1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "reference_processor.h"
18
19#include "base/time_utils.h"
20#include "mirror/class-inl.h"
21#include "mirror/object-inl.h"
22#include "mirror/reference-inl.h"
23#include "reference_processor-inl.h"
24#include "reflection.h"
25#include "ScopedLocalRef.h"
26#include "scoped_thread_state_change.h"
27#include "task_processor.h"
28#include "utils.h"
29#include "well_known_classes.h"
30
31namespace art {
32namespace gc {
33
34static constexpr bool kAsyncReferenceQueueAdd = false;
35
36ReferenceProcessor::ReferenceProcessor()
37    : process_references_args_(nullptr, nullptr, nullptr),
38      preserving_references_(false),
39      condition_("reference processor condition", *Locks::reference_processor_lock_) ,
40      soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
41      weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
42      finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
43      phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
44      cleared_references_(Locks::reference_queue_cleared_references_lock_) {
45}
46
47void ReferenceProcessor::EnableSlowPath() {
48  mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
49}
50
51void ReferenceProcessor::DisableSlowPath(Thread* self) {
52  mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
53  condition_.Broadcast(self);
54}
55
56mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
57  mirror::Object* const referent = reference->GetReferent();
58  // If the referent is null then it is already cleared, we can just return null since there is no
59  // scenario where it becomes non-null during the reference processing phase.
60  if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
61    return referent;
62  }
63  MutexLock mu(self, *Locks::reference_processor_lock_);
64  while (SlowPathEnabled()) {
65    mirror::HeapReference<mirror::Object>* const referent_addr =
66        reference->GetReferentReferenceAddr();
67    // If the referent became cleared, return it. Don't need barrier since thread roots can't get
68    // updated until after we leave the function due to holding the mutator lock.
69    if (referent_addr->AsMirrorPtr() == nullptr) {
70      return nullptr;
71    }
72    // Try to see if the referent is already marked by using the is_marked_callback. We can return
73    // it to the mutator as long as the GC is not preserving references.
74    IsHeapReferenceMarkedCallback* const is_marked_callback =
75        process_references_args_.is_marked_callback_;
76    if (LIKELY(is_marked_callback != nullptr)) {
77      // If it's null it means not marked, but it could become marked if the referent is reachable
78      // by finalizer referents. So we can not return in this case and must block. Otherwise, we
79      // can return it to the mutator as long as the GC is not preserving references, in which
80      // case only black nodes can be safely returned. If the GC is preserving references, the
81      // mutator could take a white field from a grey or white node and move it somewhere else
82      // in the heap causing corruption since this field would get swept.
83      if (is_marked_callback(referent_addr, process_references_args_.arg_)) {
84        if (!preserving_references_ ||
85           (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) {
86          return referent_addr->AsMirrorPtr();
87        }
88      }
89    }
90    condition_.WaitHoldingLocks(self);
91  }
92  return reference->GetReferent();
93}
94
95bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj,
96                                                       void* arg) {
97  auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg);
98  // TODO: Add smarter logic for preserving soft references.
99  mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_);
100  DCHECK(new_obj != nullptr);
101  obj->Assign(new_obj);
102  return true;
103}
104
105void ReferenceProcessor::StartPreservingReferences(Thread* self) {
106  MutexLock mu(self, *Locks::reference_processor_lock_);
107  preserving_references_ = true;
108}
109
110void ReferenceProcessor::StopPreservingReferences(Thread* self) {
111  MutexLock mu(self, *Locks::reference_processor_lock_);
112  preserving_references_ = false;
113  // We are done preserving references, some people who are blocked may see a marked referent.
114  condition_.Broadcast(self);
115}
116
117// Process reference class instances and schedule finalizations.
118void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
119                                           bool clear_soft_references,
120                                           IsHeapReferenceMarkedCallback* is_marked_callback,
121                                           MarkObjectCallback* mark_object_callback,
122                                           ProcessMarkStackCallback* process_mark_stack_callback,
123                                           void* arg) {
124  TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
125  Thread* self = Thread::Current();
126  {
127    MutexLock mu(self, *Locks::reference_processor_lock_);
128    process_references_args_.is_marked_callback_ = is_marked_callback;
129    process_references_args_.mark_callback_ = mark_object_callback;
130    process_references_args_.arg_ = arg;
131    CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
132  }
133  // Unless required to clear soft references with white references, preserve some white referents.
134  if (!clear_soft_references) {
135    TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
136        "(Paused)ForwardSoftReferences", timings);
137    if (concurrent) {
138      StartPreservingReferences(self);
139    }
140    soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback,
141                                                &process_references_args_);
142    process_mark_stack_callback(arg);
143    if (concurrent) {
144      StopPreservingReferences(self);
145    }
146  }
147  // Clear all remaining soft and weak references with white referents.
148  soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
149  weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
150  {
151    TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
152        "(Paused)EnqueueFinalizerReferences", timings);
153    if (concurrent) {
154      StartPreservingReferences(self);
155    }
156    // Preserve all white objects with finalize methods and schedule them for finalization.
157    finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback,
158                                                          mark_object_callback, arg);
159    process_mark_stack_callback(arg);
160    if (concurrent) {
161      StopPreservingReferences(self);
162    }
163  }
164  // Clear all finalizer referent reachable soft and weak references with white referents.
165  soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
166  weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
167  // Clear all phantom references with white referents.
168  phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
169  // At this point all reference queues other than the cleared references should be empty.
170  DCHECK(soft_reference_queue_.IsEmpty());
171  DCHECK(weak_reference_queue_.IsEmpty());
172  DCHECK(finalizer_reference_queue_.IsEmpty());
173  DCHECK(phantom_reference_queue_.IsEmpty());
174  {
175    MutexLock mu(self, *Locks::reference_processor_lock_);
176    // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
177    // could result in a stale is_marked_callback_ being called before the reference processing
178    // starts since there is a small window of time where slow_path_enabled_ is enabled but the
179    // callback isn't yet set.
180    process_references_args_.is_marked_callback_ = nullptr;
181    if (concurrent) {
182      // Done processing, disable the slow path and broadcast to the waiters.
183      DisableSlowPath(self);
184    }
185  }
186}
187
188// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
189// marked, put it on the appropriate list in the heap for later processing.
190void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
191                                                IsHeapReferenceMarkedCallback* is_marked_callback,
192                                                void* arg) {
193  // klass can be the class of the old object if the visitor already updated the class of ref.
194  DCHECK(klass != nullptr);
195  DCHECK(klass->IsTypeOfReferenceClass());
196  mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
197  if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) {
198    Thread* self = Thread::Current();
199    // TODO: Remove these locks, and use atomic stacks for storing references?
200    // We need to check that the references haven't already been enqueued since we can end up
201    // scanning the same reference multiple times due to dirty cards.
202    if (klass->IsSoftReferenceClass()) {
203      soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
204    } else if (klass->IsWeakReferenceClass()) {
205      weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
206    } else if (klass->IsFinalizerReferenceClass()) {
207      finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
208    } else if (klass->IsPhantomReferenceClass()) {
209      phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
210    } else {
211      LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
212                 << klass->GetAccessFlags();
213    }
214  }
215}
216
217void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) {
218  cleared_references_.UpdateRoots(callback, arg);
219}
220
221class ClearedReferenceTask : public HeapTask {
222 public:
223  explicit ClearedReferenceTask(jobject cleared_references)
224      : HeapTask(NanoTime()), cleared_references_(cleared_references) {
225  }
226  virtual void Run(Thread* thread) {
227    ScopedObjectAccess soa(thread);
228    jvalue args[1];
229    args[0].l = cleared_references_;
230    InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
231    soa.Env()->DeleteGlobalRef(cleared_references_);
232  }
233
234 private:
235  const jobject cleared_references_;
236};
237
238void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
239  Locks::mutator_lock_->AssertNotHeld(self);
240  // When a runtime isn't started there are no reference queues to care about so ignore.
241  if (!cleared_references_.IsEmpty()) {
242    if (LIKELY(Runtime::Current()->IsStarted())) {
243      jobject cleared_references;
244      {
245        ReaderMutexLock mu(self, *Locks::mutator_lock_);
246        cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
247            self, cleared_references_.GetList());
248      }
249      if (kAsyncReferenceQueueAdd) {
250        // TODO: This can cause RunFinalization to terminate before newly freed objects are
251        // finalized since they may not be enqueued by the time RunFinalization starts.
252        Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
253            self, new ClearedReferenceTask(cleared_references));
254      } else {
255        ClearedReferenceTask task(cleared_references);
256        task.Run(self);
257      }
258    }
259    cleared_references_.Clear();
260  }
261}
262
263bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) {
264  Thread* self = Thread::Current();
265  MutexLock mu(self, *Locks::reference_processor_lock_);
266  // Wait untul we are done processing reference.
267  while (SlowPathEnabled()) {
268    condition_.WaitHoldingLocks(self);
269  }
270  // At this point, since the sentinel of the reference is live, it is guaranteed to not be
271  // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
272  // phase. Since we are holding the reference processor lock, it guarantees that reference
273  // processing can't begin. The GC could have just enqueued the reference one one of the internal
274  // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
275  // race.
276  MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
277  if (!reference->IsEnqueued()) {
278    CHECK(reference->IsFinalizerReferenceInstance());
279    if (Runtime::Current()->IsActiveTransaction()) {
280      reference->SetPendingNext<true>(reference);
281    } else {
282      reference->SetPendingNext<false>(reference);
283    }
284    return true;
285  }
286  return false;
287}
288
289}  // namespace gc
290}  // namespace art
291