1/* 2 * Copyright (C) 2008 The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29#include <pthread.h> 30 31#include <errno.h> 32#include <limits.h> 33#include <stdatomic.h> 34#include <string.h> 35#include <sys/cdefs.h> 36#include <sys/mman.h> 37#include <unistd.h> 38 39#include "pthread_internal.h" 40 41#include "private/bionic_constants.h" 42#include "private/bionic_futex.h" 43#include "private/bionic_systrace.h" 44#include "private/bionic_time_conversions.h" 45#include "private/bionic_tls.h" 46 47/* a mutex attribute holds the following fields 48 * 49 * bits: name description 50 * 0-3 type type of mutex 51 * 4 shared process-shared flag 52 */ 53#define MUTEXATTR_TYPE_MASK 0x000f 54#define MUTEXATTR_SHARED_MASK 0x0010 55 56int pthread_mutexattr_init(pthread_mutexattr_t *attr) 57{ 58 *attr = PTHREAD_MUTEX_DEFAULT; 59 return 0; 60} 61 62int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) 63{ 64 *attr = -1; 65 return 0; 66} 67 68int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p) 69{ 70 int type = (*attr & MUTEXATTR_TYPE_MASK); 71 72 if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) { 73 return EINVAL; 74 } 75 76 *type_p = type; 77 return 0; 78} 79 80int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) 81{ 82 if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) { 83 return EINVAL; 84 } 85 86 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type; 87 return 0; 88} 89 90/* process-shared mutexes are not supported at the moment */ 91 92int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) 93{ 94 switch (pshared) { 95 case PTHREAD_PROCESS_PRIVATE: 96 *attr &= ~MUTEXATTR_SHARED_MASK; 97 return 0; 98 99 case PTHREAD_PROCESS_SHARED: 100 /* our current implementation of pthread actually supports shared 101 * mutexes but won't cleanup if a process dies with the mutex held. 102 * Nevertheless, it's better than nothing. Shared mutexes are used 103 * by surfaceflinger and audioflinger. 104 */ 105 *attr |= MUTEXATTR_SHARED_MASK; 106 return 0; 107 } 108 return EINVAL; 109} 110 111int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) { 112 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE; 113 return 0; 114} 115 116/* a mutex contains a state value and a owner_tid. 117 * The value is implemented as a 16-bit integer holding the following fields: 118 * 119 * bits: name description 120 * 15-14 type mutex type 121 * 13 shared process-shared flag 122 * 12-2 counter counter of recursive mutexes 123 * 1-0 state lock state (0, 1 or 2) 124 * 125 * The owner_tid is used only in recursive and errorcheck mutex to hold the mutex owner thread tid. 126 */ 127 128/* Convenience macro, creates a mask of 'bits' bits that starts from 129 * the 'shift'-th least significant bit in a 32-bit word. 130 * 131 * Examples: FIELD_MASK(0,4) -> 0xf 132 * FIELD_MASK(16,9) -> 0x1ff0000 133 */ 134#define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift)) 135 136/* This one is used to create a bit pattern from a given field value */ 137#define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift)) 138 139/* And this one does the opposite, i.e. extract a field's value from a bit pattern */ 140#define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1)) 141 142 143/* Convenience macros. 144 * 145 * These are used to form or modify the bit pattern of a given mutex value 146 */ 147 148/* Mutex state: 149 * 150 * 0 for unlocked 151 * 1 for locked, no waiters 152 * 2 for locked, maybe waiters 153 */ 154#define MUTEX_STATE_SHIFT 0 155#define MUTEX_STATE_LEN 2 156 157#define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 158#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 159#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 160 161#define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */ 162#define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */ 163#define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ 164 165#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) 166#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) 167#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) 168 169/* return true iff the mutex if locked with no waiters */ 170#define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED) 171 172/* return true iff the mutex if locked with maybe waiters */ 173#define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED) 174 175/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */ 176#define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) 177 178/* Mutex counter: 179 * 180 * We need to check for overflow before incrementing, and we also need to 181 * detect when the counter is 0 182 */ 183#define MUTEX_COUNTER_SHIFT 2 184#define MUTEX_COUNTER_LEN 11 185#define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN) 186 187#define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK) 188#define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) 189 190/* Used to increment the counter directly after overflow has been checked */ 191#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) 192 193/* Mutex shared bit flag 194 * 195 * This flag is set to indicate that the mutex is shared among processes. 196 * This changes the futex opcode we use for futex wait/wake operations 197 * (non-shared operations are much faster). 198 */ 199#define MUTEX_SHARED_SHIFT 13 200#define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1) 201 202/* Mutex type: 203 * We support normal, recursive and errorcheck mutexes. 204 */ 205#define MUTEX_TYPE_SHIFT 14 206#define MUTEX_TYPE_LEN 2 207#define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN) 208 209#define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN) 210 211#define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL) 212#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE) 213#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK) 214 215struct pthread_mutex_internal_t { 216 _Atomic(uint16_t) state; 217#if defined(__LP64__) 218 uint16_t __pad; 219 atomic_int owner_tid; 220 char __reserved[32]; 221#else 222 _Atomic(uint16_t) owner_tid; 223#endif 224} __attribute__((aligned(4))); 225 226static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t), 227 "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation."); 228 229// For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment 230// than 4-byte alignment. 231static_assert(alignof(pthread_mutex_t) == 4, 232 "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t."); 233 234static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) { 235 return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface); 236} 237 238int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) { 239 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); 240 241 memset(mutex, 0, sizeof(pthread_mutex_internal_t)); 242 243 if (__predict_true(attr == NULL)) { 244 atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL); 245 return 0; 246 } 247 248 uint16_t state = 0; 249 if ((*attr & MUTEXATTR_SHARED_MASK) != 0) { 250 state |= MUTEX_SHARED_MASK; 251 } 252 253 switch (*attr & MUTEXATTR_TYPE_MASK) { 254 case PTHREAD_MUTEX_NORMAL: 255 state |= MUTEX_TYPE_BITS_NORMAL; 256 break; 257 case PTHREAD_MUTEX_RECURSIVE: 258 state |= MUTEX_TYPE_BITS_RECURSIVE; 259 break; 260 case PTHREAD_MUTEX_ERRORCHECK: 261 state |= MUTEX_TYPE_BITS_ERRORCHECK; 262 break; 263 default: 264 return EINVAL; 265 } 266 267 atomic_init(&mutex->state, state); 268 atomic_init(&mutex->owner_tid, 0); 269 return 0; 270} 271 272static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_internal_t* mutex, 273 uint16_t shared) { 274 const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; 275 const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 276 277 uint16_t old_state = unlocked; 278 if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 279 locked_uncontended, memory_order_acquire, memory_order_relaxed))) { 280 return 0; 281 } 282 return EBUSY; 283} 284 285/* 286 * Lock a mutex of type NORMAL. 287 * 288 * As noted above, there are three states: 289 * 0 (unlocked, no contention) 290 * 1 (locked, no contention) 291 * 2 (locked, contention) 292 * 293 * Non-recursive mutexes don't use the thread-id or counter fields, and the 294 * "type" value is zero, so the only bits that will be set are the ones in 295 * the lock state field. 296 */ 297static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex, 298 uint16_t shared, 299 const timespec* abs_timeout_or_null, 300 clockid_t clock) { 301 if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { 302 return 0; 303 } 304 305 ScopedTrace trace("Contending for pthread mutex"); 306 307 const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; 308 const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; 309 310 // We want to go to sleep until the mutex is available, which requires 311 // promoting it to locked_contended. We need to swap in the new state 312 // and then wait until somebody wakes us up. 313 // An atomic_exchange is used to compete with other threads for the lock. 314 // If it returns unlocked, we have acquired the lock, otherwise another 315 // thread still holds the lock and we should wait again. 316 // If lock is acquired, an acquire fence is needed to make all memory accesses 317 // made by other threads visible to the current CPU. 318 while (atomic_exchange_explicit(&mutex->state, locked_contended, 319 memory_order_acquire) != unlocked) { 320 timespec ts; 321 timespec* rel_timeout = NULL; 322 if (abs_timeout_or_null != NULL) { 323 rel_timeout = &ts; 324 if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) { 325 return ETIMEDOUT; 326 } 327 } 328 if (__futex_wait_ex(&mutex->state, shared, locked_contended, rel_timeout) == -ETIMEDOUT) { 329 return ETIMEDOUT; 330 } 331 } 332 return 0; 333} 334 335/* 336 * Release a normal mutex. The caller is responsible for determining 337 * that we are in fact the owner of this lock. 338 */ 339static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_internal_t* mutex, 340 uint16_t shared) { 341 const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; 342 const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; 343 344 // We use an atomic_exchange to release the lock. If locked_contended state 345 // is returned, some threads is waiting for the lock and we need to wake up 346 // one of them. 347 // A release fence is required to make previous stores visible to next 348 // lock owner threads. 349 if (atomic_exchange_explicit(&mutex->state, unlocked, 350 memory_order_release) == locked_contended) { 351 // Wake up one waiting thread. We don't know which thread will be 352 // woken or when it'll start executing -- futexes make no guarantees 353 // here. There may not even be a thread waiting. 354 // 355 // The newly-woken thread will replace the unlocked state we just set above 356 // with locked_contended state, which means that when it eventually releases 357 // the mutex it will also call FUTEX_WAKE. This results in one extra wake 358 // call whenever a lock is contended, but let us avoid forgetting anyone 359 // without requiring us to track the number of sleepers. 360 // 361 // It's possible for another thread to sneak in and grab the lock between 362 // the exchange above and the wake call below. If the new thread is "slow" 363 // and holds the lock for a while, we'll wake up a sleeper, which will swap 364 // in locked_uncontended state and then go back to sleep since the lock is 365 // still held. If the new thread is "fast", running to completion before 366 // we call wake, the thread we eventually wake will find an unlocked mutex 367 // and will execute. Either way we have correct behavior and nobody is 368 // orphaned on the wait queue. 369 __futex_wake_ex(&mutex->state, shared, 1); 370 } 371} 372 373/* This common inlined function is used to increment the counter of a recursive mutex. 374 * 375 * If the counter overflows, it will return EAGAIN. 376 * Otherwise, it atomically increments the counter and returns 0. 377 * 378 */ 379static inline __always_inline int __recursive_increment(pthread_mutex_internal_t* mutex, 380 uint16_t old_state) { 381 // Detect recursive lock overflow and return EAGAIN. 382 // This is safe because only the owner thread can modify the 383 // counter bits in the mutex value. 384 if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) { 385 return EAGAIN; 386 } 387 388 // Other threads are able to change the lower bits (e.g. promoting it to "contended"), 389 // but the mutex counter will not overflow. So we use atomic_fetch_add operation here. 390 // The mutex is still locked by current thread, so we don't need a release fence. 391 atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); 392 return 0; 393} 394 395static inline __always_inline int __recursive_or_errorcheck_mutex_wait( 396 pthread_mutex_internal_t* mutex, 397 uint16_t shared, 398 uint16_t old_state, 399 const timespec* rel_timeout) { 400// __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid 401// field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used. 402// But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the 403// owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error. 404 405#if defined(__LP64__) 406 return __futex_wait_ex(&mutex->state, shared, old_state, rel_timeout); 407 408#else 409 // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation. 410 // And it is based on the assumption that Android is always in little-endian devices. 411 static_assert(offsetof(pthread_mutex_internal_t, state) == 0, ""); 412 static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, ""); 413 414 uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed); 415 return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state, rel_timeout); 416#endif 417} 418 419static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex, 420 const timespec* abs_timeout_or_null, clockid_t clock) { 421 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); 422 uint16_t mtype = (old_state & MUTEX_TYPE_MASK); 423 uint16_t shared = (old_state & MUTEX_SHARED_MASK); 424 425 // Handle common case first. 426 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { 427 return __pthread_normal_mutex_lock(mutex, shared, abs_timeout_or_null, clock); 428 } 429 430 // Do we already own this recursive or error-check mutex? 431 pid_t tid = __get_thread()->tid; 432 if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) { 433 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { 434 return EDEADLK; 435 } 436 return __recursive_increment(mutex, old_state); 437 } 438 439 const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; 440 const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 441 const uint16_t locked_contended = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; 442 443 // First, if the mutex is unlocked, try to quickly acquire it. 444 // In the optimistic case where this works, set the state to locked_uncontended. 445 if (old_state == unlocked) { 446 // If exchanged successfully, an acquire fence is required to make 447 // all memory accesses made by other threads visible to the current CPU. 448 if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 449 locked_uncontended, memory_order_acquire, memory_order_relaxed))) { 450 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); 451 return 0; 452 } 453 } 454 455 ScopedTrace trace("Contending for pthread mutex"); 456 457 while (true) { 458 if (old_state == unlocked) { 459 // NOTE: We put the state to locked_contended since we _know_ there 460 // is contention when we are in this loop. This ensures all waiters 461 // will be unlocked. 462 463 // If exchanged successfully, an acquire fence is required to make 464 // all memory accesses made by other threads visible to the current CPU. 465 if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state, 466 &old_state, locked_contended, 467 memory_order_acquire, 468 memory_order_relaxed))) { 469 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); 470 return 0; 471 } 472 continue; 473 } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) { 474 // We should set it to locked_contended beforing going to sleep. This can make 475 // sure waiters will be woken up eventually. 476 477 int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state); 478 if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state, 479 &old_state, new_state, 480 memory_order_relaxed, 481 memory_order_relaxed))) { 482 continue; 483 } 484 old_state = new_state; 485 } 486 487 // We are in locked_contended state, sleep until someone wakes us up. 488 timespec ts; 489 timespec* rel_timeout = NULL; 490 if (abs_timeout_or_null != NULL) { 491 rel_timeout = &ts; 492 if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) { 493 return ETIMEDOUT; 494 } 495 } 496 if (__recursive_or_errorcheck_mutex_wait(mutex, shared, old_state, rel_timeout) == -ETIMEDOUT) { 497 return ETIMEDOUT; 498 } 499 old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); 500 } 501} 502 503int pthread_mutex_lock(pthread_mutex_t* mutex_interface) { 504#if !defined(__LP64__) 505 if (mutex_interface == NULL) { 506 return EINVAL; 507 } 508#endif 509 510 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); 511 512 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); 513 uint16_t mtype = (old_state & MUTEX_TYPE_MASK); 514 uint16_t shared = (old_state & MUTEX_SHARED_MASK); 515 // Avoid slowing down fast path of normal mutex lock operation. 516 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { 517 if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) { 518 return 0; 519 } 520 } 521 return __pthread_mutex_lock_with_timeout(mutex, NULL, 0); 522} 523 524int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) { 525#if !defined(__LP64__) 526 if (mutex_interface == NULL) { 527 return EINVAL; 528 } 529#endif 530 531 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); 532 533 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); 534 uint16_t mtype = (old_state & MUTEX_TYPE_MASK); 535 uint16_t shared = (old_state & MUTEX_SHARED_MASK); 536 537 // Handle common case first. 538 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { 539 __pthread_normal_mutex_unlock(mutex, shared); 540 return 0; 541 } 542 543 // Do we already own this recursive or error-check mutex? 544 pid_t tid = __get_thread()->tid; 545 if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) { 546 return EPERM; 547 } 548 549 // If the counter is > 0, we can simply decrement it atomically. 550 // Since other threads can mutate the lower state bits (and only the 551 // lower state bits), use a compare_exchange loop to do it. 552 if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) { 553 // We still own the mutex, so a release fence is not needed. 554 atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed); 555 return 0; 556 } 557 558 // The counter is 0, so we'are going to unlock the mutex by resetting its 559 // state to unlocked, we need to perform a atomic_exchange inorder to read 560 // the current state, which will be locked_contended if there may have waiters 561 // to awake. 562 // A release fence is required to make previous stores visible to next 563 // lock owner threads. 564 atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed); 565 const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; 566 old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release); 567 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) { 568 __futex_wake_ex(&mutex->state, shared, 1); 569 } 570 571 return 0; 572} 573 574int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) { 575 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface); 576 577 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed); 578 uint16_t mtype = (old_state & MUTEX_TYPE_MASK); 579 uint16_t shared = (old_state & MUTEX_SHARED_MASK); 580 581 const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED; 582 const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 583 584 // Handle common case first. 585 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { 586 return __pthread_normal_mutex_trylock(mutex, shared); 587 } 588 589 // Do we already own this recursive or error-check mutex? 590 pid_t tid = __get_thread()->tid; 591 if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) { 592 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { 593 return EBUSY; 594 } 595 return __recursive_increment(mutex, old_state); 596 } 597 598 // Same as pthread_mutex_lock, except that we don't want to wait, and 599 // the only operation that can succeed is a single compare_exchange to acquire the 600 // lock if it is released / not owned by anyone. No need for a complex loop. 601 // If exchanged successfully, an acquire fence is required to make 602 // all memory accesses made by other threads visible to the current CPU. 603 old_state = unlocked; 604 if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 605 locked_uncontended, 606 memory_order_acquire, 607 memory_order_relaxed))) { 608 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed); 609 return 0; 610 } 611 return EBUSY; 612} 613 614#if !defined(__LP64__) 615extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) { 616 timespec abs_timeout; 617 clock_gettime(CLOCK_MONOTONIC, &abs_timeout); 618 abs_timeout.tv_sec += ms / 1000; 619 abs_timeout.tv_nsec += (ms % 1000) * 1000000; 620 if (abs_timeout.tv_nsec >= NS_PER_S) { 621 abs_timeout.tv_sec++; 622 abs_timeout.tv_nsec -= NS_PER_S; 623 } 624 625 int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), 626 &abs_timeout, CLOCK_MONOTONIC); 627 if (error == ETIMEDOUT) { 628 error = EBUSY; 629 } 630 return error; 631} 632#endif 633 634int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) { 635 return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface), 636 abs_timeout, CLOCK_REALTIME); 637} 638 639int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) { 640 // Use trylock to ensure that the mutex is valid and not already locked. 641 int error = pthread_mutex_trylock(mutex_interface); 642 if (error != 0) { 643 return error; 644 } 645 return 0; 646} 647