1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "image_writer.h"
18
19#include <sys/stat.h>
20
21#include <memory>
22#include <numeric>
23#include <vector>
24
25#include "art_field-inl.h"
26#include "art_method-inl.h"
27#include "base/logging.h"
28#include "base/unix_file/fd_file.h"
29#include "class_linker-inl.h"
30#include "compiled_method.h"
31#include "dex_file-inl.h"
32#include "driver/compiler_driver.h"
33#include "elf_file.h"
34#include "elf_utils.h"
35#include "elf_writer.h"
36#include "gc/accounting/card_table-inl.h"
37#include "gc/accounting/heap_bitmap.h"
38#include "gc/accounting/space_bitmap-inl.h"
39#include "gc/heap.h"
40#include "gc/space/large_object_space.h"
41#include "gc/space/space-inl.h"
42#include "globals.h"
43#include "image.h"
44#include "intern_table.h"
45#include "linear_alloc.h"
46#include "lock_word.h"
47#include "mirror/abstract_method.h"
48#include "mirror/array-inl.h"
49#include "mirror/class-inl.h"
50#include "mirror/class_loader.h"
51#include "mirror/dex_cache-inl.h"
52#include "mirror/method.h"
53#include "mirror/object-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/string-inl.h"
56#include "oat.h"
57#include "oat_file.h"
58#include "runtime.h"
59#include "scoped_thread_state_change.h"
60#include "handle_scope-inl.h"
61#include "utils/dex_cache_arrays_layout-inl.h"
62
63using ::art::mirror::Class;
64using ::art::mirror::DexCache;
65using ::art::mirror::Object;
66using ::art::mirror::ObjectArray;
67using ::art::mirror::String;
68
69namespace art {
70
71// Separate objects into multiple bins to optimize dirty memory use.
72static constexpr bool kBinObjects = true;
73static constexpr bool kComputeEagerResolvedStrings = false;
74
75static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
76    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
77  Class* klass = obj->GetClass();
78  CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
79}
80
81static void CheckNoDexObjects() {
82  ScopedObjectAccess soa(Thread::Current());
83  Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
84}
85
86bool ImageWriter::PrepareImageAddressSpace() {
87  target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
88  {
89    Thread::Current()->TransitionFromSuspendedToRunnable();
90    PruneNonImageClasses();  // Remove junk
91    ComputeLazyFieldsForImageClasses();  // Add useful information
92
93    // Calling this can in theory fill in some resolved strings. However, in practice it seems to
94    // never resolve any.
95    if (kComputeEagerResolvedStrings) {
96      ComputeEagerResolvedStrings();
97    }
98    Thread::Current()->TransitionFromRunnableToSuspended(kNative);
99  }
100  gc::Heap* heap = Runtime::Current()->GetHeap();
101  heap->CollectGarbage(false);  // Remove garbage.
102
103  // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
104  // dex files.
105  //
106  // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
107  // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
108  // true.
109  if (kIsDebugBuild) {
110    CheckNoDexObjects();
111  }
112
113  if (kIsDebugBuild) {
114    ScopedObjectAccess soa(Thread::Current());
115    CheckNonImageClassesRemoved();
116  }
117
118  Thread::Current()->TransitionFromSuspendedToRunnable();
119  CalculateNewObjectOffsets();
120  Thread::Current()->TransitionFromRunnableToSuspended(kNative);
121
122  // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
123  // bin size sums being calculated.
124  if (!AllocMemory()) {
125    return false;
126  }
127
128  return true;
129}
130
131bool ImageWriter::Write(const std::string& image_filename,
132                        const std::string& oat_filename,
133                        const std::string& oat_location) {
134  CHECK(!image_filename.empty());
135
136  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
137
138  std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str()));
139  if (oat_file.get() == nullptr) {
140    PLOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location;
141    return false;
142  }
143  std::string error_msg;
144  oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_location, nullptr, &error_msg);
145  if (oat_file_ == nullptr) {
146    PLOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location
147        << ": " << error_msg;
148    oat_file->Erase();
149    return false;
150  }
151  CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_);
152
153  interpreter_to_interpreter_bridge_offset_ =
154      oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset();
155  interpreter_to_compiled_code_bridge_offset_ =
156      oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset();
157
158  jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset();
159
160  quick_generic_jni_trampoline_offset_ =
161      oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset();
162  quick_imt_conflict_trampoline_offset_ =
163      oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset();
164  quick_resolution_trampoline_offset_ =
165      oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset();
166  quick_to_interpreter_bridge_offset_ =
167      oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset();
168
169  size_t oat_loaded_size = 0;
170  size_t oat_data_offset = 0;
171  ElfWriter::GetOatElfInformation(oat_file.get(), &oat_loaded_size, &oat_data_offset);
172
173  Thread::Current()->TransitionFromSuspendedToRunnable();
174
175  CreateHeader(oat_loaded_size, oat_data_offset);
176  CopyAndFixupNativeData();
177  // TODO: heap validation can't handle these fix up passes.
178  Runtime::Current()->GetHeap()->DisableObjectValidation();
179  CopyAndFixupObjects();
180  Thread::Current()->TransitionFromRunnableToSuspended(kNative);
181
182  SetOatChecksumFromElfFile(oat_file.get());
183
184  if (oat_file->FlushCloseOrErase() != 0) {
185    LOG(ERROR) << "Failed to flush and close oat file " << oat_filename << " for " << oat_location;
186    return false;
187  }
188
189  std::unique_ptr<File> image_file(OS::CreateEmptyFile(image_filename.c_str()));
190  ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
191  if (image_file.get() == nullptr) {
192    LOG(ERROR) << "Failed to open image file " << image_filename;
193    return false;
194  }
195  if (fchmod(image_file->Fd(), 0644) != 0) {
196    PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
197    image_file->Erase();
198    return EXIT_FAILURE;
199  }
200
201  // Write out the image + fields + methods.
202  const auto write_count = image_header->GetImageSize();
203  if (!image_file->WriteFully(image_->Begin(), write_count)) {
204    PLOG(ERROR) << "Failed to write image file " << image_filename;
205    image_file->Erase();
206    return false;
207  }
208
209  // Write out the image bitmap at the page aligned start of the image end.
210  const ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
211  CHECK_ALIGNED(bitmap_section.Offset(), kPageSize);
212  if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()),
213                         bitmap_section.Size(), bitmap_section.Offset())) {
214    PLOG(ERROR) << "Failed to write image file " << image_filename;
215    image_file->Erase();
216    return false;
217  }
218
219  CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()));
220  if (image_file->FlushCloseOrErase() != 0) {
221    PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
222    return false;
223  }
224  return true;
225}
226
227void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
228  DCHECK(object != nullptr);
229  DCHECK_NE(offset, 0U);
230
231  // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
232  object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
233  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
234  DCHECK(IsImageOffsetAssigned(object));
235}
236
237void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
238  DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
239  obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
240  DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
241}
242
243void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
244  DCHECK(object != nullptr);
245  DCHECK_NE(image_objects_offset_begin_, 0u);
246
247  size_t previous_bin_sizes = bin_slot_previous_sizes_[bin_slot.GetBin()];
248  size_t new_offset = image_objects_offset_begin_ + previous_bin_sizes + bin_slot.GetIndex();
249  DCHECK_ALIGNED(new_offset, kObjectAlignment);
250
251  SetImageOffset(object, new_offset);
252  DCHECK_LT(new_offset, image_end_);
253}
254
255bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
256  // Will also return true if the bin slot was assigned since we are reusing the lock word.
257  DCHECK(object != nullptr);
258  return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
259}
260
261size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
262  DCHECK(object != nullptr);
263  DCHECK(IsImageOffsetAssigned(object));
264  LockWord lock_word = object->GetLockWord(false);
265  size_t offset = lock_word.ForwardingAddress();
266  DCHECK_LT(offset, image_end_);
267  return offset;
268}
269
270void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
271  DCHECK(object != nullptr);
272  DCHECK(!IsImageOffsetAssigned(object));
273  DCHECK(!IsImageBinSlotAssigned(object));
274
275  // Before we stomp over the lock word, save the hash code for later.
276  Monitor::Deflate(Thread::Current(), object);;
277  LockWord lw(object->GetLockWord(false));
278  switch (lw.GetState()) {
279    case LockWord::kFatLocked: {
280      LOG(FATAL) << "Fat locked object " << object << " found during object copy";
281      break;
282    }
283    case LockWord::kThinLocked: {
284      LOG(FATAL) << "Thin locked object " << object << " found during object copy";
285      break;
286    }
287    case LockWord::kUnlocked:
288      // No hash, don't need to save it.
289      break;
290    case LockWord::kHashCode:
291      DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
292      saved_hashcode_map_.emplace(object, lw.GetHashCode());
293      break;
294    default:
295      LOG(FATAL) << "Unreachable.";
296      UNREACHABLE();
297  }
298  object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
299  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
300  DCHECK(IsImageBinSlotAssigned(object));
301}
302
303void ImageWriter::PrepareDexCacheArraySlots() {
304  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
305  ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
306  size_t dex_cache_count = class_linker->GetDexCacheCount();
307  uint32_t size = 0u;
308  for (size_t idx = 0; idx < dex_cache_count; ++idx) {
309    DexCache* dex_cache = class_linker->GetDexCache(idx);
310    const DexFile* dex_file = dex_cache->GetDexFile();
311    dex_cache_array_starts_.Put(dex_file, size);
312    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
313    DCHECK(layout.Valid());
314    auto types_size = layout.TypesSize(dex_file->NumTypeIds());
315    auto methods_size = layout.MethodsSize(dex_file->NumMethodIds());
316    auto fields_size = layout.FieldsSize(dex_file->NumFieldIds());
317    auto strings_size = layout.StringsSize(dex_file->NumStringIds());
318    dex_cache_array_indexes_.Put(
319        dex_cache->GetResolvedTypes(),
320        DexCacheArrayLocation {size + layout.TypesOffset(), types_size, kBinRegular});
321    dex_cache_array_indexes_.Put(
322        dex_cache->GetResolvedMethods(),
323        DexCacheArrayLocation {size + layout.MethodsOffset(), methods_size, kBinArtMethodClean});
324    AddMethodPointerArray(dex_cache->GetResolvedMethods());
325    dex_cache_array_indexes_.Put(
326        dex_cache->GetResolvedFields(),
327        DexCacheArrayLocation {size + layout.FieldsOffset(), fields_size, kBinArtField});
328    pointer_arrays_.emplace(dex_cache->GetResolvedFields(), kBinArtField);
329    dex_cache_array_indexes_.Put(
330        dex_cache->GetStrings(),
331        DexCacheArrayLocation {size + layout.StringsOffset(), strings_size, kBinRegular});
332    size += layout.Size();
333    CHECK_EQ(layout.Size(), types_size + methods_size + fields_size + strings_size);
334  }
335  // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
336  // when AssignImageBinSlot() assigns their indexes out or order.
337  bin_slot_sizes_[kBinDexCacheArray] = size;
338}
339
340void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
341  DCHECK(arr != nullptr);
342  if (kIsDebugBuild) {
343    for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
344      auto* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
345      if (method != nullptr && !method->IsRuntimeMethod()) {
346        auto* klass = method->GetDeclaringClass();
347        CHECK(klass == nullptr || IsImageClass(klass)) << PrettyClass(klass)
348            << " should be an image class";
349      }
350    }
351  }
352  // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
353  // ArtMethods.
354  pointer_arrays_.emplace(arr, kBinArtMethodClean);
355}
356
357void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
358  DCHECK(object != nullptr);
359  size_t object_size = object->SizeOf();
360
361  // The magic happens here. We segregate objects into different bins based
362  // on how likely they are to get dirty at runtime.
363  //
364  // Likely-to-dirty objects get packed together into the same bin so that
365  // at runtime their page dirtiness ratio (how many dirty objects a page has) is
366  // maximized.
367  //
368  // This means more pages will stay either clean or shared dirty (with zygote) and
369  // the app will use less of its own (private) memory.
370  Bin bin = kBinRegular;
371  size_t current_offset = 0u;
372
373  if (kBinObjects) {
374    //
375    // Changing the bin of an object is purely a memory-use tuning.
376    // It has no change on runtime correctness.
377    //
378    // Memory analysis has determined that the following types of objects get dirtied
379    // the most:
380    //
381    // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
382    //   a fixed layout which helps improve generated code (using PC-relative addressing),
383    //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
384    //   Since these arrays are huge, most pages do not overlap other objects and it's not
385    //   really important where they are for the clean/dirty separation. Due to their
386    //   special PC-relative addressing, we arbitrarily keep them at the beginning.
387    // * Class'es which are verified [their clinit runs only at runtime]
388    //   - classes in general [because their static fields get overwritten]
389    //   - initialized classes with all-final statics are unlikely to be ever dirty,
390    //     so bin them separately
391    // * Art Methods that are:
392    //   - native [their native entry point is not looked up until runtime]
393    //   - have declaring classes that aren't initialized
394    //            [their interpreter/quick entry points are trampolines until the class
395    //             becomes initialized]
396    //
397    // We also assume the following objects get dirtied either never or extremely rarely:
398    //  * Strings (they are immutable)
399    //  * Art methods that aren't native and have initialized declared classes
400    //
401    // We assume that "regular" bin objects are highly unlikely to become dirtied,
402    // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
403    //
404    if (object->IsClass()) {
405      bin = kBinClassVerified;
406      mirror::Class* klass = object->AsClass();
407
408      // Add non-embedded vtable to the pointer array table if there is one.
409      auto* vtable = klass->GetVTable();
410      if (vtable != nullptr) {
411        AddMethodPointerArray(vtable);
412      }
413      auto* iftable = klass->GetIfTable();
414      if (iftable != nullptr) {
415        for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
416          if (iftable->GetMethodArrayCount(i) > 0) {
417            AddMethodPointerArray(iftable->GetMethodArray(i));
418          }
419        }
420      }
421
422      if (klass->GetStatus() == Class::kStatusInitialized) {
423        bin = kBinClassInitialized;
424
425        // If the class's static fields are all final, put it into a separate bin
426        // since it's very likely it will stay clean.
427        uint32_t num_static_fields = klass->NumStaticFields();
428        if (num_static_fields == 0) {
429          bin = kBinClassInitializedFinalStatics;
430        } else {
431          // Maybe all the statics are final?
432          bool all_final = true;
433          for (uint32_t i = 0; i < num_static_fields; ++i) {
434            ArtField* field = klass->GetStaticField(i);
435            if (!field->IsFinal()) {
436              all_final = false;
437              break;
438            }
439          }
440
441          if (all_final) {
442            bin = kBinClassInitializedFinalStatics;
443          }
444        }
445      }
446    } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
447      bin = kBinString;  // Strings are almost always immutable (except for object header).
448    } else if (object->IsArrayInstance()) {
449      mirror::Class* klass = object->GetClass<kVerifyNone>();
450      if (klass->IsObjectArrayClass() || klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
451        auto it = dex_cache_array_indexes_.find(object);
452        if (it != dex_cache_array_indexes_.end()) {
453          bin = kBinDexCacheArray;
454          // Use prepared offset defined by the DexCacheLayout.
455          current_offset = it->second.offset_;
456          // Override incase of cross compilation.
457          object_size = it->second.length_;
458        }  // else bin = kBinRegular
459      }
460    }  // else bin = kBinRegular
461  }
462
463  size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
464  if (bin != kBinDexCacheArray) {
465    DCHECK(dex_cache_array_indexes_.find(object) == dex_cache_array_indexes_.end()) << object;
466    current_offset = bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
467    // Move the current bin size up to accomodate the object we just assigned a bin slot.
468    bin_slot_sizes_[bin] += offset_delta;
469  }
470
471  BinSlot new_bin_slot(bin, current_offset);
472  SetImageBinSlot(object, new_bin_slot);
473
474  ++bin_slot_count_[bin];
475
476  // Grow the image closer to the end by the object we just assigned.
477  image_end_ += offset_delta;
478}
479
480bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
481  if (m->IsNative()) {
482    return true;
483  }
484  mirror::Class* declaring_class = m->GetDeclaringClass();
485  // Initialized is highly unlikely to dirty since there's no entry points to mutate.
486  return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
487}
488
489bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
490  DCHECK(object != nullptr);
491
492  // We always stash the bin slot into a lockword, in the 'forwarding address' state.
493  // If it's in some other state, then we haven't yet assigned an image bin slot.
494  if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
495    return false;
496  } else if (kIsDebugBuild) {
497    LockWord lock_word = object->GetLockWord(false);
498    size_t offset = lock_word.ForwardingAddress();
499    BinSlot bin_slot(offset);
500    DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()])
501      << "bin slot offset should not exceed the size of that bin";
502  }
503  return true;
504}
505
506ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
507  DCHECK(object != nullptr);
508  DCHECK(IsImageBinSlotAssigned(object));
509
510  LockWord lock_word = object->GetLockWord(false);
511  size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
512  DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
513
514  BinSlot bin_slot(static_cast<uint32_t>(offset));
515  DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]);
516
517  return bin_slot;
518}
519
520bool ImageWriter::AllocMemory() {
521  const size_t length = RoundUp(image_objects_offset_begin_ + GetBinSizeSum() + intern_table_bytes_,
522                                kPageSize);
523  std::string error_msg;
524  image_.reset(MemMap::MapAnonymous("image writer image", nullptr, length, PROT_READ | PROT_WRITE,
525                                    false, false, &error_msg));
526  if (UNLIKELY(image_.get() == nullptr)) {
527    LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
528    return false;
529  }
530
531  // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
532  CHECK_LE(image_end_, length);
533  image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
534      "image bitmap", image_->Begin(), RoundUp(image_end_, kPageSize)));
535  if (image_bitmap_.get() == nullptr) {
536    LOG(ERROR) << "Failed to allocate memory for image bitmap";
537    return false;
538  }
539  return true;
540}
541
542void ImageWriter::ComputeLazyFieldsForImageClasses() {
543  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
544  class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, nullptr);
545}
546
547bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) {
548  Thread* self = Thread::Current();
549  StackHandleScope<1> hs(self);
550  mirror::Class::ComputeName(hs.NewHandle(c));
551  return true;
552}
553
554void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) {
555  if (!obj->GetClass()->IsStringClass()) {
556    return;
557  }
558  mirror::String* string = obj->AsString();
559  const uint16_t* utf16_string = string->GetValue();
560  size_t utf16_length = static_cast<size_t>(string->GetLength());
561  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
562  ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
563  size_t dex_cache_count = class_linker->GetDexCacheCount();
564  for (size_t i = 0; i < dex_cache_count; ++i) {
565    DexCache* dex_cache = class_linker->GetDexCache(i);
566    const DexFile& dex_file = *dex_cache->GetDexFile();
567    const DexFile::StringId* string_id;
568    if (UNLIKELY(utf16_length == 0)) {
569      string_id = dex_file.FindStringId("");
570    } else {
571      string_id = dex_file.FindStringId(utf16_string, utf16_length);
572    }
573    if (string_id != nullptr) {
574      // This string occurs in this dex file, assign the dex cache entry.
575      uint32_t string_idx = dex_file.GetIndexForStringId(*string_id);
576      if (dex_cache->GetResolvedString(string_idx) == nullptr) {
577        dex_cache->SetResolvedString(string_idx, string);
578      }
579    }
580  }
581}
582
583void ImageWriter::ComputeEagerResolvedStrings() {
584  Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this);
585}
586
587bool ImageWriter::IsImageClass(Class* klass) {
588  if (klass == nullptr) {
589    return false;
590  }
591  std::string temp;
592  return compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
593}
594
595struct NonImageClasses {
596  ImageWriter* image_writer;
597  std::set<std::string>* non_image_classes;
598};
599
600void ImageWriter::PruneNonImageClasses() {
601  if (compiler_driver_.GetImageClasses() == nullptr) {
602    return;
603  }
604  Runtime* runtime = Runtime::Current();
605  ClassLinker* class_linker = runtime->GetClassLinker();
606  Thread* self = Thread::Current();
607
608  // Make a list of classes we would like to prune.
609  std::set<std::string> non_image_classes;
610  NonImageClasses context;
611  context.image_writer = this;
612  context.non_image_classes = &non_image_classes;
613  class_linker->VisitClasses(NonImageClassesVisitor, &context);
614
615  // Remove the undesired classes from the class roots.
616  for (const std::string& it : non_image_classes) {
617    bool result = class_linker->RemoveClass(it.c_str(), nullptr);
618    DCHECK(result);
619  }
620
621  // Clear references to removed classes from the DexCaches.
622  const ArtMethod* resolution_method = runtime->GetResolutionMethod();
623  size_t dex_cache_count;
624  {
625    ReaderMutexLock mu(self, *class_linker->DexLock());
626    dex_cache_count = class_linker->GetDexCacheCount();
627  }
628  for (size_t idx = 0; idx < dex_cache_count; ++idx) {
629    DexCache* dex_cache;
630    {
631      ReaderMutexLock mu(self, *class_linker->DexLock());
632      dex_cache = class_linker->GetDexCache(idx);
633    }
634    for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
635      Class* klass = dex_cache->GetResolvedType(i);
636      if (klass != nullptr && !IsImageClass(klass)) {
637        dex_cache->SetResolvedType(i, nullptr);
638      }
639    }
640    auto* resolved_methods = down_cast<mirror::PointerArray*>(dex_cache->GetResolvedMethods());
641    for (size_t i = 0, len = resolved_methods->GetLength(); i < len; i++) {
642      auto* method = resolved_methods->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
643      if (method != nullptr) {
644        auto* declaring_class = method->GetDeclaringClass();
645        // Miranda methods may be held live by a class which was not an image class but have a
646        // declaring class which is an image class. Set it to the resolution method to be safe and
647        // prevent dangling pointers.
648        if (method->IsMiranda() || !IsImageClass(declaring_class)) {
649          resolved_methods->SetElementPtrSize(i, resolution_method, target_ptr_size_);
650        } else {
651          // Check that the class is still in the classes table.
652          DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
653              << PrettyClass(declaring_class) << " not in class linker table";
654        }
655      }
656    }
657    for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
658      ArtField* field = dex_cache->GetResolvedField(i, target_ptr_size_);
659      if (field != nullptr && !IsImageClass(field->GetDeclaringClass())) {
660        dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
661      }
662    }
663    // Clean the dex field. It might have been populated during the initialization phase, but
664    // contains data only valid during a real run.
665    dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
666  }
667
668  // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
669  class_linker->DropFindArrayClassCache();
670}
671
672bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) {
673  NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg);
674  if (!context->image_writer->IsImageClass(klass)) {
675    std::string temp;
676    context->non_image_classes->insert(klass->GetDescriptor(&temp));
677  }
678  return true;
679}
680
681void ImageWriter::CheckNonImageClassesRemoved() {
682  if (compiler_driver_.GetImageClasses() != nullptr) {
683    gc::Heap* heap = Runtime::Current()->GetHeap();
684    heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
685  }
686}
687
688void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
689  ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
690  if (obj->IsClass()) {
691    Class* klass = obj->AsClass();
692    if (!image_writer->IsImageClass(klass)) {
693      image_writer->DumpImageClasses();
694      std::string temp;
695      CHECK(image_writer->IsImageClass(klass)) << klass->GetDescriptor(&temp)
696                                               << " " << PrettyDescriptor(klass);
697    }
698  }
699}
700
701void ImageWriter::DumpImageClasses() {
702  auto image_classes = compiler_driver_.GetImageClasses();
703  CHECK(image_classes != nullptr);
704  for (const std::string& image_class : *image_classes) {
705    LOG(INFO) << " " << image_class;
706  }
707}
708
709void ImageWriter::CalculateObjectBinSlots(Object* obj) {
710  DCHECK(obj != nullptr);
711  // if it is a string, we want to intern it if its not interned.
712  if (obj->GetClass()->IsStringClass()) {
713    // we must be an interned string that was forward referenced and already assigned
714    if (IsImageBinSlotAssigned(obj)) {
715      DCHECK_EQ(obj, obj->AsString()->Intern());
716      return;
717    }
718    mirror::String* const interned = Runtime::Current()->GetInternTable()->InternStrong(
719        obj->AsString()->Intern());
720    if (obj != interned) {
721      if (!IsImageBinSlotAssigned(interned)) {
722        // interned obj is after us, allocate its location early
723        AssignImageBinSlot(interned);
724      }
725      // point those looking for this object to the interned version.
726      SetImageBinSlot(obj, GetImageBinSlot(interned));
727      return;
728    }
729    // else (obj == interned), nothing to do but fall through to the normal case
730  }
731
732  AssignImageBinSlot(obj);
733}
734
735ObjectArray<Object>* ImageWriter::CreateImageRoots() const {
736  Runtime* runtime = Runtime::Current();
737  ClassLinker* class_linker = runtime->GetClassLinker();
738  Thread* self = Thread::Current();
739  StackHandleScope<3> hs(self);
740  Handle<Class> object_array_class(hs.NewHandle(
741      class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
742
743  // build an Object[] of all the DexCaches used in the source_space_.
744  // Since we can't hold the dex lock when allocating the dex_caches
745  // ObjectArray, we lock the dex lock twice, first to get the number
746  // of dex caches first and then lock it again to copy the dex
747  // caches. We check that the number of dex caches does not change.
748  size_t dex_cache_count;
749  {
750    ReaderMutexLock mu(self, *class_linker->DexLock());
751    dex_cache_count = class_linker->GetDexCacheCount();
752  }
753  Handle<ObjectArray<Object>> dex_caches(
754      hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(),
755                                              dex_cache_count)));
756  CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
757  {
758    ReaderMutexLock mu(self, *class_linker->DexLock());
759    CHECK_EQ(dex_cache_count, class_linker->GetDexCacheCount())
760        << "The number of dex caches changed.";
761    for (size_t i = 0; i < dex_cache_count; ++i) {
762      dex_caches->Set<false>(i, class_linker->GetDexCache(i));
763    }
764  }
765
766  // build an Object[] of the roots needed to restore the runtime
767  auto image_roots(hs.NewHandle(
768      ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
769  image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
770  image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
771  for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
772    CHECK(image_roots->Get(i) != nullptr);
773  }
774  return image_roots.Get();
775}
776
777// Walk instance fields of the given Class. Separate function to allow recursion on the super
778// class.
779void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
780  // Visit fields of parent classes first.
781  StackHandleScope<1> hs(Thread::Current());
782  Handle<mirror::Class> h_class(hs.NewHandle(klass));
783  mirror::Class* super = h_class->GetSuperClass();
784  if (super != nullptr) {
785    WalkInstanceFields(obj, super);
786  }
787  //
788  size_t num_reference_fields = h_class->NumReferenceInstanceFields();
789  MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
790  for (size_t i = 0; i < num_reference_fields; ++i) {
791    mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
792    if (value != nullptr) {
793      WalkFieldsInOrder(value);
794    }
795    field_offset = MemberOffset(field_offset.Uint32Value() +
796                                sizeof(mirror::HeapReference<mirror::Object>));
797  }
798}
799
800// For an unvisited object, visit it then all its children found via fields.
801void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
802  // Use our own visitor routine (instead of GC visitor) to get better locality between
803  // an object and its fields
804  if (!IsImageBinSlotAssigned(obj)) {
805    // Walk instance fields of all objects
806    StackHandleScope<2> hs(Thread::Current());
807    Handle<mirror::Object> h_obj(hs.NewHandle(obj));
808    Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
809    // visit the object itself.
810    CalculateObjectBinSlots(h_obj.Get());
811    WalkInstanceFields(h_obj.Get(), klass.Get());
812    // Walk static fields of a Class.
813    if (h_obj->IsClass()) {
814      size_t num_reference_static_fields = klass->NumReferenceStaticFields();
815      MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
816      for (size_t i = 0; i < num_reference_static_fields; ++i) {
817        mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
818        if (value != nullptr) {
819          WalkFieldsInOrder(value);
820        }
821        field_offset = MemberOffset(field_offset.Uint32Value() +
822                                    sizeof(mirror::HeapReference<mirror::Object>));
823      }
824      // Visit and assign offsets for fields.
825      auto* as_klass = h_obj->AsClass();
826      ArtField* fields[] = { as_klass->GetSFields(), as_klass->GetIFields() };
827      size_t num_fields[] = { as_klass->NumStaticFields(), as_klass->NumInstanceFields() };
828      for (size_t i = 0; i < 2; ++i) {
829        for (size_t j = 0; j < num_fields[i]; ++j) {
830          auto* field = fields[i] + j;
831          auto it = native_object_reloc_.find(field);
832          CHECK(it == native_object_reloc_.end()) << "Field at index " << i << ":" << j
833              << " already assigned " << PrettyField(field);
834          native_object_reloc_.emplace(
835              field, NativeObjectReloc { bin_slot_sizes_[kBinArtField], kBinArtField });
836          bin_slot_sizes_[kBinArtField] += sizeof(ArtField);
837        }
838      }
839      // Visit and assign offsets for methods.
840      IterationRange<StrideIterator<ArtMethod>> method_arrays[] = {
841          as_klass->GetDirectMethods(target_ptr_size_),
842          as_klass->GetVirtualMethods(target_ptr_size_)
843      };
844      for (auto& array : method_arrays) {
845        bool any_dirty = false;
846        size_t count = 0;
847        for (auto& m : array) {
848          any_dirty = any_dirty || WillMethodBeDirty(&m);
849          ++count;
850        }
851        for (auto& m : array) {
852          AssignMethodOffset(&m, any_dirty ? kBinArtMethodDirty : kBinArtMethodClean);
853        }
854        (any_dirty ? dirty_methods_ : clean_methods_) += count;
855      }
856    } else if (h_obj->IsObjectArray()) {
857      // Walk elements of an object array.
858      int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
859      for (int32_t i = 0; i < length; i++) {
860        mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
861        mirror::Object* value = obj_array->Get(i);
862        if (value != nullptr) {
863          WalkFieldsInOrder(value);
864        }
865      }
866    }
867  }
868}
869
870void ImageWriter::AssignMethodOffset(ArtMethod* method, Bin bin) {
871  auto it = native_object_reloc_.find(method);
872  CHECK(it == native_object_reloc_.end()) << "Method " << method << " already assigned "
873      << PrettyMethod(method);
874  native_object_reloc_.emplace(method, NativeObjectReloc { bin_slot_sizes_[bin], bin });
875  bin_slot_sizes_[bin] += ArtMethod::ObjectSize(target_ptr_size_);
876}
877
878void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
879  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
880  DCHECK(writer != nullptr);
881  writer->WalkFieldsInOrder(obj);
882}
883
884void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
885  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
886  DCHECK(writer != nullptr);
887  writer->UnbinObjectsIntoOffset(obj);
888}
889
890void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
891  CHECK(obj != nullptr);
892
893  // We know the bin slot, and the total bin sizes for all objects by now,
894  // so calculate the object's final image offset.
895
896  DCHECK(IsImageBinSlotAssigned(obj));
897  BinSlot bin_slot = GetImageBinSlot(obj);
898  // Change the lockword from a bin slot into an offset
899  AssignImageOffset(obj, bin_slot);
900}
901
902void ImageWriter::CalculateNewObjectOffsets() {
903  Thread* const self = Thread::Current();
904  StackHandleScope<1> hs(self);
905  Handle<ObjectArray<Object>> image_roots(hs.NewHandle(CreateImageRoots()));
906
907  auto* runtime = Runtime::Current();
908  auto* heap = runtime->GetHeap();
909  DCHECK_EQ(0U, image_end_);
910
911  // Leave space for the header, but do not write it yet, we need to
912  // know where image_roots is going to end up
913  image_end_ += RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
914
915  image_objects_offset_begin_ = image_end_;
916  // Prepare bin slots for dex cache arrays.
917  PrepareDexCacheArraySlots();
918  // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
919  heap->VisitObjects(WalkFieldsCallback, this);
920  // Write the image runtime methods.
921  image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
922  image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
923  image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
924  image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
925  image_methods_[ImageHeader::kRefsOnlySaveMethod] =
926      runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
927  image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
928      runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
929  for (auto* m : image_methods_) {
930    CHECK(m != nullptr);
931    CHECK(m->IsRuntimeMethod());
932    AssignMethodOffset(m, kBinArtMethodDirty);
933  }
934
935  // Calculate cumulative bin slot sizes.
936  size_t previous_sizes = 0u;
937  for (size_t i = 0; i != kBinSize; ++i) {
938    bin_slot_previous_sizes_[i] = previous_sizes;
939    previous_sizes += bin_slot_sizes_[i];
940  }
941  DCHECK_EQ(previous_sizes, GetBinSizeSum());
942  DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
943
944  // Transform each object's bin slot into an offset which will be used to do the final copy.
945  heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
946
947  DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
948
949  image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Get()));
950
951  // Update the native relocations by adding their bin sums.
952  for (auto& pair : native_object_reloc_) {
953    auto& native_reloc = pair.second;
954    native_reloc.offset += image_objects_offset_begin_ +
955        bin_slot_previous_sizes_[native_reloc.bin_type];
956  }
957
958  // Calculate how big the intern table will be after being serialized.
959  auto* const intern_table = Runtime::Current()->GetInternTable();
960  CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
961  intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
962
963  // Note that image_end_ is left at end of used mirror object section.
964}
965
966void ImageWriter::CreateHeader(size_t oat_loaded_size, size_t oat_data_offset) {
967  CHECK_NE(0U, oat_loaded_size);
968  const uint8_t* oat_file_begin = GetOatFileBegin();
969  const uint8_t* oat_file_end = oat_file_begin + oat_loaded_size;
970  oat_data_begin_ = oat_file_begin + oat_data_offset;
971  const uint8_t* oat_data_end = oat_data_begin_ + oat_file_->Size();
972
973  // Create the image sections.
974  ImageSection sections[ImageHeader::kSectionCount];
975  // Objects section
976  auto* objects_section = &sections[ImageHeader::kSectionObjects];
977  *objects_section = ImageSection(0u, image_end_);
978  size_t cur_pos = objects_section->End();
979  // Add field section.
980  auto* field_section = &sections[ImageHeader::kSectionArtFields];
981  *field_section = ImageSection(cur_pos, bin_slot_sizes_[kBinArtField]);
982  CHECK_EQ(image_objects_offset_begin_ + bin_slot_previous_sizes_[kBinArtField],
983           field_section->Offset());
984  cur_pos = field_section->End();
985  // Add method section.
986  auto* methods_section = &sections[ImageHeader::kSectionArtMethods];
987  *methods_section = ImageSection(cur_pos, bin_slot_sizes_[kBinArtMethodClean] +
988                                  bin_slot_sizes_[kBinArtMethodDirty]);
989  CHECK_EQ(image_objects_offset_begin_ + bin_slot_previous_sizes_[kBinArtMethodClean],
990           methods_section->Offset());
991  cur_pos = methods_section->End();
992  // Calculate the size of the interned strings.
993  auto* interned_strings_section = &sections[ImageHeader::kSectionInternedStrings];
994  *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
995  cur_pos = interned_strings_section->End();
996  // Finally bitmap section.
997  const size_t bitmap_bytes = image_bitmap_->Size();
998  auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
999  *bitmap_section = ImageSection(RoundUp(cur_pos, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1000  cur_pos = bitmap_section->End();
1001  if (kIsDebugBuild) {
1002    size_t idx = 0;
1003    for (const ImageSection& section : sections) {
1004      LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1005      ++idx;
1006    }
1007    LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1008  }
1009  const size_t image_end = static_cast<uint32_t>(interned_strings_section->End());
1010  CHECK_EQ(AlignUp(image_begin_ + image_end, kPageSize), oat_file_begin) <<
1011      "Oat file should be right after the image.";
1012  // Create the header.
1013  new (image_->Begin()) ImageHeader(
1014      PointerToLowMemUInt32(image_begin_), image_end,
1015      sections, image_roots_address_, oat_file_->GetOatHeader().GetChecksum(),
1016      PointerToLowMemUInt32(oat_file_begin), PointerToLowMemUInt32(oat_data_begin_),
1017      PointerToLowMemUInt32(oat_data_end), PointerToLowMemUInt32(oat_file_end), target_ptr_size_,
1018      compile_pic_);
1019}
1020
1021ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1022  auto it = native_object_reloc_.find(method);
1023  CHECK(it != native_object_reloc_.end()) << PrettyMethod(method) << " @ " << method;
1024  CHECK_GE(it->second.offset, image_end_) << "ArtMethods should be after Objects";
1025  return reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset);
1026}
1027
1028class FixupRootVisitor : public RootVisitor {
1029 public:
1030  explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1031  }
1032
1033  void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1034      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1035    for (size_t i = 0; i < count; ++i) {
1036      *roots[i] = ImageAddress(*roots[i]);
1037    }
1038  }
1039
1040  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1041                  const RootInfo& info ATTRIBUTE_UNUSED)
1042      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1043    for (size_t i = 0; i < count; ++i) {
1044      roots[i]->Assign(ImageAddress(roots[i]->AsMirrorPtr()));
1045    }
1046  }
1047
1048 private:
1049  ImageWriter* const image_writer_;
1050
1051  mirror::Object* ImageAddress(mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1052    const size_t offset = image_writer_->GetImageOffset(obj);
1053    auto* const dest = reinterpret_cast<Object*>(image_writer_->image_begin_ + offset);
1054    VLOG(compiler) << "Update root from " << obj << " to " << dest;
1055    return dest;
1056  }
1057};
1058
1059void ImageWriter::CopyAndFixupNativeData() {
1060  // Copy ArtFields and methods to their locations and update the array for convenience.
1061  for (auto& pair : native_object_reloc_) {
1062    auto& native_reloc = pair.second;
1063    if (native_reloc.bin_type == kBinArtField) {
1064      auto* dest = image_->Begin() + native_reloc.offset;
1065      DCHECK_GE(dest, image_->Begin() + image_end_);
1066      memcpy(dest, pair.first, sizeof(ArtField));
1067      reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1068          GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1069    } else {
1070      CHECK(IsArtMethodBin(native_reloc.bin_type)) << native_reloc.bin_type;
1071      auto* dest = image_->Begin() + native_reloc.offset;
1072      DCHECK_GE(dest, image_->Begin() + image_end_);
1073      CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1074                         reinterpret_cast<ArtMethod*>(dest));
1075    }
1076  }
1077  // Fixup the image method roots.
1078  auto* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
1079  const ImageSection& methods_section = image_header->GetMethodsSection();
1080  for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1081    auto* m = image_methods_[i];
1082    CHECK(m != nullptr);
1083    auto it = native_object_reloc_.find(m);
1084    CHECK(it != native_object_reloc_.end()) << "No fowarding for " << PrettyMethod(m);
1085    auto& native_reloc = it->second;
1086    CHECK(methods_section.Contains(native_reloc.offset)) << native_reloc.offset << " not in "
1087        << methods_section;
1088    CHECK(IsArtMethodBin(native_reloc.bin_type)) << native_reloc.bin_type;
1089    auto* dest = reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset);
1090    image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), dest);
1091  }
1092  // Write the intern table into the image.
1093  const ImageSection& intern_table_section = image_header->GetImageSection(
1094      ImageHeader::kSectionInternedStrings);
1095  InternTable* const intern_table = Runtime::Current()->GetInternTable();
1096  uint8_t* const memory_ptr = image_->Begin() + intern_table_section.Offset();
1097  const size_t intern_table_bytes = intern_table->WriteToMemory(memory_ptr);
1098  // Fixup the pointers in the newly written intern table to contain image addresses.
1099  InternTable temp_table;
1100  // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1101  // the VisitRoots() will update the memory directly rather than the copies.
1102  // This also relies on visit roots not doing any verification which could fail after we update
1103  // the roots to be the image addresses.
1104  temp_table.ReadFromMemory(memory_ptr);
1105  CHECK_EQ(temp_table.Size(), intern_table->Size());
1106  FixupRootVisitor visitor(this);
1107  temp_table.VisitRoots(&visitor, kVisitRootFlagAllRoots);
1108  CHECK_EQ(intern_table_bytes, intern_table_bytes_);
1109}
1110
1111void ImageWriter::CopyAndFixupObjects() {
1112  gc::Heap* heap = Runtime::Current()->GetHeap();
1113  heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1114  // Fix up the object previously had hash codes.
1115  for (const auto& hash_pair : saved_hashcode_map_) {
1116    Object* const obj = hash_pair.first;
1117    DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0U);
1118    obj->SetLockWord(LockWord::FromHashCode(hash_pair.second, 0U), false);
1119  }
1120  saved_hashcode_map_.clear();
1121}
1122
1123void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1124  DCHECK(obj != nullptr);
1125  DCHECK(arg != nullptr);
1126  reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1127}
1128
1129void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1130                                    mirror::Class* klass, Bin array_type) {
1131  CHECK(klass->IsArrayClass());
1132  CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1133  // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1134  const size_t num_elements = arr->GetLength();
1135  dst->SetClass(GetImageAddress(arr->GetClass()));
1136  auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1137  for (size_t i = 0, count = num_elements; i < count; ++i) {
1138    auto* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1139    if (elem != nullptr) {
1140      auto it = native_object_reloc_.find(elem);
1141      if (it == native_object_reloc_.end()) {
1142        if (IsArtMethodBin(array_type)) {
1143          auto* method = reinterpret_cast<ArtMethod*>(elem);
1144          LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1145              << method << " idx=" << i << "/" << num_elements << " with declaring class "
1146              << PrettyClass(method->GetDeclaringClass());
1147        } else {
1148          CHECK_EQ(array_type, kBinArtField);
1149          auto* field = reinterpret_cast<ArtField*>(elem);
1150          LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1151              << field << " idx=" << i << "/" << num_elements << " with declaring class "
1152              << PrettyClass(field->GetDeclaringClass());
1153        }
1154      } else {
1155        elem = image_begin_ + it->second.offset;
1156      }
1157    }
1158    dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1159  }
1160}
1161
1162void ImageWriter::CopyAndFixupObject(Object* obj) {
1163  size_t offset = GetImageOffset(obj);
1164  auto* dst = reinterpret_cast<Object*>(image_->Begin() + offset);
1165  DCHECK_LT(offset, image_end_);
1166  const auto* src = reinterpret_cast<const uint8_t*>(obj);
1167
1168  image_bitmap_->Set(dst);  // Mark the obj as live.
1169
1170  const size_t n = obj->SizeOf();
1171  DCHECK_LE(offset + n, image_->Size());
1172  memcpy(dst, src, n);
1173
1174  // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1175  // word.
1176  const auto it = saved_hashcode_map_.find(obj);
1177  dst->SetLockWord(it != saved_hashcode_map_.end() ?
1178      LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1179  FixupObject(obj, dst);
1180}
1181
1182// Rewrite all the references in the copied object to point to their image address equivalent
1183class FixupVisitor {
1184 public:
1185  FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1186  }
1187
1188  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1189      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1190    Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1191    // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1192    // image.
1193    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1194        offset, image_writer_->GetImageAddress(ref));
1195  }
1196
1197  // java.lang.ref.Reference visitor.
1198  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1199      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1200      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1201    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1202        mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent()));
1203  }
1204
1205 protected:
1206  ImageWriter* const image_writer_;
1207  mirror::Object* const copy_;
1208};
1209
1210class FixupClassVisitor FINAL : public FixupVisitor {
1211 public:
1212  FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1213  }
1214
1215  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1216      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1217    DCHECK(obj->IsClass());
1218    FixupVisitor::operator()(obj, offset, /*is_static*/false);
1219  }
1220
1221  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1222                  mirror::Reference* ref ATTRIBUTE_UNUSED) const
1223      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1224      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1225    LOG(FATAL) << "Reference not expected here.";
1226  }
1227};
1228
1229void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
1230  // Copy and fix up ArtFields in the class.
1231  ArtField* fields[2] = { orig->GetSFields(), orig->GetIFields() };
1232  size_t num_fields[2] = { orig->NumStaticFields(), orig->NumInstanceFields() };
1233  // Update the field arrays.
1234  for (size_t i = 0; i < 2; ++i) {
1235    if (num_fields[i] == 0) {
1236      CHECK(fields[i] == nullptr);
1237      continue;
1238    }
1239    auto it = native_object_reloc_.find(fields[i]);
1240    CHECK(it != native_object_reloc_.end()) << PrettyClass(orig) << " : " << PrettyField(fields[i]);
1241    auto* image_fields = reinterpret_cast<ArtField*>(image_begin_ + it->second.offset);
1242    if (i == 0) {
1243      copy->SetSFieldsUnchecked(image_fields);
1244    } else {
1245      copy->SetIFieldsUnchecked(image_fields);
1246    }
1247  }
1248  // Update direct / virtual method arrays.
1249  auto* direct_methods = orig->GetDirectMethodsPtr();
1250  if (direct_methods != nullptr) {
1251    auto it = native_object_reloc_.find(direct_methods);
1252    CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1253    copy->SetDirectMethodsPtrUnchecked(
1254        reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset));
1255  }
1256  auto* virtual_methods = orig->GetVirtualMethodsPtr();
1257  if (virtual_methods != nullptr) {
1258    auto it = native_object_reloc_.find(virtual_methods);
1259    CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1260    copy->SetVirtualMethodsPtr(
1261        reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset));
1262  }
1263  // Fix up embedded tables.
1264  if (orig->ShouldHaveEmbeddedImtAndVTable()) {
1265    for (int32_t i = 0; i < orig->GetEmbeddedVTableLength(); ++i) {
1266      auto it = native_object_reloc_.find(orig->GetEmbeddedVTableEntry(i, target_ptr_size_));
1267      CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1268      copy->SetEmbeddedVTableEntryUnchecked(
1269          i, reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset), target_ptr_size_);
1270    }
1271    for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
1272      auto it = native_object_reloc_.find(orig->GetEmbeddedImTableEntry(i, target_ptr_size_));
1273      CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1274      copy->SetEmbeddedImTableEntry(
1275          i, reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset), target_ptr_size_);
1276    }
1277  }
1278  FixupClassVisitor visitor(this, copy);
1279  static_cast<mirror::Object*>(orig)->VisitReferences<true /*visit class*/>(visitor, visitor);
1280}
1281
1282void ImageWriter::FixupObject(Object* orig, Object* copy) {
1283  DCHECK(orig != nullptr);
1284  DCHECK(copy != nullptr);
1285  if (kUseBakerOrBrooksReadBarrier) {
1286    orig->AssertReadBarrierPointer();
1287    if (kUseBrooksReadBarrier) {
1288      // Note the address 'copy' isn't the same as the image address of 'orig'.
1289      copy->SetReadBarrierPointer(GetImageAddress(orig));
1290      DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
1291    }
1292  }
1293  auto* klass = orig->GetClass();
1294  if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
1295    // Is this a native dex cache array?
1296    auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
1297    if (it != pointer_arrays_.end()) {
1298      // Should only need to fixup every pointer array exactly once.
1299      FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
1300      pointer_arrays_.erase(it);
1301      return;
1302    }
1303    CHECK(dex_cache_array_indexes_.find(orig) == dex_cache_array_indexes_.end())
1304        << "Should have been pointer array.";
1305  }
1306  if (orig->IsClass()) {
1307    FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
1308  } else {
1309    if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
1310      // Need to go update the ArtMethod.
1311      auto* dest = down_cast<mirror::AbstractMethod*>(copy);
1312      auto* src = down_cast<mirror::AbstractMethod*>(orig);
1313      ArtMethod* src_method = src->GetArtMethod();
1314      auto it = native_object_reloc_.find(src_method);
1315      CHECK(it != native_object_reloc_.end()) << "Missing relocation for AbstractMethod.artMethod "
1316          << PrettyMethod(src_method);
1317      dest->SetArtMethod(
1318          reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset));
1319    }
1320    FixupVisitor visitor(this, copy);
1321    orig->VisitReferences<true /*visit class*/>(visitor, visitor);
1322  }
1323}
1324
1325const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, bool* quick_is_interpreted) {
1326  DCHECK(!method->IsResolutionMethod() && !method->IsImtConflictMethod() &&
1327         !method->IsImtUnimplementedMethod() && !method->IsAbstract()) << PrettyMethod(method);
1328
1329  // Use original code if it exists. Otherwise, set the code pointer to the resolution
1330  // trampoline.
1331
1332  // Quick entrypoint:
1333  uint32_t quick_oat_code_offset = PointerToLowMemUInt32(
1334      method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_));
1335  const uint8_t* quick_code = GetOatAddress(quick_oat_code_offset);
1336  *quick_is_interpreted = false;
1337  if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
1338      method->GetDeclaringClass()->IsInitialized())) {
1339    // We have code for a non-static or initialized method, just use the code.
1340    DCHECK_GE(quick_code, oat_data_begin_);
1341  } else if (quick_code == nullptr && method->IsNative() &&
1342      (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
1343    // Non-static or initialized native method missing compiled code, use generic JNI version.
1344    quick_code = GetOatAddress(quick_generic_jni_trampoline_offset_);
1345    DCHECK_GE(quick_code, oat_data_begin_);
1346  } else if (quick_code == nullptr && !method->IsNative()) {
1347    // We don't have code at all for a non-native method, use the interpreter.
1348    quick_code = GetOatAddress(quick_to_interpreter_bridge_offset_);
1349    *quick_is_interpreted = true;
1350    DCHECK_GE(quick_code, oat_data_begin_);
1351  } else {
1352    CHECK(!method->GetDeclaringClass()->IsInitialized());
1353    // We have code for a static method, but need to go through the resolution stub for class
1354    // initialization.
1355    quick_code = GetOatAddress(quick_resolution_trampoline_offset_);
1356    DCHECK_GE(quick_code, oat_data_begin_);
1357  }
1358  return quick_code;
1359}
1360
1361const uint8_t* ImageWriter::GetQuickEntryPoint(ArtMethod* method) {
1362  // Calculate the quick entry point following the same logic as FixupMethod() below.
1363  // The resolution method has a special trampoline to call.
1364  Runtime* runtime = Runtime::Current();
1365  if (UNLIKELY(method == runtime->GetResolutionMethod())) {
1366    return GetOatAddress(quick_resolution_trampoline_offset_);
1367  } else if (UNLIKELY(method == runtime->GetImtConflictMethod() ||
1368                      method == runtime->GetImtUnimplementedMethod())) {
1369    return GetOatAddress(quick_imt_conflict_trampoline_offset_);
1370  } else {
1371    // We assume all methods have code. If they don't currently then we set them to the use the
1372    // resolution trampoline. Abstract methods never have code and so we need to make sure their
1373    // use results in an AbstractMethodError. We use the interpreter to achieve this.
1374    if (UNLIKELY(method->IsAbstract())) {
1375      return GetOatAddress(quick_to_interpreter_bridge_offset_);
1376    } else {
1377      bool quick_is_interpreted;
1378      return GetQuickCode(method, &quick_is_interpreted);
1379    }
1380  }
1381}
1382
1383void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, ArtMethod* copy) {
1384  memcpy(copy, orig, ArtMethod::ObjectSize(target_ptr_size_));
1385
1386  copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
1387  copy->SetDexCacheResolvedMethods(GetImageAddress(orig->GetDexCacheResolvedMethods()));
1388  copy->SetDexCacheResolvedTypes(GetImageAddress(orig->GetDexCacheResolvedTypes()));
1389
1390  // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
1391  // oat_begin_
1392
1393  // The resolution method has a special trampoline to call.
1394  Runtime* runtime = Runtime::Current();
1395  if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
1396    copy->SetEntryPointFromQuickCompiledCodePtrSize(
1397        GetOatAddress(quick_resolution_trampoline_offset_), target_ptr_size_);
1398  } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() ||
1399                      orig == runtime->GetImtUnimplementedMethod())) {
1400    copy->SetEntryPointFromQuickCompiledCodePtrSize(
1401        GetOatAddress(quick_imt_conflict_trampoline_offset_), target_ptr_size_);
1402  } else if (UNLIKELY(orig->IsRuntimeMethod())) {
1403    bool found_one = false;
1404    for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
1405      auto idx = static_cast<Runtime::CalleeSaveType>(i);
1406      if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
1407        found_one = true;
1408        break;
1409      }
1410    }
1411    CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
1412    CHECK(copy->IsRuntimeMethod());
1413  } else {
1414    // We assume all methods have code. If they don't currently then we set them to the use the
1415    // resolution trampoline. Abstract methods never have code and so we need to make sure their
1416    // use results in an AbstractMethodError. We use the interpreter to achieve this.
1417    if (UNLIKELY(orig->IsAbstract())) {
1418      copy->SetEntryPointFromQuickCompiledCodePtrSize(
1419          GetOatAddress(quick_to_interpreter_bridge_offset_), target_ptr_size_);
1420      copy->SetEntryPointFromInterpreterPtrSize(
1421          reinterpret_cast<EntryPointFromInterpreter*>(const_cast<uint8_t*>(
1422                  GetOatAddress(interpreter_to_interpreter_bridge_offset_))), target_ptr_size_);
1423    } else {
1424      bool quick_is_interpreted;
1425      const uint8_t* quick_code = GetQuickCode(orig, &quick_is_interpreted);
1426      copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
1427
1428      // JNI entrypoint:
1429      if (orig->IsNative()) {
1430        // The native method's pointer is set to a stub to lookup via dlsym.
1431        // Note this is not the code_ pointer, that is handled above.
1432        copy->SetEntryPointFromJniPtrSize(
1433            GetOatAddress(jni_dlsym_lookup_offset_), target_ptr_size_);
1434      }
1435
1436      // Interpreter entrypoint:
1437      // Set the interpreter entrypoint depending on whether there is compiled code or not.
1438      uint32_t interpreter_code = (quick_is_interpreted)
1439          ? interpreter_to_interpreter_bridge_offset_
1440          : interpreter_to_compiled_code_bridge_offset_;
1441      EntryPointFromInterpreter* interpreter_entrypoint =
1442          reinterpret_cast<EntryPointFromInterpreter*>(
1443              const_cast<uint8_t*>(GetOatAddress(interpreter_code)));
1444      copy->SetEntryPointFromInterpreterPtrSize(interpreter_entrypoint, target_ptr_size_);
1445    }
1446  }
1447}
1448
1449static OatHeader* GetOatHeaderFromElf(ElfFile* elf) {
1450  uint64_t data_sec_offset;
1451  bool has_data_sec = elf->GetSectionOffsetAndSize(".rodata", &data_sec_offset, nullptr);
1452  if (!has_data_sec) {
1453    return nullptr;
1454  }
1455  return reinterpret_cast<OatHeader*>(elf->Begin() + data_sec_offset);
1456}
1457
1458void ImageWriter::SetOatChecksumFromElfFile(File* elf_file) {
1459  std::string error_msg;
1460  std::unique_ptr<ElfFile> elf(ElfFile::Open(elf_file, PROT_READ|PROT_WRITE,
1461                                             MAP_SHARED, &error_msg));
1462  if (elf.get() == nullptr) {
1463    LOG(FATAL) << "Unable open oat file: " << error_msg;
1464    return;
1465  }
1466  OatHeader* oat_header = GetOatHeaderFromElf(elf.get());
1467  CHECK(oat_header != nullptr);
1468  CHECK(oat_header->IsValid());
1469
1470  ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
1471  image_header->SetOatChecksum(oat_header->GetChecksum());
1472}
1473
1474size_t ImageWriter::GetBinSizeSum(ImageWriter::Bin up_to) const {
1475  DCHECK_LE(up_to, kBinSize);
1476  return std::accumulate(&bin_slot_sizes_[0], &bin_slot_sizes_[up_to], /*init*/0);
1477}
1478
1479ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
1480  // These values may need to get updated if more bins are added to the enum Bin
1481  static_assert(kBinBits == 3, "wrong number of bin bits");
1482  static_assert(kBinShift == 27, "wrong number of shift");
1483  static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
1484
1485  DCHECK_LT(GetBin(), kBinSize);
1486  DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
1487}
1488
1489ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
1490    : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
1491  DCHECK_EQ(index, GetIndex());
1492}
1493
1494ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
1495  return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
1496}
1497
1498uint32_t ImageWriter::BinSlot::GetIndex() const {
1499  return lockword_ & ~kBinMask;
1500}
1501
1502uint8_t* ImageWriter::GetOatFileBegin() const {
1503  DCHECK_GT(intern_table_bytes_, 0u);
1504  return image_begin_ + RoundUp(
1505      image_end_ + bin_slot_sizes_[kBinArtField] + bin_slot_sizes_[kBinArtMethodDirty] +
1506      bin_slot_sizes_[kBinArtMethodClean] + intern_table_bytes_, kPageSize);
1507}
1508
1509}  // namespace art
1510