2365      break;
2366    case Instruction::DOUBLE_TO_LONG:
2367      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2368                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2369      break;
2370    case Instruction::DOUBLE_TO_FLOAT:
2371      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2372                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2373      break;
2374    case Instruction::INT_TO_BYTE:
2375      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2376      break;
2377    case Instruction::INT_TO_CHAR:
2378      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2379      break;
2380    case Instruction::INT_TO_SHORT:
2381      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2382      break;
2383
2384    case Instruction::ADD_INT:
2385    case Instruction::SUB_INT:
2386    case Instruction::MUL_INT:
2387    case Instruction::REM_INT:
2388    case Instruction::DIV_INT:
2389    case Instruction::SHL_INT:
2390    case Instruction::SHR_INT:
2391    case Instruction::USHR_INT:
2392      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2393                                reg_types_.Integer(), false);
2394      break;
2395    case Instruction::AND_INT:
2396    case Instruction::OR_INT:
2397    case Instruction::XOR_INT:
2398      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2399                                reg_types_.Integer(), true);
2400      break;
2401    case Instruction::ADD_LONG:
2402    case Instruction::SUB_LONG:
2403    case Instruction::MUL_LONG:
2404    case Instruction::DIV_LONG:
2405    case Instruction::REM_LONG:
2406    case Instruction::AND_LONG:
2407    case Instruction::OR_LONG:
2408    case Instruction::XOR_LONG:
2409      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2410                                    reg_types_.LongLo(), reg_types_.LongHi(),
2411                                    reg_types_.LongLo(), reg_types_.LongHi());
2412      break;
2413    case Instruction::SHL_LONG:
2414    case Instruction::SHR_LONG:
2415    case Instruction::USHR_LONG:
2416      /* shift distance is Int, making these different from other binary operations */
2417      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2418                                         reg_types_.Integer());
2419      break;
2420    case Instruction::ADD_FLOAT:
2421    case Instruction::SUB_FLOAT:
2422    case Instruction::MUL_FLOAT:
2423    case Instruction::DIV_FLOAT:
2424    case Instruction::REM_FLOAT:
2425      work_line_->CheckBinaryOp(inst,
2426                                reg_types_.Float(),
2427                                reg_types_.Float(),
2428                                reg_types_.Float(),
2429                                false);
2430      break;
2431    case Instruction::ADD_DOUBLE:
2432    case Instruction::SUB_DOUBLE:
2433    case Instruction::MUL_DOUBLE:
2434    case Instruction::DIV_DOUBLE:
2435    case Instruction::REM_DOUBLE:
2436      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2437                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2438                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2439      break;
2440    case Instruction::ADD_INT_2ADDR:
2441    case Instruction::SUB_INT_2ADDR:
2442    case Instruction::MUL_INT_2ADDR:
2443    case Instruction::REM_INT_2ADDR:
2444    case Instruction::SHL_INT_2ADDR:
2445    case Instruction::SHR_INT_2ADDR:
2446    case Instruction::USHR_INT_2ADDR:
2447      work_line_->CheckBinaryOp2addr(inst,
2448                                     reg_types_.Integer(),
2449                                     reg_types_.Integer(),
2450                                     reg_types_.Integer(),
2451                                     false);
2452      break;
2453    case Instruction::AND_INT_2ADDR:
2454    case Instruction::OR_INT_2ADDR:
2455    case Instruction::XOR_INT_2ADDR:
2456      work_line_->CheckBinaryOp2addr(inst,
2457                                     reg_types_.Integer(),
2458                                     reg_types_.Integer(),
2459                                     reg_types_.Integer(),
2460                                     true);
2461      break;
2462    case Instruction::DIV_INT_2ADDR:
2463      work_line_->CheckBinaryOp2addr(inst,
2464                                     reg_types_.Integer(),
2465                                     reg_types_.Integer(),
2466                                     reg_types_.Integer(),
2467                                     false);
2468      break;
2469    case Instruction::ADD_LONG_2ADDR:
2470    case Instruction::SUB_LONG_2ADDR:
2471    case Instruction::MUL_LONG_2ADDR:
2472    case Instruction::DIV_LONG_2ADDR:
2473    case Instruction::REM_LONG_2ADDR:
2474    case Instruction::AND_LONG_2ADDR:
2475    case Instruction::OR_LONG_2ADDR:
2476    case Instruction::XOR_LONG_2ADDR:
2477      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2478                                         reg_types_.LongLo(), reg_types_.LongHi(),
2479                                         reg_types_.LongLo(), reg_types_.LongHi());
2480      break;
2481    case Instruction::SHL_LONG_2ADDR:
2482    case Instruction::SHR_LONG_2ADDR:
2483    case Instruction::USHR_LONG_2ADDR:
2484      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2485                                              reg_types_.Integer());
2486      break;
2487    case Instruction::ADD_FLOAT_2ADDR:
2488    case Instruction::SUB_FLOAT_2ADDR:
2489    case Instruction::MUL_FLOAT_2ADDR:
2490    case Instruction::DIV_FLOAT_2ADDR:
2491    case Instruction::REM_FLOAT_2ADDR:
2492      work_line_->CheckBinaryOp2addr(inst,
2493                                     reg_types_.Float(),
2494                                     reg_types_.Float(),
2495                                     reg_types_.Float(),
2496                                     false);
2497      break;
2498    case Instruction::ADD_DOUBLE_2ADDR:
2499    case Instruction::SUB_DOUBLE_2ADDR:
2500    case Instruction::MUL_DOUBLE_2ADDR:
2501    case Instruction::DIV_DOUBLE_2ADDR:
2502    case Instruction::REM_DOUBLE_2ADDR:
2503      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2504                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2505                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2506      break;
2507    case Instruction::ADD_INT_LIT16:
2508    case Instruction::RSUB_INT:
2509    case Instruction::MUL_INT_LIT16:
2510    case Instruction::DIV_INT_LIT16:
2511    case Instruction::REM_INT_LIT16:
2512      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2513      break;
2514    case Instruction::AND_INT_LIT16:
2515    case Instruction::OR_INT_LIT16:
2516    case Instruction::XOR_INT_LIT16:
2517      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2518      break;
2519    case Instruction::ADD_INT_LIT8:
2520    case Instruction::RSUB_INT_LIT8:
2521    case Instruction::MUL_INT_LIT8:
2522    case Instruction::DIV_INT_LIT8:
2523    case Instruction::REM_INT_LIT8:
2524    case Instruction::SHL_INT_LIT8:
2525    case Instruction::SHR_INT_LIT8:
2526    case Instruction::USHR_INT_LIT8:
2527      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2528      break;
2529    case Instruction::AND_INT_LIT8:
2530    case Instruction::OR_INT_LIT8:
2531    case Instruction::XOR_INT_LIT8:
2532      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2533      break;
2534
2535    // Special instructions.
2536    case Instruction::RETURN_VOID_BARRIER:
2537      DCHECK(Runtime::Current()->IsStarted()) << PrettyMethod(dex_method_idx_, *dex_file_);
2538      if (!IsConstructor() || IsStatic()) {
2539          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2540      }
2541      break;
2542    // Note: the following instructions encode offsets derived from class linking.
2543    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2544    // meaning if the class linking and resolution were successful.
2545    case Instruction::IGET_QUICK:
2546      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2547      break;
2548    case Instruction::IGET_WIDE_QUICK:
2549      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2550      break;
2551    case Instruction::IGET_OBJECT_QUICK:
2552      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2553      break;
2554    case Instruction::IPUT_QUICK:
2555      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2556      break;
2557    case Instruction::IPUT_WIDE_QUICK:
2558      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2559      break;
2560    case Instruction::IPUT_OBJECT_QUICK:
2561      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2562      break;
2563    case Instruction::INVOKE_VIRTUAL_QUICK:
2564    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2565      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2566      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2567      if (called_method != NULL) {
2568        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2569        const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2570        if (!return_type.IsLowHalf()) {
2571          work_line_->SetResultRegisterType(return_type);
2572        } else {
2573          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2574        }
2575        just_set_result = true;
2576      }
2577      break;
2578    }
2579
2580    /* These should never appear during verification. */
2581    case Instruction::UNUSED_3E:
2582    case Instruction::UNUSED_3F:
2583    case Instruction::UNUSED_40:
2584    case Instruction::UNUSED_41:
2585    case Instruction::UNUSED_42:
2586    case Instruction::UNUSED_43:
2587    case Instruction::UNUSED_79:
2588    case Instruction::UNUSED_7A:
2589    case Instruction::UNUSED_EB:
2590    case Instruction::UNUSED_EC:
2591    case Instruction::UNUSED_ED:
2592    case Instruction::UNUSED_EE:
2593    case Instruction::UNUSED_EF:
2594    case Instruction::UNUSED_F0:
2595    case Instruction::UNUSED_F1:
2596    case Instruction::UNUSED_F2:
2597    case Instruction::UNUSED_F3:
2598    case Instruction::UNUSED_F4:
2599    case Instruction::UNUSED_F5:
2600    case Instruction::UNUSED_F6:
2601    case Instruction::UNUSED_F7:
2602    case Instruction::UNUSED_F8:
2603    case Instruction::UNUSED_F9:
2604    case Instruction::UNUSED_FA:
2605    case Instruction::UNUSED_FB:
2606    case Instruction::UNUSED_FC:
2607    case Instruction::UNUSED_FD:
2608    case Instruction::UNUSED_FE:
2609    case Instruction::UNUSED_FF:
2610      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2611      break;
2612
2613    /*
2614     * DO NOT add a "default" clause here. Without it the compiler will
2615     * complain if an instruction is missing (which is desirable).
2616     */
2617  }  // end - switch (dec_insn.opcode)
2618
2619  if (have_pending_hard_failure_) {
2620    if (Runtime::Current()->IsCompiler()) {
2621      /* When compiling, check that the last failure is a hard failure */
2622      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2623    }
2624    /* immediate failure, reject class */
2625    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2626    return false;
2627  } else if (have_pending_runtime_throw_failure_) {
2628    /* checking interpreter will throw, mark following code as unreachable */
2629    opcode_flags = Instruction::kThrow;
2630  }
2631  /*
2632   * If we didn't just set the result register, clear it out. This ensures that you can only use
2633   * "move-result" immediately after the result is set. (We could check this statically, but it's
2634   * not expensive and it makes our debugging output cleaner.)
2635   */
2636  if (!just_set_result) {
2637    work_line_->SetResultTypeToUnknown();
2638  }
2639
2640
2641
2642  /*
2643   * Handle "branch". Tag the branch target.
2644   *
2645   * NOTE: instructions like Instruction::EQZ provide information about the
2646   * state of the register when the branch is taken or not taken. For example,
2647   * somebody could get a reference field, check it for zero, and if the
2648   * branch is taken immediately store that register in a boolean field
2649   * since the value is known to be zero. We do not currently account for
2650   * that, and will reject the code.
2651   *
2652   * TODO: avoid re-fetching the branch target
2653   */
2654  if ((opcode_flags & Instruction::kBranch) != 0) {
2655    bool isConditional, selfOkay;
2656    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2657      /* should never happen after static verification */
2658      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2659      return false;
2660    }
2661    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2662    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2663      return false;
2664    }
2665    /* update branch target, set "changed" if appropriate */
2666    if (NULL != branch_line.get()) {
2667      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2668        return false;
2669      }
2670    } else {
2671      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2672        return false;
2673      }
2674    }
2675  }
2676
2677  /*
2678   * Handle "switch". Tag all possible branch targets.
2679   *
2680   * We've already verified that the table is structurally sound, so we
2681   * just need to walk through and tag the targets.
2682   */
2683  if ((opcode_flags & Instruction::kSwitch) != 0) {
2684    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2685    const uint16_t* switch_insns = insns + offset_to_switch;
2686    int switch_count = switch_insns[1];
2687    int offset_to_targets, targ;
2688
2689    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2690      /* 0 = sig, 1 = count, 2/3 = first key */
2691      offset_to_targets = 4;
2692    } else {
2693      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2694      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2695      offset_to_targets = 2 + 2 * switch_count;
2696    }
2697
2698    /* verify each switch target */
2699    for (targ = 0; targ < switch_count; targ++) {
2700      int offset;
2701      uint32_t abs_offset;
2702
2703      /* offsets are 32-bit, and only partly endian-swapped */
2704      offset = switch_insns[offset_to_targets + targ * 2] |
2705         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2706      abs_offset = work_insn_idx_ + offset;
2707      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2708      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2709        return false;
2710      }
2711      if (!UpdateRegisters(abs_offset, work_line_.get()))
2712        return false;
2713    }
2714  }
2715
2716  /*
2717   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2718   * "try" block when they throw, control transfers out of the method.)
2719   */
2720  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2721    bool within_catch_all = false;
2722    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2723
2724    for (; iterator.HasNext(); iterator.Next()) {
2725      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2726        within_catch_all = true;
2727      }
2728      /*
2729       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2730       * "work_regs", because at runtime the exception will be thrown before the instruction
2731       * modifies any registers.
2732       */
2733      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2734        return false;
2735      }
2736    }
2737
2738    /*
2739     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2740     * instruction. This does apply to monitor-exit because of async exception handling.
2741     */
2742    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2743      /*
2744       * The state in work_line reflects the post-execution state. If the current instruction is a
2745       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2746       * it will do so before grabbing the lock).
2747       */
2748      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2749        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2750            << "expected to be within a catch-all for an instruction where a monitor is held";
2751        return false;
2752      }
2753    }
2754  }
2755
2756  /* Handle "continue". Tag the next consecutive instruction.
2757   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2758   *        because it changes work_line_ when performing peephole optimization
2759   *        and this change should not be used in those cases.
2760   */
2761  if ((opcode_flags & Instruction::kContinue) != 0) {
2762    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2763    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2764      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2765      return false;
2766    }
2767    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2768    // next instruction isn't one.
2769    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2770      return false;
2771    }
2772    if (NULL != fallthrough_line.get()) {
2773      // Make workline consistent with fallthrough computed from peephole optimization.
2774      work_line_->CopyFromLine(fallthrough_line.get());
2775    }
2776    if (insn_flags_[next_insn_idx].IsReturn()) {
2777      // For returns we only care about the operand to the return, all other registers are dead.
2778      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2779      Instruction::Code opcode = ret_inst->Opcode();
2780      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2781        work_line_->MarkAllRegistersAsConflicts();
2782      } else {
2783        if (opcode == Instruction::RETURN_WIDE) {
2784          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2785        } else {
2786          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2787        }
2788      }
2789    }
2790    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2791    if (next_line != NULL) {
2792      // Merge registers into what we have for the next instruction,
2793      // and set the "changed" flag if needed.
2794      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2795        return false;
2796      }
2797    } else {
2798      /*
2799       * We're not recording register data for the next instruction, so we don't know what the
2800       * prior state was. We have to assume that something has changed and re-evaluate it.
2801       */
2802      insn_flags_[next_insn_idx].SetChanged();
2803    }
2804  }
2805
2806  /* If we're returning from the method, make sure monitor stack is empty. */
2807  if ((opcode_flags & Instruction::kReturn) != 0) {
2808    if (!work_line_->VerifyMonitorStackEmpty()) {
2809      return false;
2810    }
2811  }
2812
2813  /*
2814   * Update start_guess. Advance to the next instruction of that's
2815   * possible, otherwise use the branch target if one was found. If
2816   * neither of those exists we're in a return or throw; leave start_guess
2817   * alone and let the caller sort it out.
2818   */
2819  if ((opcode_flags & Instruction::kContinue) != 0) {
2820    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2821  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2822    /* we're still okay if branch_target is zero */
2823    *start_guess = work_insn_idx_ + branch_target;
2824  }
2825
2826  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2827  DCHECK(insn_flags_[*start_guess].IsOpcode());
2828
2829  return true;
2830}  // NOLINT(readability/fn_size)
2831
2832const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2833  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2834  const RegType& referrer = GetDeclaringClass();
2835  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2836  const RegType& result =
2837      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2838                                           klass->CannotBeAssignedFromOtherTypes())
2839                    : reg_types_.FromDescriptor(class_loader_, descriptor, false);
2840  if (result.IsConflict()) {
2841    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2842        << "' in " << referrer;
2843    return result;
2844  }
2845  if (klass == NULL && !result.IsUnresolvedTypes()) {
2846    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2847  }
2848  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2849  // check at runtime if access is allowed and so pass here. If result is
2850  // primitive, skip the access check.
2851  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2852      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2853    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2854                                    << referrer << "' -> '" << result << "'";
2855  }
2856  return result;
2857}
2858
2859const RegType& MethodVerifier::GetCaughtExceptionType() {
2860  const RegType* common_super = NULL;
2861  if (code_item_->tries_size_ != 0) {
2862    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2863    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2864    for (uint32_t i = 0; i < handlers_size; i++) {
2865      CatchHandlerIterator iterator(handlers_ptr);
2866      for (; iterator.HasNext(); iterator.Next()) {
2867        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2868          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2869            common_super = &reg_types_.JavaLangThrowable(false);
2870          } else {
2871            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2872            if (common_super == NULL) {
2873              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2874              // as that is caught at runtime
2875              common_super = &exception;
2876            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2877              // We don't know enough about the type and the common path merge will result in
2878              // Conflict. Fail here knowing the correct thing can be done at runtime.
2879              Fail(exception.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
2880                  VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2881              return reg_types_.Conflict();
2882            } else if (common_super->Equals(exception)) {
2883              // odd case, but nothing to do
2884            } else {
2885              common_super = &common_super->Merge(exception, &reg_types_);
2886              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2887            }
2888          }
2889        }
2890      }
2891      handlers_ptr = iterator.EndDataPointer();
2892    }
2893  }
2894  if (common_super == NULL) {
2895    /* no catch blocks, or no catches with classes we can find */
2896    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2897    return reg_types_.Conflict();
2898  }
2899  return *common_super;
2900}
2901
2902mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2903                                                                    MethodType method_type) {
2904  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2905  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2906  if (klass_type.IsConflict()) {
2907    std::string append(" in attempt to access method ");
2908    append += dex_file_->GetMethodName(method_id);
2909    AppendToLastFailMessage(append);
2910    return NULL;
2911  }
2912  if (klass_type.IsUnresolvedTypes()) {
2913    return NULL;  // Can't resolve Class so no more to do here
2914  }
2915  mirror::Class* klass = klass_type.GetClass();
2916  const RegType& referrer = GetDeclaringClass();
2917  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
2918  if (res_method == NULL) {
2919    const char* name = dex_file_->GetMethodName(method_id);
2920    std::string signature(dex_file_->CreateMethodSignature(method_id.proto_idx_, NULL));
2921
2922    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2923      res_method = klass->FindDirectMethod(name, signature);
2924    } else if (method_type == METHOD_INTERFACE) {
2925      res_method = klass->FindInterfaceMethod(name, signature);
2926    } else {
2927      res_method = klass->FindVirtualMethod(name, signature);
2928    }
2929    if (res_method != NULL) {
2930      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
2931    } else {
2932      // If a virtual or interface method wasn't found with the expected type, look in
2933      // the direct methods. This can happen when the wrong invoke type is used or when
2934      // a class has changed, and will be flagged as an error in later checks.
2935      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2936        res_method = klass->FindDirectMethod(name, signature);
2937      }
2938      if (res_method == NULL) {
2939        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2940                                     << PrettyDescriptor(klass) << "." << name
2941                                     << " " << signature;
2942        return NULL;
2943      }
2944    }
2945  }
2946  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2947  // enforce them here.
2948  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2949    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2950                                      << PrettyMethod(res_method);
2951    return NULL;
2952  }
2953  // Disallow any calls to class initializers.
2954  if (MethodHelper(res_method).IsClassInitializer()) {
2955    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2956                                      << PrettyMethod(res_method);
2957    return NULL;
2958  }
2959  // Check if access is allowed.
2960  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2961    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2962                                     << " from " << referrer << ")";
2963    return res_method;
2964  }
2965  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2966  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2967    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2968                                      << PrettyMethod(res_method);
2969    return NULL;
2970  }
2971  // Check that interface methods match interface classes.
2972  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2973    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2974                                    << " is in an interface class " << PrettyClass(klass);
2975    return NULL;
2976  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2977    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2978                                    << " is in a non-interface class " << PrettyClass(klass);
2979    return NULL;
2980  }
2981  // See if the method type implied by the invoke instruction matches the access flags for the
2982  // target method.
2983  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2984      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2985      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2986      ) {
2987    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2988                                       " type of " << PrettyMethod(res_method);
2989    return NULL;
2990  }
2991  return res_method;
2992}
2993
2994mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2995                                                             MethodType method_type,
2996                                                             bool is_range,
2997                                                             bool is_super) {
2998  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
2999  // we're making.
3000  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3001  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3002  if (res_method == NULL) {  // error or class is unresolved
3003    return NULL;
3004  }
3005
3006  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3007  // has a vtable entry for the target method.
3008  if (is_super) {
3009    DCHECK(method_type == METHOD_VIRTUAL);
3010    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3011    if (super.IsUnresolvedTypes()) {
3012      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3013                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3014                                   << " to super " << PrettyMethod(res_method);
3015      return NULL;
3016    }
3017    mirror::Class* super_klass = super.GetClass();
3018    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3019      MethodHelper mh(res_method);
3020      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3021                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3022                                   << " to super " << super
3023                                   << "." << mh.GetName()
3024                                   << mh.GetSignature();
3025      return NULL;
3026    }
3027  }
3028  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3029  // match the call to the signature. Also, we might be calling through an abstract method
3030  // definition (which doesn't have register count values).
3031  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3032  /* caught by static verifier */
3033  DCHECK(is_range || expected_args <= 5);
3034  if (expected_args > code_item_->outs_size_) {
3035    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3036        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3037    return NULL;
3038  }
3039
3040  /*
3041   * Check the "this" argument, which must be an instance of the class that declared the method.
3042   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3043   * rigorous check here (which is okay since we have to do it at runtime).
3044   */
3045  size_t actual_args = 0;
3046  if (!res_method->IsStatic()) {
3047    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3048    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3049      return NULL;
3050    }
3051    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3052      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3053      return NULL;
3054    }
3055    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3056      mirror::Class* klass = res_method->GetDeclaringClass();
3057      const RegType& res_method_class =
3058          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3059                               klass->CannotBeAssignedFromOtherTypes());
3060      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3061        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3062            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3063            << "' not instance of '" << res_method_class << "'";
3064        return NULL;
3065      }
3066    }
3067    actual_args++;
3068  }
3069  /*
3070   * Process the target method's signature. This signature may or may not
3071   * have been verified, so we can't assume it's properly formed.
3072   */
3073  MethodHelper mh(res_method);
3074  const DexFile::TypeList* params = mh.GetParameterTypeList();
3075  size_t params_size = params == NULL ? 0 : params->Size();
3076  uint32_t arg[5];
3077  if (!is_range) {
3078    inst->GetArgs(arg);
3079  }
3080  for (size_t param_index = 0; param_index < params_size; param_index++) {
3081    if (actual_args >= expected_args) {
3082      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3083          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3084          << " (where longs/doubles count twice).";
3085      return NULL;
3086    }
3087    const char* descriptor =
3088        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3089    if (descriptor == NULL) {
3090      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3091          << " missing signature component";
3092      return NULL;
3093    }
3094    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3095    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3096    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3097      return res_method;
3098    }
3099    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3100  }
3101  if (actual_args != expected_args) {
3102    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3103        << " expected " << expected_args << " arguments, found " << actual_args;
3104    return NULL;
3105  } else {
3106    return res_method;
3107  }
3108}
3109
3110mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3111                                                              RegisterLine* reg_line,
3112                                                              bool is_range) {
3113  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3114         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3115  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3116  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3117    return NULL;
3118  }
3119  mirror::Class* this_class = NULL;
3120  if (!actual_arg_type.IsUnresolvedTypes()) {
3121    this_class = actual_arg_type.GetClass();
3122  } else {
3123    const std::string& descriptor(actual_arg_type.GetDescriptor());
3124    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3125    this_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3126    if (this_class == NULL) {
3127      Thread::Current()->ClearException();
3128      // Look for a system class
3129      this_class = class_linker->FindClass(descriptor.c_str(), NULL);
3130    }
3131  }
3132  if (this_class == NULL) {
3133    return NULL;
3134  }
3135  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3136  CHECK(vtable != NULL);
3137  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3138  CHECK(vtable_index < vtable->GetLength());
3139  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3140  CHECK(!Thread::Current()->IsExceptionPending());
3141  return res_method;
3142}
3143
3144mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3145                                                                     bool is_range) {
3146  DCHECK(Runtime::Current()->IsStarted());
3147  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3148                                                             is_range);
3149  if (res_method == NULL) {
3150    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3151    return NULL;
3152  }
3153  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3154
3155  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3156  // match the call to the signature. Also, we might be calling through an abstract method
3157  // definition (which doesn't have register count values).
3158  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3159  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3160    return NULL;
3161  }
3162  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3163  /* caught by static verifier */
3164  DCHECK(is_range || expected_args <= 5);
3165  if (expected_args > code_item_->outs_size_) {
3166    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3167        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3168    return NULL;
3169  }
3170
3171  /*
3172   * Check the "this" argument, which must be an instance of the class that declared the method.
3173   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3174   * rigorous check here (which is okay since we have to do it at runtime).
3175   */
3176  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3177    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3178    return NULL;
3179  }
3180  if (!actual_arg_type.IsZero()) {
3181    mirror::Class* klass = res_method->GetDeclaringClass();
3182    const RegType& res_method_class =
3183        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3184                             klass->CannotBeAssignedFromOtherTypes());
3185    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3186      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3187          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3188          << "' not instance of '" << res_method_class << "'";
3189      return NULL;
3190    }
3191  }
3192  /*
3193   * Process the target method's signature. This signature may or may not
3194   * have been verified, so we can't assume it's properly formed.
3195   */
3196  MethodHelper mh(res_method);
3197  const DexFile::TypeList* params = mh.GetParameterTypeList();
3198  size_t params_size = params == NULL ? 0 : params->Size();
3199  uint32_t arg[5];
3200  if (!is_range) {
3201    inst->GetArgs(arg);
3202  }
3203  size_t actual_args = 1;
3204  for (size_t param_index = 0; param_index < params_size; param_index++) {
3205    if (actual_args >= expected_args) {
3206      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3207                                        << "'. Expected " << expected_args
3208                                         << " arguments, processing argument " << actual_args
3209                                        << " (where longs/doubles count twice).";
3210      return NULL;
3211    }
3212    const char* descriptor =
3213        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3214    if (descriptor == NULL) {
3215      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3216                                        << " missing signature component";
3217      return NULL;
3218    }
3219    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3220    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3221    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3222      return res_method;
3223    }
3224    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3225  }
3226  if (actual_args != expected_args) {
3227    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3228              << " expected " << expected_args << " arguments, found " << actual_args;
3229    return NULL;
3230  } else {
3231    return res_method;
3232  }
3233}
3234
3235void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3236  uint32_t type_idx;
3237  if (!is_filled) {
3238    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3239    type_idx = inst->VRegC_22c();
3240  } else if (!is_range) {
3241    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3242    type_idx = inst->VRegB_35c();
3243  } else {
3244    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3245    type_idx = inst->VRegB_3rc();
3246  }
3247  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3248  if (res_type.IsConflict()) {  // bad class
3249    DCHECK_NE(failures_.size(), 0U);
3250  } else {
3251    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3252    if (!res_type.IsArrayTypes()) {
3253      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3254    } else if (!is_filled) {
3255      /* make sure "size" register is valid type */
3256      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3257      /* set register type to array class */
3258      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3259      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3260    } else {
3261      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3262      // the list and fail. It's legal, if silly, for arg_count to be zero.
3263      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_);
3264      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3265      uint32_t arg[5];
3266      if (!is_range) {
3267        inst->GetArgs(arg);
3268      }
3269      for (size_t ui = 0; ui < arg_count; ui++) {
3270        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3271        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3272          work_line_->SetResultRegisterType(reg_types_.Conflict());
3273          return;
3274        }
3275      }
3276      // filled-array result goes into "result" register
3277      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3278      work_line_->SetResultRegisterType(precise_type);
3279    }
3280  }
3281}
3282
3283void MethodVerifier::VerifyAGet(const Instruction* inst,
3284                                const RegType& insn_type, bool is_primitive) {
3285  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3286  if (!index_type.IsArrayIndexTypes()) {
3287    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3288  } else {
3289    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3290    if (array_type.IsZero()) {
3291      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3292      // instruction type. TODO: have a proper notion of bottom here.
3293      if (!is_primitive || insn_type.IsCategory1Types()) {
3294        // Reference or category 1
3295        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3296      } else {
3297        // Category 2
3298        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3299                                        reg_types_.FromCat2ConstHi(0, false));
3300      }
3301    } else if (!array_type.IsArrayTypes()) {
3302      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3303    } else {
3304      /* verify the class */
3305      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3306      if (!component_type.IsReferenceTypes() && !is_primitive) {
3307        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3308            << " source for aget-object";
3309      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3310        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3311            << " source for category 1 aget";
3312      } else if (is_primitive && !insn_type.Equals(component_type) &&
3313                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3314                 (insn_type.IsLong() && component_type.IsDouble()))) {
3315        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3316            << " incompatible with aget of type " << insn_type;
3317      } else {
3318        // Use knowledge of the field type which is stronger than the type inferred from the
3319        // instruction, which can't differentiate object types and ints from floats, longs from
3320        // doubles.
3321        if (!component_type.IsLowHalf()) {
3322          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3323        } else {
3324          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3325                                          component_type.HighHalf(&reg_types_));
3326        }
3327      }
3328    }
3329  }
3330}
3331
3332void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3333                                        const uint32_t vregA) {
3334  // Primitive assignability rules are weaker than regular assignability rules.
3335  bool instruction_compatible;
3336  bool value_compatible;
3337  const RegType& value_type = work_line_->GetRegisterType(vregA);
3338  if (target_type.IsIntegralTypes()) {
3339    instruction_compatible = target_type.Equals(insn_type);
3340    value_compatible = value_type.IsIntegralTypes();
3341  } else if (target_type.IsFloat()) {
3342    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3343    value_compatible = value_type.IsFloatTypes();
3344  } else if (target_type.IsLong()) {
3345    instruction_compatible = insn_type.IsLong();
3346    value_compatible = value_type.IsLongTypes();
3347  } else if (target_type.IsDouble()) {
3348    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3349    value_compatible = value_type.IsDoubleTypes();
3350  } else {
3351    instruction_compatible = false;  // reference with primitive store
3352    value_compatible = false;  // unused
3353  }
3354  if (!instruction_compatible) {
3355    // This is a global failure rather than a class change failure as the instructions and
3356    // the descriptors for the type should have been consistent within the same file at
3357    // compile time.
3358    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3359        << "' but expected type '" << target_type << "'";
3360    return;
3361  }
3362  if (!value_compatible) {
3363    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3364        << " of type " << value_type << " but expected " << target_type << " for put";
3365    return;
3366  }
3367}
3368
3369void MethodVerifier::VerifyAPut(const Instruction* inst,
3370                             const RegType& insn_type, bool is_primitive) {
3371  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3372  if (!index_type.IsArrayIndexTypes()) {
3373    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3374  } else {
3375    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3376    if (array_type.IsZero()) {
3377      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3378      // instruction type.
3379    } else if (!array_type.IsArrayTypes()) {
3380      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3381    } else {
3382      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3383      const uint32_t vregA = inst->VRegA_23x();
3384      if (is_primitive) {
3385        VerifyPrimitivePut(component_type, insn_type, vregA);
3386      } else {
3387        if (!component_type.IsReferenceTypes()) {
3388          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3389              << " source for aput-object";
3390        } else {
3391          // The instruction agrees with the type of array, confirm the value to be stored does too
3392          // Note: we use the instruction type (rather than the component type) for aput-object as
3393          // incompatible classes will be caught at runtime as an array store exception
3394          work_line_->VerifyRegisterType(vregA, insn_type);
3395        }
3396      }
3397    }
3398  }
3399}
3400
3401mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3402  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3403  // Check access to class
3404  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3405  if (klass_type.IsConflict()) {  // bad class
3406    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3407                                         field_idx, dex_file_->GetFieldName(field_id),
3408                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3409    return NULL;
3410  }
3411  if (klass_type.IsUnresolvedTypes()) {
3412    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3413  }
3414  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3415                                                                               field_idx,
3416                                                                               dex_cache_,
3417                                                                               class_loader_);
3418  if (field == NULL) {
3419    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3420              << dex_file_->GetFieldName(field_id) << ") in "
3421              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3422    DCHECK(Thread::Current()->IsExceptionPending());
3423    Thread::Current()->ClearException();
3424    return NULL;
3425  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3426                                                  field->GetAccessFlags())) {
3427    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3428                                    << " from " << GetDeclaringClass();
3429    return NULL;
3430  } else if (!field->IsStatic()) {
3431    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3432    return NULL;
3433  } else {
3434    return field;
3435  }
3436}
3437
3438mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3439  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3440  // Check access to class
3441  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3442  if (klass_type.IsConflict()) {
3443    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3444                                         field_idx, dex_file_->GetFieldName(field_id),
3445                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3446    return NULL;
3447  }
3448  if (klass_type.IsUnresolvedTypes()) {
3449    return NULL;  // Can't resolve Class so no more to do here
3450  }
3451  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3452                                                                               field_idx,
3453                                                                               dex_cache_,
3454                                                                               class_loader_);
3455  if (field == NULL) {
3456    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3457              << dex_file_->GetFieldName(field_id) << ") in "
3458              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3459    DCHECK(Thread::Current()->IsExceptionPending());
3460    Thread::Current()->ClearException();
3461    return NULL;
3462  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3463                                                  field->GetAccessFlags())) {
3464    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3465                                    << " from " << GetDeclaringClass();
3466    return NULL;
3467  } else if (field->IsStatic()) {
3468    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3469                                    << " to not be static";
3470    return NULL;
3471  } else if (obj_type.IsZero()) {
3472    // Cannot infer and check type, however, access will cause null pointer exception
3473    return field;
3474  } else {
3475    mirror::Class* klass = field->GetDeclaringClass();
3476    const RegType& field_klass =
3477        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3478                             klass, klass->CannotBeAssignedFromOtherTypes());
3479    if (obj_type.IsUninitializedTypes() &&
3480        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3481            !field_klass.Equals(GetDeclaringClass()))) {
3482      // Field accesses through uninitialized references are only allowable for constructors where
3483      // the field is declared in this class
3484      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3485                                        << " of a not fully initialized object within the context"
3486                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3487      return NULL;
3488    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3489      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3490      // of C1. For resolution to occur the declared class of the field must be compatible with
3491      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3492      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3493                                  << " from object of type " << obj_type;
3494      return NULL;
3495    } else {
3496      return field;
3497    }
3498  }
3499}
3500
3501void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3502                                 bool is_primitive, bool is_static) {
3503  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3504  mirror::ArtField* field;
3505  if (is_static) {
3506    field = GetStaticField(field_idx);
3507  } else {
3508    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3509    field = GetInstanceField(object_type, field_idx);
3510  }
3511  const RegType* field_type = nullptr;
3512  if (field != NULL) {
3513    FieldHelper fh(field);
3514    mirror::Class* field_type_class = fh.GetType(false);
3515    if (field_type_class != nullptr) {
3516      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3517                                         field_type_class->CannotBeAssignedFromOtherTypes());
3518    }
3519  }
3520  if (field_type == nullptr) {
3521    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3522    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3523    mirror::ClassLoader* loader = class_loader_;
3524    field_type = &reg_types_.FromDescriptor(loader, descriptor, false);
3525  }
3526  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3527  if (is_primitive) {
3528    if (field_type->Equals(insn_type) ||
3529        (field_type->IsFloat() && insn_type.IsInteger()) ||
3530        (field_type->IsDouble() && insn_type.IsLong())) {
3531      // expected that read is of the correct primitive type or that int reads are reading
3532      // floats or long reads are reading doubles
3533    } else {
3534      // This is a global failure rather than a class change failure as the instructions and
3535      // the descriptors for the type should have been consistent within the same file at
3536      // compile time
3537      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3538                                        << " to be of type '" << insn_type
3539                                        << "' but found type '" << field_type << "' in get";
3540      return;
3541    }
3542  } else {
3543    if (!insn_type.IsAssignableFrom(*field_type)) {
3544      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3545                                        << " to be compatible with type '" << insn_type
3546                                        << "' but found type '" << field_type
3547                                        << "' in get-object";
3548      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3549      return;
3550    }
3551  }
3552  if (!field_type->IsLowHalf()) {
3553    work_line_->SetRegisterType(vregA, *field_type);
3554  } else {
3555    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3556  }
3557}
3558
3559void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3560                                 bool is_primitive, bool is_static) {
3561  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3562  mirror::ArtField* field;
3563  if (is_static) {
3564    field = GetStaticField(field_idx);
3565  } else {
3566    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3567    field = GetInstanceField(object_type, field_idx);
3568  }
3569  const RegType* field_type = nullptr;
3570  if (field != NULL) {
3571    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3572      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3573                                      << " from other class " << GetDeclaringClass();
3574      return;
3575    }
3576    FieldHelper fh(field);
3577    mirror::Class* field_type_class = fh.GetType(false);
3578    if (field_type_class != nullptr) {
3579      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3580                                         field_type_class->CannotBeAssignedFromOtherTypes());
3581    }
3582  }
3583  if (field_type == nullptr) {
3584    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3585    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3586    mirror::ClassLoader* loader = class_loader_;
3587    field_type = &reg_types_.FromDescriptor(loader, descriptor, false);
3588  }
3589  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3590  if (is_primitive) {
3591    VerifyPrimitivePut(*field_type, insn_type, vregA);
3592  } else {
3593    if (!insn_type.IsAssignableFrom(*field_type)) {
3594      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3595                                        << " to be compatible with type '" << insn_type
3596                                        << "' but found type '" << field_type
3597                                        << "' in put-object";
3598      return;
3599    }
3600    work_line_->VerifyRegisterType(vregA, *field_type);
3601  }
3602}
3603
3604// Look for an instance field with this offset.
3605// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3606static mirror::ArtField* FindInstanceFieldWithOffset(const mirror::Class* klass,
3607                                                  uint32_t field_offset)
3608    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3609  const mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3610  if (instance_fields != NULL) {
3611    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3612      mirror::ArtField* field = instance_fields->Get(i);
3613      if (field->GetOffset().Uint32Value() == field_offset) {
3614        return field;
3615      }
3616    }
3617  }
3618  // We did not find field in class: look into superclass.
3619  if (klass->GetSuperClass() != NULL) {
3620    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3621  } else {
3622    return NULL;
3623  }
3624}
3625
3626// Returns the access field of a quick field access (iget/iput-quick) or NULL
3627// if it cannot be found.
3628mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3629                                                   RegisterLine* reg_line) {
3630  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3631         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3632         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3633         inst->Opcode() == Instruction::IPUT_QUICK ||
3634         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3635         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3636  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3637  mirror::Class* object_class = NULL;
3638  if (!object_type.IsUnresolvedTypes()) {
3639    object_class = object_type.GetClass();
3640  } else {
3641    // We need to resolve the class from its descriptor.
3642    const std::string& descriptor(object_type.GetDescriptor());
3643    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3644    object_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3645    if (object_class == NULL) {
3646      Thread::Current()->ClearException();
3647      // Look for a system class
3648      object_class = class_linker->FindClass(descriptor.c_str(), NULL);
3649    }
3650  }
3651  if (object_class == NULL) {
3652    // Failed to get the Class* from reg type.
3653    LOG(WARNING) << "Failed to get Class* from " << object_type;
3654    return NULL;
3655  }
3656  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3657  return FindInstanceFieldWithOffset(object_class, field_offset);
3658}
3659
3660void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3661                                     bool is_primitive) {
3662  DCHECK(Runtime::Current()->IsStarted());
3663  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3664  if (field == NULL) {
3665    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3666    return;
3667  }
3668  FieldHelper fh(field);
3669  mirror::Class* field_type_class = fh.GetType(false);
3670  const RegType* field_type;
3671  if (field_type_class != nullptr) {
3672    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3673                                       field_type_class->CannotBeAssignedFromOtherTypes());
3674  } else {
3675    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3676                                            fh.GetTypeDescriptor(), false);
3677  }
3678  const uint32_t vregA = inst->VRegA_22c();
3679  if (is_primitive) {
3680    if (field_type->Equals(insn_type) ||
3681        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3682        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3683      // expected that read is of the correct primitive type or that int reads are reading
3684      // floats or long reads are reading doubles
3685    } else {
3686      // This is a global failure rather than a class change failure as the instructions and
3687      // the descriptors for the type should have been consistent within the same file at
3688      // compile time
3689      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3690                                        << " to be of type '" << insn_type
3691                                        << "' but found type '" << field_type << "' in get";
3692      return;
3693    }
3694  } else {
3695    if (!insn_type.IsAssignableFrom(*field_type)) {
3696      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3697                                        << " to be compatible with type '" << insn_type
3698                                        << "' but found type '" << field_type
3699                                        << "' in get-object";
3700      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3701      return;
3702    }
3703  }
3704  if (!field_type->IsLowHalf()) {
3705    work_line_->SetRegisterType(vregA, *field_type);
3706  } else {
3707    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3708  }
3709}
3710
3711void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3712                                     bool is_primitive) {
3713  DCHECK(Runtime::Current()->IsStarted());
3714  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3715  if (field == NULL) {
3716    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3717    return;
3718  }
3719  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3720  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3721  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3722  if (field != NULL) {
3723    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3724      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3725                                      << " from other class " << GetDeclaringClass();
3726      return;
3727    }
3728  }
3729  const uint32_t vregA = inst->VRegA_22c();
3730  if (is_primitive) {
3731    // Primitive field assignability rules are weaker than regular assignability rules
3732    bool instruction_compatible;
3733    bool value_compatible;
3734    const RegType& value_type = work_line_->GetRegisterType(vregA);
3735    if (field_type.IsIntegralTypes()) {
3736      instruction_compatible = insn_type.IsIntegralTypes();
3737      value_compatible = value_type.IsIntegralTypes();
3738    } else if (field_type.IsFloat()) {
3739      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3740      value_compatible = value_type.IsFloatTypes();
3741    } else if (field_type.IsLong()) {
3742      instruction_compatible = insn_type.IsLong();
3743      value_compatible = value_type.IsLongTypes();
3744    } else if (field_type.IsDouble()) {
3745      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3746      value_compatible = value_type.IsDoubleTypes();
3747    } else {
3748      instruction_compatible = false;  // reference field with primitive store
3749      value_compatible = false;  // unused
3750    }
3751    if (!instruction_compatible) {
3752      // This is a global failure rather than a class change failure as the instructions and
3753      // the descriptors for the type should have been consistent within the same file at
3754      // compile time
3755      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3756                                        << " to be of type '" << insn_type
3757                                        << "' but found type '" << field_type
3758                                        << "' in put";
3759      return;
3760    }
3761    if (!value_compatible) {
3762      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3763          << " of type " << value_type
3764          << " but expected " << field_type
3765          << " for store to " << PrettyField(field) << " in put";
3766      return;
3767    }
3768  } else {
3769    if (!insn_type.IsAssignableFrom(field_type)) {
3770      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3771                                        << " to be compatible with type '" << insn_type
3772                                        << "' but found type '" << field_type
3773                                        << "' in put-object";
3774      return;
3775    }
3776    work_line_->VerifyRegisterType(vregA, field_type);
3777  }
3778}
3779
3780bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3781  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3782    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3783    return false;
3784  }
3785  return true;
3786}
3787
3788bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3789  bool changed = true;
3790  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3791  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3792    /*
3793     * We haven't processed this instruction before, and we haven't touched the registers here, so
3794     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3795     * only way a register can transition out of "unknown", so this is not just an optimization.)
3796     */
3797    if (!insn_flags_[next_insn].IsReturn()) {
3798      target_line->CopyFromLine(merge_line);
3799    } else {
3800      // Verify that the monitor stack is empty on return.
3801      if (!merge_line->VerifyMonitorStackEmpty()) {
3802        return false;
3803      }
3804      // For returns we only care about the operand to the return, all other registers are dead.
3805      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3806      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3807      Instruction::Code opcode = ret_inst->Opcode();
3808      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3809        target_line->MarkAllRegistersAsConflicts();
3810      } else {
3811        target_line->CopyFromLine(merge_line);
3812        if (opcode == Instruction::RETURN_WIDE) {
3813          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3814        } else {
3815          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3816        }
3817      }
3818    }
3819  } else {
3820    UniquePtr<RegisterLine> copy(gDebugVerify ?
3821                                 new RegisterLine(target_line->NumRegs(), this) :
3822                                 NULL);
3823    if (gDebugVerify) {
3824      copy->CopyFromLine(target_line);
3825    }
3826    changed = target_line->MergeRegisters(merge_line);
3827    if (have_pending_hard_failure_) {
3828      return false;
3829    }
3830    if (gDebugVerify && changed) {
3831      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3832                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3833                      << *copy.get() << "  MERGE\n"
3834                      << *merge_line << "  ==\n"
3835                      << *target_line << "\n";
3836    }
3837  }
3838  if (changed) {
3839    insn_flags_[next_insn].SetChanged();
3840  }
3841  return true;
3842}
3843
3844InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3845  return &insn_flags_[work_insn_idx_];
3846}
3847
3848const RegType& MethodVerifier::GetMethodReturnType() {
3849  if (return_type_ == nullptr) {
3850    if (mirror_method_ != NULL) {
3851      MethodHelper mh(mirror_method_);
3852      mirror::Class* return_type_class = mh.GetReturnType();
3853      if (return_type_class != nullptr) {
3854        return_type_ =&reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3855                                            return_type_class->CannotBeAssignedFromOtherTypes());
3856      } else {
3857        Thread* self = Thread::Current();
3858        DCHECK(self->IsExceptionPending());
3859        self->ClearException();
3860      }
3861    }
3862    if (return_type_ == nullptr) {
3863      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3864      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3865      uint16_t return_type_idx = proto_id.return_type_idx_;
3866      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3867      return_type_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3868    }
3869  }
3870  return *return_type_;
3871}
3872
3873const RegType& MethodVerifier::GetDeclaringClass() {
3874  if (declaring_class_ == NULL) {
3875    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3876    const char* descriptor
3877        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3878    if (mirror_method_ != NULL) {
3879      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3880      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3881                                               klass->CannotBeAssignedFromOtherTypes());
3882    } else {
3883      declaring_class_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3884    }
3885  }
3886  return *declaring_class_;
3887}
3888
3889void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3890                                       size_t* log2_max_gc_pc) {
3891  size_t local_gc_points = 0;
3892  size_t max_insn = 0;
3893  size_t max_ref_reg = -1;
3894  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3895    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3896      local_gc_points++;
3897      max_insn = i;
3898      RegisterLine* line = reg_table_.GetLine(i);
3899      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3900    }
3901  }
3902  *gc_points = local_gc_points;
3903  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3904  size_t i = 0;
3905  while ((1U << i) <= max_insn) {
3906    i++;
3907  }
3908  *log2_max_gc_pc = i;
3909}
3910
3911MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3912  /*
3913   * Walks over the method code and adds any cast instructions in which
3914   * the type cast is implicit to a set, which is used in the code generation
3915   * to elide these casts.
3916   */
3917  if (!failure_messages_.empty()) {
3918    return NULL;
3919  }
3920  UniquePtr<MethodSafeCastSet> mscs;
3921  const Instruction* inst = Instruction::At(code_item_->insns_);
3922  const Instruction* end = Instruction::At(code_item_->insns_ +
3923                                           code_item_->insns_size_in_code_units_);
3924
3925  for (; inst < end; inst = inst->Next()) {
3926    if (Instruction::CHECK_CAST != inst->Opcode()) {
3927      continue;
3928    }
3929    uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3930    RegisterLine* line = reg_table_.GetLine(dex_pc);
3931    const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3932    const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3933    if (cast_type.IsStrictlyAssignableFrom(reg_type)) {
3934      if (mscs.get() == NULL) {
3935        mscs.reset(new MethodSafeCastSet());
3936      }
3937      mscs->insert(dex_pc);
3938    }
3939  }
3940  return mscs.release();
3941}
3942
3943MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
3944  // It is risky to rely on reg_types for sharpening in cases of soft
3945  // verification, we might end up sharpening to a wrong implementation. Just abort.
3946  if (!failure_messages_.empty()) {
3947    return NULL;
3948  }
3949
3950  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
3951  const uint16_t* insns = code_item_->insns_;
3952  const Instruction* inst = Instruction::At(insns);
3953  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
3954
3955  for (; inst < end; inst = inst->Next()) {
3956    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
3957        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
3958    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
3959        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3960
3961    if (!is_interface && !is_virtual) {
3962      continue;
3963    }
3964    // Get reg type for register holding the reference to the object that will be dispatched upon.
3965    uint32_t dex_pc = inst->GetDexPc(insns);
3966    RegisterLine* line = reg_table_.GetLine(dex_pc);
3967    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
3968        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
3969    const RegType&
3970        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
3971
3972    if (!reg_type.HasClass()) {
3973      // We will compute devirtualization information only when we know the Class of the reg type.
3974      continue;
3975    }
3976    mirror::Class* reg_class = reg_type.GetClass();
3977    if (reg_class->IsInterface()) {
3978      // We can't devirtualize when the known type of the register is an interface.
3979      continue;
3980    }
3981    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
3982      // We can't devirtualize abstract classes except on arrays of abstract classes.
3983      continue;
3984    }
3985    mirror::ArtMethod* abstract_method =
3986        dex_cache_->GetResolvedMethod(is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
3987    if (abstract_method == NULL) {
3988      // If the method is not found in the cache this means that it was never found
3989      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
3990      continue;
3991    }
3992    // Find the concrete method.
3993    mirror::ArtMethod* concrete_method = NULL;
3994    if (is_interface) {
3995      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
3996    }
3997    if (is_virtual) {
3998      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
3999    }
4000    if (concrete_method == NULL || concrete_method->IsAbstract()) {
4001      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
4002      continue;
4003    }
4004    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
4005        concrete_method->GetDeclaringClass()->IsFinal()) {
4006      // If we knew exactly the class being dispatched upon, or if the target method cannot be
4007      // overridden record the target to be used in the compiler driver.
4008      if (pc_to_concrete_method_map.get() == NULL) {
4009        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
4010      }
4011      MethodReference concrete_ref(
4012          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
4013          concrete_method->GetDexMethodIndex());
4014      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
4015    }
4016  }
4017  return pc_to_concrete_method_map.release();
4018}
4019
4020const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
4021  size_t num_entries, ref_bitmap_bits, pc_bits;
4022  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
4023  // There's a single byte to encode the size of each bitmap
4024  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
4025    // TODO: either a better GC map format or per method failures
4026    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4027       << ref_bitmap_bits << " registers";
4028    return NULL;
4029  }
4030  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
4031  // There are 2 bytes to encode the number of entries
4032  if (num_entries >= 65536) {
4033    // TODO: either a better GC map format or per method failures
4034    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4035       << num_entries << " entries";
4036    return NULL;
4037  }
4038  size_t pc_bytes;
4039  RegisterMapFormat format;
4040  if (pc_bits <= 8) {
4041    format = kRegMapFormatCompact8;
4042    pc_bytes = 1;
4043  } else if (pc_bits <= 16) {
4044    format = kRegMapFormatCompact16;
4045    pc_bytes = 2;
4046  } else {
4047    // TODO: either a better GC map format or per method failures
4048    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4049       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
4050    return NULL;
4051  }
4052  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
4053  std::vector<uint8_t>* table = new std::vector<uint8_t>;
4054  if (table == NULL) {
4055    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
4056    return NULL;
4057  }
4058  table->reserve(table_size);
4059  // Write table header
4060  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
4061                             ~DexPcToReferenceMap::kRegMapFormatMask));
4062  table->push_back(ref_bitmap_bytes & 0xFF);
4063  table->push_back(num_entries & 0xFF);
4064  table->push_back((num_entries >> 8) & 0xFF);
4065  // Write table data
4066  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4067    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4068      table->push_back(i & 0xFF);
4069      if (pc_bytes == 2) {
4070        table->push_back((i >> 8) & 0xFF);
4071      }
4072      RegisterLine* line = reg_table_.GetLine(i);
4073      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
4074    }
4075  }
4076  DCHECK_EQ(table->size(), table_size);
4077  return table;
4078}
4079
4080void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
4081  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
4082  // that the table data is well formed and all references are marked (or not) in the bitmap
4083  DexPcToReferenceMap map(&data[0], data.size());
4084  size_t map_index = 0;
4085  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4086    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
4087    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4088      CHECK_LT(map_index, map.NumEntries());
4089      CHECK_EQ(map.GetDexPc(map_index), i);
4090      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
4091      map_index++;
4092      RegisterLine* line = reg_table_.GetLine(i);
4093      for (size_t j = 0; j < code_item_->registers_size_; j++) {
4094        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
4095          CHECK_LT(j / 8, map.RegWidth());
4096          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
4097        } else if ((j / 8) < map.RegWidth()) {
4098          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
4099        } else {
4100          // If a register doesn't contain a reference then the bitmap may be shorter than the line
4101        }
4102      }
4103    } else {
4104      CHECK(reg_bitmap == NULL);
4105    }
4106  }
4107}
4108
4109void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>& gc_map) {
4110  DCHECK(Runtime::Current()->IsCompiler());
4111  {
4112    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4113    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
4114    if (it != dex_gc_maps_->end()) {
4115      delete it->second;
4116      dex_gc_maps_->erase(it);
4117    }
4118    dex_gc_maps_->Put(ref, &gc_map);
4119  }
4120  DCHECK(GetDexGcMap(ref) != NULL);
4121}
4122
4123
4124void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
4125  DCHECK(Runtime::Current()->IsCompiler());
4126  WriterMutexLock mu(Thread::Current(), *safecast_map_lock_);
4127  SafeCastMap::iterator it = safecast_map_->find(ref);
4128  if (it != safecast_map_->end()) {
4129    delete it->second;
4130    safecast_map_->erase(it);
4131  }
4132  safecast_map_->Put(ref, cast_set);
4133  DCHECK(safecast_map_->find(ref) != safecast_map_->end());
4134}
4135
4136bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
4137  DCHECK(Runtime::Current()->IsCompiler());
4138  ReaderMutexLock mu(Thread::Current(), *safecast_map_lock_);
4139  SafeCastMap::const_iterator it = safecast_map_->find(ref);
4140  if (it == safecast_map_->end()) {
4141    return false;
4142  }
4143
4144  // Look up the cast address in the set of safe casts
4145  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
4146  return cast_it != it->second->end();
4147}
4148
4149const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
4150  DCHECK(Runtime::Current()->IsCompiler());
4151  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4152  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
4153  CHECK(it != dex_gc_maps_->end())
4154    << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
4155  CHECK(it->second != NULL);
4156  return it->second;
4157}
4158
4159void  MethodVerifier::SetDevirtMap(MethodReference ref,
4160                                   const PcToConcreteMethodMap* devirt_map) {
4161  DCHECK(Runtime::Current()->IsCompiler());
4162  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4163  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
4164  if (it != devirt_maps_->end()) {
4165    delete it->second;
4166    devirt_maps_->erase(it);
4167  }
4168
4169  devirt_maps_->Put(ref, devirt_map);
4170  DCHECK(devirt_maps_->find(ref) != devirt_maps_->end());
4171}
4172
4173const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
4174                                                                    uint32_t dex_pc) {
4175  DCHECK(Runtime::Current()->IsCompiler());
4176  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4177  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
4178  if (it == devirt_maps_->end()) {
4179    return NULL;
4180  }
4181
4182  // Look up the PC in the map, get the concrete method to execute and return its reference.
4183  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method
4184      = it->second->find(dex_pc);
4185  if (pc_to_concrete_method != it->second->end()) {
4186    return &(pc_to_concrete_method->second);
4187  } else {
4188    return NULL;
4189  }
4190}
4191
4192std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4193  RegisterLine* line = reg_table_.GetLine(dex_pc);
4194  std::vector<int32_t> result;
4195  for (size_t i = 0; i < line->NumRegs(); ++i) {
4196    const RegType& type = line->GetRegisterType(i);
4197    if (type.IsConstant()) {
4198      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4199      result.push_back(type.ConstantValue());
4200    } else if (type.IsConstantLo()) {
4201      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4202      result.push_back(type.ConstantValueLo());
4203    } else if (type.IsConstantHi()) {
4204      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4205      result.push_back(type.ConstantValueHi());
4206    } else if (type.IsIntegralTypes()) {
4207      result.push_back(kIntVReg);
4208      result.push_back(0);
4209    } else if (type.IsFloat()) {
4210      result.push_back(kFloatVReg);
4211      result.push_back(0);
4212    } else if (type.IsLong()) {
4213      result.push_back(kLongLoVReg);
4214      result.push_back(0);
4215      result.push_back(kLongHiVReg);
4216      result.push_back(0);
4217      ++i;
4218    } else if (type.IsDouble()) {
4219      result.push_back(kDoubleLoVReg);
4220      result.push_back(0);
4221      result.push_back(kDoubleHiVReg);
4222      result.push_back(0);
4223      ++i;
4224    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4225      result.push_back(kUndefined);
4226      result.push_back(0);
4227    } else {
4228      CHECK(type.IsNonZeroReferenceTypes());
4229      result.push_back(kReferenceVReg);
4230      result.push_back(0);
4231    }
4232  }
4233  return result;
4234}
4235
4236bool MethodVerifier::IsCandidateForCompilation(MethodReference& method_ref,
4237                                               const uint32_t access_flags) {
4238#ifdef ART_SEA_IR_MODE
4239    bool use_sea = Runtime::Current()->IsSeaIRMode();
4240    use_sea = use_sea && (std::string::npos != PrettyMethod(
4241                          method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci"));
4242    if (use_sea) return true;
4243#endif
4244  // Don't compile class initializers, ever.
4245  if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) {
4246    return false;
4247  }
4248  return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly);
4249}
4250
4251ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4252MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4253
4254ReaderWriterMutex* MethodVerifier::safecast_map_lock_ = NULL;
4255MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4256
4257ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4258MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4259
4260ReaderWriterMutex* MethodVerifier::rejected_classes_lock_ = NULL;
4261MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4262
4263void MethodVerifier::Init() {
4264  if (Runtime::Current()->IsCompiler()) {
4265    dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4266    Thread* self = Thread::Current();
4267    {
4268      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4269      dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4270    }
4271
4272    safecast_map_lock_ = new ReaderWriterMutex("verifier Cast Elision lock");
4273    {
4274      WriterMutexLock mu(self, *safecast_map_lock_);
4275      safecast_map_ = new MethodVerifier::SafeCastMap();
4276    }
4277
4278    devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4279
4280    {
4281      WriterMutexLock mu(self, *devirt_maps_lock_);
4282      devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4283    }
4284
4285    rejected_classes_lock_ = new ReaderWriterMutex("verifier rejected classes lock");
4286    {
4287      WriterMutexLock mu(self, *rejected_classes_lock_);
4288      rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4289    }
4290  }
4291  art::verifier::RegTypeCache::Init();
4292}
4293
4294void MethodVerifier::Shutdown() {
4295  if (Runtime::Current()->IsCompiler()) {
4296    Thread* self = Thread::Current();
4297    {
4298      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4299      STLDeleteValues(dex_gc_maps_);
4300      delete dex_gc_maps_;
4301      dex_gc_maps_ = NULL;
4302    }
4303    delete dex_gc_maps_lock_;
4304    dex_gc_maps_lock_ = NULL;
4305
4306    {
4307      WriterMutexLock mu(self, *safecast_map_lock_);
4308      STLDeleteValues(safecast_map_);
4309      delete safecast_map_;
4310      safecast_map_ = NULL;
4311    }
4312    delete safecast_map_lock_;
4313    safecast_map_lock_ = NULL;
4314
4315    {
4316      WriterMutexLock mu(self, *devirt_maps_lock_);
4317      STLDeleteValues(devirt_maps_);
4318      delete devirt_maps_;
4319      devirt_maps_ = NULL;
4320    }
4321    delete devirt_maps_lock_;
4322    devirt_maps_lock_ = NULL;
4323
4324    {
4325      WriterMutexLock mu(self, *rejected_classes_lock_);
4326      delete rejected_classes_;
4327      rejected_classes_ = NULL;
4328    }
4329    delete rejected_classes_lock_;
4330    rejected_classes_lock_ = NULL;
4331  }
4332  verifier::RegTypeCache::ShutDown();
4333}
4334
4335void MethodVerifier::AddRejectedClass(ClassReference ref) {
4336  DCHECK(Runtime::Current()->IsCompiler());
4337  {
4338    WriterMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4339    rejected_classes_->insert(ref);
4340  }
4341  CHECK(IsClassRejected(ref));
4342}
4343
4344bool MethodVerifier::IsClassRejected(ClassReference ref) {
4345  DCHECK(Runtime::Current()->IsCompiler());
4346  ReaderMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4347  return (rejected_classes_->find(ref) != rejected_classes_->end());
4348}
4349
4350}  // namespace verifier
4351}  // namespace art
4352