1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides Objective-C code generation targeting the GNU runtime.  The
11// class in this file generates structures used by the GNU Objective-C runtime
12// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13// the GNU runtime distribution.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGObjCRuntime.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Basic/FileManager.h"
27#include "clang/Basic/SourceManager.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/Compiler.h"
36#include <cstdarg>
37
38
39using namespace clang;
40using namespace CodeGen;
41
42
43namespace {
44/// Class that lazily initialises the runtime function.  Avoids inserting the
45/// types and the function declaration into a module if they're not used, and
46/// avoids constructing the type more than once if it's used more than once.
47class LazyRuntimeFunction {
48  CodeGenModule *CGM;
49  std::vector<llvm::Type*> ArgTys;
50  const char *FunctionName;
51  llvm::Constant *Function;
52  public:
53    /// Constructor leaves this class uninitialized, because it is intended to
54    /// be used as a field in another class and not all of the types that are
55    /// used as arguments will necessarily be available at construction time.
56    LazyRuntimeFunction()
57      : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
58
59    /// Initialises the lazy function with the name, return type, and the types
60    /// of the arguments.
61    LLVM_END_WITH_NULL
62    void init(CodeGenModule *Mod, const char *name,
63        llvm::Type *RetTy, ...) {
64       CGM =Mod;
65       FunctionName = name;
66       Function = nullptr;
67       ArgTys.clear();
68       va_list Args;
69       va_start(Args, RetTy);
70         while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
71           ArgTys.push_back(ArgTy);
72       va_end(Args);
73       // Push the return type on at the end so we can pop it off easily
74       ArgTys.push_back(RetTy);
75   }
76   /// Overloaded cast operator, allows the class to be implicitly cast to an
77   /// LLVM constant.
78   operator llvm::Constant*() {
79     if (!Function) {
80       if (!FunctionName) return nullptr;
81       // We put the return type on the end of the vector, so pop it back off
82       llvm::Type *RetTy = ArgTys.back();
83       ArgTys.pop_back();
84       llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
85       Function =
86         cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
87       // We won't need to use the types again, so we may as well clean up the
88       // vector now
89       ArgTys.resize(0);
90     }
91     return Function;
92   }
93   operator llvm::Function*() {
94     return cast<llvm::Function>((llvm::Constant*)*this);
95   }
96
97};
98
99
100/// GNU Objective-C runtime code generation.  This class implements the parts of
101/// Objective-C support that are specific to the GNU family of runtimes (GCC,
102/// GNUstep and ObjFW).
103class CGObjCGNU : public CGObjCRuntime {
104protected:
105  /// The LLVM module into which output is inserted
106  llvm::Module &TheModule;
107  /// strut objc_super.  Used for sending messages to super.  This structure
108  /// contains the receiver (object) and the expected class.
109  llvm::StructType *ObjCSuperTy;
110  /// struct objc_super*.  The type of the argument to the superclass message
111  /// lookup functions.
112  llvm::PointerType *PtrToObjCSuperTy;
113  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
114  /// SEL is included in a header somewhere, in which case it will be whatever
115  /// type is declared in that header, most likely {i8*, i8*}.
116  llvm::PointerType *SelectorTy;
117  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
118  /// places where it's used
119  llvm::IntegerType *Int8Ty;
120  /// Pointer to i8 - LLVM type of char*, for all of the places where the
121  /// runtime needs to deal with C strings.
122  llvm::PointerType *PtrToInt8Ty;
123  /// Instance Method Pointer type.  This is a pointer to a function that takes,
124  /// at a minimum, an object and a selector, and is the generic type for
125  /// Objective-C methods.  Due to differences between variadic / non-variadic
126  /// calling conventions, it must always be cast to the correct type before
127  /// actually being used.
128  llvm::PointerType *IMPTy;
129  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
130  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
131  /// but if the runtime header declaring it is included then it may be a
132  /// pointer to a structure.
133  llvm::PointerType *IdTy;
134  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
135  /// message lookup function and some GC-related functions.
136  llvm::PointerType *PtrToIdTy;
137  /// The clang type of id.  Used when using the clang CGCall infrastructure to
138  /// call Objective-C methods.
139  CanQualType ASTIdTy;
140  /// LLVM type for C int type.
141  llvm::IntegerType *IntTy;
142  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
143  /// used in the code to document the difference between i8* meaning a pointer
144  /// to a C string and i8* meaning a pointer to some opaque type.
145  llvm::PointerType *PtrTy;
146  /// LLVM type for C long type.  The runtime uses this in a lot of places where
147  /// it should be using intptr_t, but we can't fix this without breaking
148  /// compatibility with GCC...
149  llvm::IntegerType *LongTy;
150  /// LLVM type for C size_t.  Used in various runtime data structures.
151  llvm::IntegerType *SizeTy;
152  /// LLVM type for C intptr_t.
153  llvm::IntegerType *IntPtrTy;
154  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
155  llvm::IntegerType *PtrDiffTy;
156  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
157  /// variables.
158  llvm::PointerType *PtrToIntTy;
159  /// LLVM type for Objective-C BOOL type.
160  llvm::Type *BoolTy;
161  /// 32-bit integer type, to save us needing to look it up every time it's used.
162  llvm::IntegerType *Int32Ty;
163  /// 64-bit integer type, to save us needing to look it up every time it's used.
164  llvm::IntegerType *Int64Ty;
165  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
166  /// runtime provides some LLVM passes that can use this to do things like
167  /// automatic IMP caching and speculative inlining.
168  unsigned msgSendMDKind;
169  /// Helper function that generates a constant string and returns a pointer to
170  /// the start of the string.  The result of this function can be used anywhere
171  /// where the C code specifies const char*.
172  llvm::Constant *MakeConstantString(const std::string &Str,
173                                     const std::string &Name="") {
174    auto *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
175    return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
176                                                ConstStr, Zeros);
177  }
178  /// Emits a linkonce_odr string, whose name is the prefix followed by the
179  /// string value.  This allows the linker to combine the strings between
180  /// different modules.  Used for EH typeinfo names, selector strings, and a
181  /// few other things.
182  llvm::Constant *ExportUniqueString(const std::string &Str,
183                                     const std::string prefix) {
184    std::string name = prefix + Str;
185    auto *ConstStr = TheModule.getGlobalVariable(name);
186    if (!ConstStr) {
187      llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
188      ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
189              llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
190    }
191    return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
192                                                ConstStr, Zeros);
193  }
194  /// Generates a global structure, initialized by the elements in the vector.
195  /// The element types must match the types of the structure elements in the
196  /// first argument.
197  llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
198                                   ArrayRef<llvm::Constant *> V,
199                                   StringRef Name="",
200                                   llvm::GlobalValue::LinkageTypes linkage
201                                         =llvm::GlobalValue::InternalLinkage) {
202    llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
203    return new llvm::GlobalVariable(TheModule, Ty, false,
204        linkage, C, Name);
205  }
206  /// Generates a global array.  The vector must contain the same number of
207  /// elements that the array type declares, of the type specified as the array
208  /// element type.
209  llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
210                                   ArrayRef<llvm::Constant *> V,
211                                   StringRef Name="",
212                                   llvm::GlobalValue::LinkageTypes linkage
213                                         =llvm::GlobalValue::InternalLinkage) {
214    llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
215    return new llvm::GlobalVariable(TheModule, Ty, false,
216                                    linkage, C, Name);
217  }
218  /// Generates a global array, inferring the array type from the specified
219  /// element type and the size of the initialiser.
220  llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
221                                        ArrayRef<llvm::Constant *> V,
222                                        StringRef Name="",
223                                        llvm::GlobalValue::LinkageTypes linkage
224                                         =llvm::GlobalValue::InternalLinkage) {
225    llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
226    return MakeGlobal(ArrayTy, V, Name, linkage);
227  }
228  /// Returns a property name and encoding string.
229  llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
230                                             const Decl *Container) {
231    const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
232    if ((R.getKind() == ObjCRuntime::GNUstep) &&
233        (R.getVersion() >= VersionTuple(1, 6))) {
234      std::string NameAndAttributes;
235      std::string TypeStr;
236      CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
237      NameAndAttributes += '\0';
238      NameAndAttributes += TypeStr.length() + 3;
239      NameAndAttributes += TypeStr;
240      NameAndAttributes += '\0';
241      NameAndAttributes += PD->getNameAsString();
242      auto *ConstStr = CGM.GetAddrOfConstantCString(NameAndAttributes);
243      return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
244                                                  ConstStr, Zeros);
245    }
246    return MakeConstantString(PD->getNameAsString());
247  }
248  /// Push the property attributes into two structure fields.
249  void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
250      ObjCPropertyDecl *property, bool isSynthesized=true, bool
251      isDynamic=true) {
252    int attrs = property->getPropertyAttributes();
253    // For read-only properties, clear the copy and retain flags
254    if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
255      attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
256      attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
257      attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
258      attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
259    }
260    // The first flags field has the same attribute values as clang uses internally
261    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
262    attrs >>= 8;
263    attrs <<= 2;
264    // For protocol properties, synthesized and dynamic have no meaning, so we
265    // reuse these flags to indicate that this is a protocol property (both set
266    // has no meaning, as a property can't be both synthesized and dynamic)
267    attrs |= isSynthesized ? (1<<0) : 0;
268    attrs |= isDynamic ? (1<<1) : 0;
269    // The second field is the next four fields left shifted by two, with the
270    // low bit set to indicate whether the field is synthesized or dynamic.
271    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
272    // Two padding fields
273    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
274    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
275  }
276  /// Ensures that the value has the required type, by inserting a bitcast if
277  /// required.  This function lets us avoid inserting bitcasts that are
278  /// redundant.
279  llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
280    if (V->getType() == Ty) return V;
281    return B.CreateBitCast(V, Ty);
282  }
283  // Some zeros used for GEPs in lots of places.
284  llvm::Constant *Zeros[2];
285  /// Null pointer value.  Mainly used as a terminator in various arrays.
286  llvm::Constant *NULLPtr;
287  /// LLVM context.
288  llvm::LLVMContext &VMContext;
289private:
290  /// Placeholder for the class.  Lots of things refer to the class before we've
291  /// actually emitted it.  We use this alias as a placeholder, and then replace
292  /// it with a pointer to the class structure before finally emitting the
293  /// module.
294  llvm::GlobalAlias *ClassPtrAlias;
295  /// Placeholder for the metaclass.  Lots of things refer to the class before
296  /// we've / actually emitted it.  We use this alias as a placeholder, and then
297  /// replace / it with a pointer to the metaclass structure before finally
298  /// emitting the / module.
299  llvm::GlobalAlias *MetaClassPtrAlias;
300  /// All of the classes that have been generated for this compilation units.
301  std::vector<llvm::Constant*> Classes;
302  /// All of the categories that have been generated for this compilation units.
303  std::vector<llvm::Constant*> Categories;
304  /// All of the Objective-C constant strings that have been generated for this
305  /// compilation units.
306  std::vector<llvm::Constant*> ConstantStrings;
307  /// Map from string values to Objective-C constant strings in the output.
308  /// Used to prevent emitting Objective-C strings more than once.  This should
309  /// not be required at all - CodeGenModule should manage this list.
310  llvm::StringMap<llvm::Constant*> ObjCStrings;
311  /// All of the protocols that have been declared.
312  llvm::StringMap<llvm::Constant*> ExistingProtocols;
313  /// For each variant of a selector, we store the type encoding and a
314  /// placeholder value.  For an untyped selector, the type will be the empty
315  /// string.  Selector references are all done via the module's selector table,
316  /// so we create an alias as a placeholder and then replace it with the real
317  /// value later.
318  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
319  /// Type of the selector map.  This is roughly equivalent to the structure
320  /// used in the GNUstep runtime, which maintains a list of all of the valid
321  /// types for a selector in a table.
322  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
323    SelectorMap;
324  /// A map from selectors to selector types.  This allows us to emit all
325  /// selectors of the same name and type together.
326  SelectorMap SelectorTable;
327
328  /// Selectors related to memory management.  When compiling in GC mode, we
329  /// omit these.
330  Selector RetainSel, ReleaseSel, AutoreleaseSel;
331  /// Runtime functions used for memory management in GC mode.  Note that clang
332  /// supports code generation for calling these functions, but neither GNU
333  /// runtime actually supports this API properly yet.
334  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
335    WeakAssignFn, GlobalAssignFn;
336
337  typedef std::pair<std::string, std::string> ClassAliasPair;
338  /// All classes that have aliases set for them.
339  std::vector<ClassAliasPair> ClassAliases;
340
341protected:
342  /// Function used for throwing Objective-C exceptions.
343  LazyRuntimeFunction ExceptionThrowFn;
344  /// Function used for rethrowing exceptions, used at the end of \@finally or
345  /// \@synchronize blocks.
346  LazyRuntimeFunction ExceptionReThrowFn;
347  /// Function called when entering a catch function.  This is required for
348  /// differentiating Objective-C exceptions and foreign exceptions.
349  LazyRuntimeFunction EnterCatchFn;
350  /// Function called when exiting from a catch block.  Used to do exception
351  /// cleanup.
352  LazyRuntimeFunction ExitCatchFn;
353  /// Function called when entering an \@synchronize block.  Acquires the lock.
354  LazyRuntimeFunction SyncEnterFn;
355  /// Function called when exiting an \@synchronize block.  Releases the lock.
356  LazyRuntimeFunction SyncExitFn;
357
358private:
359
360  /// Function called if fast enumeration detects that the collection is
361  /// modified during the update.
362  LazyRuntimeFunction EnumerationMutationFn;
363  /// Function for implementing synthesized property getters that return an
364  /// object.
365  LazyRuntimeFunction GetPropertyFn;
366  /// Function for implementing synthesized property setters that return an
367  /// object.
368  LazyRuntimeFunction SetPropertyFn;
369  /// Function used for non-object declared property getters.
370  LazyRuntimeFunction GetStructPropertyFn;
371  /// Function used for non-object declared property setters.
372  LazyRuntimeFunction SetStructPropertyFn;
373
374  /// The version of the runtime that this class targets.  Must match the
375  /// version in the runtime.
376  int RuntimeVersion;
377  /// The version of the protocol class.  Used to differentiate between ObjC1
378  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
379  /// components and can not contain declared properties.  We always emit
380  /// Objective-C 2 property structures, but we have to pretend that they're
381  /// Objective-C 1 property structures when targeting the GCC runtime or it
382  /// will abort.
383  const int ProtocolVersion;
384private:
385  /// Generates an instance variable list structure.  This is a structure
386  /// containing a size and an array of structures containing instance variable
387  /// metadata.  This is used purely for introspection in the fragile ABI.  In
388  /// the non-fragile ABI, it's used for instance variable fixup.
389  llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
390                                   ArrayRef<llvm::Constant *> IvarTypes,
391                                   ArrayRef<llvm::Constant *> IvarOffsets);
392  /// Generates a method list structure.  This is a structure containing a size
393  /// and an array of structures containing method metadata.
394  ///
395  /// This structure is used by both classes and categories, and contains a next
396  /// pointer allowing them to be chained together in a linked list.
397  llvm::Constant *GenerateMethodList(StringRef ClassName,
398      StringRef CategoryName,
399      ArrayRef<Selector> MethodSels,
400      ArrayRef<llvm::Constant *> MethodTypes,
401      bool isClassMethodList);
402  /// Emits an empty protocol.  This is used for \@protocol() where no protocol
403  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
404  /// real protocol.
405  llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
406  /// Generates a list of property metadata structures.  This follows the same
407  /// pattern as method and instance variable metadata lists.
408  llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
409        SmallVectorImpl<Selector> &InstanceMethodSels,
410        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
411  /// Generates a list of referenced protocols.  Classes, categories, and
412  /// protocols all use this structure.
413  llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
414  /// To ensure that all protocols are seen by the runtime, we add a category on
415  /// a class defined in the runtime, declaring no methods, but adopting the
416  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
417  /// of the protocols without changing the ABI.
418  void GenerateProtocolHolderCategory();
419  /// Generates a class structure.
420  llvm::Constant *GenerateClassStructure(
421      llvm::Constant *MetaClass,
422      llvm::Constant *SuperClass,
423      unsigned info,
424      const char *Name,
425      llvm::Constant *Version,
426      llvm::Constant *InstanceSize,
427      llvm::Constant *IVars,
428      llvm::Constant *Methods,
429      llvm::Constant *Protocols,
430      llvm::Constant *IvarOffsets,
431      llvm::Constant *Properties,
432      llvm::Constant *StrongIvarBitmap,
433      llvm::Constant *WeakIvarBitmap,
434      bool isMeta=false);
435  /// Generates a method list.  This is used by protocols to define the required
436  /// and optional methods.
437  llvm::Constant *GenerateProtocolMethodList(
438      ArrayRef<llvm::Constant *> MethodNames,
439      ArrayRef<llvm::Constant *> MethodTypes);
440  /// Returns a selector with the specified type encoding.  An empty string is
441  /// used to return an untyped selector (with the types field set to NULL).
442  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
443    const std::string &TypeEncoding, bool lval);
444  /// Returns the variable used to store the offset of an instance variable.
445  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
446      const ObjCIvarDecl *Ivar);
447  /// Emits a reference to a class.  This allows the linker to object if there
448  /// is no class of the matching name.
449protected:
450  void EmitClassRef(const std::string &className);
451  /// Emits a pointer to the named class
452  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
453                                     const std::string &Name, bool isWeak);
454  /// Looks up the method for sending a message to the specified object.  This
455  /// mechanism differs between the GCC and GNU runtimes, so this method must be
456  /// overridden in subclasses.
457  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
458                                 llvm::Value *&Receiver,
459                                 llvm::Value *cmd,
460                                 llvm::MDNode *node,
461                                 MessageSendInfo &MSI) = 0;
462  /// Looks up the method for sending a message to a superclass.  This
463  /// mechanism differs between the GCC and GNU runtimes, so this method must
464  /// be overridden in subclasses.
465  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
466                                      llvm::Value *ObjCSuper,
467                                      llvm::Value *cmd,
468                                      MessageSendInfo &MSI) = 0;
469  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
470  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
471  /// bits set to their values, LSB first, while larger ones are stored in a
472  /// structure of this / form:
473  ///
474  /// struct { int32_t length; int32_t values[length]; };
475  ///
476  /// The values in the array are stored in host-endian format, with the least
477  /// significant bit being assumed to come first in the bitfield.  Therefore,
478  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
479  /// while a bitfield / with the 63rd bit set will be 1<<64.
480  llvm::Constant *MakeBitField(ArrayRef<bool> bits);
481public:
482  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
483      unsigned protocolClassVersion);
484
485  llvm::Constant *GenerateConstantString(const StringLiteral *) override;
486
487  RValue
488  GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
489                      QualType ResultType, Selector Sel,
490                      llvm::Value *Receiver, const CallArgList &CallArgs,
491                      const ObjCInterfaceDecl *Class,
492                      const ObjCMethodDecl *Method) override;
493  RValue
494  GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
495                           QualType ResultType, Selector Sel,
496                           const ObjCInterfaceDecl *Class,
497                           bool isCategoryImpl, llvm::Value *Receiver,
498                           bool IsClassMessage, const CallArgList &CallArgs,
499                           const ObjCMethodDecl *Method) override;
500  llvm::Value *GetClass(CodeGenFunction &CGF,
501                        const ObjCInterfaceDecl *OID) override;
502  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
503                           bool lval = false) override;
504  llvm::Value *GetSelector(CodeGenFunction &CGF,
505                           const ObjCMethodDecl *Method) override;
506  llvm::Constant *GetEHType(QualType T) override;
507
508  llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
509                                 const ObjCContainerDecl *CD) override;
510  void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
511  void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
512  void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
513  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
514                                   const ObjCProtocolDecl *PD) override;
515  void GenerateProtocol(const ObjCProtocolDecl *PD) override;
516  llvm::Function *ModuleInitFunction() override;
517  llvm::Constant *GetPropertyGetFunction() override;
518  llvm::Constant *GetPropertySetFunction() override;
519  llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
520                                                  bool copy) override;
521  llvm::Constant *GetSetStructFunction() override;
522  llvm::Constant *GetGetStructFunction() override;
523  llvm::Constant *GetCppAtomicObjectGetFunction() override;
524  llvm::Constant *GetCppAtomicObjectSetFunction() override;
525  llvm::Constant *EnumerationMutationFunction() override;
526
527  void EmitTryStmt(CodeGenFunction &CGF,
528                   const ObjCAtTryStmt &S) override;
529  void EmitSynchronizedStmt(CodeGenFunction &CGF,
530                            const ObjCAtSynchronizedStmt &S) override;
531  void EmitThrowStmt(CodeGenFunction &CGF,
532                     const ObjCAtThrowStmt &S,
533                     bool ClearInsertionPoint=true) override;
534  llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
535                                 llvm::Value *AddrWeakObj) override;
536  void EmitObjCWeakAssign(CodeGenFunction &CGF,
537                          llvm::Value *src, llvm::Value *dst) override;
538  void EmitObjCGlobalAssign(CodeGenFunction &CGF,
539                            llvm::Value *src, llvm::Value *dest,
540                            bool threadlocal=false) override;
541  void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
542                          llvm::Value *dest, llvm::Value *ivarOffset) override;
543  void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
544                                llvm::Value *src, llvm::Value *dest) override;
545  void EmitGCMemmoveCollectable(CodeGenFunction &CGF, llvm::Value *DestPtr,
546                                llvm::Value *SrcPtr,
547                                llvm::Value *Size) override;
548  LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
549                              llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
550                              unsigned CVRQualifiers) override;
551  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
552                              const ObjCInterfaceDecl *Interface,
553                              const ObjCIvarDecl *Ivar) override;
554  llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
555  llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
556                                     const CGBlockInfo &blockInfo) override {
557    return NULLPtr;
558  }
559  llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
560                                     const CGBlockInfo &blockInfo) override {
561    return NULLPtr;
562  }
563
564  llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
565    return NULLPtr;
566  }
567
568  llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
569                                       bool Weak = false) override {
570    return nullptr;
571  }
572};
573/// Class representing the legacy GCC Objective-C ABI.  This is the default when
574/// -fobjc-nonfragile-abi is not specified.
575///
576/// The GCC ABI target actually generates code that is approximately compatible
577/// with the new GNUstep runtime ABI, but refrains from using any features that
578/// would not work with the GCC runtime.  For example, clang always generates
579/// the extended form of the class structure, and the extra fields are simply
580/// ignored by GCC libobjc.
581class CGObjCGCC : public CGObjCGNU {
582  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
583  /// method implementation for this message.
584  LazyRuntimeFunction MsgLookupFn;
585  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
586  /// structure describing the receiver and the class, and a selector as
587  /// arguments.  Returns the IMP for the corresponding method.
588  LazyRuntimeFunction MsgLookupSuperFn;
589protected:
590  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
591                         llvm::Value *cmd, llvm::MDNode *node,
592                         MessageSendInfo &MSI) override {
593    CGBuilderTy &Builder = CGF.Builder;
594    llvm::Value *args[] = {
595            EnforceType(Builder, Receiver, IdTy),
596            EnforceType(Builder, cmd, SelectorTy) };
597    llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
598    imp->setMetadata(msgSendMDKind, node);
599    return imp.getInstruction();
600  }
601  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
602                              llvm::Value *cmd, MessageSendInfo &MSI) override {
603      CGBuilderTy &Builder = CGF.Builder;
604      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
605          PtrToObjCSuperTy), cmd};
606      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
607    }
608  public:
609    CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
610      // IMP objc_msg_lookup(id, SEL);
611      MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
612                       nullptr);
613      // IMP objc_msg_lookup_super(struct objc_super*, SEL);
614      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
615              PtrToObjCSuperTy, SelectorTy, nullptr);
616    }
617};
618/// Class used when targeting the new GNUstep runtime ABI.
619class CGObjCGNUstep : public CGObjCGNU {
620    /// The slot lookup function.  Returns a pointer to a cacheable structure
621    /// that contains (among other things) the IMP.
622    LazyRuntimeFunction SlotLookupFn;
623    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
624    /// a structure describing the receiver and the class, and a selector as
625    /// arguments.  Returns the slot for the corresponding method.  Superclass
626    /// message lookup rarely changes, so this is a good caching opportunity.
627    LazyRuntimeFunction SlotLookupSuperFn;
628    /// Specialised function for setting atomic retain properties
629    LazyRuntimeFunction SetPropertyAtomic;
630    /// Specialised function for setting atomic copy properties
631    LazyRuntimeFunction SetPropertyAtomicCopy;
632    /// Specialised function for setting nonatomic retain properties
633    LazyRuntimeFunction SetPropertyNonAtomic;
634    /// Specialised function for setting nonatomic copy properties
635    LazyRuntimeFunction SetPropertyNonAtomicCopy;
636    /// Function to perform atomic copies of C++ objects with nontrivial copy
637    /// constructors from Objective-C ivars.
638    LazyRuntimeFunction CxxAtomicObjectGetFn;
639    /// Function to perform atomic copies of C++ objects with nontrivial copy
640    /// constructors to Objective-C ivars.
641    LazyRuntimeFunction CxxAtomicObjectSetFn;
642    /// Type of an slot structure pointer.  This is returned by the various
643    /// lookup functions.
644    llvm::Type *SlotTy;
645  public:
646    llvm::Constant *GetEHType(QualType T) override;
647  protected:
648    llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
649                           llvm::Value *cmd, llvm::MDNode *node,
650                           MessageSendInfo &MSI) override {
651      CGBuilderTy &Builder = CGF.Builder;
652      llvm::Function *LookupFn = SlotLookupFn;
653
654      // Store the receiver on the stack so that we can reload it later
655      llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
656      Builder.CreateStore(Receiver, ReceiverPtr);
657
658      llvm::Value *self;
659
660      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
661        self = CGF.LoadObjCSelf();
662      } else {
663        self = llvm::ConstantPointerNull::get(IdTy);
664      }
665
666      // The lookup function is guaranteed not to capture the receiver pointer.
667      LookupFn->setDoesNotCapture(1);
668
669      llvm::Value *args[] = {
670              EnforceType(Builder, ReceiverPtr, PtrToIdTy),
671              EnforceType(Builder, cmd, SelectorTy),
672              EnforceType(Builder, self, IdTy) };
673      llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
674      slot.setOnlyReadsMemory();
675      slot->setMetadata(msgSendMDKind, node);
676
677      // Load the imp from the slot
678      llvm::Value *imp = Builder.CreateLoad(
679          Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4));
680
681      // The lookup function may have changed the receiver, so make sure we use
682      // the new one.
683      Receiver = Builder.CreateLoad(ReceiverPtr, true);
684      return imp;
685    }
686    llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
687                                llvm::Value *cmd,
688                                MessageSendInfo &MSI) override {
689      CGBuilderTy &Builder = CGF.Builder;
690      llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
691
692      llvm::CallInst *slot =
693        CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
694      slot->setOnlyReadsMemory();
695
696      return Builder.CreateLoad(Builder.CreateStructGEP(nullptr, slot, 4));
697    }
698  public:
699    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
700      const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
701
702      llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
703          PtrTy, PtrTy, IntTy, IMPTy, nullptr);
704      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
705      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
706      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
707          SelectorTy, IdTy, nullptr);
708      // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
709      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
710              PtrToObjCSuperTy, SelectorTy, nullptr);
711      // If we're in ObjC++ mode, then we want to make
712      if (CGM.getLangOpts().CPlusPlus) {
713        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
714        // void *__cxa_begin_catch(void *e)
715        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
716        // void __cxa_end_catch(void)
717        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
718        // void _Unwind_Resume_or_Rethrow(void*)
719        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
720            PtrTy, nullptr);
721      } else if (R.getVersion() >= VersionTuple(1, 7)) {
722        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
723        // id objc_begin_catch(void *e)
724        EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
725        // void objc_end_catch(void)
726        ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
727        // void _Unwind_Resume_or_Rethrow(void*)
728        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
729            PtrTy, nullptr);
730      }
731      llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
732      SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
733          SelectorTy, IdTy, PtrDiffTy, nullptr);
734      SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
735          IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
736      SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
737          IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
738      SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
739          VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
740      // void objc_setCppObjectAtomic(void *dest, const void *src, void
741      // *helper);
742      CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
743          PtrTy, PtrTy, nullptr);
744      // void objc_getCppObjectAtomic(void *dest, const void *src, void
745      // *helper);
746      CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
747          PtrTy, PtrTy, nullptr);
748    }
749    llvm::Constant *GetCppAtomicObjectGetFunction() override {
750      // The optimised functions were added in version 1.7 of the GNUstep
751      // runtime.
752      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
753          VersionTuple(1, 7));
754      return CxxAtomicObjectGetFn;
755    }
756    llvm::Constant *GetCppAtomicObjectSetFunction() override {
757      // The optimised functions were added in version 1.7 of the GNUstep
758      // runtime.
759      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
760          VersionTuple(1, 7));
761      return CxxAtomicObjectSetFn;
762    }
763    llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
764                                                    bool copy) override {
765      // The optimised property functions omit the GC check, and so are not
766      // safe to use in GC mode.  The standard functions are fast in GC mode,
767      // so there is less advantage in using them.
768      assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
769      // The optimised functions were added in version 1.7 of the GNUstep
770      // runtime.
771      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
772          VersionTuple(1, 7));
773
774      if (atomic) {
775        if (copy) return SetPropertyAtomicCopy;
776        return SetPropertyAtomic;
777      }
778
779      return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
780    }
781};
782
783/// Support for the ObjFW runtime.
784class CGObjCObjFW: public CGObjCGNU {
785protected:
786  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
787  /// method implementation for this message.
788  LazyRuntimeFunction MsgLookupFn;
789  /// stret lookup function.  While this does not seem to make sense at the
790  /// first look, this is required to call the correct forwarding function.
791  LazyRuntimeFunction MsgLookupFnSRet;
792  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
793  /// structure describing the receiver and the class, and a selector as
794  /// arguments.  Returns the IMP for the corresponding method.
795  LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
796
797  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
798                         llvm::Value *cmd, llvm::MDNode *node,
799                         MessageSendInfo &MSI) override {
800    CGBuilderTy &Builder = CGF.Builder;
801    llvm::Value *args[] = {
802            EnforceType(Builder, Receiver, IdTy),
803            EnforceType(Builder, cmd, SelectorTy) };
804
805    llvm::CallSite imp;
806    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
807      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
808    else
809      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
810
811    imp->setMetadata(msgSendMDKind, node);
812    return imp.getInstruction();
813  }
814
815  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
816                              llvm::Value *cmd, MessageSendInfo &MSI) override {
817      CGBuilderTy &Builder = CGF.Builder;
818      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
819          PtrToObjCSuperTy), cmd};
820
821      if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
822        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
823      else
824        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
825    }
826
827  llvm::Value *GetClassNamed(CodeGenFunction &CGF,
828                             const std::string &Name, bool isWeak) override {
829    if (isWeak)
830      return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
831
832    EmitClassRef(Name);
833
834    std::string SymbolName = "_OBJC_CLASS_" + Name;
835
836    llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
837
838    if (!ClassSymbol)
839      ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
840                                             llvm::GlobalValue::ExternalLinkage,
841                                             nullptr, SymbolName);
842
843    return ClassSymbol;
844  }
845
846public:
847  CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
848    // IMP objc_msg_lookup(id, SEL);
849    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
850    MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
851                         SelectorTy, nullptr);
852    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
853    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
854                          PtrToObjCSuperTy, SelectorTy, nullptr);
855    MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
856                              PtrToObjCSuperTy, SelectorTy, nullptr);
857  }
858};
859} // end anonymous namespace
860
861
862/// Emits a reference to a dummy variable which is emitted with each class.
863/// This ensures that a linker error will be generated when trying to link
864/// together modules where a referenced class is not defined.
865void CGObjCGNU::EmitClassRef(const std::string &className) {
866  std::string symbolRef = "__objc_class_ref_" + className;
867  // Don't emit two copies of the same symbol
868  if (TheModule.getGlobalVariable(symbolRef))
869    return;
870  std::string symbolName = "__objc_class_name_" + className;
871  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
872  if (!ClassSymbol) {
873    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
874                                           llvm::GlobalValue::ExternalLinkage,
875                                           nullptr, symbolName);
876  }
877  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
878    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
879}
880
881static std::string SymbolNameForMethod( StringRef ClassName,
882     StringRef CategoryName, const Selector MethodName,
883    bool isClassMethod) {
884  std::string MethodNameColonStripped = MethodName.getAsString();
885  std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
886      ':', '_');
887  return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
888    CategoryName + "_" + MethodNameColonStripped).str();
889}
890
891CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
892                     unsigned protocolClassVersion)
893  : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
894    VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
895    MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
896    ProtocolVersion(protocolClassVersion) {
897
898  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
899
900  CodeGenTypes &Types = CGM.getTypes();
901  IntTy = cast<llvm::IntegerType>(
902      Types.ConvertType(CGM.getContext().IntTy));
903  LongTy = cast<llvm::IntegerType>(
904      Types.ConvertType(CGM.getContext().LongTy));
905  SizeTy = cast<llvm::IntegerType>(
906      Types.ConvertType(CGM.getContext().getSizeType()));
907  PtrDiffTy = cast<llvm::IntegerType>(
908      Types.ConvertType(CGM.getContext().getPointerDiffType()));
909  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
910
911  Int8Ty = llvm::Type::getInt8Ty(VMContext);
912  // C string type.  Used in lots of places.
913  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
914
915  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
916  Zeros[1] = Zeros[0];
917  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
918  // Get the selector Type.
919  QualType selTy = CGM.getContext().getObjCSelType();
920  if (QualType() == selTy) {
921    SelectorTy = PtrToInt8Ty;
922  } else {
923    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
924  }
925
926  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
927  PtrTy = PtrToInt8Ty;
928
929  Int32Ty = llvm::Type::getInt32Ty(VMContext);
930  Int64Ty = llvm::Type::getInt64Ty(VMContext);
931
932  IntPtrTy =
933      CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
934
935  // Object type
936  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
937  ASTIdTy = CanQualType();
938  if (UnqualIdTy != QualType()) {
939    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
940    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
941  } else {
942    IdTy = PtrToInt8Ty;
943  }
944  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
945
946  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
947  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
948
949  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
950
951  // void objc_exception_throw(id);
952  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
953  ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
954  // int objc_sync_enter(id);
955  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
956  // int objc_sync_exit(id);
957  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
958
959  // void objc_enumerationMutation (id)
960  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
961      IdTy, nullptr);
962
963  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
964  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
965      PtrDiffTy, BoolTy, nullptr);
966  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
967  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
968      PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
969  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
970  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
971      PtrDiffTy, BoolTy, BoolTy, nullptr);
972  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
973  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
974      PtrDiffTy, BoolTy, BoolTy, nullptr);
975
976  // IMP type
977  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
978  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
979              true));
980
981  const LangOptions &Opts = CGM.getLangOpts();
982  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
983    RuntimeVersion = 10;
984
985  // Don't bother initialising the GC stuff unless we're compiling in GC mode
986  if (Opts.getGC() != LangOptions::NonGC) {
987    // This is a bit of an hack.  We should sort this out by having a proper
988    // CGObjCGNUstep subclass for GC, but we may want to really support the old
989    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
990    // Get selectors needed in GC mode
991    RetainSel = GetNullarySelector("retain", CGM.getContext());
992    ReleaseSel = GetNullarySelector("release", CGM.getContext());
993    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
994
995    // Get functions needed in GC mode
996
997    // id objc_assign_ivar(id, id, ptrdiff_t);
998    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
999        nullptr);
1000    // id objc_assign_strongCast (id, id*)
1001    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1002        PtrToIdTy, nullptr);
1003    // id objc_assign_global(id, id*);
1004    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1005        nullptr);
1006    // id objc_assign_weak(id, id*);
1007    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1008    // id objc_read_weak(id*);
1009    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1010    // void *objc_memmove_collectable(void*, void *, size_t);
1011    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1012        SizeTy, nullptr);
1013  }
1014}
1015
1016llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1017                                      const std::string &Name,
1018                                      bool isWeak) {
1019  llvm::GlobalVariable *ClassNameGV = CGM.GetAddrOfConstantCString(Name);
1020  // With the incompatible ABI, this will need to be replaced with a direct
1021  // reference to the class symbol.  For the compatible nonfragile ABI we are
1022  // still performing this lookup at run time but emitting the symbol for the
1023  // class externally so that we can make the switch later.
1024  //
1025  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1026  // with memoized versions or with static references if it's safe to do so.
1027  if (!isWeak)
1028    EmitClassRef(Name);
1029  llvm::Value *ClassName =
1030      CGF.Builder.CreateStructGEP(ClassNameGV->getValueType(), ClassNameGV, 0);
1031
1032  llvm::Constant *ClassLookupFn =
1033    CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1034                              "objc_lookup_class");
1035  return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1036}
1037
1038// This has to perform the lookup every time, since posing and related
1039// techniques can modify the name -> class mapping.
1040llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1041                                 const ObjCInterfaceDecl *OID) {
1042  return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1043}
1044llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1045  return GetClassNamed(CGF, "NSAutoreleasePool", false);
1046}
1047
1048llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1049    const std::string &TypeEncoding, bool lval) {
1050
1051  SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1052  llvm::GlobalAlias *SelValue = nullptr;
1053
1054  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1055      e = Types.end() ; i!=e ; i++) {
1056    if (i->first == TypeEncoding) {
1057      SelValue = i->second;
1058      break;
1059    }
1060  }
1061  if (!SelValue) {
1062    SelValue = llvm::GlobalAlias::create(
1063        SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1064        ".objc_selector_" + Sel.getAsString(), &TheModule);
1065    Types.push_back(TypedSelector(TypeEncoding, SelValue));
1066  }
1067
1068  if (lval) {
1069    llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
1070    CGF.Builder.CreateStore(SelValue, tmp);
1071    return tmp;
1072  }
1073  return SelValue;
1074}
1075
1076llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1077                                    bool lval) {
1078  return GetSelector(CGF, Sel, std::string(), lval);
1079}
1080
1081llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1082                                    const ObjCMethodDecl *Method) {
1083  std::string SelTypes;
1084  CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1085  return GetSelector(CGF, Method->getSelector(), SelTypes, false);
1086}
1087
1088llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1089  if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1090    // With the old ABI, there was only one kind of catchall, which broke
1091    // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
1092    // a pointer indicating object catchalls, and NULL to indicate real
1093    // catchalls
1094    if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1095      return MakeConstantString("@id");
1096    } else {
1097      return nullptr;
1098    }
1099  }
1100
1101  // All other types should be Objective-C interface pointer types.
1102  const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1103  assert(OPT && "Invalid @catch type.");
1104  const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1105  assert(IDecl && "Invalid @catch type.");
1106  return MakeConstantString(IDecl->getIdentifier()->getName());
1107}
1108
1109llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1110  if (!CGM.getLangOpts().CPlusPlus)
1111    return CGObjCGNU::GetEHType(T);
1112
1113  // For Objective-C++, we want to provide the ability to catch both C++ and
1114  // Objective-C objects in the same function.
1115
1116  // There's a particular fixed type info for 'id'.
1117  if (T->isObjCIdType() ||
1118      T->isObjCQualifiedIdType()) {
1119    llvm::Constant *IDEHType =
1120      CGM.getModule().getGlobalVariable("__objc_id_type_info");
1121    if (!IDEHType)
1122      IDEHType =
1123        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1124                                 false,
1125                                 llvm::GlobalValue::ExternalLinkage,
1126                                 nullptr, "__objc_id_type_info");
1127    return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1128  }
1129
1130  const ObjCObjectPointerType *PT =
1131    T->getAs<ObjCObjectPointerType>();
1132  assert(PT && "Invalid @catch type.");
1133  const ObjCInterfaceType *IT = PT->getInterfaceType();
1134  assert(IT && "Invalid @catch type.");
1135  std::string className = IT->getDecl()->getIdentifier()->getName();
1136
1137  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1138
1139  // Return the existing typeinfo if it exists
1140  llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1141  if (typeinfo)
1142    return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1143
1144  // Otherwise create it.
1145
1146  // vtable for gnustep::libobjc::__objc_class_type_info
1147  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
1148  // platform's name mangling.
1149  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1150  auto *Vtable = TheModule.getGlobalVariable(vtableName);
1151  if (!Vtable) {
1152    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1153                                      llvm::GlobalValue::ExternalLinkage,
1154                                      nullptr, vtableName);
1155  }
1156  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1157  auto *BVtable = llvm::ConstantExpr::getBitCast(
1158      llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
1159      PtrToInt8Ty);
1160
1161  llvm::Constant *typeName =
1162    ExportUniqueString(className, "__objc_eh_typename_");
1163
1164  std::vector<llvm::Constant*> fields;
1165  fields.push_back(BVtable);
1166  fields.push_back(typeName);
1167  llvm::Constant *TI =
1168      MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1169              nullptr), fields, "__objc_eh_typeinfo_" + className,
1170          llvm::GlobalValue::LinkOnceODRLinkage);
1171  return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1172}
1173
1174/// Generate an NSConstantString object.
1175llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1176
1177  std::string Str = SL->getString().str();
1178
1179  // Look for an existing one
1180  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1181  if (old != ObjCStrings.end())
1182    return old->getValue();
1183
1184  StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1185
1186  if (StringClass.empty()) StringClass = "NXConstantString";
1187
1188  std::string Sym = "_OBJC_CLASS_";
1189  Sym += StringClass;
1190
1191  llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1192
1193  if (!isa)
1194    isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1195            llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1196  else if (isa->getType() != PtrToIdTy)
1197    isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1198
1199  std::vector<llvm::Constant*> Ivars;
1200  Ivars.push_back(isa);
1201  Ivars.push_back(MakeConstantString(Str));
1202  Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1203  llvm::Constant *ObjCStr = MakeGlobal(
1204    llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1205    Ivars, ".objc_str");
1206  ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1207  ObjCStrings[Str] = ObjCStr;
1208  ConstantStrings.push_back(ObjCStr);
1209  return ObjCStr;
1210}
1211
1212///Generates a message send where the super is the receiver.  This is a message
1213///send to self with special delivery semantics indicating which class's method
1214///should be called.
1215RValue
1216CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1217                                    ReturnValueSlot Return,
1218                                    QualType ResultType,
1219                                    Selector Sel,
1220                                    const ObjCInterfaceDecl *Class,
1221                                    bool isCategoryImpl,
1222                                    llvm::Value *Receiver,
1223                                    bool IsClassMessage,
1224                                    const CallArgList &CallArgs,
1225                                    const ObjCMethodDecl *Method) {
1226  CGBuilderTy &Builder = CGF.Builder;
1227  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1228    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1229      return RValue::get(EnforceType(Builder, Receiver,
1230                  CGM.getTypes().ConvertType(ResultType)));
1231    }
1232    if (Sel == ReleaseSel) {
1233      return RValue::get(nullptr);
1234    }
1235  }
1236
1237  llvm::Value *cmd = GetSelector(CGF, Sel);
1238
1239
1240  CallArgList ActualArgs;
1241
1242  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1243  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1244  ActualArgs.addFrom(CallArgs);
1245
1246  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1247
1248  llvm::Value *ReceiverClass = nullptr;
1249  if (isCategoryImpl) {
1250    llvm::Constant *classLookupFunction = nullptr;
1251    if (IsClassMessage)  {
1252      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1253            IdTy, PtrTy, true), "objc_get_meta_class");
1254    } else {
1255      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1256            IdTy, PtrTy, true), "objc_get_class");
1257    }
1258    ReceiverClass = Builder.CreateCall(classLookupFunction,
1259        MakeConstantString(Class->getNameAsString()));
1260  } else {
1261    // Set up global aliases for the metaclass or class pointer if they do not
1262    // already exist.  These will are forward-references which will be set to
1263    // pointers to the class and metaclass structure created for the runtime
1264    // load function.  To send a message to super, we look up the value of the
1265    // super_class pointer from either the class or metaclass structure.
1266    if (IsClassMessage)  {
1267      if (!MetaClassPtrAlias) {
1268        MetaClassPtrAlias = llvm::GlobalAlias::create(
1269            IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1270            ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1271      }
1272      ReceiverClass = MetaClassPtrAlias;
1273    } else {
1274      if (!ClassPtrAlias) {
1275        ClassPtrAlias = llvm::GlobalAlias::create(
1276            IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1277            ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1278      }
1279      ReceiverClass = ClassPtrAlias;
1280    }
1281  }
1282  // Cast the pointer to a simplified version of the class structure
1283  llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
1284  ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1285                                        llvm::PointerType::getUnqual(CastTy));
1286  // Get the superclass pointer
1287  ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
1288  // Load the superclass pointer
1289  ReceiverClass = Builder.CreateLoad(ReceiverClass);
1290  // Construct the structure used to look up the IMP
1291  llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1292      Receiver->getType(), IdTy, nullptr);
1293  llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1294
1295  Builder.CreateStore(Receiver,
1296                      Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 0));
1297  Builder.CreateStore(ReceiverClass,
1298                      Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 1));
1299
1300  ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1301
1302  // Get the IMP
1303  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1304  imp = EnforceType(Builder, imp, MSI.MessengerType);
1305
1306  llvm::Metadata *impMD[] = {
1307      llvm::MDString::get(VMContext, Sel.getAsString()),
1308      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1309      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310          llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
1311  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1312
1313  llvm::Instruction *call;
1314  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1315                               &call);
1316  call->setMetadata(msgSendMDKind, node);
1317  return msgRet;
1318}
1319
1320/// Generate code for a message send expression.
1321RValue
1322CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1323                               ReturnValueSlot Return,
1324                               QualType ResultType,
1325                               Selector Sel,
1326                               llvm::Value *Receiver,
1327                               const CallArgList &CallArgs,
1328                               const ObjCInterfaceDecl *Class,
1329                               const ObjCMethodDecl *Method) {
1330  CGBuilderTy &Builder = CGF.Builder;
1331
1332  // Strip out message sends to retain / release in GC mode
1333  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1334    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1335      return RValue::get(EnforceType(Builder, Receiver,
1336                  CGM.getTypes().ConvertType(ResultType)));
1337    }
1338    if (Sel == ReleaseSel) {
1339      return RValue::get(nullptr);
1340    }
1341  }
1342
1343  // If the return type is something that goes in an integer register, the
1344  // runtime will handle 0 returns.  For other cases, we fill in the 0 value
1345  // ourselves.
1346  //
1347  // The language spec says the result of this kind of message send is
1348  // undefined, but lots of people seem to have forgotten to read that
1349  // paragraph and insist on sending messages to nil that have structure
1350  // returns.  With GCC, this generates a random return value (whatever happens
1351  // to be on the stack / in those registers at the time) on most platforms,
1352  // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
1353  // the stack.
1354  bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1355      ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1356
1357  llvm::BasicBlock *startBB = nullptr;
1358  llvm::BasicBlock *messageBB = nullptr;
1359  llvm::BasicBlock *continueBB = nullptr;
1360
1361  if (!isPointerSizedReturn) {
1362    startBB = Builder.GetInsertBlock();
1363    messageBB = CGF.createBasicBlock("msgSend");
1364    continueBB = CGF.createBasicBlock("continue");
1365
1366    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1367            llvm::Constant::getNullValue(Receiver->getType()));
1368    Builder.CreateCondBr(isNil, continueBB, messageBB);
1369    CGF.EmitBlock(messageBB);
1370  }
1371
1372  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1373  llvm::Value *cmd;
1374  if (Method)
1375    cmd = GetSelector(CGF, Method);
1376  else
1377    cmd = GetSelector(CGF, Sel);
1378  cmd = EnforceType(Builder, cmd, SelectorTy);
1379  Receiver = EnforceType(Builder, Receiver, IdTy);
1380
1381  llvm::Metadata *impMD[] = {
1382      llvm::MDString::get(VMContext, Sel.getAsString()),
1383      llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
1384      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1385          llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
1386  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1387
1388  CallArgList ActualArgs;
1389  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1390  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1391  ActualArgs.addFrom(CallArgs);
1392
1393  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1394
1395  // Get the IMP to call
1396  llvm::Value *imp;
1397
1398  // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1399  // functions.  These are not supported on all platforms (or all runtimes on a
1400  // given platform), so we
1401  switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1402    case CodeGenOptions::Legacy:
1403      imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1404      break;
1405    case CodeGenOptions::Mixed:
1406    case CodeGenOptions::NonLegacy:
1407      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1408        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1409                                  "objc_msgSend_fpret");
1410      } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1411        // The actual types here don't matter - we're going to bitcast the
1412        // function anyway
1413        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1414                                  "objc_msgSend_stret");
1415      } else {
1416        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1417                                  "objc_msgSend");
1418      }
1419  }
1420
1421  // Reset the receiver in case the lookup modified it
1422  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1423
1424  imp = EnforceType(Builder, imp, MSI.MessengerType);
1425
1426  llvm::Instruction *call;
1427  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1428                               &call);
1429  call->setMetadata(msgSendMDKind, node);
1430
1431
1432  if (!isPointerSizedReturn) {
1433    messageBB = CGF.Builder.GetInsertBlock();
1434    CGF.Builder.CreateBr(continueBB);
1435    CGF.EmitBlock(continueBB);
1436    if (msgRet.isScalar()) {
1437      llvm::Value *v = msgRet.getScalarVal();
1438      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1439      phi->addIncoming(v, messageBB);
1440      phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1441      msgRet = RValue::get(phi);
1442    } else if (msgRet.isAggregate()) {
1443      llvm::Value *v = msgRet.getAggregateAddr();
1444      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1445      llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1446      llvm::AllocaInst *NullVal =
1447          CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1448      CGF.InitTempAlloca(NullVal,
1449          llvm::Constant::getNullValue(RetTy->getElementType()));
1450      phi->addIncoming(v, messageBB);
1451      phi->addIncoming(NullVal, startBB);
1452      msgRet = RValue::getAggregate(phi);
1453    } else /* isComplex() */ {
1454      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1455      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1456      phi->addIncoming(v.first, messageBB);
1457      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1458          startBB);
1459      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1460      phi2->addIncoming(v.second, messageBB);
1461      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1462          startBB);
1463      msgRet = RValue::getComplex(phi, phi2);
1464    }
1465  }
1466  return msgRet;
1467}
1468
1469/// Generates a MethodList.  Used in construction of a objc_class and
1470/// objc_category structures.
1471llvm::Constant *CGObjCGNU::
1472GenerateMethodList(StringRef ClassName,
1473                   StringRef CategoryName,
1474                   ArrayRef<Selector> MethodSels,
1475                   ArrayRef<llvm::Constant *> MethodTypes,
1476                   bool isClassMethodList) {
1477  if (MethodSels.empty())
1478    return NULLPtr;
1479  // Get the method structure type.
1480  llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1481    PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1482    PtrToInt8Ty, // Method types
1483    IMPTy, //Method pointer
1484    nullptr);
1485  std::vector<llvm::Constant*> Methods;
1486  std::vector<llvm::Constant*> Elements;
1487  for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1488    Elements.clear();
1489    llvm::Constant *Method =
1490      TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1491                                                MethodSels[i],
1492                                                isClassMethodList));
1493    assert(Method && "Can't generate metadata for method that doesn't exist");
1494    llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1495    Elements.push_back(C);
1496    Elements.push_back(MethodTypes[i]);
1497    Method = llvm::ConstantExpr::getBitCast(Method,
1498        IMPTy);
1499    Elements.push_back(Method);
1500    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1501  }
1502
1503  // Array of method structures
1504  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1505                                                            Methods.size());
1506  llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1507                                                         Methods);
1508
1509  // Structure containing list pointer, array and array count
1510  llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1511  llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1512  ObjCMethodListTy->setBody(
1513      NextPtrTy,
1514      IntTy,
1515      ObjCMethodArrayTy,
1516      nullptr);
1517
1518  Methods.clear();
1519  Methods.push_back(llvm::ConstantPointerNull::get(
1520        llvm::PointerType::getUnqual(ObjCMethodListTy)));
1521  Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1522  Methods.push_back(MethodArray);
1523
1524  // Create an instance of the structure
1525  return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1526}
1527
1528/// Generates an IvarList.  Used in construction of a objc_class.
1529llvm::Constant *CGObjCGNU::
1530GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1531                 ArrayRef<llvm::Constant *> IvarTypes,
1532                 ArrayRef<llvm::Constant *> IvarOffsets) {
1533  if (IvarNames.size() == 0)
1534    return NULLPtr;
1535  // Get the method structure type.
1536  llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1537    PtrToInt8Ty,
1538    PtrToInt8Ty,
1539    IntTy,
1540    nullptr);
1541  std::vector<llvm::Constant*> Ivars;
1542  std::vector<llvm::Constant*> Elements;
1543  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1544    Elements.clear();
1545    Elements.push_back(IvarNames[i]);
1546    Elements.push_back(IvarTypes[i]);
1547    Elements.push_back(IvarOffsets[i]);
1548    Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1549  }
1550
1551  // Array of method structures
1552  llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1553      IvarNames.size());
1554
1555
1556  Elements.clear();
1557  Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1558  Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1559  // Structure containing array and array count
1560  llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1561    ObjCIvarArrayTy,
1562    nullptr);
1563
1564  // Create an instance of the structure
1565  return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1566}
1567
1568/// Generate a class structure
1569llvm::Constant *CGObjCGNU::GenerateClassStructure(
1570    llvm::Constant *MetaClass,
1571    llvm::Constant *SuperClass,
1572    unsigned info,
1573    const char *Name,
1574    llvm::Constant *Version,
1575    llvm::Constant *InstanceSize,
1576    llvm::Constant *IVars,
1577    llvm::Constant *Methods,
1578    llvm::Constant *Protocols,
1579    llvm::Constant *IvarOffsets,
1580    llvm::Constant *Properties,
1581    llvm::Constant *StrongIvarBitmap,
1582    llvm::Constant *WeakIvarBitmap,
1583    bool isMeta) {
1584  // Set up the class structure
1585  // Note:  Several of these are char*s when they should be ids.  This is
1586  // because the runtime performs this translation on load.
1587  //
1588  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
1589  // anyway; the classes will still work with the GNU runtime, they will just
1590  // be ignored.
1591  llvm::StructType *ClassTy = llvm::StructType::get(
1592      PtrToInt8Ty,        // isa
1593      PtrToInt8Ty,        // super_class
1594      PtrToInt8Ty,        // name
1595      LongTy,             // version
1596      LongTy,             // info
1597      LongTy,             // instance_size
1598      IVars->getType(),   // ivars
1599      Methods->getType(), // methods
1600      // These are all filled in by the runtime, so we pretend
1601      PtrTy,              // dtable
1602      PtrTy,              // subclass_list
1603      PtrTy,              // sibling_class
1604      PtrTy,              // protocols
1605      PtrTy,              // gc_object_type
1606      // New ABI:
1607      LongTy,                 // abi_version
1608      IvarOffsets->getType(), // ivar_offsets
1609      Properties->getType(),  // properties
1610      IntPtrTy,               // strong_pointers
1611      IntPtrTy,               // weak_pointers
1612      nullptr);
1613  llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1614  // Fill in the structure
1615  std::vector<llvm::Constant*> Elements;
1616  Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1617  Elements.push_back(SuperClass);
1618  Elements.push_back(MakeConstantString(Name, ".class_name"));
1619  Elements.push_back(Zero);
1620  Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1621  if (isMeta) {
1622    llvm::DataLayout td(&TheModule);
1623    Elements.push_back(
1624        llvm::ConstantInt::get(LongTy,
1625                               td.getTypeSizeInBits(ClassTy) /
1626                                 CGM.getContext().getCharWidth()));
1627  } else
1628    Elements.push_back(InstanceSize);
1629  Elements.push_back(IVars);
1630  Elements.push_back(Methods);
1631  Elements.push_back(NULLPtr);
1632  Elements.push_back(NULLPtr);
1633  Elements.push_back(NULLPtr);
1634  Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1635  Elements.push_back(NULLPtr);
1636  Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1637  Elements.push_back(IvarOffsets);
1638  Elements.push_back(Properties);
1639  Elements.push_back(StrongIvarBitmap);
1640  Elements.push_back(WeakIvarBitmap);
1641  // Create an instance of the structure
1642  // This is now an externally visible symbol, so that we can speed up class
1643  // messages in the next ABI.  We may already have some weak references to
1644  // this, so check and fix them properly.
1645  std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1646          std::string(Name));
1647  llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1648  llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1649          llvm::GlobalValue::ExternalLinkage);
1650  if (ClassRef) {
1651      ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1652                  ClassRef->getType()));
1653      ClassRef->removeFromParent();
1654      Class->setName(ClassSym);
1655  }
1656  return Class;
1657}
1658
1659llvm::Constant *CGObjCGNU::
1660GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1661                           ArrayRef<llvm::Constant *> MethodTypes) {
1662  // Get the method structure type.
1663  llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1664    PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1665    PtrToInt8Ty,
1666    nullptr);
1667  std::vector<llvm::Constant*> Methods;
1668  std::vector<llvm::Constant*> Elements;
1669  for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1670    Elements.clear();
1671    Elements.push_back(MethodNames[i]);
1672    Elements.push_back(MethodTypes[i]);
1673    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1674  }
1675  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1676      MethodNames.size());
1677  llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1678                                                   Methods);
1679  llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1680      IntTy, ObjCMethodArrayTy, nullptr);
1681  Methods.clear();
1682  Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1683  Methods.push_back(Array);
1684  return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1685}
1686
1687// Create the protocol list structure used in classes, categories and so on
1688llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1689  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1690      Protocols.size());
1691  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1692      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1693      SizeTy,
1694      ProtocolArrayTy,
1695      nullptr);
1696  std::vector<llvm::Constant*> Elements;
1697  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1698      iter != endIter ; iter++) {
1699    llvm::Constant *protocol = nullptr;
1700    llvm::StringMap<llvm::Constant*>::iterator value =
1701      ExistingProtocols.find(*iter);
1702    if (value == ExistingProtocols.end()) {
1703      protocol = GenerateEmptyProtocol(*iter);
1704    } else {
1705      protocol = value->getValue();
1706    }
1707    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1708                                                           PtrToInt8Ty);
1709    Elements.push_back(Ptr);
1710  }
1711  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1712      Elements);
1713  Elements.clear();
1714  Elements.push_back(NULLPtr);
1715  Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1716  Elements.push_back(ProtocolArray);
1717  return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1718}
1719
1720llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1721                                            const ObjCProtocolDecl *PD) {
1722  llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1723  llvm::Type *T =
1724    CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1725  return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1726}
1727
1728llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1729  const std::string &ProtocolName) {
1730  SmallVector<std::string, 0> EmptyStringVector;
1731  SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1732
1733  llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1734  llvm::Constant *MethodList =
1735    GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1736  // Protocols are objects containing lists of the methods implemented and
1737  // protocols adopted.
1738  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1739      PtrToInt8Ty,
1740      ProtocolList->getType(),
1741      MethodList->getType(),
1742      MethodList->getType(),
1743      MethodList->getType(),
1744      MethodList->getType(),
1745      nullptr);
1746  std::vector<llvm::Constant*> Elements;
1747  // The isa pointer must be set to a magic number so the runtime knows it's
1748  // the correct layout.
1749  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1750        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1751  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1752  Elements.push_back(ProtocolList);
1753  Elements.push_back(MethodList);
1754  Elements.push_back(MethodList);
1755  Elements.push_back(MethodList);
1756  Elements.push_back(MethodList);
1757  return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1758}
1759
1760void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1761  ASTContext &Context = CGM.getContext();
1762  std::string ProtocolName = PD->getNameAsString();
1763
1764  // Use the protocol definition, if there is one.
1765  if (const ObjCProtocolDecl *Def = PD->getDefinition())
1766    PD = Def;
1767
1768  SmallVector<std::string, 16> Protocols;
1769  for (const auto *PI : PD->protocols())
1770    Protocols.push_back(PI->getNameAsString());
1771  SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1772  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1773  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1774  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1775  for (const auto *I : PD->instance_methods()) {
1776    std::string TypeStr;
1777    Context.getObjCEncodingForMethodDecl(I, TypeStr);
1778    if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1779      OptionalInstanceMethodNames.push_back(
1780          MakeConstantString(I->getSelector().getAsString()));
1781      OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1782    } else {
1783      InstanceMethodNames.push_back(
1784          MakeConstantString(I->getSelector().getAsString()));
1785      InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1786    }
1787  }
1788  // Collect information about class methods:
1789  SmallVector<llvm::Constant*, 16> ClassMethodNames;
1790  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1791  SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1792  SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1793  for (const auto *I : PD->class_methods()) {
1794    std::string TypeStr;
1795    Context.getObjCEncodingForMethodDecl(I,TypeStr);
1796    if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1797      OptionalClassMethodNames.push_back(
1798          MakeConstantString(I->getSelector().getAsString()));
1799      OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1800    } else {
1801      ClassMethodNames.push_back(
1802          MakeConstantString(I->getSelector().getAsString()));
1803      ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1804    }
1805  }
1806
1807  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1808  llvm::Constant *InstanceMethodList =
1809    GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1810  llvm::Constant *ClassMethodList =
1811    GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1812  llvm::Constant *OptionalInstanceMethodList =
1813    GenerateProtocolMethodList(OptionalInstanceMethodNames,
1814            OptionalInstanceMethodTypes);
1815  llvm::Constant *OptionalClassMethodList =
1816    GenerateProtocolMethodList(OptionalClassMethodNames,
1817            OptionalClassMethodTypes);
1818
1819  // Property metadata: name, attributes, isSynthesized, setter name, setter
1820  // types, getter name, getter types.
1821  // The isSynthesized value is always set to 0 in a protocol.  It exists to
1822  // simplify the runtime library by allowing it to use the same data
1823  // structures for protocol metadata everywhere.
1824  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1825          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1826          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1827  std::vector<llvm::Constant*> Properties;
1828  std::vector<llvm::Constant*> OptionalProperties;
1829
1830  // Add all of the property methods need adding to the method list and to the
1831  // property metadata list.
1832  for (auto *property : PD->properties()) {
1833    std::vector<llvm::Constant*> Fields;
1834
1835    Fields.push_back(MakePropertyEncodingString(property, nullptr));
1836    PushPropertyAttributes(Fields, property);
1837
1838    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1839      std::string TypeStr;
1840      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1841      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1842      InstanceMethodTypes.push_back(TypeEncoding);
1843      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1844      Fields.push_back(TypeEncoding);
1845    } else {
1846      Fields.push_back(NULLPtr);
1847      Fields.push_back(NULLPtr);
1848    }
1849    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1850      std::string TypeStr;
1851      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1852      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1853      InstanceMethodTypes.push_back(TypeEncoding);
1854      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1855      Fields.push_back(TypeEncoding);
1856    } else {
1857      Fields.push_back(NULLPtr);
1858      Fields.push_back(NULLPtr);
1859    }
1860    if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1861      OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1862    } else {
1863      Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1864    }
1865  }
1866  llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1867      llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1868  llvm::Constant* PropertyListInitFields[] =
1869    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1870
1871  llvm::Constant *PropertyListInit =
1872      llvm::ConstantStruct::getAnon(PropertyListInitFields);
1873  llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1874      PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1875      PropertyListInit, ".objc_property_list");
1876
1877  llvm::Constant *OptionalPropertyArray =
1878      llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1879          OptionalProperties.size()) , OptionalProperties);
1880  llvm::Constant* OptionalPropertyListInitFields[] = {
1881      llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1882      OptionalPropertyArray };
1883
1884  llvm::Constant *OptionalPropertyListInit =
1885      llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1886  llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1887          OptionalPropertyListInit->getType(), false,
1888          llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1889          ".objc_property_list");
1890
1891  // Protocols are objects containing lists of the methods implemented and
1892  // protocols adopted.
1893  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1894      PtrToInt8Ty,
1895      ProtocolList->getType(),
1896      InstanceMethodList->getType(),
1897      ClassMethodList->getType(),
1898      OptionalInstanceMethodList->getType(),
1899      OptionalClassMethodList->getType(),
1900      PropertyList->getType(),
1901      OptionalPropertyList->getType(),
1902      nullptr);
1903  std::vector<llvm::Constant*> Elements;
1904  // The isa pointer must be set to a magic number so the runtime knows it's
1905  // the correct layout.
1906  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1907        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1908  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1909  Elements.push_back(ProtocolList);
1910  Elements.push_back(InstanceMethodList);
1911  Elements.push_back(ClassMethodList);
1912  Elements.push_back(OptionalInstanceMethodList);
1913  Elements.push_back(OptionalClassMethodList);
1914  Elements.push_back(PropertyList);
1915  Elements.push_back(OptionalPropertyList);
1916  ExistingProtocols[ProtocolName] =
1917    llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1918          ".objc_protocol"), IdTy);
1919}
1920void CGObjCGNU::GenerateProtocolHolderCategory() {
1921  // Collect information about instance methods
1922  SmallVector<Selector, 1> MethodSels;
1923  SmallVector<llvm::Constant*, 1> MethodTypes;
1924
1925  std::vector<llvm::Constant*> Elements;
1926  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1927  const std::string CategoryName = "AnotherHack";
1928  Elements.push_back(MakeConstantString(CategoryName));
1929  Elements.push_back(MakeConstantString(ClassName));
1930  // Instance method list
1931  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1932          ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1933  // Class method list
1934  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1935          ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1936  // Protocol list
1937  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1938      ExistingProtocols.size());
1939  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1940      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1941      SizeTy,
1942      ProtocolArrayTy,
1943      nullptr);
1944  std::vector<llvm::Constant*> ProtocolElements;
1945  for (llvm::StringMapIterator<llvm::Constant*> iter =
1946       ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1947       iter != endIter ; iter++) {
1948    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1949            PtrTy);
1950    ProtocolElements.push_back(Ptr);
1951  }
1952  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1953      ProtocolElements);
1954  ProtocolElements.clear();
1955  ProtocolElements.push_back(NULLPtr);
1956  ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1957              ExistingProtocols.size()));
1958  ProtocolElements.push_back(ProtocolArray);
1959  Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1960                  ProtocolElements, ".objc_protocol_list"), PtrTy));
1961  Categories.push_back(llvm::ConstantExpr::getBitCast(
1962        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1963            PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
1964}
1965
1966/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1967/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1968/// bits set to their values, LSB first, while larger ones are stored in a
1969/// structure of this / form:
1970///
1971/// struct { int32_t length; int32_t values[length]; };
1972///
1973/// The values in the array are stored in host-endian format, with the least
1974/// significant bit being assumed to come first in the bitfield.  Therefore, a
1975/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1976/// bitfield / with the 63rd bit set will be 1<<64.
1977llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1978  int bitCount = bits.size();
1979  int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
1980  if (bitCount < ptrBits) {
1981    uint64_t val = 1;
1982    for (int i=0 ; i<bitCount ; ++i) {
1983      if (bits[i]) val |= 1ULL<<(i+1);
1984    }
1985    return llvm::ConstantInt::get(IntPtrTy, val);
1986  }
1987  SmallVector<llvm::Constant *, 8> values;
1988  int v=0;
1989  while (v < bitCount) {
1990    int32_t word = 0;
1991    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
1992      if (bits[v]) word |= 1<<i;
1993      v++;
1994    }
1995    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1996  }
1997  llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1998  llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1999  llvm::Constant *fields[2] = {
2000      llvm::ConstantInt::get(Int32Ty, values.size()),
2001      array };
2002  llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2003        nullptr), fields);
2004  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2005  return ptr;
2006}
2007
2008void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2009  std::string ClassName = OCD->getClassInterface()->getNameAsString();
2010  std::string CategoryName = OCD->getNameAsString();
2011  // Collect information about instance methods
2012  SmallVector<Selector, 16> InstanceMethodSels;
2013  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2014  for (const auto *I : OCD->instance_methods()) {
2015    InstanceMethodSels.push_back(I->getSelector());
2016    std::string TypeStr;
2017    CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2018    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2019  }
2020
2021  // Collect information about class methods
2022  SmallVector<Selector, 16> ClassMethodSels;
2023  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2024  for (const auto *I : OCD->class_methods()) {
2025    ClassMethodSels.push_back(I->getSelector());
2026    std::string TypeStr;
2027    CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2028    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2029  }
2030
2031  // Collect the names of referenced protocols
2032  SmallVector<std::string, 16> Protocols;
2033  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2034  const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2035  for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2036       E = Protos.end(); I != E; ++I)
2037    Protocols.push_back((*I)->getNameAsString());
2038
2039  std::vector<llvm::Constant*> Elements;
2040  Elements.push_back(MakeConstantString(CategoryName));
2041  Elements.push_back(MakeConstantString(ClassName));
2042  // Instance method list
2043  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2044          ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2045          false), PtrTy));
2046  // Class method list
2047  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2048          ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2049        PtrTy));
2050  // Protocol list
2051  Elements.push_back(llvm::ConstantExpr::getBitCast(
2052        GenerateProtocolList(Protocols), PtrTy));
2053  Categories.push_back(llvm::ConstantExpr::getBitCast(
2054        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2055            PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
2056}
2057
2058llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2059        SmallVectorImpl<Selector> &InstanceMethodSels,
2060        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2061  ASTContext &Context = CGM.getContext();
2062  // Property metadata: name, attributes, attributes2, padding1, padding2,
2063  // setter name, setter types, getter name, getter types.
2064  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2065          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2066          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2067  std::vector<llvm::Constant*> Properties;
2068
2069  // Add all of the property methods need adding to the method list and to the
2070  // property metadata list.
2071  for (auto *propertyImpl : OID->property_impls()) {
2072    std::vector<llvm::Constant*> Fields;
2073    ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2074    bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2075        ObjCPropertyImplDecl::Synthesize);
2076    bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2077        ObjCPropertyImplDecl::Dynamic);
2078
2079    Fields.push_back(MakePropertyEncodingString(property, OID));
2080    PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2081    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2082      std::string TypeStr;
2083      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2084      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2085      if (isSynthesized) {
2086        InstanceMethodTypes.push_back(TypeEncoding);
2087        InstanceMethodSels.push_back(getter->getSelector());
2088      }
2089      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2090      Fields.push_back(TypeEncoding);
2091    } else {
2092      Fields.push_back(NULLPtr);
2093      Fields.push_back(NULLPtr);
2094    }
2095    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2096      std::string TypeStr;
2097      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2098      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2099      if (isSynthesized) {
2100        InstanceMethodTypes.push_back(TypeEncoding);
2101        InstanceMethodSels.push_back(setter->getSelector());
2102      }
2103      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2104      Fields.push_back(TypeEncoding);
2105    } else {
2106      Fields.push_back(NULLPtr);
2107      Fields.push_back(NULLPtr);
2108    }
2109    Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2110  }
2111  llvm::ArrayType *PropertyArrayTy =
2112      llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2113  llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2114          Properties);
2115  llvm::Constant* PropertyListInitFields[] =
2116    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2117
2118  llvm::Constant *PropertyListInit =
2119      llvm::ConstantStruct::getAnon(PropertyListInitFields);
2120  return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2121          llvm::GlobalValue::InternalLinkage, PropertyListInit,
2122          ".objc_property_list");
2123}
2124
2125void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2126  // Get the class declaration for which the alias is specified.
2127  ObjCInterfaceDecl *ClassDecl =
2128    const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2129  std::string ClassName = ClassDecl->getNameAsString();
2130  std::string AliasName = OAD->getNameAsString();
2131  ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
2132}
2133
2134void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2135  ASTContext &Context = CGM.getContext();
2136
2137  // Get the superclass name.
2138  const ObjCInterfaceDecl * SuperClassDecl =
2139    OID->getClassInterface()->getSuperClass();
2140  std::string SuperClassName;
2141  if (SuperClassDecl) {
2142    SuperClassName = SuperClassDecl->getNameAsString();
2143    EmitClassRef(SuperClassName);
2144  }
2145
2146  // Get the class name
2147  ObjCInterfaceDecl *ClassDecl =
2148    const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2149  std::string ClassName = ClassDecl->getNameAsString();
2150  // Emit the symbol that is used to generate linker errors if this class is
2151  // referenced in other modules but not declared.
2152  std::string classSymbolName = "__objc_class_name_" + ClassName;
2153  if (llvm::GlobalVariable *symbol =
2154      TheModule.getGlobalVariable(classSymbolName)) {
2155    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2156  } else {
2157    new llvm::GlobalVariable(TheModule, LongTy, false,
2158    llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2159    classSymbolName);
2160  }
2161
2162  // Get the size of instances.
2163  int instanceSize =
2164    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2165
2166  // Collect information about instance variables.
2167  SmallVector<llvm::Constant*, 16> IvarNames;
2168  SmallVector<llvm::Constant*, 16> IvarTypes;
2169  SmallVector<llvm::Constant*, 16> IvarOffsets;
2170
2171  std::vector<llvm::Constant*> IvarOffsetValues;
2172  SmallVector<bool, 16> WeakIvars;
2173  SmallVector<bool, 16> StrongIvars;
2174
2175  int superInstanceSize = !SuperClassDecl ? 0 :
2176    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2177  // For non-fragile ivars, set the instance size to 0 - {the size of just this
2178  // class}.  The runtime will then set this to the correct value on load.
2179  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2180    instanceSize = 0 - (instanceSize - superInstanceSize);
2181  }
2182
2183  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2184       IVD = IVD->getNextIvar()) {
2185      // Store the name
2186      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2187      // Get the type encoding for this ivar
2188      std::string TypeStr;
2189      Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2190      IvarTypes.push_back(MakeConstantString(TypeStr));
2191      // Get the offset
2192      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2193      uint64_t Offset = BaseOffset;
2194      if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2195        Offset = BaseOffset - superInstanceSize;
2196      }
2197      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2198      // Create the direct offset value
2199      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2200          IVD->getNameAsString();
2201      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2202      if (OffsetVar) {
2203        OffsetVar->setInitializer(OffsetValue);
2204        // If this is the real definition, change its linkage type so that
2205        // different modules will use this one, rather than their private
2206        // copy.
2207        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2208      } else
2209        OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2210          false, llvm::GlobalValue::ExternalLinkage,
2211          OffsetValue,
2212          "__objc_ivar_offset_value_" + ClassName +"." +
2213          IVD->getNameAsString());
2214      IvarOffsets.push_back(OffsetValue);
2215      IvarOffsetValues.push_back(OffsetVar);
2216      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2217      switch (lt) {
2218        case Qualifiers::OCL_Strong:
2219          StrongIvars.push_back(true);
2220          WeakIvars.push_back(false);
2221          break;
2222        case Qualifiers::OCL_Weak:
2223          StrongIvars.push_back(false);
2224          WeakIvars.push_back(true);
2225          break;
2226        default:
2227          StrongIvars.push_back(false);
2228          WeakIvars.push_back(false);
2229      }
2230  }
2231  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2232  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2233  llvm::GlobalVariable *IvarOffsetArray =
2234    MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2235
2236
2237  // Collect information about instance methods
2238  SmallVector<Selector, 16> InstanceMethodSels;
2239  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2240  for (const auto *I : OID->instance_methods()) {
2241    InstanceMethodSels.push_back(I->getSelector());
2242    std::string TypeStr;
2243    Context.getObjCEncodingForMethodDecl(I,TypeStr);
2244    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2245  }
2246
2247  llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2248          InstanceMethodTypes);
2249
2250
2251  // Collect information about class methods
2252  SmallVector<Selector, 16> ClassMethodSels;
2253  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2254  for (const auto *I : OID->class_methods()) {
2255    ClassMethodSels.push_back(I->getSelector());
2256    std::string TypeStr;
2257    Context.getObjCEncodingForMethodDecl(I,TypeStr);
2258    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2259  }
2260  // Collect the names of referenced protocols
2261  SmallVector<std::string, 16> Protocols;
2262  for (const auto *I : ClassDecl->protocols())
2263    Protocols.push_back(I->getNameAsString());
2264
2265  // Get the superclass pointer.
2266  llvm::Constant *SuperClass;
2267  if (!SuperClassName.empty()) {
2268    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2269  } else {
2270    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2271  }
2272  // Empty vector used to construct empty method lists
2273  SmallVector<llvm::Constant*, 1>  empty;
2274  // Generate the method and instance variable lists
2275  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2276      InstanceMethodSels, InstanceMethodTypes, false);
2277  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2278      ClassMethodSels, ClassMethodTypes, true);
2279  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2280      IvarOffsets);
2281  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2282  // we emit a symbol containing the offset for each ivar in the class.  This
2283  // allows code compiled for the non-Fragile ABI to inherit from code compiled
2284  // for the legacy ABI, without causing problems.  The converse is also
2285  // possible, but causes all ivar accesses to be fragile.
2286
2287  // Offset pointer for getting at the correct field in the ivar list when
2288  // setting up the alias.  These are: The base address for the global, the
2289  // ivar array (second field), the ivar in this list (set for each ivar), and
2290  // the offset (third field in ivar structure)
2291  llvm::Type *IndexTy = Int32Ty;
2292  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2293      llvm::ConstantInt::get(IndexTy, 1), nullptr,
2294      llvm::ConstantInt::get(IndexTy, 2) };
2295
2296  unsigned ivarIndex = 0;
2297  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2298       IVD = IVD->getNextIvar()) {
2299      const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2300          + IVD->getNameAsString();
2301      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2302      // Get the correct ivar field
2303      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2304          cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
2305          offsetPointerIndexes);
2306      // Get the existing variable, if one exists.
2307      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2308      if (offset) {
2309        offset->setInitializer(offsetValue);
2310        // If this is the real definition, change its linkage type so that
2311        // different modules will use this one, rather than their private
2312        // copy.
2313        offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2314      } else {
2315        // Add a new alias if there isn't one already.
2316        offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2317                false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2318        (void) offset; // Silence dead store warning.
2319      }
2320      ++ivarIndex;
2321  }
2322  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2323  //Generate metaclass for class methods
2324  llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2325      NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2326        empty, empty, empty), ClassMethodList, NULLPtr,
2327      NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2328
2329  // Generate the class structure
2330  llvm::Constant *ClassStruct =
2331    GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2332                           ClassName.c_str(), nullptr,
2333      llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2334      MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2335      Properties, StrongIvarBitmap, WeakIvarBitmap);
2336
2337  // Resolve the class aliases, if they exist.
2338  if (ClassPtrAlias) {
2339    ClassPtrAlias->replaceAllUsesWith(
2340        llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2341    ClassPtrAlias->eraseFromParent();
2342    ClassPtrAlias = nullptr;
2343  }
2344  if (MetaClassPtrAlias) {
2345    MetaClassPtrAlias->replaceAllUsesWith(
2346        llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2347    MetaClassPtrAlias->eraseFromParent();
2348    MetaClassPtrAlias = nullptr;
2349  }
2350
2351  // Add class structure to list to be added to the symtab later
2352  ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2353  Classes.push_back(ClassStruct);
2354}
2355
2356
2357llvm::Function *CGObjCGNU::ModuleInitFunction() {
2358  // Only emit an ObjC load function if no Objective-C stuff has been called
2359  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2360      ExistingProtocols.empty() && SelectorTable.empty())
2361    return nullptr;
2362
2363  // Add all referenced protocols to a category.
2364  GenerateProtocolHolderCategory();
2365
2366  llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2367          SelectorTy->getElementType());
2368  llvm::Type *SelStructPtrTy = SelectorTy;
2369  if (!SelStructTy) {
2370    SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2371    SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2372  }
2373
2374  std::vector<llvm::Constant*> Elements;
2375  llvm::Constant *Statics = NULLPtr;
2376  // Generate statics list:
2377  if (!ConstantStrings.empty()) {
2378    llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2379        ConstantStrings.size() + 1);
2380    ConstantStrings.push_back(NULLPtr);
2381
2382    StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2383
2384    if (StringClass.empty()) StringClass = "NXConstantString";
2385
2386    Elements.push_back(MakeConstantString(StringClass,
2387                ".objc_static_class_name"));
2388    Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2389       ConstantStrings));
2390    llvm::StructType *StaticsListTy =
2391      llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2392    llvm::Type *StaticsListPtrTy =
2393      llvm::PointerType::getUnqual(StaticsListTy);
2394    Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2395    llvm::ArrayType *StaticsListArrayTy =
2396      llvm::ArrayType::get(StaticsListPtrTy, 2);
2397    Elements.clear();
2398    Elements.push_back(Statics);
2399    Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2400    Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2401    Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2402  }
2403  // Array of classes, categories, and constant objects
2404  llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2405      Classes.size() + Categories.size()  + 2);
2406  llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2407                                                     llvm::Type::getInt16Ty(VMContext),
2408                                                     llvm::Type::getInt16Ty(VMContext),
2409                                                     ClassListTy, nullptr);
2410
2411  Elements.clear();
2412  // Pointer to an array of selectors used in this module.
2413  std::vector<llvm::Constant*> Selectors;
2414  std::vector<llvm::GlobalAlias*> SelectorAliases;
2415  for (SelectorMap::iterator iter = SelectorTable.begin(),
2416      iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2417
2418    std::string SelNameStr = iter->first.getAsString();
2419    llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2420
2421    SmallVectorImpl<TypedSelector> &Types = iter->second;
2422    for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2423        e = Types.end() ; i!=e ; i++) {
2424
2425      llvm::Constant *SelectorTypeEncoding = NULLPtr;
2426      if (!i->first.empty())
2427        SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2428
2429      Elements.push_back(SelName);
2430      Elements.push_back(SelectorTypeEncoding);
2431      Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2432      Elements.clear();
2433
2434      // Store the selector alias for later replacement
2435      SelectorAliases.push_back(i->second);
2436    }
2437  }
2438  unsigned SelectorCount = Selectors.size();
2439  // NULL-terminate the selector list.  This should not actually be required,
2440  // because the selector list has a length field.  Unfortunately, the GCC
2441  // runtime decides to ignore the length field and expects a NULL terminator,
2442  // and GCC cooperates with this by always setting the length to 0.
2443  Elements.push_back(NULLPtr);
2444  Elements.push_back(NULLPtr);
2445  Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2446  Elements.clear();
2447
2448  // Number of static selectors
2449  Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2450  llvm::GlobalVariable *SelectorList =
2451      MakeGlobalArray(SelStructTy, Selectors, ".objc_selector_list");
2452  Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2453    SelStructPtrTy));
2454
2455  // Now that all of the static selectors exist, create pointers to them.
2456  for (unsigned int i=0 ; i<SelectorCount ; i++) {
2457
2458    llvm::Constant *Idxs[] = {Zeros[0],
2459      llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2460    // FIXME: We're generating redundant loads and stores here!
2461    llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
2462        SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
2463    // If selectors are defined as an opaque type, cast the pointer to this
2464    // type.
2465    SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2466    SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2467    SelectorAliases[i]->eraseFromParent();
2468  }
2469
2470  // Number of classes defined.
2471  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2472        Classes.size()));
2473  // Number of categories defined
2474  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2475        Categories.size()));
2476  // Create an array of classes, then categories, then static object instances
2477  Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2478  //  NULL-terminated list of static object instances (mainly constant strings)
2479  Classes.push_back(Statics);
2480  Classes.push_back(NULLPtr);
2481  llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2482  Elements.push_back(ClassList);
2483  // Construct the symbol table
2484  llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2485
2486  // The symbol table is contained in a module which has some version-checking
2487  // constants
2488  llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2489      PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2490      (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2491  Elements.clear();
2492  // Runtime version, used for ABI compatibility checking.
2493  Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2494  // sizeof(ModuleTy)
2495  llvm::DataLayout td(&TheModule);
2496  Elements.push_back(
2497    llvm::ConstantInt::get(LongTy,
2498                           td.getTypeSizeInBits(ModuleTy) /
2499                             CGM.getContext().getCharWidth()));
2500
2501  // The path to the source file where this module was declared
2502  SourceManager &SM = CGM.getContext().getSourceManager();
2503  const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2504  std::string path =
2505    std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2506  Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2507  Elements.push_back(SymTab);
2508
2509  if (RuntimeVersion >= 10)
2510    switch (CGM.getLangOpts().getGC()) {
2511      case LangOptions::GCOnly:
2512        Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2513        break;
2514      case LangOptions::NonGC:
2515        if (CGM.getLangOpts().ObjCAutoRefCount)
2516          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2517        else
2518          Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2519        break;
2520      case LangOptions::HybridGC:
2521          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2522        break;
2523    }
2524
2525  llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2526
2527  // Create the load function calling the runtime entry point with the module
2528  // structure
2529  llvm::Function * LoadFunction = llvm::Function::Create(
2530      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2531      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2532      &TheModule);
2533  llvm::BasicBlock *EntryBB =
2534      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2535  CGBuilderTy Builder(VMContext);
2536  Builder.SetInsertPoint(EntryBB);
2537
2538  llvm::FunctionType *FT =
2539    llvm::FunctionType::get(Builder.getVoidTy(),
2540                            llvm::PointerType::getUnqual(ModuleTy), true);
2541  llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2542  Builder.CreateCall(Register, Module);
2543
2544  if (!ClassAliases.empty()) {
2545    llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2546    llvm::FunctionType *RegisterAliasTy =
2547      llvm::FunctionType::get(Builder.getVoidTy(),
2548                              ArgTypes, false);
2549    llvm::Function *RegisterAlias = llvm::Function::Create(
2550      RegisterAliasTy,
2551      llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2552      &TheModule);
2553    llvm::BasicBlock *AliasBB =
2554      llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2555    llvm::BasicBlock *NoAliasBB =
2556      llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2557
2558    // Branch based on whether the runtime provided class_registerAlias_np()
2559    llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2560            llvm::Constant::getNullValue(RegisterAlias->getType()));
2561    Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2562
2563    // The true branch (has alias registration function):
2564    Builder.SetInsertPoint(AliasBB);
2565    // Emit alias registration calls:
2566    for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2567       iter != ClassAliases.end(); ++iter) {
2568       llvm::Constant *TheClass =
2569         TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2570            true);
2571       if (TheClass) {
2572         TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2573         Builder.CreateCall2(RegisterAlias, TheClass,
2574            MakeConstantString(iter->second));
2575       }
2576    }
2577    // Jump to end:
2578    Builder.CreateBr(NoAliasBB);
2579
2580    // Missing alias registration function, just return from the function:
2581    Builder.SetInsertPoint(NoAliasBB);
2582  }
2583  Builder.CreateRetVoid();
2584
2585  return LoadFunction;
2586}
2587
2588llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2589                                          const ObjCContainerDecl *CD) {
2590  const ObjCCategoryImplDecl *OCD =
2591    dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2592  StringRef CategoryName = OCD ? OCD->getName() : "";
2593  StringRef ClassName = CD->getName();
2594  Selector MethodName = OMD->getSelector();
2595  bool isClassMethod = !OMD->isInstanceMethod();
2596
2597  CodeGenTypes &Types = CGM.getTypes();
2598  llvm::FunctionType *MethodTy =
2599    Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2600  std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2601      MethodName, isClassMethod);
2602
2603  llvm::Function *Method
2604    = llvm::Function::Create(MethodTy,
2605                             llvm::GlobalValue::InternalLinkage,
2606                             FunctionName,
2607                             &TheModule);
2608  return Method;
2609}
2610
2611llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2612  return GetPropertyFn;
2613}
2614
2615llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2616  return SetPropertyFn;
2617}
2618
2619llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2620                                                           bool copy) {
2621  return nullptr;
2622}
2623
2624llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2625  return GetStructPropertyFn;
2626}
2627llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2628  return SetStructPropertyFn;
2629}
2630llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2631  return nullptr;
2632}
2633llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2634  return nullptr;
2635}
2636
2637llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2638  return EnumerationMutationFn;
2639}
2640
2641void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2642                                     const ObjCAtSynchronizedStmt &S) {
2643  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2644}
2645
2646
2647void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2648                            const ObjCAtTryStmt &S) {
2649  // Unlike the Apple non-fragile runtimes, which also uses
2650  // unwind-based zero cost exceptions, the GNU Objective C runtime's
2651  // EH support isn't a veneer over C++ EH.  Instead, exception
2652  // objects are created by objc_exception_throw and destroyed by
2653  // the personality function; this avoids the need for bracketing
2654  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2655  // (or even _Unwind_DeleteException), but probably doesn't
2656  // interoperate very well with foreign exceptions.
2657  //
2658  // In Objective-C++ mode, we actually emit something equivalent to the C++
2659  // exception handler.
2660  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2661  return ;
2662}
2663
2664void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2665                              const ObjCAtThrowStmt &S,
2666                              bool ClearInsertionPoint) {
2667  llvm::Value *ExceptionAsObject;
2668
2669  if (const Expr *ThrowExpr = S.getThrowExpr()) {
2670    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2671    ExceptionAsObject = Exception;
2672  } else {
2673    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2674           "Unexpected rethrow outside @catch block.");
2675    ExceptionAsObject = CGF.ObjCEHValueStack.back();
2676  }
2677  ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2678  llvm::CallSite Throw =
2679      CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2680  Throw.setDoesNotReturn();
2681  CGF.Builder.CreateUnreachable();
2682  if (ClearInsertionPoint)
2683    CGF.Builder.ClearInsertionPoint();
2684}
2685
2686llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2687                                          llvm::Value *AddrWeakObj) {
2688  CGBuilderTy &B = CGF.Builder;
2689  AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2690  return B.CreateCall(WeakReadFn, AddrWeakObj);
2691}
2692
2693void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2694                                   llvm::Value *src, llvm::Value *dst) {
2695  CGBuilderTy &B = CGF.Builder;
2696  src = EnforceType(B, src, IdTy);
2697  dst = EnforceType(B, dst, PtrToIdTy);
2698  B.CreateCall2(WeakAssignFn, src, dst);
2699}
2700
2701void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2702                                     llvm::Value *src, llvm::Value *dst,
2703                                     bool threadlocal) {
2704  CGBuilderTy &B = CGF.Builder;
2705  src = EnforceType(B, src, IdTy);
2706  dst = EnforceType(B, dst, PtrToIdTy);
2707  if (!threadlocal)
2708    B.CreateCall2(GlobalAssignFn, src, dst);
2709  else
2710    // FIXME. Add threadloca assign API
2711    llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2712}
2713
2714void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2715                                   llvm::Value *src, llvm::Value *dst,
2716                                   llvm::Value *ivarOffset) {
2717  CGBuilderTy &B = CGF.Builder;
2718  src = EnforceType(B, src, IdTy);
2719  dst = EnforceType(B, dst, IdTy);
2720  B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2721}
2722
2723void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2724                                         llvm::Value *src, llvm::Value *dst) {
2725  CGBuilderTy &B = CGF.Builder;
2726  src = EnforceType(B, src, IdTy);
2727  dst = EnforceType(B, dst, PtrToIdTy);
2728  B.CreateCall2(StrongCastAssignFn, src, dst);
2729}
2730
2731void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2732                                         llvm::Value *DestPtr,
2733                                         llvm::Value *SrcPtr,
2734                                         llvm::Value *Size) {
2735  CGBuilderTy &B = CGF.Builder;
2736  DestPtr = EnforceType(B, DestPtr, PtrTy);
2737  SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2738
2739  B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2740}
2741
2742llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2743                              const ObjCInterfaceDecl *ID,
2744                              const ObjCIvarDecl *Ivar) {
2745  const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2746    + '.' + Ivar->getNameAsString();
2747  // Emit the variable and initialize it with what we think the correct value
2748  // is.  This allows code compiled with non-fragile ivars to work correctly
2749  // when linked against code which isn't (most of the time).
2750  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2751  if (!IvarOffsetPointer) {
2752    // This will cause a run-time crash if we accidentally use it.  A value of
2753    // 0 would seem more sensible, but will silently overwrite the isa pointer
2754    // causing a great deal of confusion.
2755    uint64_t Offset = -1;
2756    // We can't call ComputeIvarBaseOffset() here if we have the
2757    // implementation, because it will create an invalid ASTRecordLayout object
2758    // that we are then stuck with forever, so we only initialize the ivar
2759    // offset variable with a guess if we only have the interface.  The
2760    // initializer will be reset later anyway, when we are generating the class
2761    // description.
2762    if (!CGM.getContext().getObjCImplementation(
2763              const_cast<ObjCInterfaceDecl *>(ID)))
2764      Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2765
2766    llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2767                             /*isSigned*/true);
2768    // Don't emit the guess in non-PIC code because the linker will not be able
2769    // to replace it with the real version for a library.  In non-PIC code you
2770    // must compile with the fragile ABI if you want to use ivars from a
2771    // GCC-compiled class.
2772    if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2773      llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2774            Int32Ty, false,
2775            llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2776      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2777            IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2778            IvarOffsetGV, Name);
2779    } else {
2780      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2781              llvm::Type::getInt32PtrTy(VMContext), false,
2782              llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2783    }
2784  }
2785  return IvarOffsetPointer;
2786}
2787
2788LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2789                                       QualType ObjectTy,
2790                                       llvm::Value *BaseValue,
2791                                       const ObjCIvarDecl *Ivar,
2792                                       unsigned CVRQualifiers) {
2793  const ObjCInterfaceDecl *ID =
2794    ObjectTy->getAs<ObjCObjectType>()->getInterface();
2795  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2796                                  EmitIvarOffset(CGF, ID, Ivar));
2797}
2798
2799static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2800                                                  const ObjCInterfaceDecl *OID,
2801                                                  const ObjCIvarDecl *OIVD) {
2802  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2803       next = next->getNextIvar()) {
2804    if (OIVD == next)
2805      return OID;
2806  }
2807
2808  // Otherwise check in the super class.
2809  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2810    return FindIvarInterface(Context, Super, OIVD);
2811
2812  return nullptr;
2813}
2814
2815llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2816                         const ObjCInterfaceDecl *Interface,
2817                         const ObjCIvarDecl *Ivar) {
2818  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2819    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2820    if (RuntimeVersion < 10)
2821      return CGF.Builder.CreateZExtOrBitCast(
2822          CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2823                  ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2824          PtrDiffTy);
2825    std::string name = "__objc_ivar_offset_value_" +
2826      Interface->getNameAsString() +"." + Ivar->getNameAsString();
2827    llvm::Value *Offset = TheModule.getGlobalVariable(name);
2828    if (!Offset)
2829      Offset = new llvm::GlobalVariable(TheModule, IntTy,
2830          false, llvm::GlobalValue::LinkOnceAnyLinkage,
2831          llvm::Constant::getNullValue(IntTy), name);
2832    Offset = CGF.Builder.CreateLoad(Offset);
2833    if (Offset->getType() != PtrDiffTy)
2834      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2835    return Offset;
2836  }
2837  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2838  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2839}
2840
2841CGObjCRuntime *
2842clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2843  switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2844  case ObjCRuntime::GNUstep:
2845    return new CGObjCGNUstep(CGM);
2846
2847  case ObjCRuntime::GCC:
2848    return new CGObjCGCC(CGM);
2849
2850  case ObjCRuntime::ObjFW:
2851    return new CGObjCObjFW(CGM);
2852
2853  case ObjCRuntime::FragileMacOSX:
2854  case ObjCRuntime::MacOSX:
2855  case ObjCRuntime::iOS:
2856    llvm_unreachable("these runtimes are not GNU runtimes");
2857  }
2858  llvm_unreachable("bad runtime");
2859}
2860