1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.lang.Thread.UncaughtExceptionHandler;
10import java.util.ArrayList;
11import java.util.Arrays;
12import java.util.Collection;
13import java.util.Collections;
14import java.util.List;
15
16/**
17 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
18 * A {@code ForkJoinPool} provides the entry point for submissions
19 * from non-{@code ForkJoinTask} clients, as well as management and
20 * monitoring operations.
21 *
22 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
23 * ExecutorService} mainly by virtue of employing
24 * <em>work-stealing</em>: all threads in the pool attempt to find and
25 * execute tasks submitted to the pool and/or created by other active
26 * tasks (eventually blocking waiting for work if none exist). This
27 * enables efficient processing when most tasks spawn other subtasks
28 * (as do most {@code ForkJoinTask}s), as well as when many small
29 * tasks are submitted to the pool from external clients.  Especially
30 * when setting <em>asyncMode</em> to true in constructors, {@code
31 * ForkJoinPool}s may also be appropriate for use with event-style
32 * tasks that are never joined.
33 *
34 * <p>A static {@code commonPool()} is available and appropriate for
35 * most applications. The common pool is used by any ForkJoinTask that
36 * is not explicitly submitted to a specified pool. Using the common
37 * pool normally reduces resource usage (its threads are slowly
38 * reclaimed during periods of non-use, and reinstated upon subsequent
39 * use).
40 *
41 * <p>For applications that require separate or custom pools, a {@code
42 * ForkJoinPool} may be constructed with a given target parallelism
43 * level; by default, equal to the number of available processors. The
44 * pool attempts to maintain enough active (or available) threads by
45 * dynamically adding, suspending, or resuming internal worker
46 * threads, even if some tasks are stalled waiting to join others.
47 * However, no such adjustments are guaranteed in the face of blocked
48 * I/O or other unmanaged synchronization. The nested {@link
49 * ManagedBlocker} interface enables extension of the kinds of
50 * synchronization accommodated.
51 *
52 * <p>In addition to execution and lifecycle control methods, this
53 * class provides status check methods (for example
54 * {@link #getStealCount}) that are intended to aid in developing,
55 * tuning, and monitoring fork/join applications. Also, method
56 * {@link #toString} returns indications of pool state in a
57 * convenient form for informal monitoring.
58 *
59 * <p>As is the case with other ExecutorServices, there are three
60 * main task execution methods summarized in the following table.
61 * These are designed to be used primarily by clients not already
62 * engaged in fork/join computations in the current pool.  The main
63 * forms of these methods accept instances of {@code ForkJoinTask},
64 * but overloaded forms also allow mixed execution of plain {@code
65 * Runnable}- or {@code Callable}- based activities as well.  However,
66 * tasks that are already executing in a pool should normally instead
67 * use the within-computation forms listed in the table unless using
68 * async event-style tasks that are not usually joined, in which case
69 * there is little difference among choice of methods.
70 *
71 * <table BORDER CELLPADDING=3 CELLSPACING=1>
72 * <caption>Summary of task execution methods</caption>
73 *  <tr>
74 *    <td></td>
75 *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 *  </tr>
78 *  <tr>
79 *    <td> <b>Arrange async execution</b></td>
80 *    <td> {@link #execute(ForkJoinTask)}</td>
81 *    <td> {@link ForkJoinTask#fork}</td>
82 *  </tr>
83 *  <tr>
84 *    <td> <b>Await and obtain result</b></td>
85 *    <td> {@link #invoke(ForkJoinTask)}</td>
86 *    <td> {@link ForkJoinTask#invoke}</td>
87 *  </tr>
88 *  <tr>
89 *    <td> <b>Arrange exec and obtain Future</b></td>
90 *    <td> {@link #submit(ForkJoinTask)}</td>
91 *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 *  </tr>
93 * </table>
94 *
95 * <p>The common pool is by default constructed with default
96 * parameters, but these may be controlled by setting three
97 * {@linkplain System#getProperty system properties}:
98 * <ul>
99 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
100 * - the parallelism level, a non-negative integer
101 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
102 * - the class name of a {@link ForkJoinWorkerThreadFactory}
103 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
104 * - the class name of a {@link UncaughtExceptionHandler}
105 * </ul>
106 * The system class loader is used to load these classes.
107 * Upon any error in establishing these settings, default parameters
108 * are used. It is possible to disable or limit the use of threads in
109 * the common pool by setting the parallelism property to zero, and/or
110 * using a factory that may return {@code null}.
111 *
112 * <p><b>Implementation notes</b>: This implementation restricts the
113 * maximum number of running threads to 32767. Attempts to create
114 * pools with greater than the maximum number result in
115 * {@code IllegalArgumentException}.
116 *
117 * <p>This implementation rejects submitted tasks (that is, by throwing
118 * {@link RejectedExecutionException}) only when the pool is shut down
119 * or internal resources have been exhausted.
120 *
121 * @since 1.7
122 * @author Doug Lea
123 */
124public class ForkJoinPool extends AbstractExecutorService {
125
126    /*
127     * Implementation Overview
128     *
129     * This class and its nested classes provide the main
130     * functionality and control for a set of worker threads:
131     * Submissions from non-FJ threads enter into submission queues.
132     * Workers take these tasks and typically split them into subtasks
133     * that may be stolen by other workers.  Preference rules give
134     * first priority to processing tasks from their own queues (LIFO
135     * or FIFO, depending on mode), then to randomized FIFO steals of
136     * tasks in other queues.
137     *
138     * WorkQueues
139     * ==========
140     *
141     * Most operations occur within work-stealing queues (in nested
142     * class WorkQueue).  These are special forms of Deques that
143     * support only three of the four possible end-operations -- push,
144     * pop, and poll (aka steal), under the further constraints that
145     * push and pop are called only from the owning thread (or, as
146     * extended here, under a lock), while poll may be called from
147     * other threads.  (If you are unfamiliar with them, you probably
148     * want to read Herlihy and Shavit's book "The Art of
149     * Multiprocessor programming", chapter 16 describing these in
150     * more detail before proceeding.)  The main work-stealing queue
151     * design is roughly similar to those in the papers "Dynamic
152     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
153     * (http://research.sun.com/scalable/pubs/index.html) and
154     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
155     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
156     * See also "Correct and Efficient Work-Stealing for Weak Memory
157     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
158     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
159     * analysis of memory ordering (atomic, volatile etc) issues.  The
160     * main differences ultimately stem from GC requirements that we
161     * null out taken slots as soon as we can, to maintain as small a
162     * footprint as possible even in programs generating huge numbers
163     * of tasks. To accomplish this, we shift the CAS arbitrating pop
164     * vs poll (steal) from being on the indices ("base" and "top") to
165     * the slots themselves.  So, both a successful pop and poll
166     * mainly entail a CAS of a slot from non-null to null.  Because
167     * we rely on CASes of references, we do not need tag bits on base
168     * or top.  They are simple ints as used in any circular
169     * array-based queue (see for example ArrayDeque).  Updates to the
170     * indices must still be ordered in a way that guarantees that top
171     * == base means the queue is empty, but otherwise may err on the
172     * side of possibly making the queue appear nonempty when a push,
173     * pop, or poll have not fully committed. Note that this means
174     * that the poll operation, considered individually, is not
175     * wait-free. One thief cannot successfully continue until another
176     * in-progress one (or, if previously empty, a push) completes.
177     * However, in the aggregate, we ensure at least probabilistic
178     * non-blockingness.  If an attempted steal fails, a thief always
179     * chooses a different random victim target to try next. So, in
180     * order for one thief to progress, it suffices for any
181     * in-progress poll or new push on any empty queue to
182     * complete. (This is why we normally use method pollAt and its
183     * variants that try once at the apparent base index, else
184     * consider alternative actions, rather than method poll.)
185     *
186     * This approach also enables support of a user mode in which local
187     * task processing is in FIFO, not LIFO order, simply by using
188     * poll rather than pop.  This can be useful in message-passing
189     * frameworks in which tasks are never joined.  However neither
190     * mode considers affinities, loads, cache localities, etc, so
191     * rarely provide the best possible performance on a given
192     * machine, but portably provide good throughput by averaging over
193     * these factors.  (Further, even if we did try to use such
194     * information, we do not usually have a basis for exploiting it.
195     * For example, some sets of tasks profit from cache affinities,
196     * but others are harmed by cache pollution effects.)
197     *
198     * WorkQueues are also used in a similar way for tasks submitted
199     * to the pool. We cannot mix these tasks in the same queues used
200     * for work-stealing (this would contaminate lifo/fifo
201     * processing). Instead, we randomly associate submission queues
202     * with submitting threads, using a form of hashing.  The
203     * Submitter probe value serves as a hash code for
204     * choosing existing queues, and may be randomly repositioned upon
205     * contention with other submitters.  In essence, submitters act
206     * like workers except that they are restricted to executing local
207     * tasks that they submitted. However, because most
208     * shared/external queue operations are more expensive than
209     * internal, and because, at steady state, external submitters
210     * will compete for CPU with workers, ForkJoinTask.join and
211     * related methods disable them from repeatedly helping to process
212     * tasks if all workers are active.  Insertion of tasks in shared
213     * mode requires a lock (mainly to protect in the case of
214     * resizing) but we use only a simple spinlock (using bits in
215     * field qlock), because submitters encountering a busy queue move
216     * on to try or create other queues -- they block only when
217     * creating and registering new queues.
218     *
219     * Management
220     * ==========
221     *
222     * The main throughput advantages of work-stealing stem from
223     * decentralized control -- workers mostly take tasks from
224     * themselves or each other. We cannot negate this in the
225     * implementation of other management responsibilities. The main
226     * tactic for avoiding bottlenecks is packing nearly all
227     * essentially atomic control state into two volatile variables
228     * that are by far most often read (not written) as status and
229     * consistency checks.
230     *
231     * Field "ctl" contains 64 bits holding all the information needed
232     * to atomically decide to add, inactivate, enqueue (on an event
233     * queue), dequeue, and/or re-activate workers.  To enable this
234     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
235     * far in excess of normal operating range) to allow ids, counts,
236     * and their negations (used for thresholding) to fit into 16bit
237     * fields.
238     *
239     * Field "plock" is a form of sequence lock with a saturating
240     * shutdown bit (similarly for per-queue "qlocks"), mainly
241     * protecting updates to the workQueues array, as well as to
242     * enable shutdown.  When used as a lock, it is normally only very
243     * briefly held, so is nearly always available after at most a
244     * brief spin, but we use a monitor-based backup strategy to
245     * block when needed.
246     *
247     * Recording WorkQueues.  WorkQueues are recorded in the
248     * "workQueues" array that is created upon first use and expanded
249     * if necessary.  Updates to the array while recording new workers
250     * and unrecording terminated ones are protected from each other
251     * by a lock but the array is otherwise concurrently readable, and
252     * accessed directly.  To simplify index-based operations, the
253     * array size is always a power of two, and all readers must
254     * tolerate null slots. Worker queues are at odd indices. Shared
255     * (submission) queues are at even indices, up to a maximum of 64
256     * slots, to limit growth even if array needs to expand to add
257     * more workers. Grouping them together in this way simplifies and
258     * speeds up task scanning.
259     *
260     * All worker thread creation is on-demand, triggered by task
261     * submissions, replacement of terminated workers, and/or
262     * compensation for blocked workers. However, all other support
263     * code is set up to work with other policies.  To ensure that we
264     * do not hold on to worker references that would prevent GC, ALL
265     * accesses to workQueues are via indices into the workQueues
266     * array (which is one source of some of the messy code
267     * constructions here). In essence, the workQueues array serves as
268     * a weak reference mechanism. Thus for example the wait queue
269     * field of ctl stores indices, not references.  Access to the
270     * workQueues in associated methods (for example signalWork) must
271     * both index-check and null-check the IDs. All such accesses
272     * ignore bad IDs by returning out early from what they are doing,
273     * since this can only be associated with termination, in which
274     * case it is OK to give up.  All uses of the workQueues array
275     * also check that it is non-null (even if previously
276     * non-null). This allows nulling during termination, which is
277     * currently not necessary, but remains an option for
278     * resource-revocation-based shutdown schemes. It also helps
279     * reduce JIT issuance of uncommon-trap code, which tends to
280     * unnecessarily complicate control flow in some methods.
281     *
282     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
283     * let workers spin indefinitely scanning for tasks when none can
284     * be found immediately, and we cannot start/resume workers unless
285     * there appear to be tasks available.  On the other hand, we must
286     * quickly prod them into action when new tasks are submitted or
287     * generated. In many usages, ramp-up time to activate workers is
288     * the main limiting factor in overall performance (this is
289     * compounded at program start-up by JIT compilation and
290     * allocation). So we try to streamline this as much as possible.
291     * We park/unpark workers after placing in an event wait queue
292     * when they cannot find work. This "queue" is actually a simple
293     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
294     * counter value (that reflects the number of times a worker has
295     * been inactivated) to avoid ABA effects (we need only as many
296     * version numbers as worker threads). Successors are held in
297     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
298     * races, mainly that a task-producing thread can miss seeing (and
299     * signalling) another thread that gave up looking for work but
300     * has not yet entered the wait queue. We solve this by requiring
301     * a full sweep of all workers (via repeated calls to method
302     * scan()) both before and after a newly waiting worker is added
303     * to the wait queue.  Because enqueued workers may actually be
304     * rescanning rather than waiting, we set and clear the "parker"
305     * field of WorkQueues to reduce unnecessary calls to unpark.
306     * (This requires a secondary recheck to avoid missed signals.)
307     * Note the unusual conventions about Thread.interrupts
308     * surrounding parking and other blocking: Because interrupts are
309     * used solely to alert threads to check termination, which is
310     * checked anyway upon blocking, we clear status (using
311     * Thread.interrupted) before any call to park, so that park does
312     * not immediately return due to status being set via some other
313     * unrelated call to interrupt in user code.
314     *
315     * Signalling.  We create or wake up workers only when there
316     * appears to be at least one task they might be able to find and
317     * execute.  When a submission is added or another worker adds a
318     * task to a queue that has fewer than two tasks, they signal
319     * waiting workers (or trigger creation of new ones if fewer than
320     * the given parallelism level -- signalWork).  These primary
321     * signals are buttressed by others whenever other threads remove
322     * a task from a queue and notice that there are other tasks there
323     * as well.  So in general, pools will be over-signalled. On most
324     * platforms, signalling (unpark) overhead time is noticeably
325     * long, and the time between signalling a thread and it actually
326     * making progress can be very noticeably long, so it is worth
327     * offloading these delays from critical paths as much as
328     * possible. Additionally, workers spin-down gradually, by staying
329     * alive so long as they see the ctl state changing.  Similar
330     * stability-sensing techniques are also used before blocking in
331     * awaitJoin and helpComplete.
332     *
333     * Trimming workers. To release resources after periods of lack of
334     * use, a worker starting to wait when the pool is quiescent will
335     * time out and terminate if the pool has remained quiescent for a
336     * given period -- a short period if there are more threads than
337     * parallelism, longer as the number of threads decreases. This
338     * will slowly propagate, eventually terminating all workers after
339     * periods of non-use.
340     *
341     * Shutdown and Termination. A call to shutdownNow atomically sets
342     * a plock bit and then (non-atomically) sets each worker's
343     * qlock status, cancels all unprocessed tasks, and wakes up
344     * all waiting workers.  Detecting whether termination should
345     * commence after a non-abrupt shutdown() call requires more work
346     * and bookkeeping. We need consensus about quiescence (i.e., that
347     * there is no more work). The active count provides a primary
348     * indication but non-abrupt shutdown still requires a rechecking
349     * scan for any workers that are inactive but not queued.
350     *
351     * Joining Tasks
352     * =============
353     *
354     * Any of several actions may be taken when one worker is waiting
355     * to join a task stolen (or always held) by another.  Because we
356     * are multiplexing many tasks on to a pool of workers, we can't
357     * just let them block (as in Thread.join).  We also cannot just
358     * reassign the joiner's run-time stack with another and replace
359     * it later, which would be a form of "continuation", that even if
360     * possible is not necessarily a good idea since we sometimes need
361     * both an unblocked task and its continuation to progress.
362     * Instead we combine two tactics:
363     *
364     *   Helping: Arranging for the joiner to execute some task that it
365     *      would be running if the steal had not occurred.
366     *
367     *   Compensating: Unless there are already enough live threads,
368     *      method tryCompensate() may create or re-activate a spare
369     *      thread to compensate for blocked joiners until they unblock.
370     *
371     * A third form (implemented in tryRemoveAndExec) amounts to
372     * helping a hypothetical compensator: If we can readily tell that
373     * a possible action of a compensator is to steal and execute the
374     * task being joined, the joining thread can do so directly,
375     * without the need for a compensation thread (although at the
376     * expense of larger run-time stacks, but the tradeoff is
377     * typically worthwhile).
378     *
379     * The ManagedBlocker extension API can't use helping so relies
380     * only on compensation in method awaitBlocker.
381     *
382     * The algorithm in tryHelpStealer entails a form of "linear"
383     * helping: Each worker records (in field currentSteal) the most
384     * recent task it stole from some other worker. Plus, it records
385     * (in field currentJoin) the task it is currently actively
386     * joining. Method tryHelpStealer uses these markers to try to
387     * find a worker to help (i.e., steal back a task from and execute
388     * it) that could hasten completion of the actively joined task.
389     * In essence, the joiner executes a task that would be on its own
390     * local deque had the to-be-joined task not been stolen. This may
391     * be seen as a conservative variant of the approach in Wagner &
392     * Calder "Leapfrogging: a portable technique for implementing
393     * efficient futures" SIGPLAN Notices, 1993
394     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
395     * that: (1) We only maintain dependency links across workers upon
396     * steals, rather than use per-task bookkeeping.  This sometimes
397     * requires a linear scan of workQueues array to locate stealers,
398     * but often doesn't because stealers leave hints (that may become
399     * stale/wrong) of where to locate them.  It is only a hint
400     * because a worker might have had multiple steals and the hint
401     * records only one of them (usually the most current).  Hinting
402     * isolates cost to when it is needed, rather than adding to
403     * per-task overhead.  (2) It is "shallow", ignoring nesting and
404     * potentially cyclic mutual steals.  (3) It is intentionally
405     * racy: field currentJoin is updated only while actively joining,
406     * which means that we miss links in the chain during long-lived
407     * tasks, GC stalls etc (which is OK since blocking in such cases
408     * is usually a good idea).  (4) We bound the number of attempts
409     * to find work (see MAX_HELP) and fall back to suspending the
410     * worker and if necessary replacing it with another.
411     *
412     * It is impossible to keep exactly the target parallelism number
413     * of threads running at any given time.  Determining the
414     * existence of conservatively safe helping targets, the
415     * availability of already-created spares, and the apparent need
416     * to create new spares are all racy, so we rely on multiple
417     * retries of each.  Compensation in the apparent absence of
418     * helping opportunities is challenging to control on JVMs, where
419     * GC and other activities can stall progress of tasks that in
420     * turn stall out many other dependent tasks, without us being
421     * able to determine whether they will ever require compensation.
422     * Even though work-stealing otherwise encounters little
423     * degradation in the presence of more threads than cores,
424     * aggressively adding new threads in such cases entails risk of
425     * unwanted positive feedback control loops in which more threads
426     * cause more dependent stalls (as well as delayed progress of
427     * unblocked threads to the point that we know they are available)
428     * leading to more situations requiring more threads, and so
429     * on. This aspect of control can be seen as an (analytically
430     * intractable) game with an opponent that may choose the worst
431     * (for us) active thread to stall at any time.  We take several
432     * precautions to bound losses (and thus bound gains), mainly in
433     * methods tryCompensate and awaitJoin.
434     *
435     * Common Pool
436     * ===========
437     *
438     * The static common pool always exists after static
439     * initialization.  Since it (or any other created pool) need
440     * never be used, we minimize initial construction overhead and
441     * footprint to the setup of about a dozen fields, with no nested
442     * allocation. Most bootstrapping occurs within method
443     * fullExternalPush during the first submission to the pool.
444     *
445     * When external threads submit to the common pool, they can
446     * perform subtask processing (see externalHelpJoin and related
447     * methods).  This caller-helps policy makes it sensible to set
448     * common pool parallelism level to one (or more) less than the
449     * total number of available cores, or even zero for pure
450     * caller-runs.  We do not need to record whether external
451     * submissions are to the common pool -- if not, externalHelpJoin
452     * returns quickly (at the most helping to signal some common pool
453     * workers). These submitters would otherwise be blocked waiting
454     * for completion, so the extra effort (with liberally sprinkled
455     * task status checks) in inapplicable cases amounts to an odd
456     * form of limited spin-wait before blocking in ForkJoinTask.join.
457     *
458     * Style notes
459     * ===========
460     *
461     * There is a lot of representation-level coupling among classes
462     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
463     * fields of WorkQueue maintain data structures managed by
464     * ForkJoinPool, so are directly accessed.  There is little point
465     * trying to reduce this, since any associated future changes in
466     * representations will need to be accompanied by algorithmic
467     * changes anyway. Several methods intrinsically sprawl because
468     * they must accumulate sets of consistent reads of volatiles held
469     * in local variables.  Methods signalWork() and scan() are the
470     * main bottlenecks, so are especially heavily
471     * micro-optimized/mangled.  There are lots of inline assignments
472     * (of form "while ((local = field) != 0)") which are usually the
473     * simplest way to ensure the required read orderings (which are
474     * sometimes critical). This leads to a "C"-like style of listing
475     * declarations of these locals at the heads of methods or blocks.
476     * There are several occurrences of the unusual "do {} while
477     * (!cas...)"  which is the simplest way to force an update of a
478     * CAS'ed variable. There are also other coding oddities (including
479     * several unnecessary-looking hoisted null checks) that help
480     * some methods perform reasonably even when interpreted (not
481     * compiled).
482     *
483     * The order of declarations in this file is:
484     * (1) Static utility functions
485     * (2) Nested (static) classes
486     * (3) Static fields
487     * (4) Fields, along with constants used when unpacking some of them
488     * (5) Internal control methods
489     * (6) Callbacks and other support for ForkJoinTask methods
490     * (7) Exported methods
491     * (8) Static block initializing statics in minimally dependent order
492     */
493    // android-note: Removed references to CountedCompleters.
494
495    // Static utilities
496
497    /**
498     * If there is a security manager, makes sure caller has
499     * permission to modify threads.
500     */
501    private static void checkPermission() {
502        SecurityManager security = System.getSecurityManager();
503        if (security != null)
504            security.checkPermission(modifyThreadPermission);
505    }
506
507    // Nested classes
508
509    /**
510     * Factory for creating new {@link ForkJoinWorkerThread}s.
511     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
512     * for {@code ForkJoinWorkerThread} subclasses that extend base
513     * functionality or initialize threads with different contexts.
514     */
515    public static interface ForkJoinWorkerThreadFactory {
516        /**
517         * Returns a new worker thread operating in the given pool.
518         *
519         * @param pool the pool this thread works in
520         * @return the new worker thread
521         * @throws NullPointerException if the pool is null
522         */
523        public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524    }
525
526    /**
527     * Default ForkJoinWorkerThreadFactory implementation; creates a
528     * new ForkJoinWorkerThread.
529     */
530    static final class DefaultForkJoinWorkerThreadFactory
531        implements ForkJoinWorkerThreadFactory {
532        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533            return new ForkJoinWorkerThread(pool);
534        }
535    }
536
537    /**
538     * Class for artificial tasks that are used to replace the target
539     * of local joins if they are removed from an interior queue slot
540     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
541     * actually do anything beyond having a unique identity.
542     */
543    static final class EmptyTask extends ForkJoinTask<Void> {
544        private static final long serialVersionUID = -7721805057305804111L;
545        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
546        public final Void getRawResult() { return null; }
547        public final void setRawResult(Void x) {}
548        public final boolean exec() { return true; }
549    }
550
551    /**
552     * Queues supporting work-stealing as well as external task
553     * submission. See above for main rationale and algorithms.
554     * Implementation relies heavily on "Unsafe" intrinsics
555     * and selective use of "volatile":
556     *
557     * Field "base" is the index (mod array.length) of the least valid
558     * queue slot, which is always the next position to steal (poll)
559     * from if nonempty. Reads and writes require volatile orderings
560     * but not CAS, because updates are only performed after slot
561     * CASes.
562     *
563     * Field "top" is the index (mod array.length) of the next queue
564     * slot to push to or pop from. It is written only by owner thread
565     * for push, or under lock for external/shared push, and accessed
566     * by other threads only after reading (volatile) base.  Both top
567     * and base are allowed to wrap around on overflow, but (top -
568     * base) (or more commonly -(base - top) to force volatile read of
569     * base before top) still estimates size. The lock ("qlock") is
570     * forced to -1 on termination, causing all further lock attempts
571     * to fail. (Note: we don't need CAS for termination state because
572     * upon pool shutdown, all shared-queues will stop being used
573     * anyway.)  Nearly all lock bodies are set up so that exceptions
574     * within lock bodies are "impossible" (modulo JVM errors that
575     * would cause failure anyway.)
576     *
577     * The array slots are read and written using the emulation of
578     * volatiles/atomics provided by Unsafe. Insertions must in
579     * general use putOrderedObject as a form of releasing store to
580     * ensure that all writes to the task object are ordered before
581     * its publication in the queue.  All removals entail a CAS to
582     * null.  The array is always a power of two. To ensure safety of
583     * Unsafe array operations, all accesses perform explicit null
584     * checks and implicit bounds checks via power-of-two masking.
585     *
586     * In addition to basic queuing support, this class contains
587     * fields described elsewhere to control execution. It turns out
588     * to work better memory-layout-wise to include them in this class
589     * rather than a separate class.
590     *
591     * Performance on most platforms is very sensitive to placement of
592     * instances of both WorkQueues and their arrays -- we absolutely
593     * do not want multiple WorkQueue instances or multiple queue
594     * arrays sharing cache lines. (It would be best for queue objects
595     * and their arrays to share, but there is nothing available to
596     * help arrange that). The @Contended annotation alerts JVMs to
597     * try to keep instances apart.
598     */
599    static final class WorkQueue {
600        /**
601         * Capacity of work-stealing queue array upon initialization.
602         * Must be a power of two; at least 4, but should be larger to
603         * reduce or eliminate cacheline sharing among queues.
604         * Currently, it is much larger, as a partial workaround for
605         * the fact that JVMs often place arrays in locations that
606         * share GC bookkeeping (especially cardmarks) such that
607         * per-write accesses encounter serious memory contention.
608         */
609        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
610
611        /**
612         * Maximum size for queue arrays. Must be a power of two less
613         * than or equal to 1 << (31 - width of array entry) to ensure
614         * lack of wraparound of index calculations, but defined to a
615         * value a bit less than this to help users trap runaway
616         * programs before saturating systems.
617         */
618        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
619
620        // Heuristic padding to ameliorate unfortunate memory placements
621        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
622
623        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
624        int nextWait;              // encoded record of next event waiter
625        int nsteals;               // number of steals
626        int hint;                  // steal index hint
627        short poolIndex;           // index of this queue in pool
628        final short mode;          // 0: lifo, > 0: fifo, < 0: shared
629        volatile int qlock;        // 1: locked, -1: terminate; else 0
630        volatile int base;         // index of next slot for poll
631        int top;                   // index of next slot for push
632        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
633        final ForkJoinPool pool;   // the containing pool (may be null)
634        final ForkJoinWorkerThread owner; // owning thread or null if shared
635        volatile Thread parker;    // == owner during call to park; else null
636        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
637        ForkJoinTask<?> currentSteal; // current non-local task being executed
638
639        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
640        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
641
642        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
643                  int seed) {
644            this.pool = pool;
645            this.owner = owner;
646            this.mode = (short)mode;
647            this.hint = seed; // store initial seed for runWorker
648            // Place indices in the center of array (that is not yet allocated)
649            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
650        }
651
652        /**
653         * Returns the approximate number of tasks in the queue.
654         */
655        final int queueSize() {
656            int n = base - top;       // non-owner callers must read base first
657            return (n >= 0) ? 0 : -n; // ignore transient negative
658        }
659
660        /**
661         * Provides a more accurate estimate of whether this queue has
662         * any tasks than does queueSize, by checking whether a
663         * near-empty queue has at least one unclaimed task.
664         */
665        final boolean isEmpty() {
666            ForkJoinTask<?>[] a; int m, s;
667            int n = base - (s = top);
668            return (n >= 0 ||
669                    (n == -1 &&
670                     ((a = array) == null ||
671                      (m = a.length - 1) < 0 ||
672                      U.getObject
673                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
674        }
675
676        /**
677         * Pushes a task. Call only by owner in unshared queues.  (The
678         * shared-queue version is embedded in method externalPush.)
679         *
680         * @param task the task. Caller must ensure non-null.
681         * @throws RejectedExecutionException if array cannot be resized
682         */
683        final void push(ForkJoinTask<?> task) {
684            ForkJoinTask<?>[] a; ForkJoinPool p;
685            int s = top, n;
686            if ((a = array) != null) {    // ignore if queue removed
687                int m = a.length - 1;
688                U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
689                if ((n = (top = s + 1) - base) <= 2)
690                    (p = pool).signalWork(p.workQueues, this);
691                else if (n >= m)
692                    growArray();
693            }
694        }
695
696        /**
697         * Initializes or doubles the capacity of array. Call either
698         * by owner or with lock held -- it is OK for base, but not
699         * top, to move while resizings are in progress.
700         */
701        final ForkJoinTask<?>[] growArray() {
702            ForkJoinTask<?>[] oldA = array;
703            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
704            if (size > MAXIMUM_QUEUE_CAPACITY)
705                throw new RejectedExecutionException("Queue capacity exceeded");
706            int oldMask, t, b;
707            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
708            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
709                (t = top) - (b = base) > 0) {
710                int mask = size - 1;
711                do {
712                    ForkJoinTask<?> x;
713                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
714                    int j    = ((b &    mask) << ASHIFT) + ABASE;
715                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
716                    if (x != null &&
717                        U.compareAndSwapObject(oldA, oldj, x, null))
718                        U.putObjectVolatile(a, j, x);
719                } while (++b != t);
720            }
721            return a;
722        }
723
724        /**
725         * Takes next task, if one exists, in LIFO order.  Call only
726         * by owner in unshared queues.
727         */
728        final ForkJoinTask<?> pop() {
729            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
730            if ((a = array) != null && (m = a.length - 1) >= 0) {
731                for (int s; (s = top - 1) - base >= 0;) {
732                    long j = ((m & s) << ASHIFT) + ABASE;
733                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
734                        break;
735                    if (U.compareAndSwapObject(a, j, t, null)) {
736                        top = s;
737                        return t;
738                    }
739                }
740            }
741            return null;
742        }
743
744        /**
745         * Takes a task in FIFO order if b is base of queue and a task
746         * can be claimed without contention. Specialized versions
747         * appear in ForkJoinPool methods scan and tryHelpStealer.
748         */
749        final ForkJoinTask<?> pollAt(int b) {
750            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
751            if ((a = array) != null) {
752                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
753                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
754                    base == b && U.compareAndSwapObject(a, j, t, null)) {
755                    U.putOrderedInt(this, QBASE, b + 1);
756                    return t;
757                }
758            }
759            return null;
760        }
761
762        /**
763         * Takes next task, if one exists, in FIFO order.
764         */
765        final ForkJoinTask<?> poll() {
766            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
767            while ((b = base) - top < 0 && (a = array) != null) {
768                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
769                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
770                if (t != null) {
771                    if (U.compareAndSwapObject(a, j, t, null)) {
772                        U.putOrderedInt(this, QBASE, b + 1);
773                        return t;
774                    }
775                }
776                else if (base == b) {
777                    if (b + 1 == top)
778                        break;
779                    Thread.yield(); // wait for lagging update (very rare)
780                }
781            }
782            return null;
783        }
784
785        /**
786         * Takes next task, if one exists, in order specified by mode.
787         */
788        final ForkJoinTask<?> nextLocalTask() {
789            return mode == 0 ? pop() : poll();
790        }
791
792        /**
793         * Returns next task, if one exists, in order specified by mode.
794         */
795        final ForkJoinTask<?> peek() {
796            ForkJoinTask<?>[] a = array; int m;
797            if (a == null || (m = a.length - 1) < 0)
798                return null;
799            int i = mode == 0 ? top - 1 : base;
800            int j = ((i & m) << ASHIFT) + ABASE;
801            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
802        }
803
804        /**
805         * Pops the given task only if it is at the current top.
806         * (A shared version is available only via FJP.tryExternalUnpush)
807         */
808        final boolean tryUnpush(ForkJoinTask<?> t) {
809            ForkJoinTask<?>[] a; int s;
810            if ((a = array) != null && (s = top) != base &&
811                U.compareAndSwapObject
812                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
813                top = s;
814                return true;
815            }
816            return false;
817        }
818
819        /**
820         * Removes and cancels all known tasks, ignoring any exceptions.
821         */
822        final void cancelAll() {
823            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
824            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
825            for (ForkJoinTask<?> t; (t = poll()) != null; )
826                ForkJoinTask.cancelIgnoringExceptions(t);
827        }
828
829        // Specialized execution methods
830
831        /**
832         * Polls and runs tasks until empty.
833         */
834        final void pollAndExecAll() {
835            for (ForkJoinTask<?> t; (t = poll()) != null;)
836                t.doExec();
837        }
838
839        /**
840         * Executes a top-level task and any local tasks remaining
841         * after execution.
842         */
843        final void runTask(ForkJoinTask<?> task) {
844            if ((currentSteal = task) != null) {
845                task.doExec();
846                ForkJoinTask<?>[] a = array;
847                int md = mode;
848                ++nsteals;
849                currentSteal = null;
850                if (md != 0)
851                    pollAndExecAll();
852                else if (a != null) {
853                    int s, m = a.length - 1;
854                    while ((s = top - 1) - base >= 0) {
855                        long i = ((m & s) << ASHIFT) + ABASE;
856                        ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
857                        if (t == null)
858                            break;
859                        if (U.compareAndSwapObject(a, i, t, null)) {
860                            top = s;
861                            t.doExec();
862                        }
863                    }
864                }
865            }
866        }
867
868        /**
869         * If present, removes from queue and executes the given task,
870         * or any other cancelled task. Returns (true) on any CAS
871         * or consistency check failure so caller can retry.
872         *
873         * @return false if no progress can be made, else true
874         */
875        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
876            boolean stat;
877            ForkJoinTask<?>[] a; int m, s, b, n;
878            if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
879                (n = (s = top) - (b = base)) > 0) {
880                boolean removed = false, empty = true;
881                stat = true;
882                for (ForkJoinTask<?> t;;) {           // traverse from s to b
883                    long j = ((--s & m) << ASHIFT) + ABASE;
884                    t = (ForkJoinTask<?>)U.getObject(a, j);
885                    if (t == null)                    // inconsistent length
886                        break;
887                    else if (t == task) {
888                        if (s + 1 == top) {           // pop
889                            if (!U.compareAndSwapObject(a, j, task, null))
890                                break;
891                            top = s;
892                            removed = true;
893                        }
894                        else if (base == b)           // replace with proxy
895                            removed = U.compareAndSwapObject(a, j, task,
896                                                             new EmptyTask());
897                        break;
898                    }
899                    else if (t.status >= 0)
900                        empty = false;
901                    else if (s + 1 == top) {          // pop and throw away
902                        if (U.compareAndSwapObject(a, j, t, null))
903                            top = s;
904                        break;
905                    }
906                    if (--n == 0) {
907                        if (!empty && base == b)
908                            stat = false;
909                        break;
910                    }
911                }
912                if (removed)
913                    task.doExec();
914            }
915            else
916                stat = false;
917            return stat;
918        }
919
920        /**
921         * Tries to poll for and execute the given task or any other
922         * task in its CountedCompleter computation.
923         */
924        final boolean pollAndExecCC(CountedCompleter<?> root) {
925            ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
926            if ((b = base) - top < 0 && (a = array) != null) {
927                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
928                if ((o = U.getObjectVolatile(a, j)) == null)
929                    return true; // retry
930                if (o instanceof CountedCompleter) {
931                    for (t = (CountedCompleter<?>)o, r = t;;) {
932                        if (r == root) {
933                            if (base == b &&
934                                U.compareAndSwapObject(a, j, t, null)) {
935                                U.putOrderedInt(this, QBASE, b + 1);
936                                t.doExec();
937                            }
938                            return true;
939                        }
940                        else if ((r = r.completer) == null)
941                            break; // not part of root computation
942                    }
943                }
944            }
945            return false;
946        }
947
948        /**
949         * Tries to pop and execute the given task or any other task
950         * in its CountedCompleter computation.
951         */
952        final boolean externalPopAndExecCC(CountedCompleter<?> root) {
953            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
954            if (base - (s = top) < 0 && (a = array) != null) {
955                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
956                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
957                    for (t = (CountedCompleter<?>)o, r = t;;) {
958                        if (r == root) {
959                            if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
960                                if (top == s && array == a &&
961                                    U.compareAndSwapObject(a, j, t, null)) {
962                                    top = s - 1;
963                                    qlock = 0;
964                                    t.doExec();
965                                }
966                                else
967                                    qlock = 0;
968                            }
969                            return true;
970                        }
971                        else if ((r = r.completer) == null)
972                            break;
973                    }
974                }
975            }
976            return false;
977        }
978
979        /**
980         * Internal version
981         */
982        final boolean internalPopAndExecCC(CountedCompleter<?> root) {
983            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
984            if (base - (s = top) < 0 && (a = array) != null) {
985                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
986                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
987                    for (t = (CountedCompleter<?>)o, r = t;;) {
988                        if (r == root) {
989                            if (U.compareAndSwapObject(a, j, t, null)) {
990                                top = s - 1;
991                                t.doExec();
992                            }
993                            return true;
994                        }
995                        else if ((r = r.completer) == null)
996                            break;
997                    }
998                }
999            }
1000            return false;
1001        }
1002
1003        /**
1004         * Returns true if owned and not known to be blocked.
1005         */
1006        final boolean isApparentlyUnblocked() {
1007            Thread wt; Thread.State s;
1008            return (eventCount >= 0 &&
1009                    (wt = owner) != null &&
1010                    (s = wt.getState()) != Thread.State.BLOCKED &&
1011                    s != Thread.State.WAITING &&
1012                    s != Thread.State.TIMED_WAITING);
1013        }
1014
1015        // Unsafe mechanics
1016        private static final sun.misc.Unsafe U;
1017        private static final long QBASE;
1018        private static final long QLOCK;
1019        private static final int ABASE;
1020        private static final int ASHIFT;
1021        static {
1022            try {
1023                U = sun.misc.Unsafe.getUnsafe();
1024                Class<?> k = WorkQueue.class;
1025                Class<?> ak = ForkJoinTask[].class;
1026                QBASE = U.objectFieldOffset
1027                    (k.getDeclaredField("base"));
1028                QLOCK = U.objectFieldOffset
1029                    (k.getDeclaredField("qlock"));
1030                ABASE = U.arrayBaseOffset(ak);
1031                int scale = U.arrayIndexScale(ak);
1032                if ((scale & (scale - 1)) != 0)
1033                    throw new Error("data type scale not a power of two");
1034                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1035            } catch (Exception e) {
1036                throw new Error(e);
1037            }
1038        }
1039    }
1040
1041    // static fields (initialized in static initializer below)
1042
1043    /**
1044     * Per-thread submission bookkeeping. Shared across all pools
1045     * to reduce ThreadLocal pollution and because random motion
1046     * to avoid contention in one pool is likely to hold for others.
1047     * Lazily initialized on first submission (but null-checked
1048     * in other contexts to avoid unnecessary initialization).
1049     */
1050    static final ThreadLocal<Submitter> submitters;
1051
1052    /**
1053     * Creates a new ForkJoinWorkerThread. This factory is used unless
1054     * overridden in ForkJoinPool constructors.
1055     */
1056    public static final ForkJoinWorkerThreadFactory
1057        defaultForkJoinWorkerThreadFactory;
1058
1059    /**
1060     * Permission required for callers of methods that may start or
1061     * kill threads.
1062     */
1063    private static final RuntimePermission modifyThreadPermission;
1064
1065    /**
1066     * Common (static) pool. Non-null for public use unless a static
1067     * construction exception, but internal usages null-check on use
1068     * to paranoically avoid potential initialization circularities
1069     * as well as to simplify generated code.
1070     */
1071    static final ForkJoinPool common;
1072
1073    /**
1074     * Common pool parallelism. To allow simpler use and management
1075     * when common pool threads are disabled, we allow the underlying
1076     * common.parallelism field to be zero, but in that case still report
1077     * parallelism as 1 to reflect resulting caller-runs mechanics.
1078     */
1079    static final int commonParallelism;
1080
1081    /**
1082     * Sequence number for creating workerNamePrefix.
1083     */
1084    private static int poolNumberSequence;
1085
1086    /**
1087     * Returns the next sequence number. We don't expect this to
1088     * ever contend, so use simple builtin sync.
1089     */
1090    private static final synchronized int nextPoolId() {
1091        return ++poolNumberSequence;
1092    }
1093
1094    // static constants
1095
1096    /**
1097     * Initial timeout value (in nanoseconds) for the thread
1098     * triggering quiescence to park waiting for new work. On timeout,
1099     * the thread will instead try to shrink the number of
1100     * workers. The value should be large enough to avoid overly
1101     * aggressive shrinkage during most transient stalls (long GCs
1102     * etc).
1103     */
1104    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1105
1106    /**
1107     * Timeout value when there are more threads than parallelism level
1108     */
1109    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1110
1111    /**
1112     * Tolerance for idle timeouts, to cope with timer undershoots
1113     */
1114    private static final long TIMEOUT_SLOP = 2000000L;
1115
1116    /**
1117     * The maximum stolen->joining link depth allowed in method
1118     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1119     * chains are unbounded, but we use a fixed constant to avoid
1120     * (otherwise unchecked) cycles and to bound staleness of
1121     * traversal parameters at the expense of sometimes blocking when
1122     * we could be helping.
1123     */
1124    private static final int MAX_HELP = 64;
1125
1126    /**
1127     * Increment for seed generators. See class ThreadLocal for
1128     * explanation.
1129     */
1130    private static final int SEED_INCREMENT = 0x61c88647;
1131
1132    /*
1133     * Bits and masks for control variables
1134     *
1135     * Field ctl is a long packed with:
1136     * AC: Number of active running workers minus target parallelism (16 bits)
1137     * TC: Number of total workers minus target parallelism (16 bits)
1138     * ST: true if pool is terminating (1 bit)
1139     * EC: the wait count of top waiting thread (15 bits)
1140     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1141     *
1142     * When convenient, we can extract the upper 32 bits of counts and
1143     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1144     * (int)ctl.  The ec field is never accessed alone, but always
1145     * together with id and st. The offsets of counts by the target
1146     * parallelism and the positionings of fields makes it possible to
1147     * perform the most common checks via sign tests of fields: When
1148     * ac is negative, there are not enough active workers, when tc is
1149     * negative, there are not enough total workers, and when e is
1150     * negative, the pool is terminating.  To deal with these possibly
1151     * negative fields, we use casts in and out of "short" and/or
1152     * signed shifts to maintain signedness.
1153     *
1154     * When a thread is queued (inactivated), its eventCount field is
1155     * set negative, which is the only way to tell if a worker is
1156     * prevented from executing tasks, even though it must continue to
1157     * scan for them to avoid queuing races. Note however that
1158     * eventCount updates lag releases so usage requires care.
1159     *
1160     * Field plock is an int packed with:
1161     * SHUTDOWN: true if shutdown is enabled (1 bit)
1162     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1163     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1164     *
1165     * The sequence number enables simple consistency checks:
1166     * Staleness of read-only operations on the workQueues array can
1167     * be checked by comparing plock before vs after the reads.
1168     */
1169
1170    // bit positions/shifts for fields
1171    private static final int  AC_SHIFT   = 48;
1172    private static final int  TC_SHIFT   = 32;
1173    private static final int  ST_SHIFT   = 31;
1174    private static final int  EC_SHIFT   = 16;
1175
1176    // bounds
1177    private static final int  SMASK      = 0xffff;  // short bits
1178    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1179    private static final int  EVENMASK   = 0xfffe;  // even short bits
1180    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1181    private static final int  SHORT_SIGN = 1 << 15;
1182    private static final int  INT_SIGN   = 1 << 31;
1183
1184    // masks
1185    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1186    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1187    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1188
1189    // units for incrementing and decrementing
1190    private static final long TC_UNIT    = 1L << TC_SHIFT;
1191    private static final long AC_UNIT    = 1L << AC_SHIFT;
1192
1193    // masks and units for dealing with u = (int)(ctl >>> 32)
1194    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1195    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1196    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1197    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1198    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1199    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1200
1201    // masks and units for dealing with e = (int)ctl
1202    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1203    private static final int E_SEQ       = 1 << EC_SHIFT;
1204
1205    // plock bits
1206    private static final int SHUTDOWN    = 1 << 31;
1207    private static final int PL_LOCK     = 2;
1208    private static final int PL_SIGNAL   = 1;
1209    private static final int PL_SPINS    = 1 << 8;
1210
1211    // access mode for WorkQueue
1212    static final int LIFO_QUEUE          =  0;
1213    static final int FIFO_QUEUE          =  1;
1214    static final int SHARED_QUEUE        = -1;
1215
1216    // Heuristic padding to ameliorate unfortunate memory placements
1217    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1218
1219    // Instance fields
1220    volatile long stealCount;                  // collects worker counts
1221    volatile long ctl;                         // main pool control
1222    volatile int plock;                        // shutdown status and seqLock
1223    volatile int indexSeed;                    // worker/submitter index seed
1224    final short parallelism;                   // parallelism level
1225    final short mode;                          // LIFO/FIFO
1226    WorkQueue[] workQueues;                    // main registry
1227    final ForkJoinWorkerThreadFactory factory;
1228    final UncaughtExceptionHandler ueh;        // per-worker UEH
1229    final String workerNamePrefix;             // to create worker name string
1230
1231    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1232    volatile Object pad18, pad19, pad1a, pad1b;
1233
1234    /**
1235     * Acquires the plock lock to protect worker array and related
1236     * updates. This method is called only if an initial CAS on plock
1237     * fails. This acts as a spinlock for normal cases, but falls back
1238     * to builtin monitor to block when (rarely) needed. This would be
1239     * a terrible idea for a highly contended lock, but works fine as
1240     * a more conservative alternative to a pure spinlock.
1241     */
1242    private int acquirePlock() {
1243        int spins = PL_SPINS, ps, nps;
1244        for (;;) {
1245            if (((ps = plock) & PL_LOCK) == 0 &&
1246                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1247                return nps;
1248            else if (spins >= 0) {
1249                if (ThreadLocalRandom.current().nextInt() >= 0)
1250                    --spins;
1251            }
1252            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1253                synchronized (this) {
1254                    if ((plock & PL_SIGNAL) != 0) {
1255                        try {
1256                            wait();
1257                        } catch (InterruptedException ie) {
1258                            try {
1259                                Thread.currentThread().interrupt();
1260                            } catch (SecurityException ignore) {
1261                            }
1262                        }
1263                    }
1264                    else
1265                        notifyAll();
1266                }
1267            }
1268        }
1269    }
1270
1271    /**
1272     * Unlocks and signals any thread waiting for plock. Called only
1273     * when CAS of seq value for unlock fails.
1274     */
1275    private void releasePlock(int ps) {
1276        plock = ps;
1277        synchronized (this) { notifyAll(); }
1278    }
1279
1280    /**
1281     * Tries to create and start one worker if fewer than target
1282     * parallelism level exist. Adjusts counts etc on failure.
1283     */
1284    private void tryAddWorker() {
1285        long c; int u, e;
1286        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1287               (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1288            long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1289                              ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1290            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1291                ForkJoinWorkerThreadFactory fac;
1292                Throwable ex = null;
1293                ForkJoinWorkerThread wt = null;
1294                try {
1295                    if ((fac = factory) != null &&
1296                        (wt = fac.newThread(this)) != null) {
1297                        wt.start();
1298                        break;
1299                    }
1300                } catch (Throwable rex) {
1301                    ex = rex;
1302                }
1303                deregisterWorker(wt, ex);
1304                break;
1305            }
1306        }
1307    }
1308
1309    //  Registering and deregistering workers
1310
1311    /**
1312     * Callback from ForkJoinWorkerThread to establish and record its
1313     * WorkQueue. To avoid scanning bias due to packing entries in
1314     * front of the workQueues array, we treat the array as a simple
1315     * power-of-two hash table using per-thread seed as hash,
1316     * expanding as needed.
1317     *
1318     * @param wt the worker thread
1319     * @return the worker's queue
1320     */
1321    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1322        UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1323        wt.setDaemon(true);
1324        if ((handler = ueh) != null)
1325            wt.setUncaughtExceptionHandler(handler);
1326        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1327                                          s += SEED_INCREMENT) ||
1328                     s == 0); // skip 0
1329        WorkQueue w = new WorkQueue(this, wt, mode, s);
1330        if (((ps = plock) & PL_LOCK) != 0 ||
1331            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1332            ps = acquirePlock();
1333        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1334        try {
1335            if ((ws = workQueues) != null) {    // skip if shutting down
1336                int n = ws.length, m = n - 1;
1337                int r = (s << 1) | 1;           // use odd-numbered indices
1338                if (ws[r &= m] != null) {       // collision
1339                    int probes = 0;             // step by approx half size
1340                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1341                    while (ws[r = (r + step) & m] != null) {
1342                        if (++probes >= n) {
1343                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1344                            m = n - 1;
1345                            probes = 0;
1346                        }
1347                    }
1348                }
1349                w.poolIndex = (short)r;
1350                w.eventCount = r; // volatile write orders
1351                ws[r] = w;
1352            }
1353        } finally {
1354            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1355                releasePlock(nps);
1356        }
1357        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1358        return w;
1359    }
1360
1361    /**
1362     * Final callback from terminating worker, as well as upon failure
1363     * to construct or start a worker.  Removes record of worker from
1364     * array, and adjusts counts. If pool is shutting down, tries to
1365     * complete termination.
1366     *
1367     * @param wt the worker thread, or null if construction failed
1368     * @param ex the exception causing failure, or null if none
1369     */
1370    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1371        WorkQueue w = null;
1372        if (wt != null && (w = wt.workQueue) != null) {
1373            int ps; long sc;
1374            w.qlock = -1;                // ensure set
1375            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1376                                               sc = stealCount,
1377                                               sc + w.nsteals));
1378            if (((ps = plock) & PL_LOCK) != 0 ||
1379                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1380                ps = acquirePlock();
1381            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1382            try {
1383                int idx = w.poolIndex;
1384                WorkQueue[] ws = workQueues;
1385                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1386                    ws[idx] = null;
1387            } finally {
1388                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1389                    releasePlock(nps);
1390            }
1391        }
1392
1393        long c;                          // adjust ctl counts
1394        do {} while (!U.compareAndSwapLong
1395                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1396                                           ((c - TC_UNIT) & TC_MASK) |
1397                                           (c & ~(AC_MASK|TC_MASK)))));
1398
1399        if (!tryTerminate(false, false) && w != null && w.array != null) {
1400            w.cancelAll();               // cancel remaining tasks
1401            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1402            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1403                if (e > 0) {             // activate or create replacement
1404                    if ((ws = workQueues) == null ||
1405                        (i = e & SMASK) >= ws.length ||
1406                        (v = ws[i]) == null)
1407                        break;
1408                    long nc = (((long)(v.nextWait & E_MASK)) |
1409                               ((long)(u + UAC_UNIT) << 32));
1410                    if (v.eventCount != (e | INT_SIGN))
1411                        break;
1412                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1413                        v.eventCount = (e + E_SEQ) & E_MASK;
1414                        if ((p = v.parker) != null)
1415                            U.unpark(p);
1416                        break;
1417                    }
1418                }
1419                else {
1420                    if ((short)u < 0)
1421                        tryAddWorker();
1422                    break;
1423                }
1424            }
1425        }
1426        if (ex == null)                     // help clean refs on way out
1427            ForkJoinTask.helpExpungeStaleExceptions();
1428        else                                // rethrow
1429            ForkJoinTask.rethrow(ex);
1430    }
1431
1432    // Submissions
1433
1434    /**
1435     * Per-thread records for threads that submit to pools. Currently
1436     * holds only pseudo-random seed / index that is used to choose
1437     * submission queues in method externalPush. In the future, this may
1438     * also incorporate a means to implement different task rejection
1439     * and resubmission policies.
1440     *
1441     * Seeds for submitters and workers/workQueues work in basically
1442     * the same way but are initialized and updated using slightly
1443     * different mechanics. Both are initialized using the same
1444     * approach as in class ThreadLocal, where successive values are
1445     * unlikely to collide with previous values. Seeds are then
1446     * randomly modified upon collisions using xorshifts, which
1447     * requires a non-zero seed.
1448     */
1449    static final class Submitter {
1450        int seed;
1451        Submitter(int s) { seed = s; }
1452    }
1453
1454    /**
1455     * Unless shutting down, adds the given task to a submission queue
1456     * at submitter's current queue index (modulo submission
1457     * range). Only the most common path is directly handled in this
1458     * method. All others are relayed to fullExternalPush.
1459     *
1460     * @param task the task. Caller must ensure non-null.
1461     */
1462    final void externalPush(ForkJoinTask<?> task) {
1463        Submitter z = submitters.get();
1464        WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1465        int ps = plock;
1466        WorkQueue[] ws = workQueues;
1467        if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1468            (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1469            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1470            if ((a = q.array) != null &&
1471                (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1472                int j = ((am & s) << ASHIFT) + ABASE;
1473                U.putOrderedObject(a, j, task);
1474                q.top = s + 1;                     // push on to deque
1475                q.qlock = 0;
1476                if (n <= 1)
1477                    signalWork(ws, q);
1478                return;
1479            }
1480            q.qlock = 0;
1481        }
1482        fullExternalPush(task);
1483    }
1484
1485    /**
1486     * Full version of externalPush. This method is called, among
1487     * other times, upon the first submission of the first task to the
1488     * pool, so must perform secondary initialization.  It also
1489     * detects first submission by an external thread by looking up
1490     * its ThreadLocal, and creates a new shared queue if the one at
1491     * index if empty or contended. The plock lock body must be
1492     * exception-free (so no try/finally) so we optimistically
1493     * allocate new queues outside the lock and throw them away if
1494     * (very rarely) not needed.
1495     *
1496     * Secondary initialization occurs when plock is zero, to create
1497     * workQueue array and set plock to a valid value.  This lock body
1498     * must also be exception-free. Because the plock seq value can
1499     * eventually wrap around zero, this method harmlessly fails to
1500     * reinitialize if workQueues exists, while still advancing plock.
1501     */
1502    private void fullExternalPush(ForkJoinTask<?> task) {
1503        int r = 0; // random index seed
1504        for (Submitter z = submitters.get();;) {
1505            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1506            if (z == null) {
1507                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1508                                        r += SEED_INCREMENT) && r != 0)
1509                    submitters.set(z = new Submitter(r));
1510            }
1511            else if (r == 0) {                  // move to a different index
1512                r = z.seed;
1513                r ^= r << 13;                   // same xorshift as WorkQueues
1514                r ^= r >>> 17;
1515                z.seed = r ^= (r << 5);
1516            }
1517            if ((ps = plock) < 0)
1518                throw new RejectedExecutionException();
1519            else if (ps == 0 || (ws = workQueues) == null ||
1520                     (m = ws.length - 1) < 0) { // initialize workQueues
1521                int p = parallelism;            // find power of two table size
1522                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1523                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1524                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1525                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1526                                   new WorkQueue[n] : null);
1527                if (((ps = plock) & PL_LOCK) != 0 ||
1528                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1529                    ps = acquirePlock();
1530                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1531                    workQueues = nws;
1532                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1533                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1534                    releasePlock(nps);
1535            }
1536            else if ((q = ws[k = r & m & SQMASK]) != null) {
1537                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1538                    ForkJoinTask<?>[] a = q.array;
1539                    int s = q.top;
1540                    boolean submitted = false;
1541                    try {                      // locked version of push
1542                        if ((a != null && a.length > s + 1 - q.base) ||
1543                            (a = q.growArray()) != null) {   // must presize
1544                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1545                            U.putOrderedObject(a, j, task);
1546                            q.top = s + 1;
1547                            submitted = true;
1548                        }
1549                    } finally {
1550                        q.qlock = 0;  // unlock
1551                    }
1552                    if (submitted) {
1553                        signalWork(ws, q);
1554                        return;
1555                    }
1556                }
1557                r = 0; // move on failure
1558            }
1559            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1560                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1561                q.poolIndex = (short)k;
1562                if (((ps = plock) & PL_LOCK) != 0 ||
1563                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1564                    ps = acquirePlock();
1565                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1566                    ws[k] = q;
1567                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1568                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1569                    releasePlock(nps);
1570            }
1571            else
1572                r = 0;
1573        }
1574    }
1575
1576    // Maintaining ctl counts
1577
1578    /**
1579     * Increments active count; mainly called upon return from blocking.
1580     */
1581    final void incrementActiveCount() {
1582        long c;
1583        do {} while (!U.compareAndSwapLong
1584                     (this, CTL, c = ctl, ((c & ~AC_MASK) |
1585                                           ((c & AC_MASK) + AC_UNIT))));
1586    }
1587
1588    /**
1589     * Tries to create or activate a worker if too few are active.
1590     *
1591     * @param ws the worker array to use to find signallees
1592     * @param q if non-null, the queue holding tasks to be processed
1593     */
1594    final void signalWork(WorkQueue[] ws, WorkQueue q) {
1595        for (;;) {
1596            long c; int e, u, i; WorkQueue w; Thread p;
1597            if ((u = (int)((c = ctl) >>> 32)) >= 0)
1598                break;
1599            if ((e = (int)c) <= 0) {
1600                if ((short)u < 0)
1601                    tryAddWorker();
1602                break;
1603            }
1604            if (ws == null || ws.length <= (i = e & SMASK) ||
1605                (w = ws[i]) == null)
1606                break;
1607            long nc = (((long)(w.nextWait & E_MASK)) |
1608                       ((long)(u + UAC_UNIT)) << 32);
1609            int ne = (e + E_SEQ) & E_MASK;
1610            if (w.eventCount == (e | INT_SIGN) &&
1611                U.compareAndSwapLong(this, CTL, c, nc)) {
1612                w.eventCount = ne;
1613                if ((p = w.parker) != null)
1614                    U.unpark(p);
1615                break;
1616            }
1617            if (q != null && q.base >= q.top)
1618                break;
1619        }
1620    }
1621
1622    // Scanning for tasks
1623
1624    /**
1625     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626     */
1627    final void runWorker(WorkQueue w) {
1628        w.growArray(); // allocate queue
1629        for (int r = w.hint; scan(w, r) == 0; ) {
1630            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1631        }
1632    }
1633
1634    /**
1635     * Scans for and, if found, runs one task, else possibly
1636     * inactivates the worker. This method operates on single reads of
1637     * volatile state and is designed to be re-invoked continuously,
1638     * in part because it returns upon detecting inconsistencies,
1639     * contention, or state changes that indicate possible success on
1640     * re-invocation.
1641     *
1642     * The scan searches for tasks across queues starting at a random
1643     * index, checking each at least twice.  The scan terminates upon
1644     * either finding a non-empty queue, or completing the sweep. If
1645     * the worker is not inactivated, it takes and runs a task from
1646     * this queue. Otherwise, if not activated, it tries to activate
1647     * itself or some other worker by signalling. On failure to find a
1648     * task, returns (for retry) if pool state may have changed during
1649     * an empty scan, or tries to inactivate if active, else possibly
1650     * blocks or terminates via method awaitWork.
1651     *
1652     * @param w the worker (via its WorkQueue)
1653     * @param r a random seed
1654     * @return worker qlock status if would have waited, else 0
1655     */
1656    private final int scan(WorkQueue w, int r) {
1657        WorkQueue[] ws; int m;
1658        long c = ctl;                            // for consistency check
1659        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1660            for (int j = m + m + 1, ec = w.eventCount;;) {
1661                WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1662                if ((q = ws[(r - j) & m]) != null &&
1663                    (b = q.base) - q.top < 0 && (a = q.array) != null) {
1664                    long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1665                    if ((t = ((ForkJoinTask<?>)
1666                              U.getObjectVolatile(a, i))) != null) {
1667                        if (ec < 0)
1668                            helpRelease(c, ws, w, q, b);
1669                        else if (q.base == b &&
1670                                 U.compareAndSwapObject(a, i, t, null)) {
1671                            U.putOrderedInt(q, QBASE, b + 1);
1672                            if ((b + 1) - q.top < 0)
1673                                signalWork(ws, q);
1674                            w.runTask(t);
1675                        }
1676                    }
1677                    break;
1678                }
1679                else if (--j < 0) {
1680                    if ((ec | (e = (int)c)) < 0) // inactive or terminating
1681                        return awaitWork(w, c, ec);
1682                    else if (ctl == c) {         // try to inactivate and enqueue
1683                        long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1684                        w.nextWait = e;
1685                        w.eventCount = ec | INT_SIGN;
1686                        if (!U.compareAndSwapLong(this, CTL, c, nc))
1687                            w.eventCount = ec;   // back out
1688                    }
1689                    break;
1690                }
1691            }
1692        }
1693        return 0;
1694    }
1695
1696    /**
1697     * A continuation of scan(), possibly blocking or terminating
1698     * worker w. Returns without blocking if pool state has apparently
1699     * changed since last invocation.  Also, if inactivating w has
1700     * caused the pool to become quiescent, checks for pool
1701     * termination, and, so long as this is not the only worker, waits
1702     * for event for up to a given duration.  On timeout, if ctl has
1703     * not changed, terminates the worker, which will in turn wake up
1704     * another worker to possibly repeat this process.
1705     *
1706     * @param w the calling worker
1707     * @param c the ctl value on entry to scan
1708     * @param ec the worker's eventCount on entry to scan
1709     */
1710    private final int awaitWork(WorkQueue w, long c, int ec) {
1711        int stat, ns; long parkTime, deadline;
1712        if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1713            !Thread.interrupted()) {
1714            int e = (int)c;
1715            int u = (int)(c >>> 32);
1716            int d = (u >> UAC_SHIFT) + parallelism; // active count
1717
1718            if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1719                stat = w.qlock = -1;          // pool is terminating
1720            else if ((ns = w.nsteals) != 0) { // collect steals and retry
1721                long sc;
1722                w.nsteals = 0;
1723                do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1724                                                   sc = stealCount, sc + ns));
1725            }
1726            else {
1727                long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1728                           ((long)(w.nextWait & E_MASK)) | // ctl to restore
1729                           ((long)(u + UAC_UNIT)) << 32);
1730                if (pc != 0L) {               // timed wait if last waiter
1731                    int dc = -(short)(c >>> TC_SHIFT);
1732                    parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1733                                (dc + 1) * IDLE_TIMEOUT);
1734                    deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1735                }
1736                else
1737                    parkTime = deadline = 0L;
1738                if (w.eventCount == ec && ctl == c) {
1739                    Thread wt = Thread.currentThread();
1740                    U.putObject(wt, PARKBLOCKER, this);
1741                    w.parker = wt;            // emulate LockSupport.park
1742                    if (w.eventCount == ec && ctl == c)
1743                        U.park(false, parkTime);  // must recheck before park
1744                    w.parker = null;
1745                    U.putObject(wt, PARKBLOCKER, null);
1746                    if (parkTime != 0L && ctl == c &&
1747                        deadline - System.nanoTime() <= 0L &&
1748                        U.compareAndSwapLong(this, CTL, c, pc))
1749                        stat = w.qlock = -1;  // shrink pool
1750                }
1751            }
1752        }
1753        return stat;
1754    }
1755
1756    /**
1757     * Possibly releases (signals) a worker. Called only from scan()
1758     * when a worker with apparently inactive status finds a non-empty
1759     * queue. This requires revalidating all of the associated state
1760     * from caller.
1761     */
1762    private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1763                                   WorkQueue q, int b) {
1764        WorkQueue v; int e, i; Thread p;
1765        if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1766            ws != null && ws.length > (i = e & SMASK) &&
1767            (v = ws[i]) != null && ctl == c) {
1768            long nc = (((long)(v.nextWait & E_MASK)) |
1769                       ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1770            int ne = (e + E_SEQ) & E_MASK;
1771            if (q != null && q.base == b && w.eventCount < 0 &&
1772                v.eventCount == (e | INT_SIGN) &&
1773                U.compareAndSwapLong(this, CTL, c, nc)) {
1774                v.eventCount = ne;
1775                if ((p = v.parker) != null)
1776                    U.unpark(p);
1777            }
1778        }
1779    }
1780
1781    /**
1782     * Tries to locate and execute tasks for a stealer of the given
1783     * task, or in turn one of its stealers, Traces currentSteal ->
1784     * currentJoin links looking for a thread working on a descendant
1785     * of the given task and with a non-empty queue to steal back and
1786     * execute tasks from. The first call to this method upon a
1787     * waiting join will often entail scanning/search, (which is OK
1788     * because the joiner has nothing better to do), but this method
1789     * leaves hints in workers to speed up subsequent calls. The
1790     * implementation is very branchy to cope with potential
1791     * inconsistencies or loops encountering chains that are stale,
1792     * unknown, or so long that they are likely cyclic.
1793     *
1794     * @param joiner the joining worker
1795     * @param task the task to join
1796     * @return 0 if no progress can be made, negative if task
1797     * known complete, else positive
1798     */
1799    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1800        int stat = 0, steps = 0;                    // bound to avoid cycles
1801        if (task != null && joiner != null &&
1802            joiner.base - joiner.top >= 0) {        // hoist checks
1803            restart: for (;;) {
1804                ForkJoinTask<?> subtask = task;     // current target
1805                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1806                    WorkQueue[] ws; int m, s, h;
1807                    if ((s = task.status) < 0) {
1808                        stat = s;
1809                        break restart;
1810                    }
1811                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1812                        break restart;              // shutting down
1813                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1814                        v.currentSteal != subtask) {
1815                        for (int origin = h;;) {    // find stealer
1816                            if (((h = (h + 2) & m) & 15) == 1 &&
1817                                (subtask.status < 0 || j.currentJoin != subtask))
1818                                continue restart;   // occasional staleness check
1819                            if ((v = ws[h]) != null &&
1820                                v.currentSteal == subtask) {
1821                                j.hint = h;        // save hint
1822                                break;
1823                            }
1824                            if (h == origin)
1825                                break restart;      // cannot find stealer
1826                        }
1827                    }
1828                    for (;;) { // help stealer or descend to its stealer
1829                        ForkJoinTask[] a; int b;
1830                        if (subtask.status < 0)     // surround probes with
1831                            continue restart;       //   consistency checks
1832                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1833                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1834                            ForkJoinTask<?> t =
1835                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1836                            if (subtask.status < 0 || j.currentJoin != subtask ||
1837                                v.currentSteal != subtask)
1838                                continue restart;   // stale
1839                            stat = 1;               // apparent progress
1840                            if (v.base == b) {
1841                                if (t == null)
1842                                    break restart;
1843                                if (U.compareAndSwapObject(a, i, t, null)) {
1844                                    U.putOrderedInt(v, QBASE, b + 1);
1845                                    ForkJoinTask<?> ps = joiner.currentSteal;
1846                                    int jt = joiner.top;
1847                                    do {
1848                                        joiner.currentSteal = t;
1849                                        t.doExec(); // clear local tasks too
1850                                    } while (task.status >= 0 &&
1851                                             joiner.top != jt &&
1852                                             (t = joiner.pop()) != null);
1853                                    joiner.currentSteal = ps;
1854                                    break restart;
1855                                }
1856                            }
1857                        }
1858                        else {                      // empty -- try to descend
1859                            ForkJoinTask<?> next = v.currentJoin;
1860                            if (subtask.status < 0 || j.currentJoin != subtask ||
1861                                v.currentSteal != subtask)
1862                                continue restart;   // stale
1863                            else if (next == null || ++steps == MAX_HELP)
1864                                break restart;      // dead-end or maybe cyclic
1865                            else {
1866                                subtask = next;
1867                                j = v;
1868                                break;
1869                            }
1870                        }
1871                    }
1872                }
1873            }
1874        }
1875        return stat;
1876    }
1877
1878    /**
1879     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1880     * and run tasks within the target's computation.
1881     *
1882     * @param task the task to join
1883     */
1884    private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1885        WorkQueue[] ws; int m;
1886        int s = 0;
1887        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1888            joiner != null && task != null) {
1889            int j = joiner.poolIndex;
1890            int scans = m + m + 1;
1891            long c = 0L;              // for stability check
1892            for (int k = scans; ; j += 2) {
1893                WorkQueue q;
1894                if ((s = task.status) < 0)
1895                    break;
1896                else if (joiner.internalPopAndExecCC(task))
1897                    k = scans;
1898                else if ((s = task.status) < 0)
1899                    break;
1900                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1901                    k = scans;
1902                else if (--k < 0) {
1903                    if (c == (c = ctl))
1904                        break;
1905                    k = scans;
1906                }
1907            }
1908        }
1909        return s;
1910    }
1911
1912    /**
1913     * Tries to decrement active count (sometimes implicitly) and
1914     * possibly release or create a compensating worker in preparation
1915     * for blocking. Fails on contention or termination. Otherwise,
1916     * adds a new thread if no idle workers are available and pool
1917     * may become starved.
1918     *
1919     * @param c the assumed ctl value
1920     */
1921    final boolean tryCompensate(long c) {
1922        WorkQueue[] ws = workQueues;
1923        int pc = parallelism, e = (int)c, m, tc;
1924        if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1925            WorkQueue w = ws[e & m];
1926            if (e != 0 && w != null) {
1927                Thread p;
1928                long nc = ((long)(w.nextWait & E_MASK) |
1929                           (c & (AC_MASK|TC_MASK)));
1930                int ne = (e + E_SEQ) & E_MASK;
1931                if (w.eventCount == (e | INT_SIGN) &&
1932                    U.compareAndSwapLong(this, CTL, c, nc)) {
1933                    w.eventCount = ne;
1934                    if ((p = w.parker) != null)
1935                        U.unpark(p);
1936                    return true;   // replace with idle worker
1937                }
1938            }
1939            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1940                     (int)(c >> AC_SHIFT) + pc > 1) {
1941                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1942                if (U.compareAndSwapLong(this, CTL, c, nc))
1943                    return true;   // no compensation
1944            }
1945            else if (tc + pc < MAX_CAP) {
1946                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1947                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1948                    ForkJoinWorkerThreadFactory fac;
1949                    Throwable ex = null;
1950                    ForkJoinWorkerThread wt = null;
1951                    try {
1952                        if ((fac = factory) != null &&
1953                            (wt = fac.newThread(this)) != null) {
1954                            wt.start();
1955                            return true;
1956                        }
1957                    } catch (Throwable rex) {
1958                        ex = rex;
1959                    }
1960                    deregisterWorker(wt, ex); // clean up and return false
1961                }
1962            }
1963        }
1964        return false;
1965    }
1966
1967    /**
1968     * Helps and/or blocks until the given task is done.
1969     *
1970     * @param joiner the joining worker
1971     * @param task the task
1972     * @return task status on exit
1973     */
1974    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1975        int s = 0;
1976        if (task != null && (s = task.status) >= 0 && joiner != null) {
1977            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1978            joiner.currentJoin = task;
1979            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1980                         (s = task.status) >= 0);
1981            if (s >= 0 && (task instanceof CountedCompleter))
1982                s = helpComplete(joiner, (CountedCompleter<?>)task);
1983            long cc = 0;        // for stability checks
1984            while (s >= 0 && (s = task.status) >= 0) {
1985                if ((s = tryHelpStealer(joiner, task)) == 0 &&
1986                    (s = task.status) >= 0) {
1987                    if (!tryCompensate(cc))
1988                        cc = ctl;
1989                    else {
1990                        if (task.trySetSignal() && (s = task.status) >= 0) {
1991                            synchronized (task) {
1992                                if (task.status >= 0) {
1993                                    try {                // see ForkJoinTask
1994                                        task.wait();     //  for explanation
1995                                    } catch (InterruptedException ie) {
1996                                    }
1997                                }
1998                                else
1999                                    task.notifyAll();
2000                            }
2001                        }
2002                        long c; // reactivate
2003                        do {} while (!U.compareAndSwapLong
2004                                     (this, CTL, c = ctl,
2005                                      ((c & ~AC_MASK) |
2006                                       ((c & AC_MASK) + AC_UNIT))));
2007                    }
2008                }
2009            }
2010            joiner.currentJoin = prevJoin;
2011        }
2012        return s;
2013    }
2014
2015    /**
2016     * Stripped-down variant of awaitJoin used by timed joins. Tries
2017     * to help join only while there is continuous progress. (Caller
2018     * will then enter a timed wait.)
2019     *
2020     * @param joiner the joining worker
2021     * @param task the task
2022     */
2023    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2024        int s;
2025        if (joiner != null && task != null && (s = task.status) >= 0) {
2026            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2027            joiner.currentJoin = task;
2028            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2029                         (s = task.status) >= 0);
2030            if (s >= 0) {
2031                if (task instanceof CountedCompleter)
2032                    helpComplete(joiner, (CountedCompleter<?>)task);
2033                do {} while (task.status >= 0 &&
2034                             tryHelpStealer(joiner, task) > 0);
2035            }
2036            joiner.currentJoin = prevJoin;
2037        }
2038    }
2039
2040    /**
2041     * Returns a (probably) non-empty steal queue, if one is found
2042     * during a scan, else null.  This method must be retried by
2043     * caller if, by the time it tries to use the queue, it is empty.
2044     */
2045    private WorkQueue findNonEmptyStealQueue() {
2046        int r = ThreadLocalRandom.current().nextInt();
2047        for (;;) {
2048            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2049            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2050                for (int j = (m + 1) << 2; j >= 0; --j) {
2051                    if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2052                        q.base - q.top < 0)
2053                        return q;
2054                }
2055            }
2056            if (plock == ps)
2057                return null;
2058        }
2059    }
2060
2061    /**
2062     * Runs tasks until {@code isQuiescent()}. We piggyback on
2063     * active count ctl maintenance, but rather than blocking
2064     * when tasks cannot be found, we rescan until all others cannot
2065     * find tasks either.
2066     */
2067    final void helpQuiescePool(WorkQueue w) {
2068        ForkJoinTask<?> ps = w.currentSteal;
2069        for (boolean active = true;;) {
2070            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2071            while ((t = w.nextLocalTask()) != null)
2072                t.doExec();
2073            if ((q = findNonEmptyStealQueue()) != null) {
2074                if (!active) {      // re-establish active count
2075                    active = true;
2076                    do {} while (!U.compareAndSwapLong
2077                                 (this, CTL, c = ctl,
2078                                  ((c & ~AC_MASK) |
2079                                   ((c & AC_MASK) + AC_UNIT))));
2080                }
2081                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2082                    (w.currentSteal = t).doExec();
2083                    w.currentSteal = ps;
2084                }
2085            }
2086            else if (active) {      // decrement active count without queuing
2087                long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2088                if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2089                    break;          // bypass decrement-then-increment
2090                if (U.compareAndSwapLong(this, CTL, c, nc))
2091                    active = false;
2092            }
2093            else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2094                     U.compareAndSwapLong
2095                     (this, CTL, c, ((c & ~AC_MASK) |
2096                                     ((c & AC_MASK) + AC_UNIT))))
2097                break;
2098        }
2099    }
2100
2101    /**
2102     * Gets and removes a local or stolen task for the given worker.
2103     *
2104     * @return a task, if available
2105     */
2106    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2107        for (ForkJoinTask<?> t;;) {
2108            WorkQueue q; int b;
2109            if ((t = w.nextLocalTask()) != null)
2110                return t;
2111            if ((q = findNonEmptyStealQueue()) == null)
2112                return null;
2113            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2114                return t;
2115        }
2116    }
2117
2118    /**
2119     * Returns a cheap heuristic guide for task partitioning when
2120     * programmers, frameworks, tools, or languages have little or no
2121     * idea about task granularity.  In essence by offering this
2122     * method, we ask users only about tradeoffs in overhead vs
2123     * expected throughput and its variance, rather than how finely to
2124     * partition tasks.
2125     *
2126     * In a steady state strict (tree-structured) computation, each
2127     * thread makes available for stealing enough tasks for other
2128     * threads to remain active. Inductively, if all threads play by
2129     * the same rules, each thread should make available only a
2130     * constant number of tasks.
2131     *
2132     * The minimum useful constant is just 1. But using a value of 1
2133     * would require immediate replenishment upon each steal to
2134     * maintain enough tasks, which is infeasible.  Further,
2135     * partitionings/granularities of offered tasks should minimize
2136     * steal rates, which in general means that threads nearer the top
2137     * of computation tree should generate more than those nearer the
2138     * bottom. In perfect steady state, each thread is at
2139     * approximately the same level of computation tree. However,
2140     * producing extra tasks amortizes the uncertainty of progress and
2141     * diffusion assumptions.
2142     *
2143     * So, users will want to use values larger (but not much larger)
2144     * than 1 to both smooth over transient shortages and hedge
2145     * against uneven progress; as traded off against the cost of
2146     * extra task overhead. We leave the user to pick a threshold
2147     * value to compare with the results of this call to guide
2148     * decisions, but recommend values such as 3.
2149     *
2150     * When all threads are active, it is on average OK to estimate
2151     * surplus strictly locally. In steady-state, if one thread is
2152     * maintaining say 2 surplus tasks, then so are others. So we can
2153     * just use estimated queue length.  However, this strategy alone
2154     * leads to serious mis-estimates in some non-steady-state
2155     * conditions (ramp-up, ramp-down, other stalls). We can detect
2156     * many of these by further considering the number of "idle"
2157     * threads, that are known to have zero queued tasks, so
2158     * compensate by a factor of (#idle/#active) threads.
2159     *
2160     * Note: The approximation of #busy workers as #active workers is
2161     * not very good under current signalling scheme, and should be
2162     * improved.
2163     */
2164    static int getSurplusQueuedTaskCount() {
2165        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2166        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2167            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2168            int n = (q = wt.workQueue).top - q.base;
2169            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2170            return n - (a > (p >>>= 1) ? 0 :
2171                        a > (p >>>= 1) ? 1 :
2172                        a > (p >>>= 1) ? 2 :
2173                        a > (p >>>= 1) ? 4 :
2174                        8);
2175        }
2176        return 0;
2177    }
2178
2179    //  Termination
2180
2181    /**
2182     * Possibly initiates and/or completes termination.  The caller
2183     * triggering termination runs three passes through workQueues:
2184     * (0) Setting termination status, followed by wakeups of queued
2185     * workers; (1) cancelling all tasks; (2) interrupting lagging
2186     * threads (likely in external tasks, but possibly also blocked in
2187     * joins).  Each pass repeats previous steps because of potential
2188     * lagging thread creation.
2189     *
2190     * @param now if true, unconditionally terminate, else only
2191     * if no work and no active workers
2192     * @param enable if true, enable shutdown when next possible
2193     * @return true if now terminating or terminated
2194     */
2195    private boolean tryTerminate(boolean now, boolean enable) {
2196        int ps;
2197        if (this == common)                        // cannot shut down
2198            return false;
2199        if ((ps = plock) >= 0) {                   // enable by setting plock
2200            if (!enable)
2201                return false;
2202            if ((ps & PL_LOCK) != 0 ||
2203                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2204                ps = acquirePlock();
2205            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2206            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2207                releasePlock(nps);
2208        }
2209        for (long c;;) {
2210            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2211                if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2212                    synchronized (this) {
2213                        notifyAll();               // signal when 0 workers
2214                    }
2215                }
2216                return true;
2217            }
2218            if (!now) {                            // check if idle & no tasks
2219                WorkQueue[] ws; WorkQueue w;
2220                if ((int)(c >> AC_SHIFT) + parallelism > 0)
2221                    return false;
2222                if ((ws = workQueues) != null) {
2223                    for (int i = 0; i < ws.length; ++i) {
2224                        if ((w = ws[i]) != null &&
2225                            (!w.isEmpty() ||
2226                             ((i & 1) != 0 && w.eventCount >= 0))) {
2227                            signalWork(ws, w);
2228                            return false;
2229                        }
2230                    }
2231                }
2232            }
2233            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2234                for (int pass = 0; pass < 3; ++pass) {
2235                    WorkQueue[] ws; WorkQueue w; Thread wt;
2236                    if ((ws = workQueues) != null) {
2237                        int n = ws.length;
2238                        for (int i = 0; i < n; ++i) {
2239                            if ((w = ws[i]) != null) {
2240                                w.qlock = -1;
2241                                if (pass > 0) {
2242                                    w.cancelAll();
2243                                    if (pass > 1 && (wt = w.owner) != null) {
2244                                        if (!wt.isInterrupted()) {
2245                                            try {
2246                                                wt.interrupt();
2247                                            } catch (Throwable ignore) {
2248                                            }
2249                                        }
2250                                        U.unpark(wt);
2251                                    }
2252                                }
2253                            }
2254                        }
2255                        // Wake up workers parked on event queue
2256                        int i, e; long cc; Thread p;
2257                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2258                               (i = e & SMASK) < n && i >= 0 &&
2259                               (w = ws[i]) != null) {
2260                            long nc = ((long)(w.nextWait & E_MASK) |
2261                                       ((cc + AC_UNIT) & AC_MASK) |
2262                                       (cc & (TC_MASK|STOP_BIT)));
2263                            if (w.eventCount == (e | INT_SIGN) &&
2264                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2265                                w.eventCount = (e + E_SEQ) & E_MASK;
2266                                w.qlock = -1;
2267                                if ((p = w.parker) != null)
2268                                    U.unpark(p);
2269                            }
2270                        }
2271                    }
2272                }
2273            }
2274        }
2275    }
2276
2277    // external operations on common pool
2278
2279    /**
2280     * Returns common pool queue for a thread that has submitted at
2281     * least one task.
2282     */
2283    static WorkQueue commonSubmitterQueue() {
2284        Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2285        return ((z = submitters.get()) != null &&
2286                (p = common) != null &&
2287                (ws = p.workQueues) != null &&
2288                (m = ws.length - 1) >= 0) ?
2289            ws[m & z.seed & SQMASK] : null;
2290    }
2291
2292    /**
2293     * Tries to pop the given task from submitter's queue in common pool.
2294     */
2295    final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2296        WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2297        Submitter z = submitters.get();
2298        WorkQueue[] ws = workQueues;
2299        boolean popped = false;
2300        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2301            (joiner = ws[z.seed & m & SQMASK]) != null &&
2302            joiner.base != (s = joiner.top) &&
2303            (a = joiner.array) != null) {
2304            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2305            if (U.getObject(a, j) == task &&
2306                U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2307                if (joiner.top == s && joiner.array == a &&
2308                    U.compareAndSwapObject(a, j, task, null)) {
2309                    joiner.top = s - 1;
2310                    popped = true;
2311                }
2312                joiner.qlock = 0;
2313            }
2314        }
2315        return popped;
2316    }
2317
2318    final int externalHelpComplete(CountedCompleter<?> task) {
2319        WorkQueue joiner; int m, j;
2320        Submitter z = submitters.get();
2321        WorkQueue[] ws = workQueues;
2322        int s = 0;
2323        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2324            (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2325            int scans = m + m + 1;
2326            long c = 0L;             // for stability check
2327            j |= 1;                  // poll odd queues
2328            for (int k = scans; ; j += 2) {
2329                WorkQueue q;
2330                if ((s = task.status) < 0)
2331                    break;
2332                else if (joiner.externalPopAndExecCC(task))
2333                    k = scans;
2334                else if ((s = task.status) < 0)
2335                    break;
2336                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2337                    k = scans;
2338                else if (--k < 0) {
2339                    if (c == (c = ctl))
2340                        break;
2341                    k = scans;
2342                }
2343            }
2344        }
2345        return s;
2346    }
2347
2348    // Exported methods
2349
2350    // Constructors
2351
2352    /**
2353     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2354     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2355     * #defaultForkJoinWorkerThreadFactory default thread factory},
2356     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2357     */
2358    public ForkJoinPool() {
2359        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2360             defaultForkJoinWorkerThreadFactory, null, false);
2361    }
2362
2363    /**
2364     * Creates a {@code ForkJoinPool} with the indicated parallelism
2365     * level, the {@linkplain
2366     * #defaultForkJoinWorkerThreadFactory default thread factory},
2367     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2368     *
2369     * @param parallelism the parallelism level
2370     * @throws IllegalArgumentException if parallelism less than or
2371     *         equal to zero, or greater than implementation limit
2372     */
2373    public ForkJoinPool(int parallelism) {
2374        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2375    }
2376
2377    /**
2378     * Creates a {@code ForkJoinPool} with the given parameters.
2379     *
2380     * @param parallelism the parallelism level. For default value,
2381     * use {@link java.lang.Runtime#availableProcessors}.
2382     * @param factory the factory for creating new threads. For default value,
2383     * use {@link #defaultForkJoinWorkerThreadFactory}.
2384     * @param handler the handler for internal worker threads that
2385     * terminate due to unrecoverable errors encountered while executing
2386     * tasks. For default value, use {@code null}.
2387     * @param asyncMode if true,
2388     * establishes local first-in-first-out scheduling mode for forked
2389     * tasks that are never joined. This mode may be more appropriate
2390     * than default locally stack-based mode in applications in which
2391     * worker threads only process event-style asynchronous tasks.
2392     * For default value, use {@code false}.
2393     * @throws IllegalArgumentException if parallelism less than or
2394     *         equal to zero, or greater than implementation limit
2395     * @throws NullPointerException if the factory is null
2396     */
2397    public ForkJoinPool(int parallelism,
2398                        ForkJoinWorkerThreadFactory factory,
2399                        UncaughtExceptionHandler handler,
2400                        boolean asyncMode) {
2401        this(checkParallelism(parallelism),
2402             checkFactory(factory),
2403             handler,
2404             (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2405             "ForkJoinPool-" + nextPoolId() + "-worker-");
2406        checkPermission();
2407    }
2408
2409    private static int checkParallelism(int parallelism) {
2410        if (parallelism <= 0 || parallelism > MAX_CAP)
2411            throw new IllegalArgumentException();
2412        return parallelism;
2413    }
2414
2415    private static ForkJoinWorkerThreadFactory checkFactory
2416        (ForkJoinWorkerThreadFactory factory) {
2417        if (factory == null)
2418            throw new NullPointerException();
2419        return factory;
2420    }
2421
2422    /**
2423     * Creates a {@code ForkJoinPool} with the given parameters, without
2424     * any security checks or parameter validation.  Invoked directly by
2425     * makeCommonPool.
2426     */
2427    private ForkJoinPool(int parallelism,
2428                         ForkJoinWorkerThreadFactory factory,
2429                         UncaughtExceptionHandler handler,
2430                         int mode,
2431                         String workerNamePrefix) {
2432        this.workerNamePrefix = workerNamePrefix;
2433        this.factory = factory;
2434        this.ueh = handler;
2435        this.mode = (short)mode;
2436        this.parallelism = (short)parallelism;
2437        long np = (long)(-parallelism); // offset ctl counts
2438        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2439    }
2440
2441    /**
2442     * Returns the common pool instance. This pool is statically
2443     * constructed; its run state is unaffected by attempts to {@link
2444     * #shutdown} or {@link #shutdownNow}. However this pool and any
2445     * ongoing processing are automatically terminated upon program
2446     * {@link System#exit}.  Any program that relies on asynchronous
2447     * task processing to complete before program termination should
2448     * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2449     * before exit.
2450     *
2451     * @return the common pool instance
2452     * @since 1.8
2453     * @hide
2454     */
2455    public static ForkJoinPool commonPool() {
2456        // assert common != null : "static init error";
2457        return common;
2458    }
2459
2460    // Execution methods
2461
2462    /**
2463     * Performs the given task, returning its result upon completion.
2464     * If the computation encounters an unchecked Exception or Error,
2465     * it is rethrown as the outcome of this invocation.  Rethrown
2466     * exceptions behave in the same way as regular exceptions, but,
2467     * when possible, contain stack traces (as displayed for example
2468     * using {@code ex.printStackTrace()}) of both the current thread
2469     * as well as the thread actually encountering the exception;
2470     * minimally only the latter.
2471     *
2472     * @param task the task
2473     * @return the task's result
2474     * @throws NullPointerException if the task is null
2475     * @throws RejectedExecutionException if the task cannot be
2476     *         scheduled for execution
2477     */
2478    public <T> T invoke(ForkJoinTask<T> task) {
2479        if (task == null)
2480            throw new NullPointerException();
2481        externalPush(task);
2482        return task.join();
2483    }
2484
2485    /**
2486     * Arranges for (asynchronous) execution of the given task.
2487     *
2488     * @param task the task
2489     * @throws NullPointerException if the task is null
2490     * @throws RejectedExecutionException if the task cannot be
2491     *         scheduled for execution
2492     */
2493    public void execute(ForkJoinTask<?> task) {
2494        if (task == null)
2495            throw new NullPointerException();
2496        externalPush(task);
2497    }
2498
2499    // AbstractExecutorService methods
2500
2501    /**
2502     * @throws NullPointerException if the task is null
2503     * @throws RejectedExecutionException if the task cannot be
2504     *         scheduled for execution
2505     */
2506    public void execute(Runnable task) {
2507        if (task == null)
2508            throw new NullPointerException();
2509        ForkJoinTask<?> job;
2510        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2511            job = (ForkJoinTask<?>) task;
2512        else
2513            job = new ForkJoinTask.RunnableExecuteAction(task);
2514        externalPush(job);
2515    }
2516
2517    /**
2518     * Submits a ForkJoinTask for execution.
2519     *
2520     * @param task the task to submit
2521     * @return the task
2522     * @throws NullPointerException if the task is null
2523     * @throws RejectedExecutionException if the task cannot be
2524     *         scheduled for execution
2525     */
2526    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2527        if (task == null)
2528            throw new NullPointerException();
2529        externalPush(task);
2530        return task;
2531    }
2532
2533    /**
2534     * @throws NullPointerException if the task is null
2535     * @throws RejectedExecutionException if the task cannot be
2536     *         scheduled for execution
2537     */
2538    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2539        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2540        externalPush(job);
2541        return job;
2542    }
2543
2544    /**
2545     * @throws NullPointerException if the task is null
2546     * @throws RejectedExecutionException if the task cannot be
2547     *         scheduled for execution
2548     */
2549    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2550        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2551        externalPush(job);
2552        return job;
2553    }
2554
2555    /**
2556     * @throws NullPointerException if the task is null
2557     * @throws RejectedExecutionException if the task cannot be
2558     *         scheduled for execution
2559     */
2560    public ForkJoinTask<?> submit(Runnable task) {
2561        if (task == null)
2562            throw new NullPointerException();
2563        ForkJoinTask<?> job;
2564        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2565            job = (ForkJoinTask<?>) task;
2566        else
2567            job = new ForkJoinTask.AdaptedRunnableAction(task);
2568        externalPush(job);
2569        return job;
2570    }
2571
2572    /**
2573     * @throws NullPointerException       {@inheritDoc}
2574     * @throws RejectedExecutionException {@inheritDoc}
2575     */
2576    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2577        // In previous versions of this class, this method constructed
2578        // a task to run ForkJoinTask.invokeAll, but now external
2579        // invocation of multiple tasks is at least as efficient.
2580        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2581
2582        boolean done = false;
2583        try {
2584            for (Callable<T> t : tasks) {
2585                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2586                futures.add(f);
2587                externalPush(f);
2588            }
2589            for (int i = 0, size = futures.size(); i < size; i++)
2590                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2591            done = true;
2592            return futures;
2593        } finally {
2594            if (!done)
2595                for (int i = 0, size = futures.size(); i < size; i++)
2596                    futures.get(i).cancel(false);
2597        }
2598    }
2599
2600    /**
2601     * Returns the factory used for constructing new workers.
2602     *
2603     * @return the factory used for constructing new workers
2604     */
2605    public ForkJoinWorkerThreadFactory getFactory() {
2606        return factory;
2607    }
2608
2609    /**
2610     * Returns the handler for internal worker threads that terminate
2611     * due to unrecoverable errors encountered while executing tasks.
2612     *
2613     * @return the handler, or {@code null} if none
2614     */
2615    public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2616        return ueh;
2617    }
2618
2619    /**
2620     * Returns the targeted parallelism level of this pool.
2621     *
2622     * @return the targeted parallelism level of this pool
2623     */
2624    public int getParallelism() {
2625        int par;
2626        return ((par = parallelism) > 0) ? par : 1;
2627    }
2628
2629    /**
2630     * Returns the targeted parallelism level of the common pool.
2631     *
2632     * @return the targeted parallelism level of the common pool
2633     * @since 1.8
2634     * @hide
2635     */
2636    public static int getCommonPoolParallelism() {
2637        return commonParallelism;
2638    }
2639
2640    /**
2641     * Returns the number of worker threads that have started but not
2642     * yet terminated.  The result returned by this method may differ
2643     * from {@link #getParallelism} when threads are created to
2644     * maintain parallelism when others are cooperatively blocked.
2645     *
2646     * @return the number of worker threads
2647     */
2648    public int getPoolSize() {
2649        return parallelism + (short)(ctl >>> TC_SHIFT);
2650    }
2651
2652    /**
2653     * Returns {@code true} if this pool uses local first-in-first-out
2654     * scheduling mode for forked tasks that are never joined.
2655     *
2656     * @return {@code true} if this pool uses async mode
2657     */
2658    public boolean getAsyncMode() {
2659        return mode == FIFO_QUEUE;
2660    }
2661
2662    /**
2663     * Returns an estimate of the number of worker threads that are
2664     * not blocked waiting to join tasks or for other managed
2665     * synchronization. This method may overestimate the
2666     * number of running threads.
2667     *
2668     * @return the number of worker threads
2669     */
2670    public int getRunningThreadCount() {
2671        int rc = 0;
2672        WorkQueue[] ws; WorkQueue w;
2673        if ((ws = workQueues) != null) {
2674            for (int i = 1; i < ws.length; i += 2) {
2675                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2676                    ++rc;
2677            }
2678        }
2679        return rc;
2680    }
2681
2682    /**
2683     * Returns an estimate of the number of threads that are currently
2684     * stealing or executing tasks. This method may overestimate the
2685     * number of active threads.
2686     *
2687     * @return the number of active threads
2688     */
2689    public int getActiveThreadCount() {
2690        int r = parallelism + (int)(ctl >> AC_SHIFT);
2691        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2692    }
2693
2694    /**
2695     * Returns {@code true} if all worker threads are currently idle.
2696     * An idle worker is one that cannot obtain a task to execute
2697     * because none are available to steal from other threads, and
2698     * there are no pending submissions to the pool. This method is
2699     * conservative; it might not return {@code true} immediately upon
2700     * idleness of all threads, but will eventually become true if
2701     * threads remain inactive.
2702     *
2703     * @return {@code true} if all threads are currently idle
2704     */
2705    public boolean isQuiescent() {
2706        return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2707    }
2708
2709    /**
2710     * Returns an estimate of the total number of tasks stolen from
2711     * one thread's work queue by another. The reported value
2712     * underestimates the actual total number of steals when the pool
2713     * is not quiescent. This value may be useful for monitoring and
2714     * tuning fork/join programs: in general, steal counts should be
2715     * high enough to keep threads busy, but low enough to avoid
2716     * overhead and contention across threads.
2717     *
2718     * @return the number of steals
2719     */
2720    public long getStealCount() {
2721        long count = stealCount;
2722        WorkQueue[] ws; WorkQueue w;
2723        if ((ws = workQueues) != null) {
2724            for (int i = 1; i < ws.length; i += 2) {
2725                if ((w = ws[i]) != null)
2726                    count += w.nsteals;
2727            }
2728        }
2729        return count;
2730    }
2731
2732    /**
2733     * Returns an estimate of the total number of tasks currently held
2734     * in queues by worker threads (but not including tasks submitted
2735     * to the pool that have not begun executing). This value is only
2736     * an approximation, obtained by iterating across all threads in
2737     * the pool. This method may be useful for tuning task
2738     * granularities.
2739     *
2740     * @return the number of queued tasks
2741     */
2742    public long getQueuedTaskCount() {
2743        long count = 0;
2744        WorkQueue[] ws; WorkQueue w;
2745        if ((ws = workQueues) != null) {
2746            for (int i = 1; i < ws.length; i += 2) {
2747                if ((w = ws[i]) != null)
2748                    count += w.queueSize();
2749            }
2750        }
2751        return count;
2752    }
2753
2754    /**
2755     * Returns an estimate of the number of tasks submitted to this
2756     * pool that have not yet begun executing.  This method may take
2757     * time proportional to the number of submissions.
2758     *
2759     * @return the number of queued submissions
2760     */
2761    public int getQueuedSubmissionCount() {
2762        int count = 0;
2763        WorkQueue[] ws; WorkQueue w;
2764        if ((ws = workQueues) != null) {
2765            for (int i = 0; i < ws.length; i += 2) {
2766                if ((w = ws[i]) != null)
2767                    count += w.queueSize();
2768            }
2769        }
2770        return count;
2771    }
2772
2773    /**
2774     * Returns {@code true} if there are any tasks submitted to this
2775     * pool that have not yet begun executing.
2776     *
2777     * @return {@code true} if there are any queued submissions
2778     */
2779    public boolean hasQueuedSubmissions() {
2780        WorkQueue[] ws; WorkQueue w;
2781        if ((ws = workQueues) != null) {
2782            for (int i = 0; i < ws.length; i += 2) {
2783                if ((w = ws[i]) != null && !w.isEmpty())
2784                    return true;
2785            }
2786        }
2787        return false;
2788    }
2789
2790    /**
2791     * Removes and returns the next unexecuted submission if one is
2792     * available.  This method may be useful in extensions to this
2793     * class that re-assign work in systems with multiple pools.
2794     *
2795     * @return the next submission, or {@code null} if none
2796     */
2797    protected ForkJoinTask<?> pollSubmission() {
2798        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2799        if ((ws = workQueues) != null) {
2800            for (int i = 0; i < ws.length; i += 2) {
2801                if ((w = ws[i]) != null && (t = w.poll()) != null)
2802                    return t;
2803            }
2804        }
2805        return null;
2806    }
2807
2808    /**
2809     * Removes all available unexecuted submitted and forked tasks
2810     * from scheduling queues and adds them to the given collection,
2811     * without altering their execution status. These may include
2812     * artificially generated or wrapped tasks. This method is
2813     * designed to be invoked only when the pool is known to be
2814     * quiescent. Invocations at other times may not remove all
2815     * tasks. A failure encountered while attempting to add elements
2816     * to collection {@code c} may result in elements being in
2817     * neither, either or both collections when the associated
2818     * exception is thrown.  The behavior of this operation is
2819     * undefined if the specified collection is modified while the
2820     * operation is in progress.
2821     *
2822     * @param c the collection to transfer elements into
2823     * @return the number of elements transferred
2824     */
2825    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2826        int count = 0;
2827        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2828        if ((ws = workQueues) != null) {
2829            for (int i = 0; i < ws.length; ++i) {
2830                if ((w = ws[i]) != null) {
2831                    while ((t = w.poll()) != null) {
2832                        c.add(t);
2833                        ++count;
2834                    }
2835                }
2836            }
2837        }
2838        return count;
2839    }
2840
2841    /**
2842     * Returns a string identifying this pool, as well as its state,
2843     * including indications of run state, parallelism level, and
2844     * worker and task counts.
2845     *
2846     * @return a string identifying this pool, as well as its state
2847     */
2848    public String toString() {
2849        // Use a single pass through workQueues to collect counts
2850        long qt = 0L, qs = 0L; int rc = 0;
2851        long st = stealCount;
2852        long c = ctl;
2853        WorkQueue[] ws; WorkQueue w;
2854        if ((ws = workQueues) != null) {
2855            for (int i = 0; i < ws.length; ++i) {
2856                if ((w = ws[i]) != null) {
2857                    int size = w.queueSize();
2858                    if ((i & 1) == 0)
2859                        qs += size;
2860                    else {
2861                        qt += size;
2862                        st += w.nsteals;
2863                        if (w.isApparentlyUnblocked())
2864                            ++rc;
2865                    }
2866                }
2867            }
2868        }
2869        int pc = parallelism;
2870        int tc = pc + (short)(c >>> TC_SHIFT);
2871        int ac = pc + (int)(c >> AC_SHIFT);
2872        if (ac < 0) // ignore transient negative
2873            ac = 0;
2874        String level;
2875        if ((c & STOP_BIT) != 0)
2876            level = (tc == 0) ? "Terminated" : "Terminating";
2877        else
2878            level = plock < 0 ? "Shutting down" : "Running";
2879        return super.toString() +
2880            "[" + level +
2881            ", parallelism = " + pc +
2882            ", size = " + tc +
2883            ", active = " + ac +
2884            ", running = " + rc +
2885            ", steals = " + st +
2886            ", tasks = " + qt +
2887            ", submissions = " + qs +
2888            "]";
2889    }
2890
2891    /**
2892     * Possibly initiates an orderly shutdown in which previously
2893     * submitted tasks are executed, but no new tasks will be
2894     * accepted. Invocation has no effect on execution state if this
2895     * is the {@code commonPool()}, and no additional effect if
2896     * already shut down.  Tasks that are in the process of being
2897     * submitted concurrently during the course of this method may or
2898     * may not be rejected.
2899     */
2900    public void shutdown() {
2901        checkPermission();
2902        tryTerminate(false, true);
2903    }
2904
2905    /**
2906     * Possibly attempts to cancel and/or stop all tasks, and reject
2907     * all subsequently submitted tasks.  Invocation has no effect on
2908     * execution state if this is the {@code commonPool()}, and no
2909     * additional effect if already shut down. Otherwise, tasks that
2910     * are in the process of being submitted or executed concurrently
2911     * during the course of this method may or may not be
2912     * rejected. This method cancels both existing and unexecuted
2913     * tasks, in order to permit termination in the presence of task
2914     * dependencies. So the method always returns an empty list
2915     * (unlike the case for some other Executors).
2916     *
2917     * @return an empty list
2918     */
2919    public List<Runnable> shutdownNow() {
2920        checkPermission();
2921        tryTerminate(true, true);
2922        return Collections.emptyList();
2923    }
2924
2925    /**
2926     * Returns {@code true} if all tasks have completed following shut down.
2927     *
2928     * @return {@code true} if all tasks have completed following shut down
2929     */
2930    public boolean isTerminated() {
2931        long c = ctl;
2932        return ((c & STOP_BIT) != 0L &&
2933                (short)(c >>> TC_SHIFT) + parallelism <= 0);
2934    }
2935
2936    /**
2937     * Returns {@code true} if the process of termination has
2938     * commenced but not yet completed.  This method may be useful for
2939     * debugging. A return of {@code true} reported a sufficient
2940     * period after shutdown may indicate that submitted tasks have
2941     * ignored or suppressed interruption, or are waiting for I/O,
2942     * causing this executor not to properly terminate. (See the
2943     * advisory notes for class {@link ForkJoinTask} stating that
2944     * tasks should not normally entail blocking operations.  But if
2945     * they do, they must abort them on interrupt.)
2946     *
2947     * @return {@code true} if terminating but not yet terminated
2948     */
2949    public boolean isTerminating() {
2950        long c = ctl;
2951        return ((c & STOP_BIT) != 0L &&
2952                (short)(c >>> TC_SHIFT) + parallelism > 0);
2953    }
2954
2955    /**
2956     * Returns {@code true} if this pool has been shut down.
2957     *
2958     * @return {@code true} if this pool has been shut down
2959     */
2960    public boolean isShutdown() {
2961        return plock < 0;
2962    }
2963
2964    /**
2965     * Blocks until all tasks have completed execution after a
2966     * shutdown request, or the timeout occurs, or the current thread
2967     * is interrupted, whichever happens first. Because the {@code
2968     * commonPool()} never terminates until program shutdown, when
2969     * applied to the common pool, this method is equivalent to {@link
2970     * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2971     *
2972     * @param timeout the maximum time to wait
2973     * @param unit the time unit of the timeout argument
2974     * @return {@code true} if this executor terminated and
2975     *         {@code false} if the timeout elapsed before termination
2976     * @throws InterruptedException if interrupted while waiting
2977     */
2978    public boolean awaitTermination(long timeout, TimeUnit unit)
2979        throws InterruptedException {
2980        if (Thread.interrupted())
2981            throw new InterruptedException();
2982        if (this == common) {
2983            awaitQuiescence(timeout, unit);
2984            return false;
2985        }
2986        long nanos = unit.toNanos(timeout);
2987        if (isTerminated())
2988            return true;
2989        if (nanos <= 0L)
2990            return false;
2991        long deadline = System.nanoTime() + nanos;
2992        synchronized (this) {
2993            for (;;) {
2994                if (isTerminated())
2995                    return true;
2996                if (nanos <= 0L)
2997                    return false;
2998                long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2999                wait(millis > 0L ? millis : 1L);
3000                nanos = deadline - System.nanoTime();
3001            }
3002        }
3003    }
3004
3005    /**
3006     * If called by a ForkJoinTask operating in this pool, equivalent
3007     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3008     * waits and/or attempts to assist performing tasks until this
3009     * pool {@link #isQuiescent} or the indicated timeout elapses.
3010     *
3011     * @param timeout the maximum time to wait
3012     * @param unit the time unit of the timeout argument
3013     * @return {@code true} if quiescent; {@code false} if the
3014     * timeout elapsed.
3015     */
3016    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3017        long nanos = unit.toNanos(timeout);
3018        ForkJoinWorkerThread wt;
3019        Thread thread = Thread.currentThread();
3020        if ((thread instanceof ForkJoinWorkerThread) &&
3021            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3022            helpQuiescePool(wt.workQueue);
3023            return true;
3024        }
3025        long startTime = System.nanoTime();
3026        WorkQueue[] ws;
3027        int r = 0, m;
3028        boolean found = true;
3029        while (!isQuiescent() && (ws = workQueues) != null &&
3030               (m = ws.length - 1) >= 0) {
3031            if (!found) {
3032                if ((System.nanoTime() - startTime) > nanos)
3033                    return false;
3034                Thread.yield(); // cannot block
3035            }
3036            found = false;
3037            for (int j = (m + 1) << 2; j >= 0; --j) {
3038                ForkJoinTask<?> t; WorkQueue q; int b;
3039                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3040                    found = true;
3041                    if ((t = q.pollAt(b)) != null)
3042                        t.doExec();
3043                    break;
3044                }
3045            }
3046        }
3047        return true;
3048    }
3049
3050    /**
3051     * Waits and/or attempts to assist performing tasks indefinitely
3052     * until the {@code commonPool()} {@link #isQuiescent}.
3053     */
3054    static void quiesceCommonPool() {
3055        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3056    }
3057
3058    /**
3059     * Interface for extending managed parallelism for tasks running
3060     * in {@link ForkJoinPool}s.
3061     *
3062     * <p>A {@code ManagedBlocker} provides two methods.  Method
3063     * {@code isReleasable} must return {@code true} if blocking is
3064     * not necessary. Method {@code block} blocks the current thread
3065     * if necessary (perhaps internally invoking {@code isReleasable}
3066     * before actually blocking). These actions are performed by any
3067     * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3068     * The unusual methods in this API accommodate synchronizers that
3069     * may, but don't usually, block for long periods. Similarly, they
3070     * allow more efficient internal handling of cases in which
3071     * additional workers may be, but usually are not, needed to
3072     * ensure sufficient parallelism.  Toward this end,
3073     * implementations of method {@code isReleasable} must be amenable
3074     * to repeated invocation.
3075     *
3076     * <p>For example, here is a ManagedBlocker based on a
3077     * ReentrantLock:
3078     *  <pre> {@code
3079     * class ManagedLocker implements ManagedBlocker {
3080     *   final ReentrantLock lock;
3081     *   boolean hasLock = false;
3082     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3083     *   public boolean block() {
3084     *     if (!hasLock)
3085     *       lock.lock();
3086     *     return true;
3087     *   }
3088     *   public boolean isReleasable() {
3089     *     return hasLock || (hasLock = lock.tryLock());
3090     *   }
3091     * }}</pre>
3092     *
3093     * <p>Here is a class that possibly blocks waiting for an
3094     * item on a given queue:
3095     *  <pre> {@code
3096     * class QueueTaker<E> implements ManagedBlocker {
3097     *   final BlockingQueue<E> queue;
3098     *   volatile E item = null;
3099     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3100     *   public boolean block() throws InterruptedException {
3101     *     if (item == null)
3102     *       item = queue.take();
3103     *     return true;
3104     *   }
3105     *   public boolean isReleasable() {
3106     *     return item != null || (item = queue.poll()) != null;
3107     *   }
3108     *   public E getItem() { // call after pool.managedBlock completes
3109     *     return item;
3110     *   }
3111     * }}</pre>
3112     */
3113    public static interface ManagedBlocker {
3114        /**
3115         * Possibly blocks the current thread, for example waiting for
3116         * a lock or condition.
3117         *
3118         * @return {@code true} if no additional blocking is necessary
3119         * (i.e., if isReleasable would return true)
3120         * @throws InterruptedException if interrupted while waiting
3121         * (the method is not required to do so, but is allowed to)
3122         */
3123        boolean block() throws InterruptedException;
3124
3125        /**
3126         * Returns {@code true} if blocking is unnecessary.
3127         * @return {@code true} if blocking is unnecessary
3128         */
3129        boolean isReleasable();
3130    }
3131
3132    /**
3133     * Blocks in accord with the given blocker.  If the current thread
3134     * is a {@link ForkJoinWorkerThread}, this method possibly
3135     * arranges for a spare thread to be activated if necessary to
3136     * ensure sufficient parallelism while the current thread is blocked.
3137     *
3138     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3139     * behaviorally equivalent to
3140     *  <pre> {@code
3141     * while (!blocker.isReleasable())
3142     *   if (blocker.block())
3143     *     return;
3144     * }</pre>
3145     *
3146     * If the caller is a {@code ForkJoinTask}, then the pool may
3147     * first be expanded to ensure parallelism, and later adjusted.
3148     *
3149     * @param blocker the blocker
3150     * @throws InterruptedException if blocker.block did so
3151     */
3152    public static void managedBlock(ManagedBlocker blocker)
3153        throws InterruptedException {
3154        Thread t = Thread.currentThread();
3155        if (t instanceof ForkJoinWorkerThread) {
3156            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3157            while (!blocker.isReleasable()) {
3158                if (p.tryCompensate(p.ctl)) {
3159                    try {
3160                        do {} while (!blocker.isReleasable() &&
3161                                     !blocker.block());
3162                    } finally {
3163                        p.incrementActiveCount();
3164                    }
3165                    break;
3166                }
3167            }
3168        }
3169        else {
3170            do {} while (!blocker.isReleasable() &&
3171                         !blocker.block());
3172        }
3173    }
3174
3175    // AbstractExecutorService overrides.  These rely on undocumented
3176    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3177    // implement RunnableFuture.
3178
3179    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3180        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3181    }
3182
3183    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3184        return new ForkJoinTask.AdaptedCallable<T>(callable);
3185    }
3186
3187    // Unsafe mechanics
3188    private static final sun.misc.Unsafe U;
3189    private static final long CTL;
3190    private static final long PARKBLOCKER;
3191    private static final int ABASE;
3192    private static final int ASHIFT;
3193    private static final long STEALCOUNT;
3194    private static final long PLOCK;
3195    private static final long INDEXSEED;
3196    private static final long QBASE;
3197    private static final long QLOCK;
3198
3199    static {
3200        // initialize field offsets for CAS etc
3201        try {
3202            U = sun.misc.Unsafe.getUnsafe();
3203            Class<?> k = ForkJoinPool.class;
3204            CTL = U.objectFieldOffset
3205                (k.getDeclaredField("ctl"));
3206            STEALCOUNT = U.objectFieldOffset
3207                (k.getDeclaredField("stealCount"));
3208            PLOCK = U.objectFieldOffset
3209                (k.getDeclaredField("plock"));
3210            INDEXSEED = U.objectFieldOffset
3211                (k.getDeclaredField("indexSeed"));
3212            Class<?> tk = Thread.class;
3213            PARKBLOCKER = U.objectFieldOffset
3214                (tk.getDeclaredField("parkBlocker"));
3215            Class<?> wk = WorkQueue.class;
3216            QBASE = U.objectFieldOffset
3217                (wk.getDeclaredField("base"));
3218            QLOCK = U.objectFieldOffset
3219                (wk.getDeclaredField("qlock"));
3220            Class<?> ak = ForkJoinTask[].class;
3221            ABASE = U.arrayBaseOffset(ak);
3222            int scale = U.arrayIndexScale(ak);
3223            if ((scale & (scale - 1)) != 0)
3224                throw new Error("data type scale not a power of two");
3225            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3226        } catch (Exception e) {
3227            throw new Error(e);
3228        }
3229
3230        submitters = new ThreadLocal<Submitter>();
3231        defaultForkJoinWorkerThreadFactory =
3232            new DefaultForkJoinWorkerThreadFactory();
3233        modifyThreadPermission = new RuntimePermission("modifyThread");
3234
3235        common = java.security.AccessController.doPrivileged
3236            (new java.security.PrivilegedAction<ForkJoinPool>() {
3237                public ForkJoinPool run() { return makeCommonPool(); }});
3238        int par = common.parallelism; // report 1 even if threads disabled
3239        commonParallelism = par > 0 ? par : 1;
3240    }
3241
3242    /**
3243     * Creates and returns the common pool, respecting user settings
3244     * specified via system properties.
3245     */
3246    private static ForkJoinPool makeCommonPool() {
3247        int parallelism = -1;
3248        ForkJoinWorkerThreadFactory factory
3249            = defaultForkJoinWorkerThreadFactory;
3250        UncaughtExceptionHandler handler = null;
3251        try {  // ignore exceptions in accessing/parsing properties
3252            String pp = System.getProperty
3253                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3254            String fp = System.getProperty
3255                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3256            String hp = System.getProperty
3257                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3258            if (pp != null)
3259                parallelism = Integer.parseInt(pp);
3260            if (fp != null)
3261                factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3262                           getSystemClassLoader().loadClass(fp).newInstance());
3263            if (hp != null)
3264                handler = ((UncaughtExceptionHandler)ClassLoader.
3265                           getSystemClassLoader().loadClass(hp).newInstance());
3266        } catch (Exception ignore) {
3267        }
3268
3269        if (parallelism < 0 && // default 1 less than #cores
3270            (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3271            parallelism = 0;
3272        if (parallelism > MAX_CAP)
3273            parallelism = MAX_CAP;
3274        return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3275                                "ForkJoinPool.commonPool-worker-");
3276    }
3277
3278}
3279