1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57#include <openssl/bn.h>
58
59#include <limits.h>
60#include <openssl/err.h>
61
62#include "internal.h"
63
64
65#define asm __asm__
66
67#if !defined(OPENSSL_NO_ASM)
68# if defined(__GNUC__) && __GNUC__>=2
69#  if defined(OPENSSL_X86)
70   /*
71    * There were two reasons for implementing this template:
72    * - GNU C generates a call to a function (__udivdi3 to be exact)
73    *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
74    *   understand why...);
75    * - divl doesn't only calculate quotient, but also leaves
76    *   remainder in %edx which we can definitely use here:-)
77    *
78    *					<appro@fy.chalmers.se>
79    */
80#undef div_asm
81#  define div_asm(n0,n1,d0)		\
82	({  asm volatile (			\
83		"divl	%4"			\
84		: "=a"(q), "=d"(rem)		\
85		: "a"(n1), "d"(n0), "g"(d0)	\
86		: "cc");			\
87	    q;					\
88	})
89#  define REMAINDER_IS_ALREADY_CALCULATED
90#  elif defined(OPENSSL_X86_64)
91   /*
92    * Same story here, but it's 128-bit by 64-bit division. Wow!
93    *					<appro@fy.chalmers.se>
94    */
95#  undef div_asm
96#  define div_asm(n0,n1,d0)		\
97	({  asm volatile (			\
98		"divq	%4"			\
99		: "=a"(q), "=d"(rem)		\
100		: "a"(n1), "d"(n0), "g"(d0)	\
101		: "cc");			\
102	    q;					\
103	})
104#  define REMAINDER_IS_ALREADY_CALCULATED
105#  endif /* __<cpu> */
106# endif /* __GNUC__ */
107#endif /* OPENSSL_NO_ASM */
108
109/* BN_div computes  dv := num / divisor,  rounding towards
110 * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
111 * Thus:
112 *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
113 *     rm->neg == num->neg                 (unless the remainder is zero)
114 * If 'dv' or 'rm' is NULL, the respective value is not returned. */
115int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
116           BN_CTX *ctx) {
117  int norm_shift, i, loop;
118  BIGNUM *tmp, wnum, *snum, *sdiv, *res;
119  BN_ULONG *resp, *wnump;
120  BN_ULONG d0, d1;
121  int num_n, div_n;
122  int no_branch = 0;
123
124  /* Invalid zero-padding would have particularly bad consequences
125   * so don't just rely on bn_check_top() here */
126  if ((num->top > 0 && num->d[num->top - 1] == 0) ||
127      (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
128    OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
129    return 0;
130  }
131
132  if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
133      (divisor->flags & BN_FLG_CONSTTIME) != 0) {
134    no_branch = 1;
135  }
136
137  if (BN_is_zero(divisor)) {
138    OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
139    return 0;
140  }
141
142  if (!no_branch && BN_ucmp(num, divisor) < 0) {
143    if (rm != NULL) {
144      if (BN_copy(rm, num) == NULL) {
145        return 0;
146      }
147    }
148    if (dv != NULL) {
149      BN_zero(dv);
150    }
151    return 1;
152  }
153
154  BN_CTX_start(ctx);
155  tmp = BN_CTX_get(ctx);
156  snum = BN_CTX_get(ctx);
157  sdiv = BN_CTX_get(ctx);
158  if (dv == NULL) {
159    res = BN_CTX_get(ctx);
160  } else {
161    res = dv;
162  }
163  if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
164    goto err;
165  }
166
167  /* First we normalise the numbers */
168  norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
169  if (!(BN_lshift(sdiv, divisor, norm_shift))) {
170    goto err;
171  }
172  sdiv->neg = 0;
173  norm_shift += BN_BITS2;
174  if (!(BN_lshift(snum, num, norm_shift))) {
175    goto err;
176  }
177  snum->neg = 0;
178
179  if (no_branch) {
180    /* Since we don't know whether snum is larger than sdiv,
181     * we pad snum with enough zeroes without changing its
182     * value.
183     */
184    if (snum->top <= sdiv->top + 1) {
185      if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
186        goto err;
187      }
188      for (i = snum->top; i < sdiv->top + 2; i++) {
189        snum->d[i] = 0;
190      }
191      snum->top = sdiv->top + 2;
192    } else {
193      if (bn_wexpand(snum, snum->top + 1) == NULL) {
194        goto err;
195      }
196      snum->d[snum->top] = 0;
197      snum->top++;
198    }
199  }
200
201  div_n = sdiv->top;
202  num_n = snum->top;
203  loop = num_n - div_n;
204  /* Lets setup a 'window' into snum
205   * This is the part that corresponds to the current
206   * 'area' being divided */
207  wnum.neg = 0;
208  wnum.d = &(snum->d[loop]);
209  wnum.top = div_n;
210  /* only needed when BN_ucmp messes up the values between top and max */
211  wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
212
213  /* Get the top 2 words of sdiv */
214  /* div_n=sdiv->top; */
215  d0 = sdiv->d[div_n - 1];
216  d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
217
218  /* pointer to the 'top' of snum */
219  wnump = &(snum->d[num_n - 1]);
220
221  /* Setup to 'res' */
222  res->neg = (num->neg ^ divisor->neg);
223  if (!bn_wexpand(res, (loop + 1))) {
224    goto err;
225  }
226  res->top = loop - no_branch;
227  resp = &(res->d[loop - 1]);
228
229  /* space for temp */
230  if (!bn_wexpand(tmp, (div_n + 1))) {
231    goto err;
232  }
233
234  if (!no_branch) {
235    if (BN_ucmp(&wnum, sdiv) >= 0) {
236      bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
237      *resp = 1;
238    } else {
239      res->top--;
240    }
241  }
242
243  /* if res->top == 0 then clear the neg value otherwise decrease
244   * the resp pointer */
245  if (res->top == 0) {
246    res->neg = 0;
247  } else {
248    resp--;
249  }
250
251  for (i = 0; i < loop - 1; i++, wnump--, resp--) {
252    BN_ULONG q, l0;
253    /* the first part of the loop uses the top two words of snum and sdiv to
254     * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
255    BN_ULONG n0, n1, rem = 0;
256
257    n0 = wnump[0];
258    n1 = wnump[-1];
259    if (n0 == d0) {
260      q = BN_MASK2;
261    } else {
262      /* n0 < d0 */
263#ifdef BN_LLONG
264      BN_ULLONG t2;
265
266#if defined(BN_LLONG) && !defined(div_asm)
267      q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
268#else
269      q = div_asm(n0, n1, d0);
270#endif
271
272#ifndef REMAINDER_IS_ALREADY_CALCULATED
273      /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
274       * isn't it? */
275      rem = (n1 - q * d0) & BN_MASK2;
276#endif
277
278      t2 = (BN_ULLONG)d1 * q;
279
280      for (;;) {
281        if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
282          break;
283        }
284        q--;
285        rem += d0;
286        if (rem < d0) {
287          break; /* don't let rem overflow */
288        }
289        t2 -= d1;
290      }
291#else /* !BN_LLONG */
292      BN_ULONG t2l, t2h;
293
294#if defined(div_asm)
295      q = div_asm(n0, n1, d0);
296#else
297      q = bn_div_words(n0, n1, d0);
298#endif
299
300#ifndef REMAINDER_IS_ALREADY_CALCULATED
301      rem = (n1 - q * d0) & BN_MASK2;
302#endif
303
304#if defined(BN_UMULT_LOHI)
305      BN_UMULT_LOHI(t2l, t2h, d1, q);
306#elif defined(BN_UMULT_HIGH)
307      t2l = d1 * q;
308      t2h = BN_UMULT_HIGH(d1, q);
309#else
310      {
311        BN_ULONG ql, qh;
312        t2l = LBITS(d1);
313        t2h = HBITS(d1);
314        ql = LBITS(q);
315        qh = HBITS(q);
316        mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
317      }
318#endif
319
320      for (;;) {
321        if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
322          break;
323        }
324        q--;
325        rem += d0;
326        if (rem < d0) {
327          break; /* don't let rem overflow */
328        }
329        if (t2l < d1) {
330          t2h--;
331        }
332        t2l -= d1;
333      }
334#endif /* !BN_LLONG */
335    }
336
337    l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
338    tmp->d[div_n] = l0;
339    wnum.d--;
340    /* ingore top values of the bignums just sub the two
341     * BN_ULONG arrays with bn_sub_words */
342    if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
343      /* Note: As we have considered only the leading
344       * two BN_ULONGs in the calculation of q, sdiv * q
345       * might be greater than wnum (but then (q-1) * sdiv
346       * is less or equal than wnum)
347       */
348      q--;
349      if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
350        /* we can't have an overflow here (assuming
351         * that q != 0, but if q == 0 then tmp is
352         * zero anyway) */
353        (*wnump)++;
354      }
355    }
356    /* store part of the result */
357    *resp = q;
358  }
359  bn_correct_top(snum);
360  if (rm != NULL) {
361    /* Keep a copy of the neg flag in num because if rm==num
362     * BN_rshift() will overwrite it.
363     */
364    int neg = num->neg;
365    if (!BN_rshift(rm, snum, norm_shift)) {
366      goto err;
367    }
368    if (!BN_is_zero(rm)) {
369      rm->neg = neg;
370    }
371  }
372  if (no_branch) {
373    bn_correct_top(res);
374  }
375  BN_CTX_end(ctx);
376  return 1;
377
378err:
379  BN_CTX_end(ctx);
380  return 0;
381}
382
383int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
384  if (!(BN_mod(r, m, d, ctx))) {
385    return 0;
386  }
387  if (!r->neg) {
388    return 1;
389  }
390
391  /* now -|d| < r < 0, so we have to set r := r + |d|. */
392  return (d->neg ? BN_sub : BN_add)(r, r, d);
393}
394
395int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
396               BN_CTX *ctx) {
397  if (!BN_add(r, a, b)) {
398    return 0;
399  }
400  return BN_nnmod(r, r, m, ctx);
401}
402
403int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
404                     const BIGNUM *m) {
405  if (!BN_uadd(r, a, b)) {
406    return 0;
407  }
408  if (BN_ucmp(r, m) >= 0) {
409    return BN_usub(r, r, m);
410  }
411  return 1;
412}
413
414int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
415               BN_CTX *ctx) {
416  if (!BN_sub(r, a, b)) {
417    return 0;
418  }
419  return BN_nnmod(r, r, m, ctx);
420}
421
422/* BN_mod_sub variant that may be used if both  a  and  b  are non-negative
423 * and less than  m */
424int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
425                     const BIGNUM *m) {
426  if (!BN_sub(r, a, b)) {
427    return 0;
428  }
429  if (r->neg) {
430    return BN_add(r, r, m);
431  }
432  return 1;
433}
434
435int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
436               BN_CTX *ctx) {
437  BIGNUM *t;
438  int ret = 0;
439
440  BN_CTX_start(ctx);
441  t = BN_CTX_get(ctx);
442  if (t == NULL) {
443    goto err;
444  }
445
446  if (a == b) {
447    if (!BN_sqr(t, a, ctx)) {
448      goto err;
449    }
450  } else {
451    if (!BN_mul(t, a, b, ctx)) {
452      goto err;
453    }
454  }
455
456  if (!BN_nnmod(r, t, m, ctx)) {
457    goto err;
458  }
459
460  ret = 1;
461
462err:
463  BN_CTX_end(ctx);
464  return ret;
465}
466
467int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
468  if (!BN_sqr(r, a, ctx)) {
469    return 0;
470  }
471
472  /* r->neg == 0,  thus we don't need BN_nnmod */
473  return BN_mod(r, r, m, ctx);
474}
475
476int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
477                  BN_CTX *ctx) {
478  BIGNUM *abs_m = NULL;
479  int ret;
480
481  if (!BN_nnmod(r, a, m, ctx)) {
482    return 0;
483  }
484
485  if (m->neg) {
486    abs_m = BN_dup(m);
487    if (abs_m == NULL) {
488      return 0;
489    }
490    abs_m->neg = 0;
491  }
492
493  ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
494
495  BN_free(abs_m);
496  return ret;
497}
498
499int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
500  if (r != a) {
501    if (BN_copy(r, a) == NULL) {
502      return 0;
503    }
504  }
505
506  while (n > 0) {
507    int max_shift;
508
509    /* 0 < r < m */
510    max_shift = BN_num_bits(m) - BN_num_bits(r);
511    /* max_shift >= 0 */
512
513    if (max_shift < 0) {
514      OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
515      return 0;
516    }
517
518    if (max_shift > n) {
519      max_shift = n;
520    }
521
522    if (max_shift) {
523      if (!BN_lshift(r, r, max_shift)) {
524        return 0;
525      }
526      n -= max_shift;
527    } else {
528      if (!BN_lshift1(r, r)) {
529        return 0;
530      }
531      --n;
532    }
533
534    /* BN_num_bits(r) <= BN_num_bits(m) */
535    if (BN_cmp(r, m) >= 0) {
536      if (!BN_sub(r, r, m)) {
537        return 0;
538      }
539    }
540  }
541
542  return 1;
543}
544
545int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
546  if (!BN_lshift1(r, a)) {
547    return 0;
548  }
549
550  return BN_nnmod(r, r, m, ctx);
551}
552
553int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
554  if (!BN_lshift1(r, a)) {
555    return 0;
556  }
557  if (BN_cmp(r, m) >= 0) {
558    return BN_sub(r, r, m);
559  }
560
561  return 1;
562}
563
564BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
565  BN_ULONG ret = 0;
566  int i, j;
567
568  w &= BN_MASK2;
569
570  if (!w) {
571    /* actually this an error (division by zero) */
572    return (BN_ULONG) - 1;
573  }
574
575  if (a->top == 0) {
576    return 0;
577  }
578
579  /* normalize input (so bn_div_words doesn't complain) */
580  j = BN_BITS2 - BN_num_bits_word(w);
581  w <<= j;
582  if (!BN_lshift(a, a, j)) {
583    return (BN_ULONG) - 1;
584  }
585
586  for (i = a->top - 1; i >= 0; i--) {
587    BN_ULONG l, d;
588
589    l = a->d[i];
590    d = bn_div_words(ret, l, w);
591    ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
592    a->d[i] = d;
593  }
594
595  if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
596    a->top--;
597  }
598
599  ret >>= j;
600  return ret;
601}
602
603BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
604#ifndef BN_LLONG
605  BN_ULONG ret = 0;
606#else
607  BN_ULLONG ret = 0;
608#endif
609  int i;
610
611  if (w == 0) {
612    return (BN_ULONG) -1;
613  }
614
615  w &= BN_MASK2;
616  for (i = a->top - 1; i >= 0; i--) {
617#ifndef BN_LLONG
618    ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
619    ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
620#else
621    ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
622#endif
623  }
624  return (BN_ULONG)ret;
625}
626