1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2013 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//         mierle@gmail.com (Keir Mierle)
31//
32// This autodiff implementation differs from the one found in
33// autodiff_cost_function.h by supporting autodiff on cost functions
34// with variable numbers of parameters with variable sizes. With the
35// other implementation, all the sizes (both the number of parameter
36// blocks and the size of each block) must be fixed at compile time.
37//
38// The functor API differs slightly from the API for fixed size
39// autodiff; the expected interface for the cost functors is:
40//
41//   struct MyCostFunctor {
42//     template<typename T>
43//     bool operator()(T const* const* parameters, T* residuals) const {
44//       // Use parameters[i] to access the i'th parameter block.
45//     }
46//   }
47//
48// Since the sizing of the parameters is done at runtime, you must
49// also specify the sizes after creating the dynamic autodiff cost
50// function. For example:
51//
52//   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
53//       new MyCostFunctor());
54//   cost_function.AddParameterBlock(5);
55//   cost_function.AddParameterBlock(10);
56//   cost_function.SetNumResiduals(21);
57//
58// Under the hood, the implementation evaluates the cost function
59// multiple times, computing a small set of the derivatives (four by
60// default, controlled by the Stride template parameter) with each
61// pass. There is a tradeoff with the size of the passes; you may want
62// to experiment with the stride.
63
64#ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
65#define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
66
67#include <cmath>
68#include <numeric>
69#include <vector>
70
71#include "ceres/cost_function.h"
72#include "ceres/internal/scoped_ptr.h"
73#include "ceres/jet.h"
74#include "glog/logging.h"
75
76namespace ceres {
77
78template <typename CostFunctor, int Stride = 4>
79class DynamicAutoDiffCostFunction : public CostFunction {
80 public:
81  explicit DynamicAutoDiffCostFunction(CostFunctor* functor)
82    : functor_(functor) {}
83
84  virtual ~DynamicAutoDiffCostFunction() {}
85
86  void AddParameterBlock(int size) {
87    mutable_parameter_block_sizes()->push_back(size);
88  }
89
90  void SetNumResiduals(int num_residuals) {
91    set_num_residuals(num_residuals);
92  }
93
94  virtual bool Evaluate(double const* const* parameters,
95                        double* residuals,
96                        double** jacobians) const {
97    CHECK_GT(num_residuals(), 0)
98        << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
99        << "before DynamicAutoDiffCostFunction::Evaluate().";
100
101    if (jacobians == NULL) {
102      return (*functor_)(parameters, residuals);
103    }
104
105    // The difficulty with Jets, as implemented in Ceres, is that they were
106    // originally designed for strictly compile-sized use. At this point, there
107    // is a large body of code that assumes inside a cost functor it is
108    // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
109    //
110    // Unfortunately, it is impossible to communicate the expected size of a
111    // dynamically sized jet to the static instantiations that existing code
112    // depends on.
113    //
114    // To work around this issue, the solution here is to evaluate the
115    // jacobians in a series of passes, each one computing Stripe *
116    // num_residuals() derivatives. This is done with small, fixed-size jets.
117    const int num_parameter_blocks = parameter_block_sizes().size();
118    const int num_parameters = std::accumulate(parameter_block_sizes().begin(),
119                                               parameter_block_sizes().end(),
120                                               0);
121
122    // Allocate scratch space for the strided evaluation.
123    vector<Jet<double, Stride> > input_jets(num_parameters);
124    vector<Jet<double, Stride> > output_jets(num_residuals());
125
126    // Make the parameter pack that is sent to the functor (reused).
127    vector<Jet<double, Stride>* > jet_parameters(num_parameter_blocks,
128        static_cast<Jet<double, Stride>* >(NULL));
129    int num_active_parameters = 0;
130
131    // To handle constant parameters between non-constant parameter blocks, the
132    // start position --- a raw parameter index --- of each contiguous block of
133    // non-constant parameters is recorded in start_derivative_section.
134    vector<int> start_derivative_section;
135    bool in_derivative_section = false;
136    int parameter_cursor = 0;
137
138    // Discover the derivative sections and set the parameter values.
139    for (int i = 0; i < num_parameter_blocks; ++i) {
140      jet_parameters[i] = &input_jets[parameter_cursor];
141
142      const int parameter_block_size = parameter_block_sizes()[i];
143      if (jacobians[i] != NULL) {
144        if (!in_derivative_section) {
145          start_derivative_section.push_back(parameter_cursor);
146          in_derivative_section = true;
147        }
148
149        num_active_parameters += parameter_block_size;
150      } else {
151        in_derivative_section = false;
152      }
153
154      for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
155        input_jets[parameter_cursor].a = parameters[i][j];
156      }
157    }
158
159    // When `num_active_parameters % Stride != 0` then it can be the case
160    // that `active_parameter_count < Stride` while parameter_cursor is less
161    // than the total number of parameters and with no remaining non-constant
162    // parameter blocks. Pushing parameter_cursor (the total number of
163    // parameters) as a final entry to start_derivative_section is required
164    // because if a constant parameter block is encountered after the
165    // last non-constant block then current_derivative_section is incremented
166    // and would otherwise index an invalid position in
167    // start_derivative_section. Setting the final element to the total number
168    // of parameters means that this can only happen at most once in the loop
169    // below.
170    start_derivative_section.push_back(parameter_cursor);
171
172    // Evaluate all of the strides. Each stride is a chunk of the derivative to
173    // evaluate, typically some size proportional to the size of the SIMD
174    // registers of the CPU.
175    int num_strides = static_cast<int>(ceil(num_active_parameters /
176                                            static_cast<float>(Stride)));
177
178    int current_derivative_section = 0;
179    int current_derivative_section_cursor = 0;
180
181    for (int pass = 0; pass < num_strides; ++pass) {
182      // Set most of the jet components to zero, except for
183      // non-constant #Stride parameters.
184      const int initial_derivative_section = current_derivative_section;
185      const int initial_derivative_section_cursor =
186        current_derivative_section_cursor;
187
188      int active_parameter_count = 0;
189      parameter_cursor = 0;
190
191      for (int i = 0; i < num_parameter_blocks; ++i) {
192        for (int j = 0; j < parameter_block_sizes()[i];
193             ++j, parameter_cursor++) {
194          input_jets[parameter_cursor].v.setZero();
195          if (active_parameter_count < Stride &&
196              parameter_cursor >= (
197                start_derivative_section[current_derivative_section] +
198                current_derivative_section_cursor)) {
199            if (jacobians[i] != NULL) {
200              input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
201              ++active_parameter_count;
202              ++current_derivative_section_cursor;
203            } else {
204              ++current_derivative_section;
205              current_derivative_section_cursor = 0;
206            }
207          }
208        }
209      }
210
211      if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
212        return false;
213      }
214
215      // Copy the pieces of the jacobians into their final place.
216      active_parameter_count = 0;
217
218      current_derivative_section = initial_derivative_section;
219      current_derivative_section_cursor = initial_derivative_section_cursor;
220
221      for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
222        for (int j = 0; j < parameter_block_sizes()[i];
223             ++j, parameter_cursor++) {
224          if (active_parameter_count < Stride &&
225              parameter_cursor >= (
226                start_derivative_section[current_derivative_section] +
227                current_derivative_section_cursor)) {
228            if (jacobians[i] != NULL) {
229              for (int k = 0; k < num_residuals(); ++k) {
230                jacobians[i][k * parameter_block_sizes()[i] + j] =
231                    output_jets[k].v[active_parameter_count];
232              }
233              ++active_parameter_count;
234              ++current_derivative_section_cursor;
235            } else {
236              ++current_derivative_section;
237              current_derivative_section_cursor = 0;
238            }
239          }
240        }
241      }
242
243      // Only copy the residuals over once (even though we compute them on
244      // every loop).
245      if (pass == num_strides - 1) {
246        for (int k = 0; k < num_residuals(); ++k) {
247          residuals[k] = output_jets[k].a;
248        }
249      }
250    }
251    return true;
252  }
253
254 private:
255  internal::scoped_ptr<CostFunctor> functor_;
256};
257
258}  // namespace ceres
259
260#endif  // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
261