1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57#include <openssl/bn.h>
58
59#include <ctype.h>
60#include <stdio.h>
61#include <string.h>
62
63#include <openssl/bio.h>
64#include <openssl/err.h>
65#include <openssl/mem.h>
66
67#include "internal.h"
68
69BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
70  unsigned num_words, m;
71  BN_ULONG word = 0;
72  BIGNUM *bn = NULL;
73
74  if (ret == NULL) {
75    ret = bn = BN_new();
76  }
77
78  if (ret == NULL) {
79    return NULL;
80  }
81
82  if (len == 0) {
83    ret->top = 0;
84    return ret;
85  }
86
87  num_words = ((len - 1) / BN_BYTES) + 1;
88  m = (len - 1) % BN_BYTES;
89  if (bn_wexpand(ret, num_words) == NULL) {
90    if (bn) {
91      BN_free(bn);
92    }
93    return NULL;
94  }
95
96  ret->top = num_words;
97  ret->neg = 0;
98
99  while (len--) {
100    word = (word << 8) | *(in++);
101    if (m-- == 0) {
102      ret->d[--num_words] = word;
103      word = 0;
104      m = BN_BYTES - 1;
105    }
106  }
107
108  /* need to call this due to clear byte at top if avoiding having the top bit
109   * set (-ve number) */
110  bn_correct_top(ret);
111  return ret;
112}
113
114size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
115  size_t n, i;
116  BN_ULONG l;
117
118  n = i = BN_num_bytes(in);
119  while (i--) {
120    l = in->d[i / BN_BYTES];
121    *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
122  }
123  return n;
124}
125
126/* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
127 * behavior is undefined if |v| takes any other value. */
128static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
129  BN_ULONG mask = v;
130  mask--;
131
132  return (~mask & x) | (mask & y);
133}
134
135/* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
136 * must not have their MSBs set. */
137static int constant_time_le_size_t(size_t x, size_t y) {
138  return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
139}
140
141/* read_word_padded returns the |i|'th word of |in|, if it is not out of
142 * bounds. Otherwise, it returns 0. It does so without branches on the size of
143 * |in|, however it necessarily does not have the same memory access pattern. If
144 * the access would be out of bounds, it reads the last word of |in|. |in| must
145 * not be zero. */
146static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
147  /* Read |in->d[i]| if valid. Otherwise, read the last word. */
148  BN_ULONG l = in->d[constant_time_select_ulong(
149      constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
150
151  /* Clamp to zero if above |d->top|. */
152  return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
153}
154
155int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
156  size_t i;
157  BN_ULONG l;
158
159  /* Special case for |in| = 0. Just branch as the probability is negligible. */
160  if (BN_is_zero(in)) {
161    memset(out, 0, len);
162    return 1;
163  }
164
165  /* Check if the integer is too big. This case can exit early in non-constant
166   * time. */
167  if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
168    return 0;
169  }
170  if ((len % BN_BYTES) != 0) {
171    l = read_word_padded(in, len / BN_BYTES);
172    if (l >> (8 * (len % BN_BYTES)) != 0) {
173      return 0;
174    }
175  }
176
177  /* Write the bytes out one by one. Serialization is done without branching on
178   * the bits of |in| or on |in->top|, but if the routine would otherwise read
179   * out of bounds, the memory access pattern can't be fixed. However, for an
180   * RSA key of size a multiple of the word size, the probability of BN_BYTES
181   * leading zero octets is low.
182   *
183   * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
184  i = len;
185  while (i--) {
186    l = read_word_padded(in, i / BN_BYTES);
187    *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
188  }
189  return 1;
190}
191
192static const char hextable[] = "0123456789abcdef";
193
194char *BN_bn2hex(const BIGNUM *bn) {
195  int i, j, v, z = 0;
196  char *buf;
197  char *p;
198
199  buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
200  if (buf == NULL) {
201    OPENSSL_PUT_ERROR(BN, BN_bn2hex, ERR_R_MALLOC_FAILURE);
202    return NULL;
203  }
204
205  p = buf;
206  if (bn->neg) {
207    *(p++) = '-';
208  }
209
210  if (BN_is_zero(bn)) {
211    *(p++) = '0';
212  }
213
214  for (i = bn->top - 1; i >= 0; i--) {
215    for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
216      /* strip leading zeros */
217      v = ((int)(bn->d[i] >> (long)j)) & 0xff;
218      if (z || v != 0) {
219        *(p++) = hextable[v >> 4];
220        *(p++) = hextable[v & 0x0f];
221        z = 1;
222      }
223    }
224  }
225  *p = '\0';
226
227  return buf;
228}
229
230/* decode_hex decodes |i| bytes of hex data from |in| and updates |bn|. */
231static void decode_hex(BIGNUM *bn, const char *in, int i) {
232  int h, m, j, k, c;
233  BN_ULONG l=0;
234
235  j = i; /* least significant 'hex' */
236  h = 0;
237  while (j > 0) {
238    m = ((BN_BYTES * 2) <= j) ? (BN_BYTES * 2) : j;
239    l = 0;
240    for (;;) {
241      c = in[j - m];
242      if ((c >= '0') && (c <= '9')) {
243        k = c - '0';
244      } else if ((c >= 'a') && (c <= 'f')) {
245        k = c - 'a' + 10;
246      } else if ((c >= 'A') && (c <= 'F')) {
247        k = c - 'A' + 10;
248      } else {
249        k = 0; /* paranoia */
250      }
251
252      l = (l << 4) | k;
253
254      if (--m <= 0) {
255        bn->d[h++] = l;
256        break;
257      }
258    }
259
260    j -= (BN_BYTES * 2);
261  }
262
263  bn->top = h;
264}
265
266/* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
267static void decode_dec(BIGNUM *bn, const char *in, int in_len) {
268  int i, j;
269  BN_ULONG l = 0;
270
271  j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
272  if (j == BN_DEC_NUM) {
273    j = 0;
274  }
275  l = 0;
276  for (i = 0; i < in_len; i++) {
277    l *= 10;
278    l += in[i] - '0';
279    if (++j == BN_DEC_NUM) {
280      BN_mul_word(bn, BN_DEC_CONV);
281      BN_add_word(bn, l);
282      l = 0;
283      j = 0;
284    }
285  }
286}
287
288typedef void (*decode_func) (BIGNUM *bn, const char *in, int i);
289typedef int (*char_test_func) (int c);
290
291static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
292  BIGNUM *ret = NULL;
293  int neg = 0, i;
294  int num;
295
296  if (in == NULL || *in == 0) {
297    return 0;
298  }
299
300  if (*in == '-') {
301    neg = 1;
302    in++;
303  }
304
305  for (i = 0; want_char((unsigned char)in[i]); i++) {}
306
307  num = i + neg;
308  if (outp == NULL) {
309    return num;
310  }
311
312  /* in is the start of the hex digits, and it is 'i' long */
313  if (*outp == NULL) {
314    ret = BN_new();
315    if (ret == NULL) {
316      return 0;
317    }
318  } else {
319    ret = *outp;
320    BN_zero(ret);
321  }
322
323  /* i is the number of hex digests; */
324  if (bn_expand(ret, i * 4) == NULL) {
325    goto err;
326  }
327
328  decode(ret, in, i);
329
330  bn_correct_top(ret);
331  if (!BN_is_zero(ret)) {
332    ret->neg = neg;
333  }
334
335  *outp = ret;
336  return num;
337
338err:
339  if (*outp == NULL) {
340    BN_free(ret);
341  }
342
343  return 0;
344}
345
346int BN_hex2bn(BIGNUM **outp, const char *in) {
347  return bn_x2bn(outp, in, decode_hex, isxdigit);
348}
349
350char *BN_bn2dec(const BIGNUM *a) {
351  int i = 0, num, ok = 0;
352  char *buf = NULL;
353  char *p;
354  BIGNUM *t = NULL;
355  BN_ULONG *bn_data = NULL, *lp;
356
357  /* get an upper bound for the length of the decimal integer
358   * num <= (BN_num_bits(a) + 1) * log(2)
359   *     <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1     (rounding error)
360   *     <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
361   */
362  i = BN_num_bits(a) * 3;
363  num = i / 10 + i / 1000 + 1 + 1;
364  bn_data =
365      (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG));
366  buf = (char *)OPENSSL_malloc(num + 3);
367  if ((buf == NULL) || (bn_data == NULL)) {
368    OPENSSL_PUT_ERROR(BN, BN_bn2dec, ERR_R_MALLOC_FAILURE);
369    goto err;
370  }
371  t = BN_dup(a);
372  if (t == NULL) {
373    goto err;
374  }
375
376#define BUF_REMAIN (num + 3 - (size_t)(p - buf))
377  p = buf;
378  lp = bn_data;
379  if (BN_is_zero(t)) {
380    *(p++) = '0';
381    *(p++) = '\0';
382  } else {
383    if (BN_is_negative(t)) {
384      *p++ = '-';
385    }
386
387    while (!BN_is_zero(t)) {
388      *lp = BN_div_word(t, BN_DEC_CONV);
389      lp++;
390    }
391    lp--;
392    /* We now have a series of blocks, BN_DEC_NUM chars
393     * in length, where the last one needs truncation.
394     * The blocks need to be reversed in order. */
395    BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp);
396    while (*p) {
397      p++;
398    }
399    while (lp != bn_data) {
400      lp--;
401      BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp);
402      while (*p) {
403        p++;
404      }
405    }
406  }
407  ok = 1;
408
409err:
410  OPENSSL_free(bn_data);
411  BN_free(t);
412  if (!ok) {
413    OPENSSL_free(buf);
414    buf = NULL;
415  }
416
417  return buf;
418}
419
420int BN_dec2bn(BIGNUM **outp, const char *in) {
421  return bn_x2bn(outp, in, decode_dec, isdigit);
422}
423
424int BN_asc2bn(BIGNUM **outp, const char *in) {
425  const char *const orig_in = in;
426  if (*in == '-') {
427    in++;
428  }
429
430  if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
431    if (!BN_hex2bn(outp, in+2)) {
432      return 0;
433    }
434  } else {
435    if (!BN_dec2bn(outp, in)) {
436      return 0;
437    }
438  }
439
440  if (*orig_in == '-' && !BN_is_zero(*outp)) {
441    (*outp)->neg = 1;
442  }
443
444  return 1;
445}
446
447int BN_print(BIO *bp, const BIGNUM *a) {
448  int i, j, v, z = 0;
449  int ret = 0;
450
451  if (a->neg && BIO_write(bp, "-", 1) != 1) {
452    goto end;
453  }
454
455  if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
456    goto end;
457  }
458
459  for (i = a->top - 1; i >= 0; i--) {
460    for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
461      /* strip leading zeros */
462      v = ((int)(a->d[i] >> (long)j)) & 0x0f;
463      if (z || v != 0) {
464        if (BIO_write(bp, &hextable[v], 1) != 1) {
465          goto end;
466        }
467        z = 1;
468      }
469    }
470  }
471  ret = 1;
472
473end:
474  return ret;
475}
476
477int BN_print_fp(FILE *fp, const BIGNUM *a) {
478  BIO *b;
479  int ret;
480
481  b = BIO_new(BIO_s_file());
482  if (b == NULL) {
483    return 0;
484  }
485  BIO_set_fp(b, fp, BIO_NOCLOSE);
486  ret = BN_print(b, a);
487  BIO_free(b);
488
489  return ret;
490}
491
492BN_ULONG BN_get_word(const BIGNUM *bn) {
493  switch (bn->top) {
494    case 0:
495      return 0;
496    case 1:
497      return bn->d[0];
498    default:
499      return BN_MASK2;
500  }
501}
502