1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_H_
18#define ART_RUNTIME_GC_HEAP_H_
19
20#include <iosfwd>
21#include <string>
22#include <unordered_set>
23#include <vector>
24
25#include "allocator_type.h"
26#include "arch/instruction_set.h"
27#include "atomic.h"
28#include "base/time_utils.h"
29#include "base/timing_logger.h"
30#include "gc/accounting/atomic_stack.h"
31#include "gc/accounting/card_table.h"
32#include "gc/accounting/read_barrier_table.h"
33#include "gc/gc_cause.h"
34#include "gc/collector/garbage_collector.h"
35#include "gc/collector/gc_type.h"
36#include "gc/collector_type.h"
37#include "gc/space/large_object_space.h"
38#include "globals.h"
39#include "jni.h"
40#include "object_callbacks.h"
41#include "offsets.h"
42#include "reference_processor.h"
43#include "safe_map.h"
44#include "thread_pool.h"
45#include "verify_object.h"
46
47namespace art {
48
49class ConditionVariable;
50class Mutex;
51class StackVisitor;
52class Thread;
53class TimingLogger;
54
55namespace mirror {
56  class Class;
57  class Object;
58}  // namespace mirror
59
60namespace gc {
61
62class ReferenceProcessor;
63class TaskProcessor;
64
65namespace accounting {
66  class HeapBitmap;
67  class ModUnionTable;
68  class RememberedSet;
69}  // namespace accounting
70
71namespace collector {
72  class ConcurrentCopying;
73  class GarbageCollector;
74  class MarkCompact;
75  class MarkSweep;
76  class SemiSpace;
77}  // namespace collector
78
79namespace allocator {
80  class RosAlloc;
81}  // namespace allocator
82
83namespace space {
84  class AllocSpace;
85  class BumpPointerSpace;
86  class ContinuousMemMapAllocSpace;
87  class DiscontinuousSpace;
88  class DlMallocSpace;
89  class ImageSpace;
90  class LargeObjectSpace;
91  class MallocSpace;
92  class RegionSpace;
93  class RosAllocSpace;
94  class Space;
95  class SpaceTest;
96  class ZygoteSpace;
97}  // namespace space
98
99class AgeCardVisitor {
100 public:
101  uint8_t operator()(uint8_t card) const {
102    if (card == accounting::CardTable::kCardDirty) {
103      return card - 1;
104    } else {
105      return 0;
106    }
107  }
108};
109
110enum HomogeneousSpaceCompactResult {
111  // Success.
112  kSuccess,
113  // Reject due to disabled moving GC.
114  kErrorReject,
115  // System is shutting down.
116  kErrorVMShuttingDown,
117};
118
119// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
120static constexpr bool kUseRosAlloc = true;
121
122// If true, use thread-local allocation stack.
123static constexpr bool kUseThreadLocalAllocationStack = true;
124
125// The process state passed in from the activity manager, used to determine when to do trimming
126// and compaction.
127enum ProcessState {
128  kProcessStateJankPerceptible = 0,
129  kProcessStateJankImperceptible = 1,
130};
131std::ostream& operator<<(std::ostream& os, const ProcessState& process_state);
132
133class Heap {
134 public:
135  // If true, measure the total allocation time.
136  static constexpr bool kMeasureAllocationTime = false;
137  static constexpr size_t kDefaultStartingSize = kPageSize;
138  static constexpr size_t kDefaultInitialSize = 2 * MB;
139  static constexpr size_t kDefaultMaximumSize = 256 * MB;
140  static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
141  static constexpr size_t kDefaultMaxFree = 2 * MB;
142  static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
143  static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
144  static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
145  static constexpr size_t kDefaultTLABSize = 256 * KB;
146  static constexpr double kDefaultTargetUtilization = 0.5;
147  static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
148  // Primitive arrays larger than this size are put in the large object space.
149  static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize;
150  // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
151  static constexpr bool kDefaultEnableParallelGC = false;
152
153  // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
154  // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
155  static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
156      USE_ART_LOW_4G_ALLOCATOR ?
157          space::LargeObjectSpaceType::kFreeList
158        : space::LargeObjectSpaceType::kMap;
159
160  // Used so that we don't overflow the allocation time atomic integer.
161  static constexpr size_t kTimeAdjust = 1024;
162
163  // How often we allow heap trimming to happen (nanoseconds).
164  static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
165  // How long we wait after a transition request to perform a collector transition (nanoseconds).
166  static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
167
168  // Create a heap with the requested sizes. The possible empty
169  // image_file_names names specify Spaces to load based on
170  // ImageWriter output.
171  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
172                size_t max_free, double target_utilization,
173                double foreground_heap_growth_multiplier, size_t capacity,
174                size_t non_moving_space_capacity,
175                const std::string& original_image_file_name,
176                InstructionSet image_instruction_set,
177                CollectorType foreground_collector_type, CollectorType background_collector_type,
178                space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
179                size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
180                size_t long_pause_threshold, size_t long_gc_threshold,
181                bool ignore_max_footprint, bool use_tlab,
182                bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
183                bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
184                bool verify_post_gc_rosalloc, bool gc_stress_mode,
185                bool use_homogeneous_space_compaction,
186                uint64_t min_interval_homogeneous_space_compaction_by_oom);
187
188  ~Heap();
189
190  // Allocates and initializes storage for an object instance.
191  template <bool kInstrumented, typename PreFenceVisitor>
192  mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes,
193                              const PreFenceVisitor& pre_fence_visitor)
194      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
195    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
196                                                         GetCurrentAllocator(),
197                                                         pre_fence_visitor);
198  }
199
200  template <bool kInstrumented, typename PreFenceVisitor>
201  mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes,
202                                        const PreFenceVisitor& pre_fence_visitor)
203      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
204    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
205                                                         GetCurrentNonMovingAllocator(),
206                                                         pre_fence_visitor);
207  }
208
209  template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
210  ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(
211      Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator,
212      const PreFenceVisitor& pre_fence_visitor)
213      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
214
215  AllocatorType GetCurrentAllocator() const {
216    return current_allocator_;
217  }
218
219  AllocatorType GetCurrentNonMovingAllocator() const {
220    return current_non_moving_allocator_;
221  }
222
223  // Visit all of the live objects in the heap.
224  void VisitObjects(ObjectCallback callback, void* arg)
225      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
226      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
227  void VisitObjectsPaused(ObjectCallback callback, void* arg)
228      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
229      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
230
231  void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
232      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
233
234  void RegisterNativeAllocation(JNIEnv* env, size_t bytes);
235  void RegisterNativeFree(JNIEnv* env, size_t bytes);
236
237  // Change the allocator, updates entrypoints.
238  void ChangeAllocator(AllocatorType allocator)
239      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
240      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
241
242  // Transition the garbage collector during runtime, may copy objects from one space to another.
243  void TransitionCollector(CollectorType collector_type);
244
245  // Change the collector to be one of the possible options (MS, CMS, SS).
246  void ChangeCollector(CollectorType collector_type)
247      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
248
249  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
250  // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
251  // proper lock ordering for it.
252  void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS;
253
254  // Check sanity of all live references.
255  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
256  // Returns how many failures occured.
257  size_t VerifyHeapReferences(bool verify_referents = true)
258      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
259  bool VerifyMissingCardMarks()
260      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
261
262  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
263  // and doesn't abort on error, allowing the caller to report more
264  // meaningful diagnostics.
265  bool IsValidObjectAddress(const mirror::Object* obj) const
266      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
267
268  // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
269  // very slow.
270  bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const
271      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
272
273  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
274  // Requires the heap lock to be held.
275  bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true,
276                          bool search_live_stack = true, bool sorted = false)
277      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
278
279  // Returns true if there is any chance that the object (obj) will move.
280  bool IsMovableObject(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
281
282  // Enables us to compacting GC until objects are released.
283  void IncrementDisableMovingGC(Thread* self);
284  void DecrementDisableMovingGC(Thread* self);
285
286  // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
287  void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
288
289  // Initiates an explicit garbage collection.
290  void CollectGarbage(bool clear_soft_references);
291
292  // Does a concurrent GC, should only be called by the GC daemon thread
293  // through runtime.
294  void ConcurrentGC(Thread* self, bool force_full) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
295
296  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
297  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
298  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
299                      uint64_t* counts)
300      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
301      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
302  // Implements JDWP RT_Instances.
303  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
304      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
305      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
306  // Implements JDWP OR_ReferringObjects.
307  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
308      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
309      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
310
311  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
312  // implement dalvik.system.VMRuntime.clearGrowthLimit.
313  void ClearGrowthLimit();
314
315  // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
316  // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
317  void ClampGrowthLimit() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
318
319  // Target ideal heap utilization ratio, implements
320  // dalvik.system.VMRuntime.getTargetHeapUtilization.
321  double GetTargetHeapUtilization() const {
322    return target_utilization_;
323  }
324
325  // Data structure memory usage tracking.
326  void RegisterGCAllocation(size_t bytes);
327  void RegisterGCDeAllocation(size_t bytes);
328
329  // Set the heap's private space pointers to be the same as the space based on it's type. Public
330  // due to usage by tests.
331  void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
332      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
333  void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
334  void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
335
336  // Set target ideal heap utilization ratio, implements
337  // dalvik.system.VMRuntime.setTargetHeapUtilization.
338  void SetTargetHeapUtilization(float target);
339
340  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
341  // from the system. Doesn't allow the space to exceed its growth limit.
342  void SetIdealFootprint(size_t max_allowed_footprint);
343
344  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
345  // waited for.
346  collector::GcType WaitForGcToComplete(GcCause cause, Thread* self)
347      LOCKS_EXCLUDED(gc_complete_lock_);
348
349  // Update the heap's process state to a new value, may cause compaction to occur.
350  void UpdateProcessState(ProcessState process_state);
351
352  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
353    return continuous_spaces_;
354  }
355
356  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
357    return discontinuous_spaces_;
358  }
359
360  const collector::Iteration* GetCurrentGcIteration() const {
361    return &current_gc_iteration_;
362  }
363  collector::Iteration* GetCurrentGcIteration() {
364    return &current_gc_iteration_;
365  }
366
367  // Enable verification of object references when the runtime is sufficiently initialized.
368  void EnableObjectValidation() {
369    verify_object_mode_ = kVerifyObjectSupport;
370    if (verify_object_mode_ > kVerifyObjectModeDisabled) {
371      VerifyHeap();
372    }
373  }
374
375  // Disable object reference verification for image writing.
376  void DisableObjectValidation() {
377    verify_object_mode_ = kVerifyObjectModeDisabled;
378  }
379
380  // Other checks may be performed if we know the heap should be in a sane state.
381  bool IsObjectValidationEnabled() const {
382    return verify_object_mode_ > kVerifyObjectModeDisabled;
383  }
384
385  // Returns true if low memory mode is enabled.
386  bool IsLowMemoryMode() const {
387    return low_memory_mode_;
388  }
389
390  // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
391  // Scales heap growth, min free, and max free.
392  double HeapGrowthMultiplier() const;
393
394  // Freed bytes can be negative in cases where we copy objects from a compacted space to a
395  // free-list backed space.
396  void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
397
398  // Record the bytes freed by thread-local buffer revoke.
399  void RecordFreeRevoke();
400
401  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
402  // The call is not needed if null is stored in the field.
403  ALWAYS_INLINE void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/,
404                                       const mirror::Object* /*new_value*/) {
405    card_table_->MarkCard(dst);
406  }
407
408  // Write barrier for array operations that update many field positions
409  ALWAYS_INLINE void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
410                                       size_t /*length TODO: element_count or byte_count?*/) {
411    card_table_->MarkCard(dst);
412  }
413
414  ALWAYS_INLINE void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
415    card_table_->MarkCard(obj);
416  }
417
418  accounting::CardTable* GetCardTable() const {
419    return card_table_.get();
420  }
421
422  accounting::ReadBarrierTable* GetReadBarrierTable() const {
423    return rb_table_.get();
424  }
425
426  void AddFinalizerReference(Thread* self, mirror::Object** object);
427
428  // Returns the number of bytes currently allocated.
429  size_t GetBytesAllocated() const {
430    return num_bytes_allocated_.LoadSequentiallyConsistent();
431  }
432
433  // Returns the number of objects currently allocated.
434  size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
435
436  // Returns the total number of objects allocated since the heap was created.
437  uint64_t GetObjectsAllocatedEver() const;
438
439  // Returns the total number of bytes allocated since the heap was created.
440  uint64_t GetBytesAllocatedEver() const;
441
442  // Returns the total number of objects freed since the heap was created.
443  uint64_t GetObjectsFreedEver() const {
444    return total_objects_freed_ever_;
445  }
446
447  // Returns the total number of bytes freed since the heap was created.
448  uint64_t GetBytesFreedEver() const {
449    return total_bytes_freed_ever_;
450  }
451
452  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
453  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
454  // were specified. Android apps start with a growth limit (small heap size) which is
455  // cleared/extended for large apps.
456  size_t GetMaxMemory() const {
457    // There is some race conditions in the allocation code that can cause bytes allocated to
458    // become larger than growth_limit_ in rare cases.
459    return std::max(GetBytesAllocated(), growth_limit_);
460  }
461
462  // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
463  // consumed by an application.
464  size_t GetTotalMemory() const;
465
466  // Returns approximately how much free memory we have until the next GC happens.
467  size_t GetFreeMemoryUntilGC() const {
468    return max_allowed_footprint_ - GetBytesAllocated();
469  }
470
471  // Returns approximately how much free memory we have until the next OOME happens.
472  size_t GetFreeMemoryUntilOOME() const {
473    return growth_limit_ - GetBytesAllocated();
474  }
475
476  // Returns how much free memory we have until we need to grow the heap to perform an allocation.
477  // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
478  size_t GetFreeMemory() const {
479    size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
480    size_t total_memory = GetTotalMemory();
481    // Make sure we don't get a negative number.
482    return total_memory - std::min(total_memory, byte_allocated);
483  }
484
485  // get the space that corresponds to an object's address. Current implementation searches all
486  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
487  // TODO: consider using faster data structure like binary tree.
488  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
489  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
490                                                              bool fail_ok) const;
491  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;
492
493  void DumpForSigQuit(std::ostream& os);
494
495  // Do a pending collector transition.
496  void DoPendingCollectorTransition();
497
498  // Deflate monitors, ... and trim the spaces.
499  void Trim(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);
500
501  void RevokeThreadLocalBuffers(Thread* thread);
502  void RevokeRosAllocThreadLocalBuffers(Thread* thread);
503  void RevokeAllThreadLocalBuffers();
504  void AssertThreadLocalBuffersAreRevoked(Thread* thread);
505  void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
506  void RosAllocVerification(TimingLogger* timings, const char* name)
507      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
508
509  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
510    return live_bitmap_.get();
511  }
512
513  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
514    return mark_bitmap_.get();
515  }
516
517  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
518    return live_stack_.get();
519  }
520
521  void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
522
523  // Mark and empty stack.
524  void FlushAllocStack()
525      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
526      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
527
528  // Revoke all the thread-local allocation stacks.
529  void RevokeAllThreadLocalAllocationStacks(Thread* self)
530      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
531      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_);
532
533  // Mark all the objects in the allocation stack in the specified bitmap.
534  // TODO: Refactor?
535  void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
536                      accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
537                      accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
538                      accounting::ObjectStack* stack)
539      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
540      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
541
542  // Mark the specified allocation stack as live.
543  void MarkAllocStackAsLive(accounting::ObjectStack* stack)
544      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
545      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
546
547  // Unbind any bound bitmaps.
548  void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
549
550  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
551  // Assumes there is only one image space.
552  space::ImageSpace* GetImageSpace() const;
553
554  // Permenantly disable moving garbage collection.
555  void DisableMovingGc();
556
557  space::DlMallocSpace* GetDlMallocSpace() const {
558    return dlmalloc_space_;
559  }
560
561  space::RosAllocSpace* GetRosAllocSpace() const {
562    return rosalloc_space_;
563  }
564
565  // Return the corresponding rosalloc space.
566  space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const;
567
568  space::MallocSpace* GetNonMovingSpace() const {
569    return non_moving_space_;
570  }
571
572  space::LargeObjectSpace* GetLargeObjectsSpace() const {
573    return large_object_space_;
574  }
575
576  // Returns the free list space that may contain movable objects (the
577  // one that's not the non-moving space), either rosalloc_space_ or
578  // dlmalloc_space_.
579  space::MallocSpace* GetPrimaryFreeListSpace() {
580    if (kUseRosAlloc) {
581      DCHECK(rosalloc_space_ != nullptr);
582      // reinterpret_cast is necessary as the space class hierarchy
583      // isn't known (#included) yet here.
584      return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
585    } else {
586      DCHECK(dlmalloc_space_ != nullptr);
587      return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
588    }
589  }
590
591  std::string DumpSpaces() const WARN_UNUSED;
592  void DumpSpaces(std::ostream& stream) const;
593
594  // Dump object should only be used by the signal handler.
595  void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
596  // Safe version of pretty type of which check to make sure objects are heap addresses.
597  std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS;
598  std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
599
600  // GC performance measuring
601  void DumpGcPerformanceInfo(std::ostream& os);
602  void ResetGcPerformanceInfo();
603
604  // Returns true if we currently care about pause times.
605  bool CareAboutPauseTimes() const {
606    return process_state_ == kProcessStateJankPerceptible;
607  }
608
609  // Thread pool.
610  void CreateThreadPool();
611  void DeleteThreadPool();
612  ThreadPool* GetThreadPool() {
613    return thread_pool_.get();
614  }
615  size_t GetParallelGCThreadCount() const {
616    return parallel_gc_threads_;
617  }
618  size_t GetConcGCThreadCount() const {
619    return conc_gc_threads_;
620  }
621  accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
622  void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
623
624  accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
625  void AddRememberedSet(accounting::RememberedSet* remembered_set);
626  // Also deletes the remebered set.
627  void RemoveRememberedSet(space::Space* space);
628
629  bool IsCompilingBoot() const;
630  bool HasImageSpace() const;
631
632  ReferenceProcessor* GetReferenceProcessor() {
633    return &reference_processor_;
634  }
635  TaskProcessor* GetTaskProcessor() {
636    return task_processor_.get();
637  }
638
639  bool HasZygoteSpace() const {
640    return zygote_space_ != nullptr;
641  }
642
643  collector::ConcurrentCopying* ConcurrentCopyingCollector() {
644    return concurrent_copying_collector_;
645  }
646
647  CollectorType CurrentCollectorType() {
648    return collector_type_;
649  }
650
651  bool IsGcConcurrentAndMoving() const {
652    if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
653      // Assume no transition when a concurrent moving collector is used.
654      DCHECK_EQ(collector_type_, foreground_collector_type_);
655      DCHECK_EQ(foreground_collector_type_, background_collector_type_)
656          << "Assume no transition such that collector_type_ won't change";
657      return true;
658    }
659    return false;
660  }
661
662  bool IsMovingGCDisabled(Thread* self) {
663    MutexLock mu(self, *gc_complete_lock_);
664    return disable_moving_gc_count_ > 0;
665  }
666
667  // Request an asynchronous trim.
668  void RequestTrim(Thread* self) LOCKS_EXCLUDED(pending_task_lock_);
669
670  // Request asynchronous GC.
671  void RequestConcurrentGC(Thread* self, bool force_full) LOCKS_EXCLUDED(pending_task_lock_);
672
673  // Whether or not we may use a garbage collector, used so that we only create collectors we need.
674  bool MayUseCollector(CollectorType type) const;
675
676  // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
677  void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
678    min_interval_homogeneous_space_compaction_by_oom_ = interval;
679  }
680
681  // Helpers for android.os.Debug.getRuntimeStat().
682  uint64_t GetGcCount() const;
683  uint64_t GetGcTime() const;
684  uint64_t GetBlockingGcCount() const;
685  uint64_t GetBlockingGcTime() const;
686  void DumpGcCountRateHistogram(std::ostream& os) const;
687  void DumpBlockingGcCountRateHistogram(std::ostream& os) const;
688
689 private:
690  class ConcurrentGCTask;
691  class CollectorTransitionTask;
692  class HeapTrimTask;
693
694  // Compact source space to target space. Returns the collector used.
695  collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
696                                       space::ContinuousMemMapAllocSpace* source_space,
697                                       GcCause gc_cause)
698      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
699
700  void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
701  void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_);
702
703  // Create a mem map with a preferred base address.
704  static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
705                                              size_t capacity, std::string* out_error_str);
706
707  bool SupportHSpaceCompaction() const {
708    // Returns true if we can do hspace compaction
709    return main_space_backup_ != nullptr;
710  }
711
712  static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
713    return
714        allocator_type != kAllocatorTypeBumpPointer &&
715        allocator_type != kAllocatorTypeTLAB &&
716        allocator_type != kAllocatorTypeRegion &&
717        allocator_type != kAllocatorTypeRegionTLAB;
718  }
719  static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
720    return
721        allocator_type != kAllocatorTypeBumpPointer &&
722        allocator_type != kAllocatorTypeTLAB;
723  }
724  static bool IsMovingGc(CollectorType collector_type) {
725    return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS ||
726        collector_type == kCollectorTypeCC || collector_type == kCollectorTypeMC ||
727        collector_type == kCollectorTypeHomogeneousSpaceCompact;
728  }
729  bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const
730      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
731  ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
732                                       mirror::Object** obj)
733      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
734
735  accounting::ObjectStack* GetMarkStack() {
736    return mark_stack_.get();
737  }
738
739  // We don't force this to be inlined since it is a slow path.
740  template <bool kInstrumented, typename PreFenceVisitor>
741  mirror::Object* AllocLargeObject(Thread* self, mirror::Class** klass, size_t byte_count,
742                                   const PreFenceVisitor& pre_fence_visitor)
743      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
744
745  // Handles Allocate()'s slow allocation path with GC involved after
746  // an initial allocation attempt failed.
747  mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes,
748                                         size_t* bytes_allocated, size_t* usable_size,
749                                         size_t* bytes_tl_bulk_allocated,
750                                         mirror::Class** klass)
751      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
752      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
753
754  // Allocate into a specific space.
755  mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c,
756                               size_t bytes)
757      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
758
759  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
760  // wrong space.
761  void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
762
763  // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
764  // that the switch statement is constant optimized in the entrypoints.
765  template <const bool kInstrumented, const bool kGrow>
766  ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type,
767                                              size_t alloc_size, size_t* bytes_allocated,
768                                              size_t* usable_size,
769                                              size_t* bytes_tl_bulk_allocated)
770      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
771
772  void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
773      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
774
775  template <bool kGrow>
776  ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size);
777
778  // Returns true if the address passed in is within the address range of a continuous space.
779  bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const
780      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
781
782  // Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
783  void RunFinalization(JNIEnv* env, uint64_t timeout);
784
785  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
786  // waited for.
787  collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
788      EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);
789
790  void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
791      LOCKS_EXCLUDED(pending_task_lock_);
792
793  void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj)
794      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
795  bool IsGCRequestPending() const;
796
797  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
798  // which type of Gc was actually ran.
799  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
800                                           bool clear_soft_references)
801      LOCKS_EXCLUDED(gc_complete_lock_,
802                     Locks::heap_bitmap_lock_,
803                     Locks::thread_suspend_count_lock_);
804
805  void PreGcVerification(collector::GarbageCollector* gc)
806      LOCKS_EXCLUDED(Locks::mutator_lock_);
807  void PreGcVerificationPaused(collector::GarbageCollector* gc)
808      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
809  void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
810      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
811  void PreSweepingGcVerification(collector::GarbageCollector* gc)
812      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
813      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
814  void PostGcVerification(collector::GarbageCollector* gc)
815      LOCKS_EXCLUDED(Locks::mutator_lock_);
816  void PostGcVerificationPaused(collector::GarbageCollector* gc)
817      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
818
819  // Update the watermark for the native allocated bytes based on the current number of native
820  // bytes allocated and the target utilization ratio.
821  void UpdateMaxNativeFootprint();
822
823  // Find a collector based on GC type.
824  collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
825
826  // Create a new alloc space and compact default alloc space to it.
827  HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact();
828
829  // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
830  void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
831                             size_t capacity);
832
833  // Create a malloc space based on a mem map. Does not set the space as default.
834  space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
835                                                  size_t growth_limit, size_t capacity,
836                                                  const char* name, bool can_move_objects);
837
838  // Given the current contents of the alloc space, increase the allowed heap footprint to match
839  // the target utilization ratio.  This should only be called immediately after a full garbage
840  // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
841  // the GC was run.
842  void GrowForUtilization(collector::GarbageCollector* collector_ran,
843                          uint64_t bytes_allocated_before_gc = 0);
844
845  size_t GetPercentFree();
846
847  static void VerificationCallback(mirror::Object* obj, void* arg)
848      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
849
850  // Swap the allocation stack with the live stack.
851  void SwapStacks(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
852
853  // Clear cards and update the mod union table. When process_alloc_space_cards is true,
854  // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
855  // not process the alloc space if process_alloc_space_cards is false.
856  void ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards,
857                    bool clear_alloc_space_cards);
858
859  // Push an object onto the allocation stack.
860  void PushOnAllocationStack(Thread* self, mirror::Object** obj)
861      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
862  void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj)
863      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
864  void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj)
865      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
866
867  void ClearConcurrentGCRequest();
868  void ClearPendingTrim(Thread* self) LOCKS_EXCLUDED(pending_task_lock_);
869  void ClearPendingCollectorTransition(Thread* self) LOCKS_EXCLUDED(pending_task_lock_);
870
871  // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
872  // sweep GC, false for other GC types.
873  bool IsGcConcurrent() const ALWAYS_INLINE {
874    return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC;
875  }
876
877  // Trim the managed and native spaces by releasing unused memory back to the OS.
878  void TrimSpaces(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);
879
880  // Trim 0 pages at the end of reference tables.
881  void TrimIndirectReferenceTables(Thread* self);
882
883  void VisitObjectsInternal(ObjectCallback callback, void* arg)
884      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
885      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
886  void VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg)
887      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
888      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
889
890  void UpdateGcCountRateHistograms() EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);
891
892  // GC stress mode attempts to do one GC per unique backtrace.
893  void CheckGcStressMode(Thread* self, mirror::Object** obj)
894      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
895
896  // All-known continuous spaces, where objects lie within fixed bounds.
897  std::vector<space::ContinuousSpace*> continuous_spaces_;
898
899  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
900  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;
901
902  // All-known alloc spaces, where objects may be or have been allocated.
903  std::vector<space::AllocSpace*> alloc_spaces_;
904
905  // A space where non-movable objects are allocated, when compaction is enabled it contains
906  // Classes, ArtMethods, ArtFields, and non moving objects.
907  space::MallocSpace* non_moving_space_;
908
909  // Space which we use for the kAllocatorTypeROSAlloc.
910  space::RosAllocSpace* rosalloc_space_;
911
912  // Space which we use for the kAllocatorTypeDlMalloc.
913  space::DlMallocSpace* dlmalloc_space_;
914
915  // The main space is the space which the GC copies to and from on process state updates. This
916  // space is typically either the dlmalloc_space_ or the rosalloc_space_.
917  space::MallocSpace* main_space_;
918
919  // The large object space we are currently allocating into.
920  space::LargeObjectSpace* large_object_space_;
921
922  // The card table, dirtied by the write barrier.
923  std::unique_ptr<accounting::CardTable> card_table_;
924
925  std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
926
927  // A mod-union table remembers all of the references from the it's space to other spaces.
928  AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
929      mod_union_tables_;
930
931  // A remembered set remembers all of the references from the it's space to the target space.
932  AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
933      remembered_sets_;
934
935  // The current collector type.
936  CollectorType collector_type_;
937  // Which collector we use when the app is in the foreground.
938  CollectorType foreground_collector_type_;
939  // Which collector we will use when the app is notified of a transition to background.
940  CollectorType background_collector_type_;
941  // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
942  CollectorType desired_collector_type_;
943
944  // Lock which guards pending tasks.
945  Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
946
947  // How many GC threads we may use for paused parts of garbage collection.
948  const size_t parallel_gc_threads_;
949
950  // How many GC threads we may use for unpaused parts of garbage collection.
951  const size_t conc_gc_threads_;
952
953  // Boolean for if we are in low memory mode.
954  const bool low_memory_mode_;
955
956  // If we get a pause longer than long pause log threshold, then we print out the GC after it
957  // finishes.
958  const size_t long_pause_log_threshold_;
959
960  // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
961  const size_t long_gc_log_threshold_;
962
963  // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
964  // useful for benchmarking since it reduces time spent in GC to a low %.
965  const bool ignore_max_footprint_;
966
967  // Lock which guards zygote space creation.
968  Mutex zygote_creation_lock_;
969
970  // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
971  // zygote space creation.
972  space::ZygoteSpace* zygote_space_;
973
974  // Minimum allocation size of large object.
975  size_t large_object_threshold_;
976
977  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
978  // completes.
979  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
980  std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
981
982  // Reference processor;
983  ReferenceProcessor reference_processor_;
984
985  // Task processor, proxies heap trim requests to the daemon threads.
986  std::unique_ptr<TaskProcessor> task_processor_;
987
988  // True while the garbage collector is running.
989  volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
990
991  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
992  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
993  collector::GcType next_gc_type_;
994
995  // Maximum size that the heap can reach.
996  size_t capacity_;
997
998  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
999  // programs it is "cleared" making it the same as capacity.
1000  size_t growth_limit_;
1001
1002  // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating
1003  // a GC should be triggered.
1004  size_t max_allowed_footprint_;
1005
1006  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
1007  size_t native_footprint_gc_watermark_;
1008
1009  // Whether or not we need to run finalizers in the next native allocation.
1010  bool native_need_to_run_finalization_;
1011
1012  // Whether or not we currently care about pause times.
1013  ProcessState process_state_;
1014
1015  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
1016  // it completes ahead of an allocation failing.
1017  size_t concurrent_start_bytes_;
1018
1019  // Since the heap was created, how many bytes have been freed.
1020  uint64_t total_bytes_freed_ever_;
1021
1022  // Since the heap was created, how many objects have been freed.
1023  uint64_t total_objects_freed_ever_;
1024
1025  // Number of bytes allocated.  Adjusted after each allocation and free.
1026  Atomic<size_t> num_bytes_allocated_;
1027
1028  // Bytes which are allocated and managed by native code but still need to be accounted for.
1029  Atomic<size_t> native_bytes_allocated_;
1030
1031  // Number of bytes freed by thread local buffer revokes. This will
1032  // cancel out the ahead-of-time bulk counting of bytes allocated in
1033  // rosalloc thread-local buffers.  It is temporarily accumulated
1034  // here to be subtracted from num_bytes_allocated_ later at the next
1035  // GC.
1036  Atomic<size_t> num_bytes_freed_revoke_;
1037
1038  // Info related to the current or previous GC iteration.
1039  collector::Iteration current_gc_iteration_;
1040
1041  // Heap verification flags.
1042  const bool verify_missing_card_marks_;
1043  const bool verify_system_weaks_;
1044  const bool verify_pre_gc_heap_;
1045  const bool verify_pre_sweeping_heap_;
1046  const bool verify_post_gc_heap_;
1047  const bool verify_mod_union_table_;
1048  bool verify_pre_gc_rosalloc_;
1049  bool verify_pre_sweeping_rosalloc_;
1050  bool verify_post_gc_rosalloc_;
1051  const bool gc_stress_mode_;
1052
1053  // RAII that temporarily disables the rosalloc verification during
1054  // the zygote fork.
1055  class ScopedDisableRosAllocVerification {
1056   private:
1057    Heap* const heap_;
1058    const bool orig_verify_pre_gc_;
1059    const bool orig_verify_pre_sweeping_;
1060    const bool orig_verify_post_gc_;
1061
1062   public:
1063    explicit ScopedDisableRosAllocVerification(Heap* heap)
1064        : heap_(heap),
1065          orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
1066          orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
1067          orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
1068      heap_->verify_pre_gc_rosalloc_ = false;
1069      heap_->verify_pre_sweeping_rosalloc_ = false;
1070      heap_->verify_post_gc_rosalloc_ = false;
1071    }
1072    ~ScopedDisableRosAllocVerification() {
1073      heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
1074      heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
1075      heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
1076    }
1077  };
1078
1079  // Parallel GC data structures.
1080  std::unique_ptr<ThreadPool> thread_pool_;
1081
1082  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
1083  // and the start of the current one.
1084  uint64_t allocation_rate_;
1085
1086  // For a GC cycle, a bitmap that is set corresponding to the
1087  std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1088  std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1089
1090  // Mark stack that we reuse to avoid re-allocating the mark stack.
1091  std::unique_ptr<accounting::ObjectStack> mark_stack_;
1092
1093  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
1094  // to use the live bitmap as the old mark bitmap.
1095  const size_t max_allocation_stack_size_;
1096  std::unique_ptr<accounting::ObjectStack> allocation_stack_;
1097
1098  // Second allocation stack so that we can process allocation with the heap unlocked.
1099  std::unique_ptr<accounting::ObjectStack> live_stack_;
1100
1101  // Allocator type.
1102  AllocatorType current_allocator_;
1103  const AllocatorType current_non_moving_allocator_;
1104
1105  // Which GCs we run in order when we an allocation fails.
1106  std::vector<collector::GcType> gc_plan_;
1107
1108  // Bump pointer spaces.
1109  space::BumpPointerSpace* bump_pointer_space_;
1110  // Temp space is the space which the semispace collector copies to.
1111  space::BumpPointerSpace* temp_space_;
1112
1113  space::RegionSpace* region_space_;
1114
1115  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
1116  // utilization, regardless of target utilization ratio.
1117  size_t min_free_;
1118
1119  // The ideal maximum free size, when we grow the heap for utilization.
1120  size_t max_free_;
1121
1122  // Target ideal heap utilization ratio
1123  double target_utilization_;
1124
1125  // How much more we grow the heap when we are a foreground app instead of background.
1126  double foreground_heap_growth_multiplier_;
1127
1128  // Total time which mutators are paused or waiting for GC to complete.
1129  uint64_t total_wait_time_;
1130
1131  // Total number of objects allocated in microseconds.
1132  AtomicInteger total_allocation_time_;
1133
1134  // The current state of heap verification, may be enabled or disabled.
1135  VerifyObjectMode verify_object_mode_;
1136
1137  // Compacting GC disable count, prevents compacting GC from running iff > 0.
1138  size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
1139
1140  std::vector<collector::GarbageCollector*> garbage_collectors_;
1141  collector::SemiSpace* semi_space_collector_;
1142  collector::MarkCompact* mark_compact_collector_;
1143  collector::ConcurrentCopying* concurrent_copying_collector_;
1144
1145  const bool running_on_valgrind_;
1146  const bool use_tlab_;
1147
1148  // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
1149  // Use unique_ptr since the space is only added during the homogeneous compaction phase.
1150  std::unique_ptr<space::MallocSpace> main_space_backup_;
1151
1152  // Minimal interval allowed between two homogeneous space compactions caused by OOM.
1153  uint64_t min_interval_homogeneous_space_compaction_by_oom_;
1154
1155  // Times of the last homogeneous space compaction caused by OOM.
1156  uint64_t last_time_homogeneous_space_compaction_by_oom_;
1157
1158  // Saved OOMs by homogeneous space compaction.
1159  Atomic<size_t> count_delayed_oom_;
1160
1161  // Count for requested homogeneous space compaction.
1162  Atomic<size_t> count_requested_homogeneous_space_compaction_;
1163
1164  // Count for ignored homogeneous space compaction.
1165  Atomic<size_t> count_ignored_homogeneous_space_compaction_;
1166
1167  // Count for performed homogeneous space compaction.
1168  Atomic<size_t> count_performed_homogeneous_space_compaction_;
1169
1170  // Whether or not a concurrent GC is pending.
1171  Atomic<bool> concurrent_gc_pending_;
1172
1173  // Active tasks which we can modify (change target time, desired collector type, etc..).
1174  CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
1175  HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
1176
1177  // Whether or not we use homogeneous space compaction to avoid OOM errors.
1178  bool use_homogeneous_space_compaction_for_oom_;
1179
1180  // True if the currently running collection has made some thread wait.
1181  bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
1182  // The number of blocking GC runs.
1183  uint64_t blocking_gc_count_;
1184  // The total duration of blocking GC runs.
1185  uint64_t blocking_gc_time_;
1186  // The duration of the window for the GC count rate histograms.
1187  static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
1188  // The last time when the GC count rate histograms were updated.
1189  // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
1190  uint64_t last_update_time_gc_count_rate_histograms_;
1191  // The running count of GC runs in the last window.
1192  uint64_t gc_count_last_window_;
1193  // The running count of blocking GC runs in the last window.
1194  uint64_t blocking_gc_count_last_window_;
1195  // The maximum number of buckets in the GC count rate histograms.
1196  static constexpr size_t kGcCountRateMaxBucketCount = 200;
1197  // The histogram of the number of GC invocations per window duration.
1198  Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1199  // The histogram of the number of blocking GC invocations per window duration.
1200  Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1201
1202  // GC stress related data structures.
1203  Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1204  // Debugging variables, seen backtraces vs unique backtraces.
1205  Atomic<uint64_t> seen_backtrace_count_;
1206  Atomic<uint64_t> unique_backtrace_count_;
1207  // Stack trace hashes that we already saw,
1208  std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
1209
1210  friend class CollectorTransitionTask;
1211  friend class collector::GarbageCollector;
1212  friend class collector::MarkCompact;
1213  friend class collector::ConcurrentCopying;
1214  friend class collector::MarkSweep;
1215  friend class collector::SemiSpace;
1216  friend class ReferenceQueue;
1217  friend class VerifyReferenceCardVisitor;
1218  friend class VerifyReferenceVisitor;
1219  friend class VerifyObjectVisitor;
1220  friend class ScopedHeapFill;
1221  friend class space::SpaceTest;
1222
1223  class AllocationTimer {
1224   public:
1225    ALWAYS_INLINE AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr);
1226    ALWAYS_INLINE ~AllocationTimer();
1227   private:
1228    Heap* const heap_;
1229    mirror::Object** allocated_obj_ptr_;
1230    const uint64_t allocation_start_time_;
1231
1232    DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationTimer);
1233  };
1234
1235  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
1236};
1237
1238}  // namespace gc
1239}  // namespace art
1240
1241#endif  // ART_RUNTIME_GC_HEAP_H_
1242