1/* libs/android_runtime/android/graphics/Path.cpp
2**
3** Copyright 2006, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18// This file was generated from the C++ include file: SkPath.h
19// Any changes made to this file will be discarded by the build.
20// To change this file, either edit the include, or device/tools/gluemaker/main.cpp,
21// or one of the auxilary file specifications in device/tools/gluemaker.
22
23#include "jni.h"
24#include "GraphicsJNI.h"
25#include "core_jni_helpers.h"
26
27#include "SkPath.h"
28#include "SkPathOps.h"
29
30#include <Caches.h>
31#include <vector>
32#include <map>
33
34namespace android {
35
36class SkPathGlue {
37public:
38
39    static void finalizer(JNIEnv* env, jobject clazz, jlong objHandle) {
40        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
41        // Purge entries from the HWUI path cache if this path's data is unique
42        if (obj->unique() && android::uirenderer::Caches::hasInstance()) {
43            android::uirenderer::Caches::getInstance().pathCache.removeDeferred(obj);
44        }
45        delete obj;
46    }
47
48    static jlong init1(JNIEnv* env, jobject clazz) {
49        return reinterpret_cast<jlong>(new SkPath());
50    }
51
52    static jlong init2(JNIEnv* env, jobject clazz, jlong valHandle) {
53        SkPath* val = reinterpret_cast<SkPath*>(valHandle);
54        return reinterpret_cast<jlong>(new SkPath(*val));
55    }
56
57    static void reset(JNIEnv* env, jobject clazz, jlong objHandle) {
58        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
59        obj->reset();
60    }
61
62    static void rewind(JNIEnv* env, jobject clazz, jlong objHandle) {
63        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
64        obj->rewind();
65    }
66
67    static void assign(JNIEnv* env, jobject clazz, jlong dstHandle, jlong srcHandle) {
68        SkPath* dst = reinterpret_cast<SkPath*>(dstHandle);
69        const SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
70        *dst = *src;
71    }
72
73    static jboolean isConvex(JNIEnv* env, jobject clazz, jlong objHandle) {
74        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
75        return obj->isConvex();
76    }
77
78    static jint getFillType(JNIEnv* env, jobject clazz, jlong objHandle) {
79        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
80        return obj->getFillType();
81    }
82
83    static void setFillType(JNIEnv* env, jobject clazz, jlong pathHandle, jint ftHandle) {
84        SkPath* path = reinterpret_cast<SkPath*>(pathHandle);
85        SkPath::FillType ft = static_cast<SkPath::FillType>(ftHandle);
86        path->setFillType(ft);
87    }
88
89    static jboolean isEmpty(JNIEnv* env, jobject clazz, jlong objHandle) {
90        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
91        return obj->isEmpty();
92    }
93
94    static jboolean isRect(JNIEnv* env, jobject clazz, jlong objHandle, jobject jrect) {
95        SkRect rect;
96        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
97        jboolean result = obj->isRect(&rect);
98        GraphicsJNI::rect_to_jrectf(rect, env, jrect);
99        return result;
100    }
101
102    static void computeBounds(JNIEnv* env, jobject clazz, jlong objHandle, jobject jbounds) {
103        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
104        const SkRect& bounds = obj->getBounds();
105        GraphicsJNI::rect_to_jrectf(bounds, env, jbounds);
106    }
107
108    static void incReserve(JNIEnv* env, jobject clazz, jlong objHandle, jint extraPtCount) {
109        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
110        obj->incReserve(extraPtCount);
111    }
112
113    static void moveTo__FF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x, jfloat y) {
114        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
115        obj->moveTo(x, y);
116    }
117
118    static void rMoveTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
119        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
120        obj->rMoveTo(dx, dy);
121    }
122
123    static void lineTo__FF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x, jfloat y) {
124        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
125        obj->lineTo(x, y);
126    }
127
128    static void rLineTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
129        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
130        obj->rLineTo(dx, dy);
131    }
132
133    static void quadTo__FFFF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x1, jfloat y1, jfloat x2, jfloat y2) {
134        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
135        obj->quadTo(x1, y1, x2, y2);
136    }
137
138    static void rQuadTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx1, jfloat dy1, jfloat dx2, jfloat dy2) {
139        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
140        obj->rQuadTo(dx1, dy1, dx2, dy2);
141    }
142
143    static void cubicTo__FFFFFF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x1, jfloat y1, jfloat x2, jfloat y2, jfloat x3, jfloat y3) {
144        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
145        obj->cubicTo(x1, y1, x2, y2, x3, y3);
146    }
147
148    static void rCubicTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x1, jfloat y1, jfloat x2, jfloat y2, jfloat x3, jfloat y3) {
149        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
150        obj->rCubicTo(x1, y1, x2, y2, x3, y3);
151    }
152
153    static void arcTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat left, jfloat top,
154            jfloat right, jfloat bottom, jfloat startAngle, jfloat sweepAngle,
155            jboolean forceMoveTo) {
156        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
157        SkRect oval = SkRect::MakeLTRB(left, top, right, bottom);
158        obj->arcTo(oval, startAngle, sweepAngle, forceMoveTo);
159    }
160
161    static void close(JNIEnv* env, jobject clazz, jlong objHandle) {
162        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
163        obj->close();
164    }
165
166    static void addRect(JNIEnv* env, jobject clazz, jlong objHandle,
167            jfloat left, jfloat top, jfloat right, jfloat bottom, jint dirHandle) {
168        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
169        SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
170        obj->addRect(left, top, right, bottom, dir);
171    }
172
173    static void addOval(JNIEnv* env, jobject clazz, jlong objHandle,
174            jfloat left, jfloat top, jfloat right, jfloat bottom, jint dirHandle) {
175        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
176        SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
177        SkRect oval = SkRect::MakeLTRB(left, top, right, bottom);
178        obj->addOval(oval, dir);
179    }
180
181    static void addCircle(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x, jfloat y, jfloat radius, jint dirHandle) {
182        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
183        SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
184        obj->addCircle(x, y, radius, dir);
185    }
186
187    static void addArc(JNIEnv* env, jobject clazz, jlong objHandle, jfloat left, jfloat top,
188            jfloat right, jfloat bottom, jfloat startAngle, jfloat sweepAngle) {
189        SkRect oval = SkRect::MakeLTRB(left, top, right, bottom);
190        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
191        obj->addArc(oval, startAngle, sweepAngle);
192    }
193
194    static void addRoundRectXY(JNIEnv* env, jobject clazz, jlong objHandle, jfloat left, jfloat top,
195            jfloat right, jfloat bottom, jfloat rx, jfloat ry, jint dirHandle) {
196        SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
197        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
198        SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
199        obj->addRoundRect(rect, rx, ry, dir);
200    }
201
202    static void addRoundRect8(JNIEnv* env, jobject, jlong objHandle, jfloat left, jfloat top,
203            jfloat right, jfloat bottom, jfloatArray array, jint dirHandle) {
204        SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
205        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
206        SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
207        AutoJavaFloatArray  afa(env, array, 8);
208#ifdef SK_SCALAR_IS_FLOAT
209        const float* src = afa.ptr();
210#else
211        #error Need to convert float array to SkScalar array before calling the following function.
212#endif
213        obj->addRoundRect(rect, src, dir);
214    }
215
216    static void addPath__PathFF(JNIEnv* env, jobject clazz, jlong objHandle, jlong srcHandle, jfloat dx, jfloat dy) {
217        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
218        SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
219        obj->addPath(*src, dx, dy);
220    }
221
222    static void addPath__Path(JNIEnv* env, jobject clazz, jlong objHandle, jlong srcHandle) {
223        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
224        SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
225        obj->addPath(*src);
226    }
227
228    static void addPath__PathMatrix(JNIEnv* env, jobject clazz, jlong objHandle, jlong srcHandle, jlong matrixHandle) {
229        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
230        SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
231        SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
232        obj->addPath(*src, *matrix);
233    }
234
235    static void offset__FFPath(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy, jlong dstHandle) {
236        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
237        SkPath* dst = reinterpret_cast<SkPath*>(dstHandle);
238        obj->offset(dx, dy, dst);
239    }
240
241    static void offset__FF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
242        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
243        obj->offset(dx, dy);
244    }
245
246    static void setLastPoint(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
247        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
248        obj->setLastPt(dx, dy);
249    }
250
251    static void transform__MatrixPath(JNIEnv* env, jobject clazz, jlong objHandle, jlong matrixHandle, jlong dstHandle) {
252        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
253        SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
254        SkPath* dst = reinterpret_cast<SkPath*>(dstHandle);
255        obj->transform(*matrix, dst);
256    }
257
258    static void transform__Matrix(JNIEnv* env, jobject clazz, jlong objHandle, jlong matrixHandle) {
259        SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
260        SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
261        obj->transform(*matrix);
262    }
263
264    static jboolean op(JNIEnv* env, jobject clazz, jlong p1Handle, jlong p2Handle, jint opHandle, jlong rHandle) {
265        SkPath* p1  = reinterpret_cast<SkPath*>(p1Handle);
266        SkPath* p2  = reinterpret_cast<SkPath*>(p2Handle);
267        SkPathOp op = static_cast<SkPathOp>(opHandle);
268        SkPath* r   = reinterpret_cast<SkPath*>(rHandle);
269        return Op(*p1, *p2, op, r);
270     }
271
272    typedef SkPoint (*bezierCalculation)(float t, const SkPoint* points);
273
274    static void addMove(std::vector<SkPoint>& segmentPoints, std::vector<float>& lengths,
275            const SkPoint& point) {
276        float length = 0;
277        if (!lengths.empty()) {
278            length = lengths.back();
279        }
280        segmentPoints.push_back(point);
281        lengths.push_back(length);
282    }
283
284    static void addLine(std::vector<SkPoint>& segmentPoints, std::vector<float>& lengths,
285            const SkPoint& toPoint) {
286        if (segmentPoints.empty()) {
287            segmentPoints.push_back(SkPoint::Make(0, 0));
288            lengths.push_back(0);
289        } else if (segmentPoints.back() == toPoint) {
290            return; // Empty line
291        }
292        float length = lengths.back() + SkPoint::Distance(segmentPoints.back(), toPoint);
293        segmentPoints.push_back(toPoint);
294        lengths.push_back(length);
295    }
296
297    static float cubicCoordinateCalculation(float t, float p0, float p1, float p2, float p3) {
298        float oneMinusT = 1 - t;
299        float oneMinusTSquared = oneMinusT * oneMinusT;
300        float oneMinusTCubed = oneMinusTSquared * oneMinusT;
301        float tSquared = t * t;
302        float tCubed = tSquared * t;
303        return (oneMinusTCubed * p0) + (3 * oneMinusTSquared * t * p1)
304                + (3 * oneMinusT * tSquared * p2) + (tCubed * p3);
305    }
306
307    static SkPoint cubicBezierCalculation(float t, const SkPoint* points) {
308        float x = cubicCoordinateCalculation(t, points[0].x(), points[1].x(),
309            points[2].x(), points[3].x());
310        float y = cubicCoordinateCalculation(t, points[0].y(), points[1].y(),
311            points[2].y(), points[3].y());
312        return SkPoint::Make(x, y);
313    }
314
315    static float quadraticCoordinateCalculation(float t, float p0, float p1, float p2) {
316        float oneMinusT = 1 - t;
317        return oneMinusT * ((oneMinusT * p0) + (t * p1)) + t * ((oneMinusT * p1) + (t * p2));
318    }
319
320    static SkPoint quadraticBezierCalculation(float t, const SkPoint* points) {
321        float x = quadraticCoordinateCalculation(t, points[0].x(), points[1].x(), points[2].x());
322        float y = quadraticCoordinateCalculation(t, points[0].y(), points[1].y(), points[2].y());
323        return SkPoint::Make(x, y);
324    }
325
326    // Subdivide a section of the Bezier curve, set the mid-point and the mid-t value.
327    // Returns true if further subdivision is necessary as defined by errorSquared.
328    static bool subdividePoints(const SkPoint* points, bezierCalculation bezierFunction,
329            float t0, const SkPoint &p0, float t1, const SkPoint &p1,
330            float& midT, SkPoint &midPoint, float errorSquared) {
331        midT = (t1 + t0) / 2;
332        float midX = (p1.x() + p0.x()) / 2;
333        float midY = (p1.y() + p0.y()) / 2;
334
335        midPoint = (*bezierFunction)(midT, points);
336        float xError = midPoint.x() - midX;
337        float yError = midPoint.y() - midY;
338        float midErrorSquared = (xError * xError) + (yError * yError);
339        return midErrorSquared > errorSquared;
340    }
341
342    // Divides Bezier curves until linear interpolation is very close to accurate, using
343    // errorSquared as a metric. Cubic Bezier curves can have an inflection point that improperly
344    // short-circuit subdivision. If you imagine an S shape, the top and bottom points being the
345    // starting and end points, linear interpolation would mark the center where the curve places
346    // the point. It is clearly not the case that we can linearly interpolate at that point.
347    // doubleCheckDivision forces a second examination between subdivisions to ensure that linear
348    // interpolation works.
349    static void addBezier(const SkPoint* points,
350            bezierCalculation bezierFunction, std::vector<SkPoint>& segmentPoints,
351            std::vector<float>& lengths, float errorSquared, bool doubleCheckDivision) {
352        typedef std::map<float, SkPoint> PointMap;
353        PointMap tToPoint;
354
355        tToPoint[0] = (*bezierFunction)(0, points);
356        tToPoint[1] = (*bezierFunction)(1, points);
357
358        PointMap::iterator iter = tToPoint.begin();
359        PointMap::iterator next = iter;
360        ++next;
361        while (next != tToPoint.end()) {
362            bool needsSubdivision = true;
363            SkPoint midPoint;
364            do {
365                float midT;
366                needsSubdivision = subdividePoints(points, bezierFunction, iter->first,
367                    iter->second, next->first, next->second, midT, midPoint, errorSquared);
368                if (!needsSubdivision && doubleCheckDivision) {
369                    SkPoint quarterPoint;
370                    float quarterT;
371                    needsSubdivision = subdividePoints(points, bezierFunction, iter->first,
372                        iter->second, midT, midPoint, quarterT, quarterPoint, errorSquared);
373                    if (needsSubdivision) {
374                        // Found an inflection point. No need to double-check.
375                        doubleCheckDivision = false;
376                    }
377                }
378                if (needsSubdivision) {
379                    next = tToPoint.insert(iter, PointMap::value_type(midT, midPoint));
380                }
381            } while (needsSubdivision);
382            iter = next;
383            next++;
384        }
385
386        // Now that each division can use linear interpolation with less than the allowed error
387        for (iter = tToPoint.begin(); iter != tToPoint.end(); ++iter) {
388            addLine(segmentPoints, lengths, iter->second);
389        }
390    }
391
392    static void createVerbSegments(SkPath::Verb verb, const SkPoint* points,
393        std::vector<SkPoint>& segmentPoints, std::vector<float>& lengths, float errorSquared) {
394        switch (verb) {
395            case SkPath::kMove_Verb:
396                addMove(segmentPoints, lengths, points[0]);
397                break;
398            case SkPath::kClose_Verb:
399                addLine(segmentPoints, lengths, points[0]);
400                break;
401            case SkPath::kLine_Verb:
402                addLine(segmentPoints, lengths, points[1]);
403                break;
404            case SkPath::kQuad_Verb:
405                addBezier(points, quadraticBezierCalculation, segmentPoints, lengths,
406                    errorSquared, false);
407                break;
408            case SkPath::kCubic_Verb:
409                addBezier(points, cubicBezierCalculation, segmentPoints, lengths,
410                    errorSquared, true);
411                break;
412            default:
413                // Leave element as NULL, Conic sections are not supported.
414                break;
415        }
416    }
417
418    // Returns a float[] with each point along the path represented by 3 floats
419    // * fractional length along the path that the point resides
420    // * x coordinate
421    // * y coordinate
422    // Note that more than one point may have the same length along the path in
423    // the case of a move.
424    // NULL can be returned if the Path is empty.
425    static jfloatArray approximate(JNIEnv* env, jclass, jlong pathHandle, float acceptableError)
426    {
427        SkPath* path = reinterpret_cast<SkPath*>(pathHandle);
428        SkASSERT(path);
429        SkPath::Iter pathIter(*path, false);
430        SkPath::Verb verb;
431        SkPoint points[4];
432        std::vector<SkPoint> segmentPoints;
433        std::vector<float> lengths;
434        float errorSquared = acceptableError * acceptableError;
435
436        while ((verb = pathIter.next(points, false)) != SkPath::kDone_Verb) {
437            createVerbSegments(verb, points, segmentPoints, lengths, errorSquared);
438        }
439
440        if (segmentPoints.empty()) {
441            int numVerbs = path->countVerbs();
442            if (numVerbs == 1) {
443                addMove(segmentPoints, lengths, path->getPoint(0));
444            } else {
445                // Invalid or empty path. Fall back to point(0,0)
446                addMove(segmentPoints, lengths, SkPoint());
447            }
448        }
449
450        float totalLength = lengths.back();
451        if (totalLength == 0) {
452            // Lone Move instructions should still be able to animate at the same value.
453            segmentPoints.push_back(segmentPoints.back());
454            lengths.push_back(1);
455            totalLength = 1;
456        }
457
458        size_t numPoints = segmentPoints.size();
459        size_t approximationArraySize = numPoints * 3;
460
461        float* approximation = new float[approximationArraySize];
462
463        int approximationIndex = 0;
464        for (size_t i = 0; i < numPoints; i++) {
465            const SkPoint& point = segmentPoints[i];
466            approximation[approximationIndex++] = lengths[i] / totalLength;
467            approximation[approximationIndex++] = point.x();
468            approximation[approximationIndex++] = point.y();
469        }
470
471        jfloatArray result = env->NewFloatArray(approximationArraySize);
472        env->SetFloatArrayRegion(result, 0, approximationArraySize, approximation);
473        delete[] approximation;
474        return result;
475    }
476};
477
478static JNINativeMethod methods[] = {
479    {"finalizer", "(J)V", (void*) SkPathGlue::finalizer},
480    {"init1","()J", (void*) SkPathGlue::init1},
481    {"init2","(J)J", (void*) SkPathGlue::init2},
482    {"native_reset","(J)V", (void*) SkPathGlue::reset},
483    {"native_rewind","(J)V", (void*) SkPathGlue::rewind},
484    {"native_set","(JJ)V", (void*) SkPathGlue::assign},
485    {"native_isConvex","(J)Z", (void*) SkPathGlue::isConvex},
486    {"native_getFillType","(J)I", (void*) SkPathGlue::getFillType},
487    {"native_setFillType","(JI)V", (void*) SkPathGlue::setFillType},
488    {"native_isEmpty","(J)Z", (void*) SkPathGlue::isEmpty},
489    {"native_isRect","(JLandroid/graphics/RectF;)Z", (void*) SkPathGlue::isRect},
490    {"native_computeBounds","(JLandroid/graphics/RectF;)V", (void*) SkPathGlue::computeBounds},
491    {"native_incReserve","(JI)V", (void*) SkPathGlue::incReserve},
492    {"native_moveTo","(JFF)V", (void*) SkPathGlue::moveTo__FF},
493    {"native_rMoveTo","(JFF)V", (void*) SkPathGlue::rMoveTo},
494    {"native_lineTo","(JFF)V", (void*) SkPathGlue::lineTo__FF},
495    {"native_rLineTo","(JFF)V", (void*) SkPathGlue::rLineTo},
496    {"native_quadTo","(JFFFF)V", (void*) SkPathGlue::quadTo__FFFF},
497    {"native_rQuadTo","(JFFFF)V", (void*) SkPathGlue::rQuadTo},
498    {"native_cubicTo","(JFFFFFF)V", (void*) SkPathGlue::cubicTo__FFFFFF},
499    {"native_rCubicTo","(JFFFFFF)V", (void*) SkPathGlue::rCubicTo},
500    {"native_arcTo","(JFFFFFFZ)V", (void*) SkPathGlue::arcTo},
501    {"native_close","(J)V", (void*) SkPathGlue::close},
502    {"native_addRect","(JFFFFI)V", (void*) SkPathGlue::addRect},
503    {"native_addOval","(JFFFFI)V", (void*) SkPathGlue::addOval},
504    {"native_addCircle","(JFFFI)V", (void*) SkPathGlue::addCircle},
505    {"native_addArc","(JFFFFFF)V", (void*) SkPathGlue::addArc},
506    {"native_addRoundRect","(JFFFFFFI)V", (void*) SkPathGlue::addRoundRectXY},
507    {"native_addRoundRect","(JFFFF[FI)V", (void*) SkPathGlue::addRoundRect8},
508    {"native_addPath","(JJFF)V", (void*) SkPathGlue::addPath__PathFF},
509    {"native_addPath","(JJ)V", (void*) SkPathGlue::addPath__Path},
510    {"native_addPath","(JJJ)V", (void*) SkPathGlue::addPath__PathMatrix},
511    {"native_offset","(JFFJ)V", (void*) SkPathGlue::offset__FFPath},
512    {"native_offset","(JFF)V", (void*) SkPathGlue::offset__FF},
513    {"native_setLastPoint","(JFF)V", (void*) SkPathGlue::setLastPoint},
514    {"native_transform","(JJJ)V", (void*) SkPathGlue::transform__MatrixPath},
515    {"native_transform","(JJ)V", (void*) SkPathGlue::transform__Matrix},
516    {"native_op","(JJIJ)Z", (void*) SkPathGlue::op},
517    {"native_approximate", "(JF)[F", (void*) SkPathGlue::approximate},
518};
519
520int register_android_graphics_Path(JNIEnv* env) {
521    return RegisterMethodsOrDie(env, "android/graphics/Path", methods, NELEM(methods));
522}
523
524}
525