1/* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "reference_processor.h" 18 19#include "base/time_utils.h" 20#include "mirror/class-inl.h" 21#include "mirror/object-inl.h" 22#include "mirror/reference-inl.h" 23#include "reference_processor-inl.h" 24#include "reflection.h" 25#include "ScopedLocalRef.h" 26#include "scoped_thread_state_change.h" 27#include "task_processor.h" 28#include "utils.h" 29#include "well_known_classes.h" 30 31namespace art { 32namespace gc { 33 34static constexpr bool kAsyncReferenceQueueAdd = false; 35 36ReferenceProcessor::ReferenceProcessor() 37 : process_references_args_(nullptr, nullptr, nullptr), 38 preserving_references_(false), 39 condition_("reference processor condition", *Locks::reference_processor_lock_) , 40 soft_reference_queue_(Locks::reference_queue_soft_references_lock_), 41 weak_reference_queue_(Locks::reference_queue_weak_references_lock_), 42 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), 43 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), 44 cleared_references_(Locks::reference_queue_cleared_references_lock_) { 45} 46 47void ReferenceProcessor::EnableSlowPath() { 48 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); 49} 50 51void ReferenceProcessor::DisableSlowPath(Thread* self) { 52 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); 53 condition_.Broadcast(self); 54} 55 56mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) { 57 mirror::Object* const referent = reference->GetReferent(); 58 // If the referent is null then it is already cleared, we can just return null since there is no 59 // scenario where it becomes non-null during the reference processing phase. 60 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { 61 return referent; 62 } 63 MutexLock mu(self, *Locks::reference_processor_lock_); 64 while (SlowPathEnabled()) { 65 mirror::HeapReference<mirror::Object>* const referent_addr = 66 reference->GetReferentReferenceAddr(); 67 // If the referent became cleared, return it. Don't need barrier since thread roots can't get 68 // updated until after we leave the function due to holding the mutator lock. 69 if (referent_addr->AsMirrorPtr() == nullptr) { 70 return nullptr; 71 } 72 // Try to see if the referent is already marked by using the is_marked_callback. We can return 73 // it to the mutator as long as the GC is not preserving references. 74 IsHeapReferenceMarkedCallback* const is_marked_callback = 75 process_references_args_.is_marked_callback_; 76 if (LIKELY(is_marked_callback != nullptr)) { 77 // If it's null it means not marked, but it could become marked if the referent is reachable 78 // by finalizer referents. So we can not return in this case and must block. Otherwise, we 79 // can return it to the mutator as long as the GC is not preserving references, in which 80 // case only black nodes can be safely returned. If the GC is preserving references, the 81 // mutator could take a white field from a grey or white node and move it somewhere else 82 // in the heap causing corruption since this field would get swept. 83 if (is_marked_callback(referent_addr, process_references_args_.arg_)) { 84 if (!preserving_references_ || 85 (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) { 86 return referent_addr->AsMirrorPtr(); 87 } 88 } 89 } 90 condition_.WaitHoldingLocks(self); 91 } 92 return reference->GetReferent(); 93} 94 95bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj, 96 void* arg) { 97 auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg); 98 // TODO: Add smarter logic for preserving soft references. 99 mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_); 100 DCHECK(new_obj != nullptr); 101 obj->Assign(new_obj); 102 return true; 103} 104 105void ReferenceProcessor::StartPreservingReferences(Thread* self) { 106 MutexLock mu(self, *Locks::reference_processor_lock_); 107 preserving_references_ = true; 108} 109 110void ReferenceProcessor::StopPreservingReferences(Thread* self) { 111 MutexLock mu(self, *Locks::reference_processor_lock_); 112 preserving_references_ = false; 113 // We are done preserving references, some people who are blocked may see a marked referent. 114 condition_.Broadcast(self); 115} 116 117// Process reference class instances and schedule finalizations. 118void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings, 119 bool clear_soft_references, 120 IsHeapReferenceMarkedCallback* is_marked_callback, 121 MarkObjectCallback* mark_object_callback, 122 ProcessMarkStackCallback* process_mark_stack_callback, 123 void* arg) { 124 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); 125 Thread* self = Thread::Current(); 126 { 127 MutexLock mu(self, *Locks::reference_processor_lock_); 128 process_references_args_.is_marked_callback_ = is_marked_callback; 129 process_references_args_.mark_callback_ = mark_object_callback; 130 process_references_args_.arg_ = arg; 131 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; 132 } 133 // Unless required to clear soft references with white references, preserve some white referents. 134 if (!clear_soft_references) { 135 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : 136 "(Paused)ForwardSoftReferences", timings); 137 if (concurrent) { 138 StartPreservingReferences(self); 139 } 140 soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback, 141 &process_references_args_); 142 process_mark_stack_callback(arg); 143 if (concurrent) { 144 StopPreservingReferences(self); 145 } 146 } 147 // Clear all remaining soft and weak references with white referents. 148 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 149 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 150 { 151 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : 152 "(Paused)EnqueueFinalizerReferences", timings); 153 if (concurrent) { 154 StartPreservingReferences(self); 155 } 156 // Preserve all white objects with finalize methods and schedule them for finalization. 157 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback, 158 mark_object_callback, arg); 159 process_mark_stack_callback(arg); 160 if (concurrent) { 161 StopPreservingReferences(self); 162 } 163 } 164 // Clear all finalizer referent reachable soft and weak references with white referents. 165 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 166 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 167 // Clear all phantom references with white referents. 168 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 169 // At this point all reference queues other than the cleared references should be empty. 170 DCHECK(soft_reference_queue_.IsEmpty()); 171 DCHECK(weak_reference_queue_.IsEmpty()); 172 DCHECK(finalizer_reference_queue_.IsEmpty()); 173 DCHECK(phantom_reference_queue_.IsEmpty()); 174 { 175 MutexLock mu(self, *Locks::reference_processor_lock_); 176 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent 177 // could result in a stale is_marked_callback_ being called before the reference processing 178 // starts since there is a small window of time where slow_path_enabled_ is enabled but the 179 // callback isn't yet set. 180 process_references_args_.is_marked_callback_ = nullptr; 181 if (concurrent) { 182 // Done processing, disable the slow path and broadcast to the waiters. 183 DisableSlowPath(self); 184 } 185 } 186} 187 188// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 189// marked, put it on the appropriate list in the heap for later processing. 190void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref, 191 IsHeapReferenceMarkedCallback* is_marked_callback, 192 void* arg) { 193 // klass can be the class of the old object if the visitor already updated the class of ref. 194 DCHECK(klass != nullptr); 195 DCHECK(klass->IsTypeOfReferenceClass()); 196 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); 197 if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) { 198 Thread* self = Thread::Current(); 199 // TODO: Remove these locks, and use atomic stacks for storing references? 200 // We need to check that the references haven't already been enqueued since we can end up 201 // scanning the same reference multiple times due to dirty cards. 202 if (klass->IsSoftReferenceClass()) { 203 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 204 } else if (klass->IsWeakReferenceClass()) { 205 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 206 } else if (klass->IsFinalizerReferenceClass()) { 207 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 208 } else if (klass->IsPhantomReferenceClass()) { 209 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 210 } else { 211 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex 212 << klass->GetAccessFlags(); 213 } 214 } 215} 216 217void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) { 218 cleared_references_.UpdateRoots(callback, arg); 219} 220 221class ClearedReferenceTask : public HeapTask { 222 public: 223 explicit ClearedReferenceTask(jobject cleared_references) 224 : HeapTask(NanoTime()), cleared_references_(cleared_references) { 225 } 226 virtual void Run(Thread* thread) { 227 ScopedObjectAccess soa(thread); 228 jvalue args[1]; 229 args[0].l = cleared_references_; 230 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); 231 soa.Env()->DeleteGlobalRef(cleared_references_); 232 } 233 234 private: 235 const jobject cleared_references_; 236}; 237 238void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { 239 Locks::mutator_lock_->AssertNotHeld(self); 240 // When a runtime isn't started there are no reference queues to care about so ignore. 241 if (!cleared_references_.IsEmpty()) { 242 if (LIKELY(Runtime::Current()->IsStarted())) { 243 jobject cleared_references; 244 { 245 ReaderMutexLock mu(self, *Locks::mutator_lock_); 246 cleared_references = self->GetJniEnv()->vm->AddGlobalRef( 247 self, cleared_references_.GetList()); 248 } 249 if (kAsyncReferenceQueueAdd) { 250 // TODO: This can cause RunFinalization to terminate before newly freed objects are 251 // finalized since they may not be enqueued by the time RunFinalization starts. 252 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( 253 self, new ClearedReferenceTask(cleared_references)); 254 } else { 255 ClearedReferenceTask task(cleared_references); 256 task.Run(self); 257 } 258 } 259 cleared_references_.Clear(); 260 } 261} 262 263bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) { 264 Thread* self = Thread::Current(); 265 MutexLock mu(self, *Locks::reference_processor_lock_); 266 // Wait untul we are done processing reference. 267 while (SlowPathEnabled()) { 268 condition_.WaitHoldingLocks(self); 269 } 270 // At this point, since the sentinel of the reference is live, it is guaranteed to not be 271 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC 272 // phase. Since we are holding the reference processor lock, it guarantees that reference 273 // processing can't begin. The GC could have just enqueued the reference one one of the internal 274 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this 275 // race. 276 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); 277 if (!reference->IsEnqueued()) { 278 CHECK(reference->IsFinalizerReferenceInstance()); 279 if (Runtime::Current()->IsActiveTransaction()) { 280 reference->SetPendingNext<true>(reference); 281 } else { 282 reference->SetPendingNext<false>(reference); 283 } 284 return true; 285 } 286 return false; 287} 288 289} // namespace gc 290} // namespace art 291