pthread_mutex.cpp revision c3f114037dbf028896310609fd28cf2b3da99c4d
1/* 2 * Copyright (C) 2008 The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29#include <pthread.h> 30 31#include <errno.h> 32#include <limits.h> 33#include <sys/atomics.h> 34#include <sys/mman.h> 35#include <unistd.h> 36 37#include "pthread_internal.h" 38 39#include "private/bionic_atomic_inline.h" 40#include "private/bionic_futex.h" 41#include "private/bionic_pthread.h" 42#include "private/bionic_tls.h" 43#include "private/thread_private.h" 44 45extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex); 46extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex); 47 48/* a mutex is implemented as a 32-bit integer holding the following fields 49 * 50 * bits: name description 51 * 31-16 tid owner thread's tid (recursive and errorcheck only) 52 * 15-14 type mutex type 53 * 13 shared process-shared flag 54 * 12-2 counter counter of recursive mutexes 55 * 1-0 state lock state (0, 1 or 2) 56 */ 57 58/* Convenience macro, creates a mask of 'bits' bits that starts from 59 * the 'shift'-th least significant bit in a 32-bit word. 60 * 61 * Examples: FIELD_MASK(0,4) -> 0xf 62 * FIELD_MASK(16,9) -> 0x1ff0000 63 */ 64#define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift)) 65 66/* This one is used to create a bit pattern from a given field value */ 67#define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift)) 68 69/* And this one does the opposite, i.e. extract a field's value from a bit pattern */ 70#define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1)) 71 72/* Mutex state: 73 * 74 * 0 for unlocked 75 * 1 for locked, no waiters 76 * 2 for locked, maybe waiters 77 */ 78#define MUTEX_STATE_SHIFT 0 79#define MUTEX_STATE_LEN 2 80 81#define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 82#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 83#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 84 85#define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */ 86#define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */ 87#define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */ 88 89#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 90#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN) 91 92#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED) 93#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED) 94#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED) 95 96/* return true iff the mutex if locked with no waiters */ 97#define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED) 98 99/* return true iff the mutex if locked with maybe waiters */ 100#define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED) 101 102/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */ 103#define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) 104 105/* Mutex counter: 106 * 107 * We need to check for overflow before incrementing, and we also need to 108 * detect when the counter is 0 109 */ 110#define MUTEX_COUNTER_SHIFT 2 111#define MUTEX_COUNTER_LEN 11 112#define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN) 113 114#define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK) 115#define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) 116 117/* Used to increment the counter directly after overflow has been checked */ 118#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN) 119 120/* Returns true iff the counter is 0 */ 121#define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0) 122 123/* Mutex shared bit flag 124 * 125 * This flag is set to indicate that the mutex is shared among processes. 126 * This changes the futex opcode we use for futex wait/wake operations 127 * (non-shared operations are much faster). 128 */ 129#define MUTEX_SHARED_SHIFT 13 130#define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1) 131 132/* Mutex type: 133 * 134 * We support normal, recursive and errorcheck mutexes. 135 * 136 * The constants defined here *cannot* be changed because they must match 137 * the C library ABI which defines the following initialization values in 138 * <pthread.h>: 139 * 140 * __PTHREAD_MUTEX_INIT_VALUE 141 * __PTHREAD_RECURSIVE_MUTEX_VALUE 142 * __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE 143 */ 144#define MUTEX_TYPE_SHIFT 14 145#define MUTEX_TYPE_LEN 2 146#define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN) 147 148#define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */ 149#define MUTEX_TYPE_RECURSIVE 1 150#define MUTEX_TYPE_ERRORCHECK 2 151 152#define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN) 153 154#define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL) 155#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE) 156#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK) 157 158/* Mutex owner field: 159 * 160 * This is only used for recursive and errorcheck mutexes. It holds the 161 * tid of the owning thread. Note that this works because the Linux 162 * kernel _only_ uses 16-bit values for tids. 163 * 164 * More specifically, it will wrap to 10000 when it reaches over 32768 for 165 * application processes. You can check this by running the following inside 166 * an adb shell session: 167 * 168 OLDPID=$$; 169 while true; do 170 NEWPID=$(sh -c 'echo $$') 171 if [ "$NEWPID" -gt 32768 ]; then 172 echo "AARGH: new PID $NEWPID is too high!" 173 exit 1 174 fi 175 if [ "$NEWPID" -lt "$OLDPID" ]; then 176 echo "****** Wrapping from PID $OLDPID to $NEWPID. *******" 177 else 178 echo -n "$NEWPID!" 179 fi 180 OLDPID=$NEWPID 181 done 182 183 * Note that you can run the same example on a desktop Linux system, 184 * the wrapping will also happen at 32768, but will go back to 300 instead. 185 */ 186#define MUTEX_OWNER_SHIFT 16 187#define MUTEX_OWNER_LEN 16 188 189#define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) 190#define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN) 191 192/* Convenience macros. 193 * 194 * These are used to form or modify the bit pattern of a given mutex value 195 */ 196 197 198 199/* a mutex attribute holds the following fields 200 * 201 * bits: name description 202 * 0-3 type type of mutex 203 * 4 shared process-shared flag 204 */ 205#define MUTEXATTR_TYPE_MASK 0x000f 206#define MUTEXATTR_SHARED_MASK 0x0010 207 208 209int pthread_mutexattr_init(pthread_mutexattr_t *attr) 210{ 211 if (attr) { 212 *attr = PTHREAD_MUTEX_DEFAULT; 213 return 0; 214 } else { 215 return EINVAL; 216 } 217} 218 219int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) 220{ 221 if (attr) { 222 *attr = -1; 223 return 0; 224 } else { 225 return EINVAL; 226 } 227} 228 229int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) 230{ 231 if (attr) { 232 int atype = (*attr & MUTEXATTR_TYPE_MASK); 233 234 if (atype >= PTHREAD_MUTEX_NORMAL && 235 atype <= PTHREAD_MUTEX_ERRORCHECK) { 236 *type = atype; 237 return 0; 238 } 239 } 240 return EINVAL; 241} 242 243int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) 244{ 245 if (attr && type >= PTHREAD_MUTEX_NORMAL && 246 type <= PTHREAD_MUTEX_ERRORCHECK ) { 247 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type; 248 return 0; 249 } 250 return EINVAL; 251} 252 253/* process-shared mutexes are not supported at the moment */ 254 255int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared) 256{ 257 if (!attr) 258 return EINVAL; 259 260 switch (pshared) { 261 case PTHREAD_PROCESS_PRIVATE: 262 *attr &= ~MUTEXATTR_SHARED_MASK; 263 return 0; 264 265 case PTHREAD_PROCESS_SHARED: 266 /* our current implementation of pthread actually supports shared 267 * mutexes but won't cleanup if a process dies with the mutex held. 268 * Nevertheless, it's better than nothing. Shared mutexes are used 269 * by surfaceflinger and audioflinger. 270 */ 271 *attr |= MUTEXATTR_SHARED_MASK; 272 return 0; 273 } 274 return EINVAL; 275} 276 277int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) { 278 if (!attr || !pshared) 279 return EINVAL; 280 281 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED 282 : PTHREAD_PROCESS_PRIVATE; 283 return 0; 284} 285 286int pthread_mutex_init(pthread_mutex_t *mutex, 287 const pthread_mutexattr_t *attr) 288{ 289 int value = 0; 290 291 if (mutex == NULL) 292 return EINVAL; 293 294 if (__predict_true(attr == NULL)) { 295 mutex->value = MUTEX_TYPE_BITS_NORMAL; 296 return 0; 297 } 298 299 if ((*attr & MUTEXATTR_SHARED_MASK) != 0) 300 value |= MUTEX_SHARED_MASK; 301 302 switch (*attr & MUTEXATTR_TYPE_MASK) { 303 case PTHREAD_MUTEX_NORMAL: 304 value |= MUTEX_TYPE_BITS_NORMAL; 305 break; 306 case PTHREAD_MUTEX_RECURSIVE: 307 value |= MUTEX_TYPE_BITS_RECURSIVE; 308 break; 309 case PTHREAD_MUTEX_ERRORCHECK: 310 value |= MUTEX_TYPE_BITS_ERRORCHECK; 311 break; 312 default: 313 return EINVAL; 314 } 315 316 mutex->value = value; 317 return 0; 318} 319 320 321/* 322 * Lock a non-recursive mutex. 323 * 324 * As noted above, there are three states: 325 * 0 (unlocked, no contention) 326 * 1 (locked, no contention) 327 * 2 (locked, contention) 328 * 329 * Non-recursive mutexes don't use the thread-id or counter fields, and the 330 * "type" value is zero, so the only bits that will be set are the ones in 331 * the lock state field. 332 */ 333static __inline__ void 334_normal_lock(pthread_mutex_t* mutex, int shared) 335{ 336 /* convenience shortcuts */ 337 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; 338 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 339 /* 340 * The common case is an unlocked mutex, so we begin by trying to 341 * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED). 342 * __bionic_cmpxchg() returns 0 if it made the swap successfully. 343 * If the result is nonzero, this lock is already held by another thread. 344 */ 345 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) { 346 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; 347 /* 348 * We want to go to sleep until the mutex is available, which 349 * requires promoting it to state 2 (CONTENDED). We need to 350 * swap in the new state value and then wait until somebody wakes us up. 351 * 352 * __bionic_swap() returns the previous value. We swap 2 in and 353 * see if we got zero back; if so, we have acquired the lock. If 354 * not, another thread still holds the lock and we wait again. 355 * 356 * The second argument to the __futex_wait() call is compared 357 * against the current value. If it doesn't match, __futex_wait() 358 * returns immediately (otherwise, it sleeps for a time specified 359 * by the third argument; 0 means sleep forever). This ensures 360 * that the mutex is in state 2 when we go to sleep on it, which 361 * guarantees a wake-up call. 362 */ 363 while (__bionic_swap(locked_contended, &mutex->value) != unlocked) 364 __futex_wait_ex(&mutex->value, shared, locked_contended, 0); 365 } 366 ANDROID_MEMBAR_FULL(); 367} 368 369/* 370 * Release a non-recursive mutex. The caller is responsible for determining 371 * that we are in fact the owner of this lock. 372 */ 373static __inline__ void 374_normal_unlock(pthread_mutex_t* mutex, int shared) 375{ 376 ANDROID_MEMBAR_FULL(); 377 378 /* 379 * The mutex state will be 1 or (rarely) 2. We use an atomic decrement 380 * to release the lock. __bionic_atomic_dec() returns the previous value; 381 * if it wasn't 1 we have to do some additional work. 382 */ 383 if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) { 384 /* 385 * Start by releasing the lock. The decrement changed it from 386 * "contended lock" to "uncontended lock", which means we still 387 * hold it, and anybody who tries to sneak in will push it back 388 * to state 2. 389 * 390 * Once we set it to zero the lock is up for grabs. We follow 391 * this with a __futex_wake() to ensure that one of the waiting 392 * threads has a chance to grab it. 393 * 394 * This doesn't cause a race with the swap/wait pair in 395 * _normal_lock(), because the __futex_wait() call there will 396 * return immediately if the mutex value isn't 2. 397 */ 398 mutex->value = shared; 399 400 /* 401 * Wake up one waiting thread. We don't know which thread will be 402 * woken or when it'll start executing -- futexes make no guarantees 403 * here. There may not even be a thread waiting. 404 * 405 * The newly-woken thread will replace the 0 we just set above 406 * with 2, which means that when it eventually releases the mutex 407 * it will also call FUTEX_WAKE. This results in one extra wake 408 * call whenever a lock is contended, but lets us avoid forgetting 409 * anyone without requiring us to track the number of sleepers. 410 * 411 * It's possible for another thread to sneak in and grab the lock 412 * between the zero assignment above and the wake call below. If 413 * the new thread is "slow" and holds the lock for a while, we'll 414 * wake up a sleeper, which will swap in a 2 and then go back to 415 * sleep since the lock is still held. If the new thread is "fast", 416 * running to completion before we call wake, the thread we 417 * eventually wake will find an unlocked mutex and will execute. 418 * Either way we have correct behavior and nobody is orphaned on 419 * the wait queue. 420 */ 421 __futex_wake_ex(&mutex->value, shared, 1); 422 } 423} 424 425/* This common inlined function is used to increment the counter of an 426 * errorcheck or recursive mutex. 427 * 428 * For errorcheck mutexes, it will return EDEADLK 429 * If the counter overflows, it will return EAGAIN 430 * Otherwise, it atomically increments the counter and returns 0 431 * after providing an acquire barrier. 432 * 433 * mtype is the current mutex type 434 * mvalue is the current mutex value (already loaded) 435 * mutex pointers to the mutex. 436 */ 437static __inline__ __attribute__((always_inline)) int 438_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) 439{ 440 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) { 441 /* trying to re-lock a mutex we already acquired */ 442 return EDEADLK; 443 } 444 445 /* Detect recursive lock overflow and return EAGAIN. 446 * This is safe because only the owner thread can modify the 447 * counter bits in the mutex value. 448 */ 449 if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) { 450 return EAGAIN; 451 } 452 453 /* We own the mutex, but other threads are able to change 454 * the lower bits (e.g. promoting it to "contended"), so we 455 * need to use an atomic cmpxchg loop to update the counter. 456 */ 457 for (;;) { 458 /* increment counter, overflow was already checked */ 459 int newval = mvalue + MUTEX_COUNTER_BITS_ONE; 460 if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { 461 /* mutex is still locked, not need for a memory barrier */ 462 return 0; 463 } 464 /* the value was changed, this happens when another thread changes 465 * the lower state bits from 1 to 2 to indicate contention. This 466 * cannot change the counter, so simply reload and try again. 467 */ 468 mvalue = mutex->value; 469 } 470} 471 472__LIBC_HIDDEN__ 473int pthread_mutex_lock_impl(pthread_mutex_t *mutex) 474{ 475 int mvalue, mtype, tid, shared; 476 477 if (__predict_false(mutex == NULL)) 478 return EINVAL; 479 480 mvalue = mutex->value; 481 mtype = (mvalue & MUTEX_TYPE_MASK); 482 shared = (mvalue & MUTEX_SHARED_MASK); 483 484 /* Handle normal case first */ 485 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) { 486 _normal_lock(mutex, shared); 487 return 0; 488 } 489 490 /* Do we already own this recursive or error-check mutex ? */ 491 tid = __get_thread()->tid; 492 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) 493 return _recursive_increment(mutex, mvalue, mtype); 494 495 /* Add in shared state to avoid extra 'or' operations below */ 496 mtype |= shared; 497 498 /* First, if the mutex is unlocked, try to quickly acquire it. 499 * In the optimistic case where this works, set the state to 1 to 500 * indicate locked with no contention */ 501 if (mvalue == mtype) { 502 int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 503 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) { 504 ANDROID_MEMBAR_FULL(); 505 return 0; 506 } 507 /* argh, the value changed, reload before entering the loop */ 508 mvalue = mutex->value; 509 } 510 511 for (;;) { 512 int newval; 513 514 /* if the mutex is unlocked, its value should be 'mtype' and 515 * we try to acquire it by setting its owner and state atomically. 516 * NOTE: We put the state to 2 since we _know_ there is contention 517 * when we are in this loop. This ensures all waiters will be 518 * unlocked. 519 */ 520 if (mvalue == mtype) { 521 newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; 522 /* TODO: Change this to __bionic_cmpxchg_acquire when we 523 * implement it to get rid of the explicit memory 524 * barrier below. 525 */ 526 if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { 527 mvalue = mutex->value; 528 continue; 529 } 530 ANDROID_MEMBAR_FULL(); 531 return 0; 532 } 533 534 /* the mutex is already locked by another thread, if its state is 1 535 * we will change it to 2 to indicate contention. */ 536 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { 537 newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */ 538 if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) { 539 mvalue = mutex->value; 540 continue; 541 } 542 mvalue = newval; 543 } 544 545 /* wait until the mutex is unlocked */ 546 __futex_wait_ex(&mutex->value, shared, mvalue, NULL); 547 548 mvalue = mutex->value; 549 } 550 /* NOTREACHED */ 551} 552 553int pthread_mutex_lock(pthread_mutex_t *mutex) 554{ 555 int err = pthread_mutex_lock_impl(mutex); 556#ifdef PTHREAD_DEBUG 557 if (PTHREAD_DEBUG_ENABLED) { 558 if (!err) { 559 pthread_debug_mutex_lock_check(mutex); 560 } 561 } 562#endif 563 return err; 564} 565 566__LIBC_HIDDEN__ 567int pthread_mutex_unlock_impl(pthread_mutex_t *mutex) 568{ 569 int mvalue, mtype, tid, shared; 570 571 if (__predict_false(mutex == NULL)) 572 return EINVAL; 573 574 mvalue = mutex->value; 575 mtype = (mvalue & MUTEX_TYPE_MASK); 576 shared = (mvalue & MUTEX_SHARED_MASK); 577 578 /* Handle common case first */ 579 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) { 580 _normal_unlock(mutex, shared); 581 return 0; 582 } 583 584 /* Do we already own this recursive or error-check mutex ? */ 585 tid = __get_thread()->tid; 586 if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) ) 587 return EPERM; 588 589 /* If the counter is > 0, we can simply decrement it atomically. 590 * Since other threads can mutate the lower state bits (and only the 591 * lower state bits), use a cmpxchg to do it. 592 */ 593 if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) { 594 for (;;) { 595 int newval = mvalue - MUTEX_COUNTER_BITS_ONE; 596 if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) { 597 /* success: we still own the mutex, so no memory barrier */ 598 return 0; 599 } 600 /* the value changed, so reload and loop */ 601 mvalue = mutex->value; 602 } 603 } 604 605 /* the counter is 0, so we're going to unlock the mutex by resetting 606 * its value to 'unlocked'. We need to perform a swap in order 607 * to read the current state, which will be 2 if there are waiters 608 * to awake. 609 * 610 * TODO: Change this to __bionic_swap_release when we implement it 611 * to get rid of the explicit memory barrier below. 612 */ 613 ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */ 614 mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value); 615 616 /* Wake one waiting thread, if any */ 617 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { 618 __futex_wake_ex(&mutex->value, shared, 1); 619 } 620 return 0; 621} 622 623int pthread_mutex_unlock(pthread_mutex_t *mutex) 624{ 625#ifdef PTHREAD_DEBUG 626 if (PTHREAD_DEBUG_ENABLED) { 627 pthread_debug_mutex_unlock_check(mutex); 628 } 629#endif 630 return pthread_mutex_unlock_impl(mutex); 631} 632 633__LIBC_HIDDEN__ 634int pthread_mutex_trylock_impl(pthread_mutex_t *mutex) 635{ 636 int mvalue, mtype, tid, shared; 637 638 if (__predict_false(mutex == NULL)) 639 return EINVAL; 640 641 mvalue = mutex->value; 642 mtype = (mvalue & MUTEX_TYPE_MASK); 643 shared = (mvalue & MUTEX_SHARED_MASK); 644 645 /* Handle common case first */ 646 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) 647 { 648 if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED, 649 shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED, 650 &mutex->value) == 0) { 651 ANDROID_MEMBAR_FULL(); 652 return 0; 653 } 654 655 return EBUSY; 656 } 657 658 /* Do we already own this recursive or error-check mutex ? */ 659 tid = __get_thread()->tid; 660 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) 661 return _recursive_increment(mutex, mvalue, mtype); 662 663 /* Same as pthread_mutex_lock, except that we don't want to wait, and 664 * the only operation that can succeed is a single cmpxchg to acquire the 665 * lock if it is released / not owned by anyone. No need for a complex loop. 666 */ 667 mtype |= shared | MUTEX_STATE_BITS_UNLOCKED; 668 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 669 670 if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { 671 ANDROID_MEMBAR_FULL(); 672 return 0; 673 } 674 675 return EBUSY; 676} 677 678int pthread_mutex_trylock(pthread_mutex_t *mutex) 679{ 680 int err = pthread_mutex_trylock_impl(mutex); 681#ifdef PTHREAD_DEBUG 682 if (PTHREAD_DEBUG_ENABLED) { 683 if (!err) { 684 pthread_debug_mutex_lock_check(mutex); 685 } 686 } 687#endif 688 return err; 689} 690 691/* initialize 'abstime' to the current time according to 'clock' plus 'msecs' 692 * milliseconds. 693 */ 694static void __timespec_to_relative_msec(timespec* abstime, unsigned msecs, clockid_t clock) { 695 clock_gettime(clock, abstime); 696 abstime->tv_sec += msecs/1000; 697 abstime->tv_nsec += (msecs%1000)*1000000; 698 if (abstime->tv_nsec >= 1000000000) { 699 abstime->tv_sec++; 700 abstime->tv_nsec -= 1000000000; 701 } 702} 703 704__LIBC_HIDDEN__ 705int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs) 706{ 707 clockid_t clock = CLOCK_MONOTONIC; 708 timespec abstime; 709 timespec ts; 710 int mvalue, mtype, tid, shared; 711 712 /* compute absolute expiration time */ 713 __timespec_to_relative_msec(&abstime, msecs, clock); 714 715 if (__predict_false(mutex == NULL)) 716 return EINVAL; 717 718 mvalue = mutex->value; 719 mtype = (mvalue & MUTEX_TYPE_MASK); 720 shared = (mvalue & MUTEX_SHARED_MASK); 721 722 /* Handle common case first */ 723 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) 724 { 725 const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED; 726 const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 727 const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED; 728 729 /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */ 730 if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) { 731 ANDROID_MEMBAR_FULL(); 732 return 0; 733 } 734 735 /* loop while needed */ 736 while (__bionic_swap(locked_contended, &mutex->value) != unlocked) { 737 if (__timespec_to_absolute(&ts, &abstime, clock) < 0) 738 return EBUSY; 739 740 __futex_wait_ex(&mutex->value, shared, locked_contended, &ts); 741 } 742 ANDROID_MEMBAR_FULL(); 743 return 0; 744 } 745 746 /* Do we already own this recursive or error-check mutex ? */ 747 tid = __get_thread()->tid; 748 if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) ) 749 return _recursive_increment(mutex, mvalue, mtype); 750 751 /* the following implements the same loop than pthread_mutex_lock_impl 752 * but adds checks to ensure that the operation never exceeds the 753 * absolute expiration time. 754 */ 755 mtype |= shared; 756 757 /* first try a quick lock */ 758 if (mvalue == mtype) { 759 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED; 760 if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) { 761 ANDROID_MEMBAR_FULL(); 762 return 0; 763 } 764 mvalue = mutex->value; 765 } 766 767 for (;;) { 768 timespec ts; 769 770 /* if the value is 'unlocked', try to acquire it directly */ 771 /* NOTE: put state to 2 since we know there is contention */ 772 if (mvalue == mtype) /* unlocked */ { 773 mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED; 774 if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) { 775 ANDROID_MEMBAR_FULL(); 776 return 0; 777 } 778 /* the value changed before we could lock it. We need to check 779 * the time to avoid livelocks, reload the value, then loop again. */ 780 if (__timespec_to_absolute(&ts, &abstime, clock) < 0) 781 return EBUSY; 782 783 mvalue = mutex->value; 784 continue; 785 } 786 787 /* The value is locked. If 'uncontended', try to switch its state 788 * to 'contented' to ensure we get woken up later. */ 789 if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) { 790 int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); 791 if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) { 792 /* this failed because the value changed, reload it */ 793 mvalue = mutex->value; 794 } else { 795 /* this succeeded, update mvalue */ 796 mvalue = newval; 797 } 798 } 799 800 /* check time and update 'ts' */ 801 if (__timespec_to_absolute(&ts, &abstime, clock) < 0) 802 return EBUSY; 803 804 /* Only wait to be woken up if the state is '2', otherwise we'll 805 * simply loop right now. This can happen when the second cmpxchg 806 * in our loop failed because the mutex was unlocked by another 807 * thread. 808 */ 809 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) { 810 if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) { 811 return EBUSY; 812 } 813 mvalue = mutex->value; 814 } 815 } 816 /* NOTREACHED */ 817} 818 819int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs) 820{ 821 int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs); 822#ifdef PTHREAD_DEBUG 823 if (PTHREAD_DEBUG_ENABLED) { 824 if (!err) { 825 pthread_debug_mutex_lock_check(mutex); 826 } 827 } 828#endif 829 return err; 830} 831 832int pthread_mutex_destroy(pthread_mutex_t *mutex) 833{ 834 int ret; 835 836 /* use trylock to ensure that the mutex value is 837 * valid and is not already locked. */ 838 ret = pthread_mutex_trylock_impl(mutex); 839 if (ret != 0) 840 return ret; 841 842 mutex->value = 0xdead10cc; 843 return 0; 844} 845