1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/TemplateName.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/AddressSpaces.h"
29#include "clang/Basic/IdentifierTable.h"
30#include "clang/Basic/LangOptions.h"
31#include "clang/Basic/OperatorKinds.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SanitizerBlacklist.h"
34#include "clang/Basic/VersionTuple.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/IntrusiveRefCntPtr.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/Support/Allocator.h"
41#include <memory>
42#include <vector>
43
44namespace llvm {
45  struct fltSemantics;
46}
47
48namespace clang {
49  class FileManager;
50  class AtomicExpr;
51  class ASTRecordLayout;
52  class BlockExpr;
53  class CharUnits;
54  class DiagnosticsEngine;
55  class Expr;
56  class ASTMutationListener;
57  class IdentifierTable;
58  class MaterializeTemporaryExpr;
59  class SelectorTable;
60  class TargetInfo;
61  class CXXABI;
62  class MangleNumberingContext;
63  // Decls
64  class MangleContext;
65  class ObjCIvarDecl;
66  class ObjCPropertyDecl;
67  class UnresolvedSetIterator;
68  class UsingDecl;
69  class UsingShadowDecl;
70  class VTableContextBase;
71
72  namespace Builtin { class Context; }
73
74  namespace comments {
75    class FullComment;
76  }
77
78  struct TypeInfo {
79    uint64_t Width;
80    unsigned Align;
81    bool AlignIsRequired : 1;
82    TypeInfo() : Width(0), Align(0), AlignIsRequired(false) {}
83    TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
84        : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
85  };
86
87/// \brief Holds long-lived AST nodes (such as types and decls) that can be
88/// referred to throughout the semantic analysis of a file.
89class ASTContext : public RefCountedBase<ASTContext> {
90  ASTContext &this_() { return *this; }
91
92  mutable SmallVector<Type *, 0> Types;
93  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
94  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
95  mutable llvm::FoldingSet<PointerType> PointerTypes;
96  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
97  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
98  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
99  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
100  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
101  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
102  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
103  mutable std::vector<VariableArrayType*> VariableArrayTypes;
104  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
105  mutable llvm::FoldingSet<DependentSizedExtVectorType>
106    DependentSizedExtVectorTypes;
107  mutable llvm::FoldingSet<VectorType> VectorTypes;
108  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
109  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
110    FunctionProtoTypes;
111  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
112  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
113  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
114  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
115    SubstTemplateTypeParmTypes;
116  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
117    SubstTemplateTypeParmPackTypes;
118  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
119    TemplateSpecializationTypes;
120  mutable llvm::FoldingSet<ParenType> ParenTypes;
121  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
122  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
123  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
124                                     ASTContext&>
125    DependentTemplateSpecializationTypes;
126  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
127  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
128  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
129  mutable llvm::FoldingSet<AutoType> AutoTypes;
130  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
131  llvm::FoldingSet<AttributedType> AttributedTypes;
132
133  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
134  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
135  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
136    SubstTemplateTemplateParms;
137  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
138                                     ASTContext&>
139    SubstTemplateTemplateParmPacks;
140
141  /// \brief The set of nested name specifiers.
142  ///
143  /// This set is managed by the NestedNameSpecifier class.
144  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
145  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
146  friend class NestedNameSpecifier;
147
148  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
149  ///
150  /// This is lazily created.  This is intentionally not serialized.
151  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
152    ASTRecordLayouts;
153  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
154    ObjCLayouts;
155
156  /// \brief A cache from types to size and alignment information.
157  typedef llvm::DenseMap<const Type *, struct TypeInfo> TypeInfoMap;
158  mutable TypeInfoMap MemoizedTypeInfo;
159
160  /// \brief A cache mapping from CXXRecordDecls to key functions.
161  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
162
163  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
164  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
165
166  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
167  /// interface.
168  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
169
170  /// \brief Mapping from __block VarDecls to their copy initialization expr.
171  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
172
173  /// \brief Mapping from class scope functions specialization to their
174  /// template patterns.
175  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
176    ClassScopeSpecializationPattern;
177
178  /// \brief Mapping from materialized temporaries with static storage duration
179  /// that appear in constant initializers to their evaluated values.
180  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
181    MaterializedTemporaryValues;
182
183  /// \brief Representation of a "canonical" template template parameter that
184  /// is used in canonical template names.
185  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
186    TemplateTemplateParmDecl *Parm;
187
188  public:
189    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
190      : Parm(Parm) { }
191
192    TemplateTemplateParmDecl *getParam() const { return Parm; }
193
194    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
195
196    static void Profile(llvm::FoldingSetNodeID &ID,
197                        TemplateTemplateParmDecl *Parm);
198  };
199  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
200    CanonTemplateTemplateParms;
201
202  TemplateTemplateParmDecl *
203    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
204
205  /// \brief The typedef for the __int128_t type.
206  mutable TypedefDecl *Int128Decl;
207
208  /// \brief The typedef for the __uint128_t type.
209  mutable TypedefDecl *UInt128Decl;
210
211  /// \brief The typedef for the __float128 stub type.
212  mutable TypeDecl *Float128StubDecl;
213
214  /// \brief The typedef for the target specific predefined
215  /// __builtin_va_list type.
216  mutable TypedefDecl *BuiltinVaListDecl;
217
218  /// \brief The typedef for the predefined \c id type.
219  mutable TypedefDecl *ObjCIdDecl;
220
221  /// \brief The typedef for the predefined \c SEL type.
222  mutable TypedefDecl *ObjCSelDecl;
223
224  /// \brief The typedef for the predefined \c Class type.
225  mutable TypedefDecl *ObjCClassDecl;
226
227  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
228  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
229
230  /// \brief The typedef for the predefined 'BOOL' type.
231  mutable TypedefDecl *BOOLDecl;
232
233  // Typedefs which may be provided defining the structure of Objective-C
234  // pseudo-builtins
235  QualType ObjCIdRedefinitionType;
236  QualType ObjCClassRedefinitionType;
237  QualType ObjCSelRedefinitionType;
238
239  QualType ObjCConstantStringType;
240  mutable RecordDecl *CFConstantStringTypeDecl;
241
242  mutable QualType ObjCSuperType;
243
244  QualType ObjCNSStringType;
245
246  /// \brief The typedef declaration for the Objective-C "instancetype" type.
247  TypedefDecl *ObjCInstanceTypeDecl;
248
249  /// \brief The type for the C FILE type.
250  TypeDecl *FILEDecl;
251
252  /// \brief The type for the C jmp_buf type.
253  TypeDecl *jmp_bufDecl;
254
255  /// \brief The type for the C sigjmp_buf type.
256  TypeDecl *sigjmp_bufDecl;
257
258  /// \brief The type for the C ucontext_t type.
259  TypeDecl *ucontext_tDecl;
260
261  /// \brief Type for the Block descriptor for Blocks CodeGen.
262  ///
263  /// Since this is only used for generation of debug info, it is not
264  /// serialized.
265  mutable RecordDecl *BlockDescriptorType;
266
267  /// \brief Type for the Block descriptor for Blocks CodeGen.
268  ///
269  /// Since this is only used for generation of debug info, it is not
270  /// serialized.
271  mutable RecordDecl *BlockDescriptorExtendedType;
272
273  /// \brief Declaration for the CUDA cudaConfigureCall function.
274  FunctionDecl *cudaConfigureCallDecl;
275
276  /// \brief Keeps track of all declaration attributes.
277  ///
278  /// Since so few decls have attrs, we keep them in a hash map instead of
279  /// wasting space in the Decl class.
280  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
281
282  /// \brief A mapping from non-redeclarable declarations in modules that were
283  /// merged with other declarations to the canonical declaration that they were
284  /// merged into.
285  llvm::DenseMap<Decl*, Decl*> MergedDecls;
286
287public:
288  /// \brief A type synonym for the TemplateOrInstantiation mapping.
289  typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
290  TemplateOrSpecializationInfo;
291
292private:
293
294  /// \brief A mapping to contain the template or declaration that
295  /// a variable declaration describes or was instantiated from,
296  /// respectively.
297  ///
298  /// For non-templates, this value will be NULL. For variable
299  /// declarations that describe a variable template, this will be a
300  /// pointer to a VarTemplateDecl. For static data members
301  /// of class template specializations, this will be the
302  /// MemberSpecializationInfo referring to the member variable that was
303  /// instantiated or specialized. Thus, the mapping will keep track of
304  /// the static data member templates from which static data members of
305  /// class template specializations were instantiated.
306  ///
307  /// Given the following example:
308  ///
309  /// \code
310  /// template<typename T>
311  /// struct X {
312  ///   static T value;
313  /// };
314  ///
315  /// template<typename T>
316  ///   T X<T>::value = T(17);
317  ///
318  /// int *x = &X<int>::value;
319  /// \endcode
320  ///
321  /// This mapping will contain an entry that maps from the VarDecl for
322  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
323  /// class template X) and will be marked TSK_ImplicitInstantiation.
324  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
325  TemplateOrInstantiation;
326
327  /// \brief Keeps track of the declaration from which a UsingDecl was
328  /// created during instantiation.
329  ///
330  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
331  /// or an UnresolvedUsingTypenameDecl.
332  ///
333  /// For example:
334  /// \code
335  /// template<typename T>
336  /// struct A {
337  ///   void f();
338  /// };
339  ///
340  /// template<typename T>
341  /// struct B : A<T> {
342  ///   using A<T>::f;
343  /// };
344  ///
345  /// template struct B<int>;
346  /// \endcode
347  ///
348  /// This mapping will contain an entry that maps from the UsingDecl in
349  /// B<int> to the UnresolvedUsingDecl in B<T>.
350  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
351
352  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
353    InstantiatedFromUsingShadowDecl;
354
355  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
356
357  /// \brief Mapping that stores the methods overridden by a given C++
358  /// member function.
359  ///
360  /// Since most C++ member functions aren't virtual and therefore
361  /// don't override anything, we store the overridden functions in
362  /// this map on the side rather than within the CXXMethodDecl structure.
363  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
364  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
365
366  /// \brief Mapping from each declaration context to its corresponding
367  /// mangling numbering context (used for constructs like lambdas which
368  /// need to be consistently numbered for the mangler).
369  llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
370      MangleNumberingContexts;
371
372  /// \brief Side-table of mangling numbers for declarations which rarely
373  /// need them (like static local vars).
374  llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
375  llvm::DenseMap<const VarDecl *, unsigned> StaticLocalNumbers;
376
377  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
378  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
379  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
380  ParameterIndexTable ParamIndices;
381
382  ImportDecl *FirstLocalImport;
383  ImportDecl *LastLocalImport;
384
385  TranslationUnitDecl *TUDecl;
386  mutable ExternCContextDecl *ExternCContext;
387
388  /// \brief The associated SourceManager object.a
389  SourceManager &SourceMgr;
390
391  /// \brief The language options used to create the AST associated with
392  ///  this ASTContext object.
393  LangOptions &LangOpts;
394
395  /// \brief Blacklist object that is used by sanitizers to decide which
396  /// entities should not be instrumented.
397  std::unique_ptr<SanitizerBlacklist> SanitizerBL;
398
399  /// \brief The allocator used to create AST objects.
400  ///
401  /// AST objects are never destructed; rather, all memory associated with the
402  /// AST objects will be released when the ASTContext itself is destroyed.
403  mutable llvm::BumpPtrAllocator BumpAlloc;
404
405  /// \brief Allocator for partial diagnostics.
406  PartialDiagnostic::StorageAllocator DiagAllocator;
407
408  /// \brief The current C++ ABI.
409  std::unique_ptr<CXXABI> ABI;
410  CXXABI *createCXXABI(const TargetInfo &T);
411
412  /// \brief The logical -> physical address space map.
413  const LangAS::Map *AddrSpaceMap;
414
415  /// \brief Address space map mangling must be used with language specific
416  /// address spaces (e.g. OpenCL/CUDA)
417  bool AddrSpaceMapMangling;
418
419  friend class ASTDeclReader;
420  friend class ASTReader;
421  friend class ASTWriter;
422  friend class CXXRecordDecl;
423
424  const TargetInfo *Target;
425  clang::PrintingPolicy PrintingPolicy;
426
427public:
428  IdentifierTable &Idents;
429  SelectorTable &Selectors;
430  Builtin::Context &BuiltinInfo;
431  mutable DeclarationNameTable DeclarationNames;
432  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
433  ASTMutationListener *Listener;
434
435  /// \brief Contains parents of a node.
436  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
437
438  /// \brief Maps from a node to its parents.
439  typedef llvm::DenseMap<const void *,
440                         llvm::PointerUnion<ast_type_traits::DynTypedNode *,
441                                            ParentVector *>> ParentMap;
442
443  /// \brief Returns the parents of the given node.
444  ///
445  /// Note that this will lazily compute the parents of all nodes
446  /// and store them for later retrieval. Thus, the first call is O(n)
447  /// in the number of AST nodes.
448  ///
449  /// Caveats and FIXMEs:
450  /// Calculating the parent map over all AST nodes will need to load the
451  /// full AST. This can be undesirable in the case where the full AST is
452  /// expensive to create (for example, when using precompiled header
453  /// preambles). Thus, there are good opportunities for optimization here.
454  /// One idea is to walk the given node downwards, looking for references
455  /// to declaration contexts - once a declaration context is found, compute
456  /// the parent map for the declaration context; if that can satisfy the
457  /// request, loading the whole AST can be avoided. Note that this is made
458  /// more complex by statements in templates having multiple parents - those
459  /// problems can be solved by building closure over the templated parts of
460  /// the AST, which also avoids touching large parts of the AST.
461  /// Additionally, we will want to add an interface to already give a hint
462  /// where to search for the parents, for example when looking at a statement
463  /// inside a certain function.
464  ///
465  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
466  /// NestedNameSpecifier or NestedNameSpecifierLoc.
467  template <typename NodeT>
468  ArrayRef<ast_type_traits::DynTypedNode> getParents(const NodeT &Node) {
469    return getParents(ast_type_traits::DynTypedNode::create(Node));
470  }
471
472  ArrayRef<ast_type_traits::DynTypedNode>
473  getParents(const ast_type_traits::DynTypedNode &Node);
474
475  const clang::PrintingPolicy &getPrintingPolicy() const {
476    return PrintingPolicy;
477  }
478
479  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
480    PrintingPolicy = Policy;
481  }
482
483  SourceManager& getSourceManager() { return SourceMgr; }
484  const SourceManager& getSourceManager() const { return SourceMgr; }
485
486  llvm::BumpPtrAllocator &getAllocator() const {
487    return BumpAlloc;
488  }
489
490  void *Allocate(size_t Size, unsigned Align = 8) const {
491    return BumpAlloc.Allocate(Size, Align);
492  }
493  void Deallocate(void *Ptr) const { }
494
495  /// Return the total amount of physical memory allocated for representing
496  /// AST nodes and type information.
497  size_t getASTAllocatedMemory() const {
498    return BumpAlloc.getTotalMemory();
499  }
500  /// Return the total memory used for various side tables.
501  size_t getSideTableAllocatedMemory() const;
502
503  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
504    return DiagAllocator;
505  }
506
507  const TargetInfo &getTargetInfo() const { return *Target; }
508
509  /// getIntTypeForBitwidth -
510  /// sets integer QualTy according to specified details:
511  /// bitwidth, signed/unsigned.
512  /// Returns empty type if there is no appropriate target types.
513  QualType getIntTypeForBitwidth(unsigned DestWidth,
514                                 unsigned Signed) const;
515  /// getRealTypeForBitwidth -
516  /// sets floating point QualTy according to specified bitwidth.
517  /// Returns empty type if there is no appropriate target types.
518  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
519
520  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
521
522  const LangOptions& getLangOpts() const { return LangOpts; }
523
524  const SanitizerBlacklist &getSanitizerBlacklist() const {
525    return *SanitizerBL;
526  }
527
528  DiagnosticsEngine &getDiagnostics() const;
529
530  FullSourceLoc getFullLoc(SourceLocation Loc) const {
531    return FullSourceLoc(Loc,SourceMgr);
532  }
533
534  /// \brief All comments in this translation unit.
535  RawCommentList Comments;
536
537  /// \brief True if comments are already loaded from ExternalASTSource.
538  mutable bool CommentsLoaded;
539
540  class RawCommentAndCacheFlags {
541  public:
542    enum Kind {
543      /// We searched for a comment attached to the particular declaration, but
544      /// didn't find any.
545      ///
546      /// getRaw() == 0.
547      NoCommentInDecl = 0,
548
549      /// We have found a comment attached to this particular declaration.
550      ///
551      /// getRaw() != 0.
552      FromDecl,
553
554      /// This declaration does not have an attached comment, and we have
555      /// searched the redeclaration chain.
556      ///
557      /// If getRaw() == 0, the whole redeclaration chain does not have any
558      /// comments.
559      ///
560      /// If getRaw() != 0, it is a comment propagated from other
561      /// redeclaration.
562      FromRedecl
563    };
564
565    Kind getKind() const LLVM_READONLY {
566      return Data.getInt();
567    }
568
569    void setKind(Kind K) {
570      Data.setInt(K);
571    }
572
573    const RawComment *getRaw() const LLVM_READONLY {
574      return Data.getPointer();
575    }
576
577    void setRaw(const RawComment *RC) {
578      Data.setPointer(RC);
579    }
580
581    const Decl *getOriginalDecl() const LLVM_READONLY {
582      return OriginalDecl;
583    }
584
585    void setOriginalDecl(const Decl *Orig) {
586      OriginalDecl = Orig;
587    }
588
589  private:
590    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
591    const Decl *OriginalDecl;
592  };
593
594  /// \brief Mapping from declarations to comments attached to any
595  /// redeclaration.
596  ///
597  /// Raw comments are owned by Comments list.  This mapping is populated
598  /// lazily.
599  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
600
601  /// \brief Mapping from declarations to parsed comments attached to any
602  /// redeclaration.
603  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
604
605  /// \brief Return the documentation comment attached to a given declaration,
606  /// without looking into cache.
607  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
608
609public:
610  RawCommentList &getRawCommentList() {
611    return Comments;
612  }
613
614  void addComment(const RawComment &RC) {
615    assert(LangOpts.RetainCommentsFromSystemHeaders ||
616           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
617    Comments.addComment(RC, BumpAlloc);
618  }
619
620  /// \brief Return the documentation comment attached to a given declaration.
621  /// Returns NULL if no comment is attached.
622  ///
623  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
624  /// the comment, if the comment we found comes from a redeclaration.
625  const RawComment *
626  getRawCommentForAnyRedecl(const Decl *D,
627                            const Decl **OriginalDecl = nullptr) const;
628
629  /// Return parsed documentation comment attached to a given declaration.
630  /// Returns NULL if no comment is attached.
631  ///
632  /// \param PP the Preprocessor used with this TU.  Could be NULL if
633  /// preprocessor is not available.
634  comments::FullComment *getCommentForDecl(const Decl *D,
635                                           const Preprocessor *PP) const;
636
637  /// Return parsed documentation comment attached to a given declaration.
638  /// Returns NULL if no comment is attached. Does not look at any
639  /// redeclarations of the declaration.
640  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
641
642  comments::FullComment *cloneFullComment(comments::FullComment *FC,
643                                         const Decl *D) const;
644
645private:
646  mutable comments::CommandTraits CommentCommandTraits;
647
648  /// \brief Iterator that visits import declarations.
649  class import_iterator {
650    ImportDecl *Import;
651
652  public:
653    typedef ImportDecl               *value_type;
654    typedef ImportDecl               *reference;
655    typedef ImportDecl               *pointer;
656    typedef int                       difference_type;
657    typedef std::forward_iterator_tag iterator_category;
658
659    import_iterator() : Import() {}
660    explicit import_iterator(ImportDecl *Import) : Import(Import) {}
661
662    reference operator*() const { return Import; }
663    pointer operator->() const { return Import; }
664
665    import_iterator &operator++() {
666      Import = ASTContext::getNextLocalImport(Import);
667      return *this;
668    }
669
670    import_iterator operator++(int) {
671      import_iterator Other(*this);
672      ++(*this);
673      return Other;
674    }
675
676    friend bool operator==(import_iterator X, import_iterator Y) {
677      return X.Import == Y.Import;
678    }
679
680    friend bool operator!=(import_iterator X, import_iterator Y) {
681      return X.Import != Y.Import;
682    }
683  };
684
685public:
686  comments::CommandTraits &getCommentCommandTraits() const {
687    return CommentCommandTraits;
688  }
689
690  /// \brief Retrieve the attributes for the given declaration.
691  AttrVec& getDeclAttrs(const Decl *D);
692
693  /// \brief Erase the attributes corresponding to the given declaration.
694  void eraseDeclAttrs(const Decl *D);
695
696  /// \brief If this variable is an instantiated static data member of a
697  /// class template specialization, returns the templated static data member
698  /// from which it was instantiated.
699  // FIXME: Remove ?
700  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
701                                                           const VarDecl *Var);
702
703  TemplateOrSpecializationInfo
704  getTemplateOrSpecializationInfo(const VarDecl *Var);
705
706  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
707
708  void setClassScopeSpecializationPattern(FunctionDecl *FD,
709                                          FunctionDecl *Pattern);
710
711  /// \brief Note that the static data member \p Inst is an instantiation of
712  /// the static data member template \p Tmpl of a class template.
713  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
714                                           TemplateSpecializationKind TSK,
715                        SourceLocation PointOfInstantiation = SourceLocation());
716
717  void setTemplateOrSpecializationInfo(VarDecl *Inst,
718                                       TemplateOrSpecializationInfo TSI);
719
720  /// \brief If the given using decl \p Inst is an instantiation of a
721  /// (possibly unresolved) using decl from a template instantiation,
722  /// return it.
723  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
724
725  /// \brief Remember that the using decl \p Inst is an instantiation
726  /// of the using decl \p Pattern of a class template.
727  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
728
729  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
730                                          UsingShadowDecl *Pattern);
731  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
732
733  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
734
735  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
736
737  // Access to the set of methods overridden by the given C++ method.
738  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
739  overridden_cxx_method_iterator
740  overridden_methods_begin(const CXXMethodDecl *Method) const;
741
742  overridden_cxx_method_iterator
743  overridden_methods_end(const CXXMethodDecl *Method) const;
744
745  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
746
747  /// \brief Note that the given C++ \p Method overrides the given \p
748  /// Overridden method.
749  void addOverriddenMethod(const CXXMethodDecl *Method,
750                           const CXXMethodDecl *Overridden);
751
752  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
753  ///
754  /// An ObjC method is considered to override any method in the class's
755  /// base classes, its protocols, or its categories' protocols, that has
756  /// the same selector and is of the same kind (class or instance).
757  /// A method in an implementation is not considered as overriding the same
758  /// method in the interface or its categories.
759  void getOverriddenMethods(
760                        const NamedDecl *Method,
761                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
762
763  /// \brief Notify the AST context that a new import declaration has been
764  /// parsed or implicitly created within this translation unit.
765  void addedLocalImportDecl(ImportDecl *Import);
766
767  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
768    return Import->NextLocalImport;
769  }
770
771  typedef llvm::iterator_range<import_iterator> import_range;
772  import_range local_imports() const {
773    return import_range(import_iterator(FirstLocalImport), import_iterator());
774  }
775
776  Decl *getPrimaryMergedDecl(Decl *D) {
777    Decl *Result = MergedDecls.lookup(D);
778    return Result ? Result : D;
779  }
780  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
781    MergedDecls[D] = Primary;
782  }
783
784  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
785
786  ExternCContextDecl *getExternCContextDecl() const;
787
788  // Builtin Types.
789  CanQualType VoidTy;
790  CanQualType BoolTy;
791  CanQualType CharTy;
792  CanQualType WCharTy;  // [C++ 3.9.1p5].
793  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
794  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
795  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
796  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
797  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
798  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
799  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
800  CanQualType FloatTy, DoubleTy, LongDoubleTy;
801  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
802  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
803  CanQualType VoidPtrTy, NullPtrTy;
804  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
805  CanQualType BuiltinFnTy;
806  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
807  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
808  CanQualType ObjCBuiltinBoolTy;
809  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
810  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
811  CanQualType OCLImage3dTy;
812  CanQualType OCLSamplerTy, OCLEventTy;
813
814  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
815  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
816  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
817
818  // Type used to help define __builtin_va_list for some targets.
819  // The type is built when constructing 'BuiltinVaListDecl'.
820  mutable QualType VaListTagTy;
821
822  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
823             SelectorTable &sels, Builtin::Context &builtins);
824
825  ~ASTContext();
826
827  /// \brief Attach an external AST source to the AST context.
828  ///
829  /// The external AST source provides the ability to load parts of
830  /// the abstract syntax tree as needed from some external storage,
831  /// e.g., a precompiled header.
832  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
833
834  /// \brief Retrieve a pointer to the external AST source associated
835  /// with this AST context, if any.
836  ExternalASTSource *getExternalSource() const {
837    return ExternalSource.get();
838  }
839
840  /// \brief Attach an AST mutation listener to the AST context.
841  ///
842  /// The AST mutation listener provides the ability to track modifications to
843  /// the abstract syntax tree entities committed after they were initially
844  /// created.
845  void setASTMutationListener(ASTMutationListener *Listener) {
846    this->Listener = Listener;
847  }
848
849  /// \brief Retrieve a pointer to the AST mutation listener associated
850  /// with this AST context, if any.
851  ASTMutationListener *getASTMutationListener() const { return Listener; }
852
853  void PrintStats() const;
854  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
855
856  /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
857  /// declaration.
858  RecordDecl *buildImplicitRecord(StringRef Name,
859                                  RecordDecl::TagKind TK = TTK_Struct) const;
860
861  /// \brief Create a new implicit TU-level typedef declaration.
862  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
863
864  /// \brief Retrieve the declaration for the 128-bit signed integer type.
865  TypedefDecl *getInt128Decl() const;
866
867  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
868  TypedefDecl *getUInt128Decl() const;
869
870  /// \brief Retrieve the declaration for a 128-bit float stub type.
871  TypeDecl *getFloat128StubType() const;
872
873  //===--------------------------------------------------------------------===//
874  //                           Type Constructors
875  //===--------------------------------------------------------------------===//
876
877private:
878  /// \brief Return a type with extended qualifiers.
879  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
880
881  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
882
883public:
884  /// \brief Return the uniqued reference to the type for an address space
885  /// qualified type with the specified type and address space.
886  ///
887  /// The resulting type has a union of the qualifiers from T and the address
888  /// space. If T already has an address space specifier, it is silently
889  /// replaced.
890  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
891
892  /// \brief Return the uniqued reference to the type for an Objective-C
893  /// gc-qualified type.
894  ///
895  /// The retulting type has a union of the qualifiers from T and the gc
896  /// attribute.
897  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
898
899  /// \brief Return the uniqued reference to the type for a \c restrict
900  /// qualified type.
901  ///
902  /// The resulting type has a union of the qualifiers from \p T and
903  /// \c restrict.
904  QualType getRestrictType(QualType T) const {
905    return T.withFastQualifiers(Qualifiers::Restrict);
906  }
907
908  /// \brief Return the uniqued reference to the type for a \c volatile
909  /// qualified type.
910  ///
911  /// The resulting type has a union of the qualifiers from \p T and
912  /// \c volatile.
913  QualType getVolatileType(QualType T) const {
914    return T.withFastQualifiers(Qualifiers::Volatile);
915  }
916
917  /// \brief Return the uniqued reference to the type for a \c const
918  /// qualified type.
919  ///
920  /// The resulting type has a union of the qualifiers from \p T and \c const.
921  ///
922  /// It can be reasonably expected that this will always be equivalent to
923  /// calling T.withConst().
924  QualType getConstType(QualType T) const { return T.withConst(); }
925
926  /// \brief Change the ExtInfo on a function type.
927  const FunctionType *adjustFunctionType(const FunctionType *Fn,
928                                         FunctionType::ExtInfo EInfo);
929
930  /// \brief Change the result type of a function type once it is deduced.
931  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
932
933  /// \brief Change the exception specification on a function once it is
934  /// delay-parsed, instantiated, or computed.
935  void adjustExceptionSpec(FunctionDecl *FD,
936                           const FunctionProtoType::ExceptionSpecInfo &ESI,
937                           bool AsWritten = false);
938
939  /// \brief Return the uniqued reference to the type for a complex
940  /// number with the specified element type.
941  QualType getComplexType(QualType T) const;
942  CanQualType getComplexType(CanQualType T) const {
943    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
944  }
945
946  /// \brief Return the uniqued reference to the type for a pointer to
947  /// the specified type.
948  QualType getPointerType(QualType T) const;
949  CanQualType getPointerType(CanQualType T) const {
950    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
951  }
952
953  /// \brief Return the uniqued reference to a type adjusted from the original
954  /// type to a new type.
955  QualType getAdjustedType(QualType Orig, QualType New) const;
956  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
957    return CanQualType::CreateUnsafe(
958        getAdjustedType((QualType)Orig, (QualType)New));
959  }
960
961  /// \brief Return the uniqued reference to the decayed version of the given
962  /// type.  Can only be called on array and function types which decay to
963  /// pointer types.
964  QualType getDecayedType(QualType T) const;
965  CanQualType getDecayedType(CanQualType T) const {
966    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
967  }
968
969  /// \brief Return the uniqued reference to the atomic type for the specified
970  /// type.
971  QualType getAtomicType(QualType T) const;
972
973  /// \brief Return the uniqued reference to the type for a block of the
974  /// specified type.
975  QualType getBlockPointerType(QualType T) const;
976
977  /// Gets the struct used to keep track of the descriptor for pointer to
978  /// blocks.
979  QualType getBlockDescriptorType() const;
980
981  /// Gets the struct used to keep track of the extended descriptor for
982  /// pointer to blocks.
983  QualType getBlockDescriptorExtendedType() const;
984
985  void setcudaConfigureCallDecl(FunctionDecl *FD) {
986    cudaConfigureCallDecl = FD;
987  }
988  FunctionDecl *getcudaConfigureCallDecl() {
989    return cudaConfigureCallDecl;
990  }
991
992  /// Returns true iff we need copy/dispose helpers for the given type.
993  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
994
995
996  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
997  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
998  /// has extended lifetime.
999  bool getByrefLifetime(QualType Ty,
1000                        Qualifiers::ObjCLifetime &Lifetime,
1001                        bool &HasByrefExtendedLayout) const;
1002
1003  /// \brief Return the uniqued reference to the type for an lvalue reference
1004  /// to the specified type.
1005  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1006    const;
1007
1008  /// \brief Return the uniqued reference to the type for an rvalue reference
1009  /// to the specified type.
1010  QualType getRValueReferenceType(QualType T) const;
1011
1012  /// \brief Return the uniqued reference to the type for a member pointer to
1013  /// the specified type in the specified class.
1014  ///
1015  /// The class \p Cls is a \c Type because it could be a dependent name.
1016  QualType getMemberPointerType(QualType T, const Type *Cls) const;
1017
1018  /// \brief Return a non-unique reference to the type for a variable array of
1019  /// the specified element type.
1020  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1021                                ArrayType::ArraySizeModifier ASM,
1022                                unsigned IndexTypeQuals,
1023                                SourceRange Brackets) const;
1024
1025  /// \brief Return a non-unique reference to the type for a dependently-sized
1026  /// array of the specified element type.
1027  ///
1028  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1029  /// point.
1030  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1031                                      ArrayType::ArraySizeModifier ASM,
1032                                      unsigned IndexTypeQuals,
1033                                      SourceRange Brackets) const;
1034
1035  /// \brief Return a unique reference to the type for an incomplete array of
1036  /// the specified element type.
1037  QualType getIncompleteArrayType(QualType EltTy,
1038                                  ArrayType::ArraySizeModifier ASM,
1039                                  unsigned IndexTypeQuals) const;
1040
1041  /// \brief Return the unique reference to the type for a constant array of
1042  /// the specified element type.
1043  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1044                                ArrayType::ArraySizeModifier ASM,
1045                                unsigned IndexTypeQuals) const;
1046
1047  /// \brief Returns a vla type where known sizes are replaced with [*].
1048  QualType getVariableArrayDecayedType(QualType Ty) const;
1049
1050  /// \brief Return the unique reference to a vector type of the specified
1051  /// element type and size.
1052  ///
1053  /// \pre \p VectorType must be a built-in type.
1054  QualType getVectorType(QualType VectorType, unsigned NumElts,
1055                         VectorType::VectorKind VecKind) const;
1056
1057  /// \brief Return the unique reference to an extended vector type
1058  /// of the specified element type and size.
1059  ///
1060  /// \pre \p VectorType must be a built-in type.
1061  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1062
1063  /// \pre Return a non-unique reference to the type for a dependently-sized
1064  /// vector of the specified element type.
1065  ///
1066  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1067  /// point.
1068  QualType getDependentSizedExtVectorType(QualType VectorType,
1069                                          Expr *SizeExpr,
1070                                          SourceLocation AttrLoc) const;
1071
1072  /// \brief Return a K&R style C function type like 'int()'.
1073  QualType getFunctionNoProtoType(QualType ResultTy,
1074                                  const FunctionType::ExtInfo &Info) const;
1075
1076  QualType getFunctionNoProtoType(QualType ResultTy) const {
1077    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1078  }
1079
1080  /// \brief Return a normal function type with a typed argument list.
1081  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1082                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1083
1084  /// \brief Return the unique reference to the type for the specified type
1085  /// declaration.
1086  QualType getTypeDeclType(const TypeDecl *Decl,
1087                           const TypeDecl *PrevDecl = nullptr) const {
1088    assert(Decl && "Passed null for Decl param");
1089    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1090
1091    if (PrevDecl) {
1092      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1093      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1094      return QualType(PrevDecl->TypeForDecl, 0);
1095    }
1096
1097    return getTypeDeclTypeSlow(Decl);
1098  }
1099
1100  /// \brief Return the unique reference to the type for the specified
1101  /// typedef-name decl.
1102  QualType getTypedefType(const TypedefNameDecl *Decl,
1103                          QualType Canon = QualType()) const;
1104
1105  QualType getRecordType(const RecordDecl *Decl) const;
1106
1107  QualType getEnumType(const EnumDecl *Decl) const;
1108
1109  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1110
1111  QualType getAttributedType(AttributedType::Kind attrKind,
1112                             QualType modifiedType,
1113                             QualType equivalentType);
1114
1115  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1116                                        QualType Replacement) const;
1117  QualType getSubstTemplateTypeParmPackType(
1118                                          const TemplateTypeParmType *Replaced,
1119                                            const TemplateArgument &ArgPack);
1120
1121  QualType
1122  getTemplateTypeParmType(unsigned Depth, unsigned Index,
1123                          bool ParameterPack,
1124                          TemplateTypeParmDecl *ParmDecl = nullptr) const;
1125
1126  QualType getTemplateSpecializationType(TemplateName T,
1127                                         const TemplateArgument *Args,
1128                                         unsigned NumArgs,
1129                                         QualType Canon = QualType()) const;
1130
1131  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1132                                                  const TemplateArgument *Args,
1133                                                  unsigned NumArgs) const;
1134
1135  QualType getTemplateSpecializationType(TemplateName T,
1136                                         const TemplateArgumentListInfo &Args,
1137                                         QualType Canon = QualType()) const;
1138
1139  TypeSourceInfo *
1140  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1141                                    const TemplateArgumentListInfo &Args,
1142                                    QualType Canon = QualType()) const;
1143
1144  QualType getParenType(QualType NamedType) const;
1145
1146  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1147                             NestedNameSpecifier *NNS,
1148                             QualType NamedType) const;
1149  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1150                                NestedNameSpecifier *NNS,
1151                                const IdentifierInfo *Name,
1152                                QualType Canon = QualType()) const;
1153
1154  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1155                                                  NestedNameSpecifier *NNS,
1156                                                  const IdentifierInfo *Name,
1157                                    const TemplateArgumentListInfo &Args) const;
1158  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1159                                                  NestedNameSpecifier *NNS,
1160                                                  const IdentifierInfo *Name,
1161                                                  unsigned NumArgs,
1162                                            const TemplateArgument *Args) const;
1163
1164  QualType getPackExpansionType(QualType Pattern,
1165                                Optional<unsigned> NumExpansions);
1166
1167  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1168                                ObjCInterfaceDecl *PrevDecl = nullptr) const;
1169
1170  QualType getObjCObjectType(QualType Base,
1171                             ObjCProtocolDecl * const *Protocols,
1172                             unsigned NumProtocols) const;
1173
1174  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1175  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1176  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1177  /// of protocols.
1178  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1179                                            ObjCInterfaceDecl *IDecl);
1180
1181  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1182  QualType getObjCObjectPointerType(QualType OIT) const;
1183
1184  /// \brief GCC extension.
1185  QualType getTypeOfExprType(Expr *e) const;
1186  QualType getTypeOfType(QualType t) const;
1187
1188  /// \brief C++11 decltype.
1189  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1190
1191  /// \brief Unary type transforms
1192  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1193                                 UnaryTransformType::UTTKind UKind) const;
1194
1195  /// \brief C++11 deduced auto type.
1196  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1197                       bool IsDependent) const;
1198
1199  /// \brief C++11 deduction pattern for 'auto' type.
1200  QualType getAutoDeductType() const;
1201
1202  /// \brief C++11 deduction pattern for 'auto &&' type.
1203  QualType getAutoRRefDeductType() const;
1204
1205  /// \brief Return the unique reference to the type for the specified TagDecl
1206  /// (struct/union/class/enum) decl.
1207  QualType getTagDeclType(const TagDecl *Decl) const;
1208
1209  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1210  /// <stddef.h>.
1211  ///
1212  /// The sizeof operator requires this (C99 6.5.3.4p4).
1213  CanQualType getSizeType() const;
1214
1215  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1216  /// <stdint.h>.
1217  CanQualType getIntMaxType() const;
1218
1219  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1220  /// <stdint.h>.
1221  CanQualType getUIntMaxType() const;
1222
1223  /// \brief Return the unique wchar_t type available in C++ (and available as
1224  /// __wchar_t as a Microsoft extension).
1225  QualType getWCharType() const { return WCharTy; }
1226
1227  /// \brief Return the type of wide characters. In C++, this returns the
1228  /// unique wchar_t type. In C99, this returns a type compatible with the type
1229  /// defined in <stddef.h> as defined by the target.
1230  QualType getWideCharType() const { return WideCharTy; }
1231
1232  /// \brief Return the type of "signed wchar_t".
1233  ///
1234  /// Used when in C++, as a GCC extension.
1235  QualType getSignedWCharType() const;
1236
1237  /// \brief Return the type of "unsigned wchar_t".
1238  ///
1239  /// Used when in C++, as a GCC extension.
1240  QualType getUnsignedWCharType() const;
1241
1242  /// \brief In C99, this returns a type compatible with the type
1243  /// defined in <stddef.h> as defined by the target.
1244  QualType getWIntType() const { return WIntTy; }
1245
1246  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1247  /// as defined by the target.
1248  QualType getIntPtrType() const;
1249
1250  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1251  /// as defined by the target.
1252  QualType getUIntPtrType() const;
1253
1254  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1255  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1256  QualType getPointerDiffType() const;
1257
1258  /// \brief Return the unique type for "pid_t" defined in
1259  /// <sys/types.h>. We need this to compute the correct type for vfork().
1260  QualType getProcessIDType() const;
1261
1262  /// \brief Return the C structure type used to represent constant CFStrings.
1263  QualType getCFConstantStringType() const;
1264
1265  /// \brief Returns the C struct type for objc_super
1266  QualType getObjCSuperType() const;
1267  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1268
1269  /// Get the structure type used to representation CFStrings, or NULL
1270  /// if it hasn't yet been built.
1271  QualType getRawCFConstantStringType() const {
1272    if (CFConstantStringTypeDecl)
1273      return getTagDeclType(CFConstantStringTypeDecl);
1274    return QualType();
1275  }
1276  void setCFConstantStringType(QualType T);
1277
1278  // This setter/getter represents the ObjC type for an NSConstantString.
1279  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1280  QualType getObjCConstantStringInterface() const {
1281    return ObjCConstantStringType;
1282  }
1283
1284  QualType getObjCNSStringType() const {
1285    return ObjCNSStringType;
1286  }
1287
1288  void setObjCNSStringType(QualType T) {
1289    ObjCNSStringType = T;
1290  }
1291
1292  /// \brief Retrieve the type that \c id has been defined to, which may be
1293  /// different from the built-in \c id if \c id has been typedef'd.
1294  QualType getObjCIdRedefinitionType() const {
1295    if (ObjCIdRedefinitionType.isNull())
1296      return getObjCIdType();
1297    return ObjCIdRedefinitionType;
1298  }
1299
1300  /// \brief Set the user-written type that redefines \c id.
1301  void setObjCIdRedefinitionType(QualType RedefType) {
1302    ObjCIdRedefinitionType = RedefType;
1303  }
1304
1305  /// \brief Retrieve the type that \c Class has been defined to, which may be
1306  /// different from the built-in \c Class if \c Class has been typedef'd.
1307  QualType getObjCClassRedefinitionType() const {
1308    if (ObjCClassRedefinitionType.isNull())
1309      return getObjCClassType();
1310    return ObjCClassRedefinitionType;
1311  }
1312
1313  /// \brief Set the user-written type that redefines 'SEL'.
1314  void setObjCClassRedefinitionType(QualType RedefType) {
1315    ObjCClassRedefinitionType = RedefType;
1316  }
1317
1318  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1319  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1320  QualType getObjCSelRedefinitionType() const {
1321    if (ObjCSelRedefinitionType.isNull())
1322      return getObjCSelType();
1323    return ObjCSelRedefinitionType;
1324  }
1325
1326
1327  /// \brief Set the user-written type that redefines 'SEL'.
1328  void setObjCSelRedefinitionType(QualType RedefType) {
1329    ObjCSelRedefinitionType = RedefType;
1330  }
1331
1332  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1333  /// otherwise, returns a NULL type;
1334  QualType getObjCInstanceType() {
1335    return getTypeDeclType(getObjCInstanceTypeDecl());
1336  }
1337
1338  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1339  /// "instancetype" type.
1340  TypedefDecl *getObjCInstanceTypeDecl();
1341
1342  /// \brief Set the type for the C FILE type.
1343  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1344
1345  /// \brief Retrieve the C FILE type.
1346  QualType getFILEType() const {
1347    if (FILEDecl)
1348      return getTypeDeclType(FILEDecl);
1349    return QualType();
1350  }
1351
1352  /// \brief Set the type for the C jmp_buf type.
1353  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1354    this->jmp_bufDecl = jmp_bufDecl;
1355  }
1356
1357  /// \brief Retrieve the C jmp_buf type.
1358  QualType getjmp_bufType() const {
1359    if (jmp_bufDecl)
1360      return getTypeDeclType(jmp_bufDecl);
1361    return QualType();
1362  }
1363
1364  /// \brief Set the type for the C sigjmp_buf type.
1365  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1366    this->sigjmp_bufDecl = sigjmp_bufDecl;
1367  }
1368
1369  /// \brief Retrieve the C sigjmp_buf type.
1370  QualType getsigjmp_bufType() const {
1371    if (sigjmp_bufDecl)
1372      return getTypeDeclType(sigjmp_bufDecl);
1373    return QualType();
1374  }
1375
1376  /// \brief Set the type for the C ucontext_t type.
1377  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1378    this->ucontext_tDecl = ucontext_tDecl;
1379  }
1380
1381  /// \brief Retrieve the C ucontext_t type.
1382  QualType getucontext_tType() const {
1383    if (ucontext_tDecl)
1384      return getTypeDeclType(ucontext_tDecl);
1385    return QualType();
1386  }
1387
1388  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1389  QualType getLogicalOperationType() const {
1390    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1391  }
1392
1393  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1394  /// \p S.
1395  ///
1396  /// If \p Field is specified then record field names are also encoded.
1397  void getObjCEncodingForType(QualType T, std::string &S,
1398                              const FieldDecl *Field=nullptr,
1399                              QualType *NotEncodedT=nullptr) const;
1400
1401  /// \brief Emit the Objective-C property type encoding for the given
1402  /// type \p T into \p S.
1403  void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1404
1405  void getLegacyIntegralTypeEncoding(QualType &t) const;
1406
1407  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1408  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1409                                       std::string &S) const;
1410
1411  /// \brief Emit the encoded type for the function \p Decl into \p S.
1412  ///
1413  /// This is in the same format as Objective-C method encodings.
1414  ///
1415  /// \returns true if an error occurred (e.g., because one of the parameter
1416  /// types is incomplete), false otherwise.
1417  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1418
1419  /// \brief Emit the encoded type for the method declaration \p Decl into
1420  /// \p S.
1421  ///
1422  /// \returns true if an error occurred (e.g., because one of the parameter
1423  /// types is incomplete), false otherwise.
1424  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1425                                    bool Extended = false)
1426    const;
1427
1428  /// \brief Return the encoded type for this block declaration.
1429  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1430
1431  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1432  /// this method declaration. If non-NULL, Container must be either
1433  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1434  /// only be NULL when getting encodings for protocol properties.
1435  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1436                                      const Decl *Container,
1437                                      std::string &S) const;
1438
1439  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1440                                      ObjCProtocolDecl *rProto) const;
1441
1442  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1443                                                  const ObjCPropertyDecl *PD,
1444                                                  const Decl *Container) const;
1445
1446  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1447  /// in characters.
1448  CharUnits getObjCEncodingTypeSize(QualType T) const;
1449
1450  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1451  /// in Objective-C.
1452  TypedefDecl *getObjCIdDecl() const;
1453
1454  /// \brief Represents the Objective-CC \c id type.
1455  ///
1456  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1457  /// pointer type, a pointer to a struct.
1458  QualType getObjCIdType() const {
1459    return getTypeDeclType(getObjCIdDecl());
1460  }
1461
1462  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1463  /// in Objective-C.
1464  TypedefDecl *getObjCSelDecl() const;
1465
1466  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1467  /// 'SEL' type.
1468  QualType getObjCSelType() const {
1469    return getTypeDeclType(getObjCSelDecl());
1470  }
1471
1472  /// \brief Retrieve the typedef declaration corresponding to the predefined
1473  /// Objective-C 'Class' type.
1474  TypedefDecl *getObjCClassDecl() const;
1475
1476  /// \brief Represents the Objective-C \c Class type.
1477  ///
1478  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1479  /// pointer type, a pointer to a struct.
1480  QualType getObjCClassType() const {
1481    return getTypeDeclType(getObjCClassDecl());
1482  }
1483
1484  /// \brief Retrieve the Objective-C class declaration corresponding to
1485  /// the predefined \c Protocol class.
1486  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1487
1488  /// \brief Retrieve declaration of 'BOOL' typedef
1489  TypedefDecl *getBOOLDecl() const {
1490    return BOOLDecl;
1491  }
1492
1493  /// \brief Save declaration of 'BOOL' typedef
1494  void setBOOLDecl(TypedefDecl *TD) {
1495    BOOLDecl = TD;
1496  }
1497
1498  /// \brief type of 'BOOL' type.
1499  QualType getBOOLType() const {
1500    return getTypeDeclType(getBOOLDecl());
1501  }
1502
1503  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1504  QualType getObjCProtoType() const {
1505    return getObjCInterfaceType(getObjCProtocolDecl());
1506  }
1507
1508  /// \brief Retrieve the C type declaration corresponding to the predefined
1509  /// \c __builtin_va_list type.
1510  TypedefDecl *getBuiltinVaListDecl() const;
1511
1512  /// \brief Retrieve the type of the \c __builtin_va_list type.
1513  QualType getBuiltinVaListType() const {
1514    return getTypeDeclType(getBuiltinVaListDecl());
1515  }
1516
1517  /// \brief Retrieve the C type declaration corresponding to the predefined
1518  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1519  /// for some targets.
1520  QualType getVaListTagType() const;
1521
1522  /// \brief Return a type with additional \c const, \c volatile, or
1523  /// \c restrict qualifiers.
1524  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1525    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1526  }
1527
1528  /// \brief Un-split a SplitQualType.
1529  QualType getQualifiedType(SplitQualType split) const {
1530    return getQualifiedType(split.Ty, split.Quals);
1531  }
1532
1533  /// \brief Return a type with additional qualifiers.
1534  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1535    if (!Qs.hasNonFastQualifiers())
1536      return T.withFastQualifiers(Qs.getFastQualifiers());
1537    QualifierCollector Qc(Qs);
1538    const Type *Ptr = Qc.strip(T);
1539    return getExtQualType(Ptr, Qc);
1540  }
1541
1542  /// \brief Return a type with additional qualifiers.
1543  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1544    if (!Qs.hasNonFastQualifiers())
1545      return QualType(T, Qs.getFastQualifiers());
1546    return getExtQualType(T, Qs);
1547  }
1548
1549  /// \brief Return a type with the given lifetime qualifier.
1550  ///
1551  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1552  QualType getLifetimeQualifiedType(QualType type,
1553                                    Qualifiers::ObjCLifetime lifetime) {
1554    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1555    assert(lifetime != Qualifiers::OCL_None);
1556
1557    Qualifiers qs;
1558    qs.addObjCLifetime(lifetime);
1559    return getQualifiedType(type, qs);
1560  }
1561
1562  /// getUnqualifiedObjCPointerType - Returns version of
1563  /// Objective-C pointer type with lifetime qualifier removed.
1564  QualType getUnqualifiedObjCPointerType(QualType type) const {
1565    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1566        !type.getQualifiers().hasObjCLifetime())
1567      return type;
1568    Qualifiers Qs = type.getQualifiers();
1569    Qs.removeObjCLifetime();
1570    return getQualifiedType(type.getUnqualifiedType(), Qs);
1571  }
1572
1573  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1574                                         SourceLocation NameLoc) const;
1575
1576  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1577                                         UnresolvedSetIterator End) const;
1578
1579  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1580                                        bool TemplateKeyword,
1581                                        TemplateDecl *Template) const;
1582
1583  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1584                                        const IdentifierInfo *Name) const;
1585  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1586                                        OverloadedOperatorKind Operator) const;
1587  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1588                                            TemplateName replacement) const;
1589  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1590                                        const TemplateArgument &ArgPack) const;
1591
1592  enum GetBuiltinTypeError {
1593    GE_None,              ///< No error
1594    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1595    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1596    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1597  };
1598
1599  /// \brief Return the type for the specified builtin.
1600  ///
1601  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1602  /// arguments to the builtin that are required to be integer constant
1603  /// expressions.
1604  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1605                          unsigned *IntegerConstantArgs = nullptr) const;
1606
1607private:
1608  CanQualType getFromTargetType(unsigned Type) const;
1609  TypeInfo getTypeInfoImpl(const Type *T) const;
1610
1611  //===--------------------------------------------------------------------===//
1612  //                         Type Predicates.
1613  //===--------------------------------------------------------------------===//
1614
1615public:
1616  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1617  /// collection attributes.
1618  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1619
1620  /// \brief Return true if the given vector types are of the same unqualified
1621  /// type or if they are equivalent to the same GCC vector type.
1622  ///
1623  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1624  /// types.
1625  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1626
1627  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1628  /// attribute set.
1629  static bool isObjCNSObjectType(QualType Ty) {
1630    return Ty->isObjCNSObjectType();
1631  }
1632
1633  //===--------------------------------------------------------------------===//
1634  //                         Type Sizing and Analysis
1635  //===--------------------------------------------------------------------===//
1636
1637  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1638  /// point type.
1639  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1640
1641  /// \brief Get the size and alignment of the specified complete type in bits.
1642  TypeInfo getTypeInfo(const Type *T) const;
1643  TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
1644
1645  /// \brief Return the size of the specified (complete) type \p T, in bits.
1646  uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
1647  uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
1648
1649  /// \brief Return the size of the character type, in bits.
1650  uint64_t getCharWidth() const {
1651    return getTypeSize(CharTy);
1652  }
1653
1654  /// \brief Convert a size in bits to a size in characters.
1655  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1656
1657  /// \brief Convert a size in characters to a size in bits.
1658  int64_t toBits(CharUnits CharSize) const;
1659
1660  /// \brief Return the size of the specified (complete) type \p T, in
1661  /// characters.
1662  CharUnits getTypeSizeInChars(QualType T) const;
1663  CharUnits getTypeSizeInChars(const Type *T) const;
1664
1665  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1666  /// bits.
1667  unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
1668  unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
1669
1670  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1671  /// characters.
1672  CharUnits getTypeAlignInChars(QualType T) const;
1673  CharUnits getTypeAlignInChars(const Type *T) const;
1674
1675  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1676  // type is a record, its data size is returned.
1677  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1678
1679  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1680  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1681
1682  /// \brief Determine if the alignment the type has was required using an
1683  /// alignment attribute.
1684  bool isAlignmentRequired(const Type *T) const;
1685  bool isAlignmentRequired(QualType T) const;
1686
1687  /// \brief Return the "preferred" alignment of the specified type \p T for
1688  /// the current target, in bits.
1689  ///
1690  /// This can be different than the ABI alignment in cases where it is
1691  /// beneficial for performance to overalign a data type.
1692  unsigned getPreferredTypeAlign(const Type *T) const;
1693
1694  /// \brief Return the alignment in bits that should be given to a
1695  /// global variable with type \p T.
1696  unsigned getAlignOfGlobalVar(QualType T) const;
1697
1698  /// \brief Return the alignment in characters that should be given to a
1699  /// global variable with type \p T.
1700  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1701
1702  /// \brief Return a conservative estimate of the alignment of the specified
1703  /// decl \p D.
1704  ///
1705  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1706  /// alignment.
1707  ///
1708  /// If \p ForAlignof, references are treated like their underlying type
1709  /// and  large arrays don't get any special treatment. If not \p ForAlignof
1710  /// it computes the value expected by CodeGen: references are treated like
1711  /// pointers and large arrays get extra alignment.
1712  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
1713
1714  /// \brief Get or compute information about the layout of the specified
1715  /// record (struct/union/class) \p D, which indicates its size and field
1716  /// position information.
1717  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1718  const ASTRecordLayout *BuildMicrosoftASTRecordLayout(const RecordDecl *D) const;
1719
1720  /// \brief Get or compute information about the layout of the specified
1721  /// Objective-C interface.
1722  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1723    const;
1724
1725  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1726                        bool Simple = false) const;
1727
1728  /// \brief Get or compute information about the layout of the specified
1729  /// Objective-C implementation.
1730  ///
1731  /// This may differ from the interface if synthesized ivars are present.
1732  const ASTRecordLayout &
1733  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1734
1735  /// \brief Get our current best idea for the key function of the
1736  /// given record decl, or NULL if there isn't one.
1737  ///
1738  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1739  ///   ...the first non-pure virtual function that is not inline at the
1740  ///   point of class definition.
1741  ///
1742  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1743  /// virtual functions that are defined 'inline', which means that
1744  /// the result of this computation can change.
1745  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1746
1747  /// \brief Observe that the given method cannot be a key function.
1748  /// Checks the key-function cache for the method's class and clears it
1749  /// if matches the given declaration.
1750  ///
1751  /// This is used in ABIs where out-of-line definitions marked
1752  /// inline are not considered to be key functions.
1753  ///
1754  /// \param method should be the declaration from the class definition
1755  void setNonKeyFunction(const CXXMethodDecl *method);
1756
1757  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1758  uint64_t getFieldOffset(const ValueDecl *FD) const;
1759
1760  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1761
1762  VTableContextBase *getVTableContext();
1763
1764  MangleContext *createMangleContext();
1765
1766  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1767                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1768
1769  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1770  void CollectInheritedProtocols(const Decl *CDecl,
1771                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1772
1773  //===--------------------------------------------------------------------===//
1774  //                            Type Operators
1775  //===--------------------------------------------------------------------===//
1776
1777  /// \brief Return the canonical (structural) type corresponding to the
1778  /// specified potentially non-canonical type \p T.
1779  ///
1780  /// The non-canonical version of a type may have many "decorated" versions of
1781  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1782  /// returned type is guaranteed to be free of any of these, allowing two
1783  /// canonical types to be compared for exact equality with a simple pointer
1784  /// comparison.
1785  CanQualType getCanonicalType(QualType T) const {
1786    return CanQualType::CreateUnsafe(T.getCanonicalType());
1787  }
1788
1789  const Type *getCanonicalType(const Type *T) const {
1790    return T->getCanonicalTypeInternal().getTypePtr();
1791  }
1792
1793  /// \brief Return the canonical parameter type corresponding to the specific
1794  /// potentially non-canonical one.
1795  ///
1796  /// Qualifiers are stripped off, functions are turned into function
1797  /// pointers, and arrays decay one level into pointers.
1798  CanQualType getCanonicalParamType(QualType T) const;
1799
1800  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1801  bool hasSameType(QualType T1, QualType T2) const {
1802    return getCanonicalType(T1) == getCanonicalType(T2);
1803  }
1804
1805  bool hasSameType(const Type *T1, const Type *T2) const {
1806    return getCanonicalType(T1) == getCanonicalType(T2);
1807  }
1808
1809  /// \brief Return this type as a completely-unqualified array type,
1810  /// capturing the qualifiers in \p Quals.
1811  ///
1812  /// This will remove the minimal amount of sugaring from the types, similar
1813  /// to the behavior of QualType::getUnqualifiedType().
1814  ///
1815  /// \param T is the qualified type, which may be an ArrayType
1816  ///
1817  /// \param Quals will receive the full set of qualifiers that were
1818  /// applied to the array.
1819  ///
1820  /// \returns if this is an array type, the completely unqualified array type
1821  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1822  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1823
1824  /// \brief Determine whether the given types are equivalent after
1825  /// cvr-qualifiers have been removed.
1826  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1827    return getCanonicalType(T1).getTypePtr() ==
1828           getCanonicalType(T2).getTypePtr();
1829  }
1830
1831  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
1832                           const ObjCMethodDecl *MethodImp);
1833
1834  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1835
1836  /// \brief Retrieves the "canonical" nested name specifier for a
1837  /// given nested name specifier.
1838  ///
1839  /// The canonical nested name specifier is a nested name specifier
1840  /// that uniquely identifies a type or namespace within the type
1841  /// system. For example, given:
1842  ///
1843  /// \code
1844  /// namespace N {
1845  ///   struct S {
1846  ///     template<typename T> struct X { typename T* type; };
1847  ///   };
1848  /// }
1849  ///
1850  /// template<typename T> struct Y {
1851  ///   typename N::S::X<T>::type member;
1852  /// };
1853  /// \endcode
1854  ///
1855  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1856  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1857  /// by declarations in the type system and the canonical type for
1858  /// the template type parameter 'T' is template-param-0-0.
1859  NestedNameSpecifier *
1860  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1861
1862  /// \brief Retrieves the default calling convention for the current target.
1863  CallingConv getDefaultCallingConvention(bool isVariadic,
1864                                          bool IsCXXMethod) const;
1865
1866  /// \brief Retrieves the "canonical" template name that refers to a
1867  /// given template.
1868  ///
1869  /// The canonical template name is the simplest expression that can
1870  /// be used to refer to a given template. For most templates, this
1871  /// expression is just the template declaration itself. For example,
1872  /// the template std::vector can be referred to via a variety of
1873  /// names---std::vector, \::std::vector, vector (if vector is in
1874  /// scope), etc.---but all of these names map down to the same
1875  /// TemplateDecl, which is used to form the canonical template name.
1876  ///
1877  /// Dependent template names are more interesting. Here, the
1878  /// template name could be something like T::template apply or
1879  /// std::allocator<T>::template rebind, where the nested name
1880  /// specifier itself is dependent. In this case, the canonical
1881  /// template name uses the shortest form of the dependent
1882  /// nested-name-specifier, which itself contains all canonical
1883  /// types, values, and templates.
1884  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1885
1886  /// \brief Determine whether the given template names refer to the same
1887  /// template.
1888  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1889
1890  /// \brief Retrieve the "canonical" template argument.
1891  ///
1892  /// The canonical template argument is the simplest template argument
1893  /// (which may be a type, value, expression, or declaration) that
1894  /// expresses the value of the argument.
1895  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1896    const;
1897
1898  /// Type Query functions.  If the type is an instance of the specified class,
1899  /// return the Type pointer for the underlying maximally pretty type.  This
1900  /// is a member of ASTContext because this may need to do some amount of
1901  /// canonicalization, e.g. to move type qualifiers into the element type.
1902  const ArrayType *getAsArrayType(QualType T) const;
1903  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1904    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1905  }
1906  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1907    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1908  }
1909  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1910    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1911  }
1912  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1913    const {
1914    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1915  }
1916
1917  /// \brief Return the innermost element type of an array type.
1918  ///
1919  /// For example, will return "int" for int[m][n]
1920  QualType getBaseElementType(const ArrayType *VAT) const;
1921
1922  /// \brief Return the innermost element type of a type (which needn't
1923  /// actually be an array type).
1924  QualType getBaseElementType(QualType QT) const;
1925
1926  /// \brief Return number of constant array elements.
1927  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1928
1929  /// \brief Perform adjustment on the parameter type of a function.
1930  ///
1931  /// This routine adjusts the given parameter type @p T to the actual
1932  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1933  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1934  QualType getAdjustedParameterType(QualType T) const;
1935
1936  /// \brief Retrieve the parameter type as adjusted for use in the signature
1937  /// of a function, decaying array and function types and removing top-level
1938  /// cv-qualifiers.
1939  QualType getSignatureParameterType(QualType T) const;
1940
1941  QualType getExceptionObjectType(QualType T) const;
1942
1943  /// \brief Return the properly qualified result of decaying the specified
1944  /// array type to a pointer.
1945  ///
1946  /// This operation is non-trivial when handling typedefs etc.  The canonical
1947  /// type of \p T must be an array type, this returns a pointer to a properly
1948  /// qualified element of the array.
1949  ///
1950  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1951  QualType getArrayDecayedType(QualType T) const;
1952
1953  /// \brief Return the type that \p PromotableType will promote to: C99
1954  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1955  QualType getPromotedIntegerType(QualType PromotableType) const;
1956
1957  /// \brief Recurses in pointer/array types until it finds an Objective-C
1958  /// retainable type and returns its ownership.
1959  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1960
1961  /// \brief Whether this is a promotable bitfield reference according
1962  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1963  ///
1964  /// \returns the type this bit-field will promote to, or NULL if no
1965  /// promotion occurs.
1966  QualType isPromotableBitField(Expr *E) const;
1967
1968  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1969  ///
1970  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1971  /// \p LHS < \p RHS, return -1.
1972  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1973
1974  /// \brief Compare the rank of the two specified floating point types,
1975  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1976  ///
1977  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1978  /// \p LHS < \p RHS, return -1.
1979  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1980
1981  /// \brief Return a real floating point or a complex type (based on
1982  /// \p typeDomain/\p typeSize).
1983  ///
1984  /// \param typeDomain a real floating point or complex type.
1985  /// \param typeSize a real floating point or complex type.
1986  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1987                                             QualType typeDomain) const;
1988
1989  unsigned getTargetAddressSpace(QualType T) const {
1990    return getTargetAddressSpace(T.getQualifiers());
1991  }
1992
1993  unsigned getTargetAddressSpace(Qualifiers Q) const {
1994    return getTargetAddressSpace(Q.getAddressSpace());
1995  }
1996
1997  unsigned getTargetAddressSpace(unsigned AS) const {
1998    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1999      return AS;
2000    else
2001      return (*AddrSpaceMap)[AS - LangAS::Offset];
2002  }
2003
2004  bool addressSpaceMapManglingFor(unsigned AS) const {
2005    return AddrSpaceMapMangling ||
2006           AS < LangAS::Offset ||
2007           AS >= LangAS::Offset + LangAS::Count;
2008  }
2009
2010private:
2011  // Helper for integer ordering
2012  unsigned getIntegerRank(const Type *T) const;
2013
2014public:
2015
2016  //===--------------------------------------------------------------------===//
2017  //                    Type Compatibility Predicates
2018  //===--------------------------------------------------------------------===//
2019
2020  /// Compatibility predicates used to check assignment expressions.
2021  bool typesAreCompatible(QualType T1, QualType T2,
2022                          bool CompareUnqualified = false); // C99 6.2.7p1
2023
2024  bool propertyTypesAreCompatible(QualType, QualType);
2025  bool typesAreBlockPointerCompatible(QualType, QualType);
2026
2027  bool isObjCIdType(QualType T) const {
2028    return T == getObjCIdType();
2029  }
2030  bool isObjCClassType(QualType T) const {
2031    return T == getObjCClassType();
2032  }
2033  bool isObjCSelType(QualType T) const {
2034    return T == getObjCSelType();
2035  }
2036  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
2037                                         bool ForCompare);
2038
2039  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
2040
2041  // Check the safety of assignment from LHS to RHS
2042  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2043                               const ObjCObjectPointerType *RHSOPT);
2044  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2045                               const ObjCObjectType *RHS);
2046  bool canAssignObjCInterfacesInBlockPointer(
2047                                          const ObjCObjectPointerType *LHSOPT,
2048                                          const ObjCObjectPointerType *RHSOPT,
2049                                          bool BlockReturnType);
2050  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2051  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2052                                   const ObjCObjectPointerType *RHSOPT);
2053  bool canBindObjCObjectType(QualType To, QualType From);
2054
2055  // Functions for calculating composite types
2056  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2057                      bool Unqualified = false, bool BlockReturnType = false);
2058  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2059                              bool Unqualified = false);
2060  QualType mergeFunctionParameterTypes(QualType, QualType,
2061                                       bool OfBlockPointer = false,
2062                                       bool Unqualified = false);
2063  QualType mergeTransparentUnionType(QualType, QualType,
2064                                     bool OfBlockPointer=false,
2065                                     bool Unqualified = false);
2066
2067  QualType mergeObjCGCQualifiers(QualType, QualType);
2068
2069  bool FunctionTypesMatchOnNSConsumedAttrs(
2070         const FunctionProtoType *FromFunctionType,
2071         const FunctionProtoType *ToFunctionType);
2072
2073  void ResetObjCLayout(const ObjCContainerDecl *CD) {
2074    ObjCLayouts[CD] = nullptr;
2075  }
2076
2077  //===--------------------------------------------------------------------===//
2078  //                    Integer Predicates
2079  //===--------------------------------------------------------------------===//
2080
2081  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2082  // of bits in an integer type excluding any padding bits.
2083  unsigned getIntWidth(QualType T) const;
2084
2085  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2086  // unsigned integer type.  This method takes a signed type, and returns the
2087  // corresponding unsigned integer type.
2088  QualType getCorrespondingUnsignedType(QualType T) const;
2089
2090  //===--------------------------------------------------------------------===//
2091  //                    Type Iterators.
2092  //===--------------------------------------------------------------------===//
2093  typedef llvm::iterator_range<SmallVectorImpl<Type *>::const_iterator>
2094    type_const_range;
2095
2096  type_const_range types() const {
2097    return type_const_range(Types.begin(), Types.end());
2098  }
2099
2100  //===--------------------------------------------------------------------===//
2101  //                    Integer Values
2102  //===--------------------------------------------------------------------===//
2103
2104  /// \brief Make an APSInt of the appropriate width and signedness for the
2105  /// given \p Value and integer \p Type.
2106  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2107    llvm::APSInt Res(getIntWidth(Type),
2108                     !Type->isSignedIntegerOrEnumerationType());
2109    Res = Value;
2110    return Res;
2111  }
2112
2113  bool isSentinelNullExpr(const Expr *E);
2114
2115  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2116  /// none exists.
2117  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2118  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2119  /// none exists.
2120  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2121
2122  /// \brief Return true if there is at least one \@implementation in the TU.
2123  bool AnyObjCImplementation() {
2124    return !ObjCImpls.empty();
2125  }
2126
2127  /// \brief Set the implementation of ObjCInterfaceDecl.
2128  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2129                             ObjCImplementationDecl *ImplD);
2130  /// \brief Set the implementation of ObjCCategoryDecl.
2131  void setObjCImplementation(ObjCCategoryDecl *CatD,
2132                             ObjCCategoryImplDecl *ImplD);
2133
2134  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2135  /// interface, or null if none exists.
2136  const ObjCMethodDecl *getObjCMethodRedeclaration(
2137                                               const ObjCMethodDecl *MD) const {
2138    return ObjCMethodRedecls.lookup(MD);
2139  }
2140
2141  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2142                                  const ObjCMethodDecl *Redecl) {
2143    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2144    ObjCMethodRedecls[MD] = Redecl;
2145  }
2146
2147  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2148  /// an Objective-C method/property/ivar etc. that is part of an interface,
2149  /// otherwise returns null.
2150  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2151
2152  /// \brief Set the copy inialization expression of a block var decl.
2153  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2154  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2155  /// NULL if none exists.
2156  Expr *getBlockVarCopyInits(const VarDecl* VD);
2157
2158  /// \brief Allocate an uninitialized TypeSourceInfo.
2159  ///
2160  /// The caller should initialize the memory held by TypeSourceInfo using
2161  /// the TypeLoc wrappers.
2162  ///
2163  /// \param T the type that will be the basis for type source info. This type
2164  /// should refer to how the declarator was written in source code, not to
2165  /// what type semantic analysis resolved the declarator to.
2166  ///
2167  /// \param Size the size of the type info to create, or 0 if the size
2168  /// should be calculated based on the type.
2169  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2170
2171  /// \brief Allocate a TypeSourceInfo where all locations have been
2172  /// initialized to a given location, which defaults to the empty
2173  /// location.
2174  TypeSourceInfo *
2175  getTrivialTypeSourceInfo(QualType T,
2176                           SourceLocation Loc = SourceLocation()) const;
2177
2178  /// \brief Add a deallocation callback that will be invoked when the
2179  /// ASTContext is destroyed.
2180  ///
2181  /// \param Callback A callback function that will be invoked on destruction.
2182  ///
2183  /// \param Data Pointer data that will be provided to the callback function
2184  /// when it is called.
2185  void AddDeallocation(void (*Callback)(void*), void *Data);
2186
2187  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2188  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2189
2190  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2191  /// lazily, only when used; this is only relevant for function or file scoped
2192  /// var definitions.
2193  ///
2194  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2195  /// it is not used.
2196  bool DeclMustBeEmitted(const Decl *D);
2197
2198  const CXXConstructorDecl *
2199  getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2200
2201  void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2202                                            CXXConstructorDecl *CD);
2203
2204  void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
2205                                       unsigned ParmIdx, Expr *DAE);
2206
2207  Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
2208                                        unsigned ParmIdx);
2209
2210  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2211  unsigned getManglingNumber(const NamedDecl *ND) const;
2212
2213  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2214  unsigned getStaticLocalNumber(const VarDecl *VD) const;
2215
2216  /// \brief Retrieve the context for computing mangling numbers in the given
2217  /// DeclContext.
2218  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2219
2220  MangleNumberingContext *createMangleNumberingContext() const;
2221
2222  /// \brief Used by ParmVarDecl to store on the side the
2223  /// index of the parameter when it exceeds the size of the normal bitfield.
2224  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2225
2226  /// \brief Used by ParmVarDecl to retrieve on the side the
2227  /// index of the parameter when it exceeds the size of the normal bitfield.
2228  unsigned getParameterIndex(const ParmVarDecl *D) const;
2229
2230  /// \brief Get the storage for the constant value of a materialized temporary
2231  /// of static storage duration.
2232  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2233                                         bool MayCreate);
2234
2235  //===--------------------------------------------------------------------===//
2236  //                    Statistics
2237  //===--------------------------------------------------------------------===//
2238
2239  /// \brief The number of implicitly-declared default constructors.
2240  static unsigned NumImplicitDefaultConstructors;
2241
2242  /// \brief The number of implicitly-declared default constructors for
2243  /// which declarations were built.
2244  static unsigned NumImplicitDefaultConstructorsDeclared;
2245
2246  /// \brief The number of implicitly-declared copy constructors.
2247  static unsigned NumImplicitCopyConstructors;
2248
2249  /// \brief The number of implicitly-declared copy constructors for
2250  /// which declarations were built.
2251  static unsigned NumImplicitCopyConstructorsDeclared;
2252
2253  /// \brief The number of implicitly-declared move constructors.
2254  static unsigned NumImplicitMoveConstructors;
2255
2256  /// \brief The number of implicitly-declared move constructors for
2257  /// which declarations were built.
2258  static unsigned NumImplicitMoveConstructorsDeclared;
2259
2260  /// \brief The number of implicitly-declared copy assignment operators.
2261  static unsigned NumImplicitCopyAssignmentOperators;
2262
2263  /// \brief The number of implicitly-declared copy assignment operators for
2264  /// which declarations were built.
2265  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2266
2267  /// \brief The number of implicitly-declared move assignment operators.
2268  static unsigned NumImplicitMoveAssignmentOperators;
2269
2270  /// \brief The number of implicitly-declared move assignment operators for
2271  /// which declarations were built.
2272  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2273
2274  /// \brief The number of implicitly-declared destructors.
2275  static unsigned NumImplicitDestructors;
2276
2277  /// \brief The number of implicitly-declared destructors for which
2278  /// declarations were built.
2279  static unsigned NumImplicitDestructorsDeclared;
2280
2281private:
2282  ASTContext(const ASTContext &) = delete;
2283  void operator=(const ASTContext &) = delete;
2284
2285public:
2286  /// \brief Initialize built-in types.
2287  ///
2288  /// This routine may only be invoked once for a given ASTContext object.
2289  /// It is normally invoked after ASTContext construction.
2290  ///
2291  /// \param Target The target
2292  void InitBuiltinTypes(const TargetInfo &Target);
2293
2294private:
2295  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2296
2297  // Return the Objective-C type encoding for a given type.
2298  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2299                                  bool ExpandPointedToStructures,
2300                                  bool ExpandStructures,
2301                                  const FieldDecl *Field,
2302                                  bool OutermostType = false,
2303                                  bool EncodingProperty = false,
2304                                  bool StructField = false,
2305                                  bool EncodeBlockParameters = false,
2306                                  bool EncodeClassNames = false,
2307                                  bool EncodePointerToObjCTypedef = false,
2308                                  QualType *NotEncodedT=nullptr) const;
2309
2310  // Adds the encoding of the structure's members.
2311  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2312                                       const FieldDecl *Field,
2313                                       bool includeVBases = true,
2314                                       QualType *NotEncodedT=nullptr) const;
2315public:
2316  // Adds the encoding of a method parameter or return type.
2317  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2318                                         QualType T, std::string& S,
2319                                         bool Extended) const;
2320
2321  /// \brief Returns true if this is an inline-initialized static data member
2322  /// which is treated as a definition for MSVC compatibility.
2323  bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
2324
2325private:
2326  const ASTRecordLayout &
2327  getObjCLayout(const ObjCInterfaceDecl *D,
2328                const ObjCImplementationDecl *Impl) const;
2329
2330  /// \brief A set of deallocations that should be performed when the
2331  /// ASTContext is destroyed.
2332  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2333    DeallocationMap;
2334  DeallocationMap Deallocations;
2335
2336  // FIXME: This currently contains the set of StoredDeclMaps used
2337  // by DeclContext objects.  This probably should not be in ASTContext,
2338  // but we include it here so that ASTContext can quickly deallocate them.
2339  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2340
2341  friend class DeclContext;
2342  friend class DeclarationNameTable;
2343  void ReleaseDeclContextMaps();
2344  void ReleaseParentMapEntries();
2345
2346  std::unique_ptr<ParentMap> AllParents;
2347
2348  std::unique_ptr<VTableContextBase> VTContext;
2349
2350public:
2351  enum PragmaSectionFlag : unsigned {
2352    PSF_None = 0,
2353    PSF_Read = 0x1,
2354    PSF_Write = 0x2,
2355    PSF_Execute = 0x4,
2356    PSF_Implicit = 0x8,
2357    PSF_Invalid = 0x80000000U,
2358  };
2359
2360  struct SectionInfo {
2361    DeclaratorDecl *Decl;
2362    SourceLocation PragmaSectionLocation;
2363    int SectionFlags;
2364    SectionInfo() {}
2365    SectionInfo(DeclaratorDecl *Decl,
2366                SourceLocation PragmaSectionLocation,
2367                int SectionFlags)
2368      : Decl(Decl),
2369        PragmaSectionLocation(PragmaSectionLocation),
2370        SectionFlags(SectionFlags) {}
2371  };
2372
2373  llvm::StringMap<SectionInfo> SectionInfos;
2374};
2375
2376/// \brief Utility function for constructing a nullary selector.
2377static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2378  IdentifierInfo* II = &Ctx.Idents.get(name);
2379  return Ctx.Selectors.getSelector(0, &II);
2380}
2381
2382/// \brief Utility function for constructing an unary selector.
2383static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2384  IdentifierInfo* II = &Ctx.Idents.get(name);
2385  return Ctx.Selectors.getSelector(1, &II);
2386}
2387
2388}  // end namespace clang
2389
2390// operator new and delete aren't allowed inside namespaces.
2391
2392/// @brief Placement new for using the ASTContext's allocator.
2393///
2394/// This placement form of operator new uses the ASTContext's allocator for
2395/// obtaining memory.
2396///
2397/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2398/// here need to also be made there.
2399///
2400/// We intentionally avoid using a nothrow specification here so that the calls
2401/// to this operator will not perform a null check on the result -- the
2402/// underlying allocator never returns null pointers.
2403///
2404/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2405/// @code
2406/// // Default alignment (8)
2407/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2408/// // Specific alignment
2409/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2410/// @endcode
2411/// Memory allocated through this placement new operator does not need to be
2412/// explicitly freed, as ASTContext will free all of this memory when it gets
2413/// destroyed. Please note that you cannot use delete on the pointer.
2414///
2415/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2416/// @param C The ASTContext that provides the allocator.
2417/// @param Alignment The alignment of the allocated memory (if the underlying
2418///                  allocator supports it).
2419/// @return The allocated memory. Could be NULL.
2420inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2421                          size_t Alignment) {
2422  return C.Allocate(Bytes, Alignment);
2423}
2424/// @brief Placement delete companion to the new above.
2425///
2426/// This operator is just a companion to the new above. There is no way of
2427/// invoking it directly; see the new operator for more details. This operator
2428/// is called implicitly by the compiler if a placement new expression using
2429/// the ASTContext throws in the object constructor.
2430inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2431  C.Deallocate(Ptr);
2432}
2433
2434/// This placement form of operator new[] uses the ASTContext's allocator for
2435/// obtaining memory.
2436///
2437/// We intentionally avoid using a nothrow specification here so that the calls
2438/// to this operator will not perform a null check on the result -- the
2439/// underlying allocator never returns null pointers.
2440///
2441/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2442/// @code
2443/// // Default alignment (8)
2444/// char *data = new (Context) char[10];
2445/// // Specific alignment
2446/// char *data = new (Context, 4) char[10];
2447/// @endcode
2448/// Memory allocated through this placement new[] operator does not need to be
2449/// explicitly freed, as ASTContext will free all of this memory when it gets
2450/// destroyed. Please note that you cannot use delete on the pointer.
2451///
2452/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2453/// @param C The ASTContext that provides the allocator.
2454/// @param Alignment The alignment of the allocated memory (if the underlying
2455///                  allocator supports it).
2456/// @return The allocated memory. Could be NULL.
2457inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2458                            size_t Alignment = 8) {
2459  return C.Allocate(Bytes, Alignment);
2460}
2461
2462/// @brief Placement delete[] companion to the new[] above.
2463///
2464/// This operator is just a companion to the new[] above. There is no way of
2465/// invoking it directly; see the new[] operator for more details. This operator
2466/// is called implicitly by the compiler if a placement new[] expression using
2467/// the ASTContext throws in the object constructor.
2468inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2469  C.Deallocate(Ptr);
2470}
2471
2472/// \brief Create the representation of a LazyGenerationalUpdatePtr.
2473template <typename Owner, typename T,
2474          void (clang::ExternalASTSource::*Update)(Owner)>
2475typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
2476    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
2477        const clang::ASTContext &Ctx, T Value) {
2478  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
2479  // include ASTContext.h. We explicitly instantiate it for all relevant types
2480  // in ASTContext.cpp.
2481  if (auto *Source = Ctx.getExternalSource())
2482    return new (Ctx) LazyData(Source, Value);
2483  return Value;
2484}
2485
2486#endif
2487