1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGDebugInfo.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/PrettyStackTrace.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/Sema/LoopHint.h"
22#include "clang/Sema/SemaDiagnostic.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/IR/CallSite.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/InlineAsm.h"
27#include "llvm/IR/Intrinsics.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===----------------------------------------------------------------------===//
32//                              Statement Emission
33//===----------------------------------------------------------------------===//
34
35void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36  if (CGDebugInfo *DI = getDebugInfo()) {
37    SourceLocation Loc;
38    Loc = S->getLocStart();
39    DI->EmitLocation(Builder, Loc);
40
41    LastStopPoint = Loc;
42  }
43}
44
45void CodeGenFunction::EmitStmt(const Stmt *S) {
46  assert(S && "Null statement?");
47  PGO.setCurrentStmt(S);
48
49  // These statements have their own debug info handling.
50  if (EmitSimpleStmt(S))
51    return;
52
53  // Check if we are generating unreachable code.
54  if (!HaveInsertPoint()) {
55    // If so, and the statement doesn't contain a label, then we do not need to
56    // generate actual code. This is safe because (1) the current point is
57    // unreachable, so we don't need to execute the code, and (2) we've already
58    // handled the statements which update internal data structures (like the
59    // local variable map) which could be used by subsequent statements.
60    if (!ContainsLabel(S)) {
61      // Verify that any decl statements were handled as simple, they may be in
62      // scope of subsequent reachable statements.
63      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64      return;
65    }
66
67    // Otherwise, make a new block to hold the code.
68    EnsureInsertPoint();
69  }
70
71  // Generate a stoppoint if we are emitting debug info.
72  EmitStopPoint(S);
73
74  switch (S->getStmtClass()) {
75  case Stmt::NoStmtClass:
76  case Stmt::CXXCatchStmtClass:
77  case Stmt::SEHExceptStmtClass:
78  case Stmt::SEHFinallyStmtClass:
79  case Stmt::MSDependentExistsStmtClass:
80    llvm_unreachable("invalid statement class to emit generically");
81  case Stmt::NullStmtClass:
82  case Stmt::CompoundStmtClass:
83  case Stmt::DeclStmtClass:
84  case Stmt::LabelStmtClass:
85  case Stmt::AttributedStmtClass:
86  case Stmt::GotoStmtClass:
87  case Stmt::BreakStmtClass:
88  case Stmt::ContinueStmtClass:
89  case Stmt::DefaultStmtClass:
90  case Stmt::CaseStmtClass:
91  case Stmt::SEHLeaveStmtClass:
92    llvm_unreachable("should have emitted these statements as simple");
93
94#define STMT(Type, Base)
95#define ABSTRACT_STMT(Op)
96#define EXPR(Type, Base) \
97  case Stmt::Type##Class:
98#include "clang/AST/StmtNodes.inc"
99  {
100    // Remember the block we came in on.
101    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
102    assert(incoming && "expression emission must have an insertion point");
103
104    EmitIgnoredExpr(cast<Expr>(S));
105
106    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
107    assert(outgoing && "expression emission cleared block!");
108
109    // The expression emitters assume (reasonably!) that the insertion
110    // point is always set.  To maintain that, the call-emission code
111    // for noreturn functions has to enter a new block with no
112    // predecessors.  We want to kill that block and mark the current
113    // insertion point unreachable in the common case of a call like
114    // "exit();".  Since expression emission doesn't otherwise create
115    // blocks with no predecessors, we can just test for that.
116    // However, we must be careful not to do this to our incoming
117    // block, because *statement* emission does sometimes create
118    // reachable blocks which will have no predecessors until later in
119    // the function.  This occurs with, e.g., labels that are not
120    // reachable by fallthrough.
121    if (incoming != outgoing && outgoing->use_empty()) {
122      outgoing->eraseFromParent();
123      Builder.ClearInsertionPoint();
124    }
125    break;
126  }
127
128  case Stmt::IndirectGotoStmtClass:
129    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
130
131  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
132  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
133  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
134  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
135
136  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
137
138  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
139  case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
140  case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
141  case Stmt::CapturedStmtClass: {
142    const CapturedStmt *CS = cast<CapturedStmt>(S);
143    EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
144    }
145    break;
146  case Stmt::ObjCAtTryStmtClass:
147    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
148    break;
149  case Stmt::ObjCAtCatchStmtClass:
150    llvm_unreachable(
151                    "@catch statements should be handled by EmitObjCAtTryStmt");
152  case Stmt::ObjCAtFinallyStmtClass:
153    llvm_unreachable(
154                  "@finally statements should be handled by EmitObjCAtTryStmt");
155  case Stmt::ObjCAtThrowStmtClass:
156    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
157    break;
158  case Stmt::ObjCAtSynchronizedStmtClass:
159    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
160    break;
161  case Stmt::ObjCForCollectionStmtClass:
162    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
163    break;
164  case Stmt::ObjCAutoreleasePoolStmtClass:
165    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
166    break;
167
168  case Stmt::CXXTryStmtClass:
169    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
170    break;
171  case Stmt::CXXForRangeStmtClass:
172    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
173    break;
174  case Stmt::SEHTryStmtClass:
175    EmitSEHTryStmt(cast<SEHTryStmt>(*S));
176    break;
177  case Stmt::OMPParallelDirectiveClass:
178    EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
179    break;
180  case Stmt::OMPSimdDirectiveClass:
181    EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
182    break;
183  case Stmt::OMPForDirectiveClass:
184    EmitOMPForDirective(cast<OMPForDirective>(*S));
185    break;
186  case Stmt::OMPForSimdDirectiveClass:
187    EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
188    break;
189  case Stmt::OMPSectionsDirectiveClass:
190    EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
191    break;
192  case Stmt::OMPSectionDirectiveClass:
193    EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
194    break;
195  case Stmt::OMPSingleDirectiveClass:
196    EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
197    break;
198  case Stmt::OMPMasterDirectiveClass:
199    EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
200    break;
201  case Stmt::OMPCriticalDirectiveClass:
202    EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
203    break;
204  case Stmt::OMPParallelForDirectiveClass:
205    EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
206    break;
207  case Stmt::OMPParallelForSimdDirectiveClass:
208    EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
209    break;
210  case Stmt::OMPParallelSectionsDirectiveClass:
211    EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
212    break;
213  case Stmt::OMPTaskDirectiveClass:
214    EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
215    break;
216  case Stmt::OMPTaskyieldDirectiveClass:
217    EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
218    break;
219  case Stmt::OMPBarrierDirectiveClass:
220    EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
221    break;
222  case Stmt::OMPTaskwaitDirectiveClass:
223    EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
224    break;
225  case Stmt::OMPFlushDirectiveClass:
226    EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
227    break;
228  case Stmt::OMPOrderedDirectiveClass:
229    EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
230    break;
231  case Stmt::OMPAtomicDirectiveClass:
232    EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
233    break;
234  case Stmt::OMPTargetDirectiveClass:
235    EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
236    break;
237  case Stmt::OMPTeamsDirectiveClass:
238    EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
239    break;
240  }
241}
242
243bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
244  switch (S->getStmtClass()) {
245  default: return false;
246  case Stmt::NullStmtClass: break;
247  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
248  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
249  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
250  case Stmt::AttributedStmtClass:
251                            EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
252  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
253  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
254  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
255  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
256  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
257  case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
258  }
259
260  return true;
261}
262
263/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
264/// this captures the expression result of the last sub-statement and returns it
265/// (for use by the statement expression extension).
266llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
267                                               AggValueSlot AggSlot) {
268  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
269                             "LLVM IR generation of compound statement ('{}')");
270
271  // Keep track of the current cleanup stack depth, including debug scopes.
272  LexicalScope Scope(*this, S.getSourceRange());
273
274  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
275}
276
277llvm::Value*
278CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
279                                              bool GetLast,
280                                              AggValueSlot AggSlot) {
281
282  for (CompoundStmt::const_body_iterator I = S.body_begin(),
283       E = S.body_end()-GetLast; I != E; ++I)
284    EmitStmt(*I);
285
286  llvm::Value *RetAlloca = nullptr;
287  if (GetLast) {
288    // We have to special case labels here.  They are statements, but when put
289    // at the end of a statement expression, they yield the value of their
290    // subexpression.  Handle this by walking through all labels we encounter,
291    // emitting them before we evaluate the subexpr.
292    const Stmt *LastStmt = S.body_back();
293    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
294      EmitLabel(LS->getDecl());
295      LastStmt = LS->getSubStmt();
296    }
297
298    EnsureInsertPoint();
299
300    QualType ExprTy = cast<Expr>(LastStmt)->getType();
301    if (hasAggregateEvaluationKind(ExprTy)) {
302      EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
303    } else {
304      // We can't return an RValue here because there might be cleanups at
305      // the end of the StmtExpr.  Because of that, we have to emit the result
306      // here into a temporary alloca.
307      RetAlloca = CreateMemTemp(ExprTy);
308      EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
309                       /*IsInit*/false);
310    }
311
312  }
313
314  return RetAlloca;
315}
316
317void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
318  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
319
320  // If there is a cleanup stack, then we it isn't worth trying to
321  // simplify this block (we would need to remove it from the scope map
322  // and cleanup entry).
323  if (!EHStack.empty())
324    return;
325
326  // Can only simplify direct branches.
327  if (!BI || !BI->isUnconditional())
328    return;
329
330  // Can only simplify empty blocks.
331  if (BI != BB->begin())
332    return;
333
334  BB->replaceAllUsesWith(BI->getSuccessor(0));
335  BI->eraseFromParent();
336  BB->eraseFromParent();
337}
338
339void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
340  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
341
342  // Fall out of the current block (if necessary).
343  EmitBranch(BB);
344
345  if (IsFinished && BB->use_empty()) {
346    delete BB;
347    return;
348  }
349
350  // Place the block after the current block, if possible, or else at
351  // the end of the function.
352  if (CurBB && CurBB->getParent())
353    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
354  else
355    CurFn->getBasicBlockList().push_back(BB);
356  Builder.SetInsertPoint(BB);
357}
358
359void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
360  // Emit a branch from the current block to the target one if this
361  // was a real block.  If this was just a fall-through block after a
362  // terminator, don't emit it.
363  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
364
365  if (!CurBB || CurBB->getTerminator()) {
366    // If there is no insert point or the previous block is already
367    // terminated, don't touch it.
368  } else {
369    // Otherwise, create a fall-through branch.
370    Builder.CreateBr(Target);
371  }
372
373  Builder.ClearInsertionPoint();
374}
375
376void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
377  bool inserted = false;
378  for (llvm::User *u : block->users()) {
379    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
380      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
381      inserted = true;
382      break;
383    }
384  }
385
386  if (!inserted)
387    CurFn->getBasicBlockList().push_back(block);
388
389  Builder.SetInsertPoint(block);
390}
391
392CodeGenFunction::JumpDest
393CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
394  JumpDest &Dest = LabelMap[D];
395  if (Dest.isValid()) return Dest;
396
397  // Create, but don't insert, the new block.
398  Dest = JumpDest(createBasicBlock(D->getName()),
399                  EHScopeStack::stable_iterator::invalid(),
400                  NextCleanupDestIndex++);
401  return Dest;
402}
403
404void CodeGenFunction::EmitLabel(const LabelDecl *D) {
405  // Add this label to the current lexical scope if we're within any
406  // normal cleanups.  Jumps "in" to this label --- when permitted by
407  // the language --- may need to be routed around such cleanups.
408  if (EHStack.hasNormalCleanups() && CurLexicalScope)
409    CurLexicalScope->addLabel(D);
410
411  JumpDest &Dest = LabelMap[D];
412
413  // If we didn't need a forward reference to this label, just go
414  // ahead and create a destination at the current scope.
415  if (!Dest.isValid()) {
416    Dest = getJumpDestInCurrentScope(D->getName());
417
418  // Otherwise, we need to give this label a target depth and remove
419  // it from the branch-fixups list.
420  } else {
421    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
422    Dest.setScopeDepth(EHStack.stable_begin());
423    ResolveBranchFixups(Dest.getBlock());
424  }
425
426  RegionCounter Cnt = getPGORegionCounter(D->getStmt());
427  EmitBlock(Dest.getBlock());
428  Cnt.beginRegion(Builder);
429}
430
431/// Change the cleanup scope of the labels in this lexical scope to
432/// match the scope of the enclosing context.
433void CodeGenFunction::LexicalScope::rescopeLabels() {
434  assert(!Labels.empty());
435  EHScopeStack::stable_iterator innermostScope
436    = CGF.EHStack.getInnermostNormalCleanup();
437
438  // Change the scope depth of all the labels.
439  for (SmallVectorImpl<const LabelDecl*>::const_iterator
440         i = Labels.begin(), e = Labels.end(); i != e; ++i) {
441    assert(CGF.LabelMap.count(*i));
442    JumpDest &dest = CGF.LabelMap.find(*i)->second;
443    assert(dest.getScopeDepth().isValid());
444    assert(innermostScope.encloses(dest.getScopeDepth()));
445    dest.setScopeDepth(innermostScope);
446  }
447
448  // Reparent the labels if the new scope also has cleanups.
449  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
450    ParentScope->Labels.append(Labels.begin(), Labels.end());
451  }
452}
453
454
455void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
456  EmitLabel(S.getDecl());
457  EmitStmt(S.getSubStmt());
458}
459
460void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
461  const Stmt *SubStmt = S.getSubStmt();
462  switch (SubStmt->getStmtClass()) {
463  case Stmt::DoStmtClass:
464    EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
465    break;
466  case Stmt::ForStmtClass:
467    EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
468    break;
469  case Stmt::WhileStmtClass:
470    EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
471    break;
472  case Stmt::CXXForRangeStmtClass:
473    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
474    break;
475  default:
476    EmitStmt(SubStmt);
477  }
478}
479
480void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
481  // If this code is reachable then emit a stop point (if generating
482  // debug info). We have to do this ourselves because we are on the
483  // "simple" statement path.
484  if (HaveInsertPoint())
485    EmitStopPoint(&S);
486
487  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
488}
489
490
491void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
492  if (const LabelDecl *Target = S.getConstantTarget()) {
493    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
494    return;
495  }
496
497  // Ensure that we have an i8* for our PHI node.
498  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
499                                         Int8PtrTy, "addr");
500  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
501
502  // Get the basic block for the indirect goto.
503  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
504
505  // The first instruction in the block has to be the PHI for the switch dest,
506  // add an entry for this branch.
507  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
508
509  EmitBranch(IndGotoBB);
510}
511
512void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
513  // C99 6.8.4.1: The first substatement is executed if the expression compares
514  // unequal to 0.  The condition must be a scalar type.
515  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
516  RegionCounter Cnt = getPGORegionCounter(&S);
517
518  if (S.getConditionVariable())
519    EmitAutoVarDecl(*S.getConditionVariable());
520
521  // If the condition constant folds and can be elided, try to avoid emitting
522  // the condition and the dead arm of the if/else.
523  bool CondConstant;
524  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
525    // Figure out which block (then or else) is executed.
526    const Stmt *Executed = S.getThen();
527    const Stmt *Skipped  = S.getElse();
528    if (!CondConstant)  // Condition false?
529      std::swap(Executed, Skipped);
530
531    // If the skipped block has no labels in it, just emit the executed block.
532    // This avoids emitting dead code and simplifies the CFG substantially.
533    if (!ContainsLabel(Skipped)) {
534      if (CondConstant)
535        Cnt.beginRegion(Builder);
536      if (Executed) {
537        RunCleanupsScope ExecutedScope(*this);
538        EmitStmt(Executed);
539      }
540      return;
541    }
542  }
543
544  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
545  // the conditional branch.
546  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
547  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
548  llvm::BasicBlock *ElseBlock = ContBlock;
549  if (S.getElse())
550    ElseBlock = createBasicBlock("if.else");
551
552  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
553
554  // Emit the 'then' code.
555  EmitBlock(ThenBlock);
556  Cnt.beginRegion(Builder);
557  {
558    RunCleanupsScope ThenScope(*this);
559    EmitStmt(S.getThen());
560  }
561  EmitBranch(ContBlock);
562
563  // Emit the 'else' code if present.
564  if (const Stmt *Else = S.getElse()) {
565    {
566      // There is no need to emit line number for an unconditional branch.
567      auto NL = ApplyDebugLocation::CreateEmpty(*this);
568      EmitBlock(ElseBlock);
569    }
570    {
571      RunCleanupsScope ElseScope(*this);
572      EmitStmt(Else);
573    }
574    {
575      // There is no need to emit line number for an unconditional branch.
576      auto NL = ApplyDebugLocation::CreateEmpty(*this);
577      EmitBranch(ContBlock);
578    }
579  }
580
581  // Emit the continuation block for code after the if.
582  EmitBlock(ContBlock, true);
583}
584
585void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
586                                      llvm::BranchInst *CondBr,
587                                      ArrayRef<const Attr *> Attrs) {
588  // Return if there are no hints.
589  if (Attrs.empty())
590    return;
591
592  // Add vectorize and unroll hints to the metadata on the conditional branch.
593  //
594  // FIXME: Should this really start with a size of 1?
595  SmallVector<llvm::Metadata *, 2> Metadata(1);
596  for (const auto *Attr : Attrs) {
597    const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
598
599    // Skip non loop hint attributes
600    if (!LH)
601      continue;
602
603    LoopHintAttr::OptionType Option = LH->getOption();
604    LoopHintAttr::LoopHintState State = LH->getState();
605    const char *MetadataName;
606    switch (Option) {
607    case LoopHintAttr::Vectorize:
608    case LoopHintAttr::VectorizeWidth:
609      MetadataName = "llvm.loop.vectorize.width";
610      break;
611    case LoopHintAttr::Interleave:
612    case LoopHintAttr::InterleaveCount:
613      MetadataName = "llvm.loop.interleave.count";
614      break;
615    case LoopHintAttr::Unroll:
616      // With the unroll loop hint, a non-zero value indicates full unrolling.
617      MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable"
618                                                    : "llvm.loop.unroll.full";
619      break;
620    case LoopHintAttr::UnrollCount:
621      MetadataName = "llvm.loop.unroll.count";
622      break;
623    }
624
625    Expr *ValueExpr = LH->getValue();
626    int ValueInt = 1;
627    if (ValueExpr) {
628      llvm::APSInt ValueAPS =
629          ValueExpr->EvaluateKnownConstInt(CGM.getContext());
630      ValueInt = static_cast<int>(ValueAPS.getSExtValue());
631    }
632
633    llvm::Constant *Value;
634    llvm::MDString *Name;
635    switch (Option) {
636    case LoopHintAttr::Vectorize:
637    case LoopHintAttr::Interleave:
638      if (State != LoopHintAttr::Disable) {
639        // FIXME: In the future I will modifiy the behavior of the metadata
640        // so we can enable/disable vectorization and interleaving separately.
641        Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
642        Value = Builder.getTrue();
643        break;
644      }
645      // Vectorization/interleaving is disabled, set width/count to 1.
646      ValueInt = 1;
647      // Fallthrough.
648    case LoopHintAttr::VectorizeWidth:
649    case LoopHintAttr::InterleaveCount:
650    case LoopHintAttr::UnrollCount:
651      Name = llvm::MDString::get(Context, MetadataName);
652      Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
653      break;
654    case LoopHintAttr::Unroll:
655      Name = llvm::MDString::get(Context, MetadataName);
656      Value = nullptr;
657      break;
658    }
659
660    SmallVector<llvm::Metadata *, 2> OpValues;
661    OpValues.push_back(Name);
662    if (Value)
663      OpValues.push_back(llvm::ConstantAsMetadata::get(Value));
664
665    // Set or overwrite metadata indicated by Name.
666    Metadata.push_back(llvm::MDNode::get(Context, OpValues));
667  }
668
669  // FIXME: This condition is never false.  Should it be an assert?
670  if (!Metadata.empty()) {
671    // Add llvm.loop MDNode to CondBr.
672    llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
673    LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
674
675    CondBr->setMetadata("llvm.loop", LoopID);
676  }
677}
678
679void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
680                                    ArrayRef<const Attr *> WhileAttrs) {
681  RegionCounter Cnt = getPGORegionCounter(&S);
682
683  // Emit the header for the loop, which will also become
684  // the continue target.
685  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
686  EmitBlock(LoopHeader.getBlock());
687
688  LoopStack.push(LoopHeader.getBlock());
689
690  // Create an exit block for when the condition fails, which will
691  // also become the break target.
692  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
693
694  // Store the blocks to use for break and continue.
695  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
696
697  // C++ [stmt.while]p2:
698  //   When the condition of a while statement is a declaration, the
699  //   scope of the variable that is declared extends from its point
700  //   of declaration (3.3.2) to the end of the while statement.
701  //   [...]
702  //   The object created in a condition is destroyed and created
703  //   with each iteration of the loop.
704  RunCleanupsScope ConditionScope(*this);
705
706  if (S.getConditionVariable())
707    EmitAutoVarDecl(*S.getConditionVariable());
708
709  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
710  // evaluation of the controlling expression takes place before each
711  // execution of the loop body.
712  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
713
714  // while(1) is common, avoid extra exit blocks.  Be sure
715  // to correctly handle break/continue though.
716  bool EmitBoolCondBranch = true;
717  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
718    if (C->isOne())
719      EmitBoolCondBranch = false;
720
721  // As long as the condition is true, go to the loop body.
722  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
723  if (EmitBoolCondBranch) {
724    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
725    if (ConditionScope.requiresCleanups())
726      ExitBlock = createBasicBlock("while.exit");
727    llvm::BranchInst *CondBr =
728        Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
729                             PGO.createLoopWeights(S.getCond(), Cnt));
730
731    if (ExitBlock != LoopExit.getBlock()) {
732      EmitBlock(ExitBlock);
733      EmitBranchThroughCleanup(LoopExit);
734    }
735
736    // Attach metadata to loop body conditional branch.
737    EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
738  }
739
740  // Emit the loop body.  We have to emit this in a cleanup scope
741  // because it might be a singleton DeclStmt.
742  {
743    RunCleanupsScope BodyScope(*this);
744    EmitBlock(LoopBody);
745    Cnt.beginRegion(Builder);
746    EmitStmt(S.getBody());
747  }
748
749  BreakContinueStack.pop_back();
750
751  // Immediately force cleanup.
752  ConditionScope.ForceCleanup();
753
754  EmitStopPoint(&S);
755  // Branch to the loop header again.
756  EmitBranch(LoopHeader.getBlock());
757
758  LoopStack.pop();
759
760  // Emit the exit block.
761  EmitBlock(LoopExit.getBlock(), true);
762
763  // The LoopHeader typically is just a branch if we skipped emitting
764  // a branch, try to erase it.
765  if (!EmitBoolCondBranch)
766    SimplifyForwardingBlocks(LoopHeader.getBlock());
767}
768
769void CodeGenFunction::EmitDoStmt(const DoStmt &S,
770                                 ArrayRef<const Attr *> DoAttrs) {
771  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
772  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
773
774  RegionCounter Cnt = getPGORegionCounter(&S);
775
776  // Store the blocks to use for break and continue.
777  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
778
779  // Emit the body of the loop.
780  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
781
782  LoopStack.push(LoopBody);
783
784  EmitBlockWithFallThrough(LoopBody, Cnt);
785  {
786    RunCleanupsScope BodyScope(*this);
787    EmitStmt(S.getBody());
788  }
789
790  EmitBlock(LoopCond.getBlock());
791
792  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
793  // after each execution of the loop body."
794
795  // Evaluate the conditional in the while header.
796  // C99 6.8.5p2/p4: The first substatement is executed if the expression
797  // compares unequal to 0.  The condition must be a scalar type.
798  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
799
800  BreakContinueStack.pop_back();
801
802  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
803  // to correctly handle break/continue though.
804  bool EmitBoolCondBranch = true;
805  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
806    if (C->isZero())
807      EmitBoolCondBranch = false;
808
809  // As long as the condition is true, iterate the loop.
810  if (EmitBoolCondBranch) {
811    llvm::BranchInst *CondBr =
812        Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
813                             PGO.createLoopWeights(S.getCond(), Cnt));
814
815    // Attach metadata to loop body conditional branch.
816    EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
817  }
818
819  LoopStack.pop();
820
821  // Emit the exit block.
822  EmitBlock(LoopExit.getBlock());
823
824  // The DoCond block typically is just a branch if we skipped
825  // emitting a branch, try to erase it.
826  if (!EmitBoolCondBranch)
827    SimplifyForwardingBlocks(LoopCond.getBlock());
828}
829
830void CodeGenFunction::EmitForStmt(const ForStmt &S,
831                                  ArrayRef<const Attr *> ForAttrs) {
832  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
833
834  LexicalScope ForScope(*this, S.getSourceRange());
835
836  // Evaluate the first part before the loop.
837  if (S.getInit())
838    EmitStmt(S.getInit());
839
840  RegionCounter Cnt = getPGORegionCounter(&S);
841
842  // Start the loop with a block that tests the condition.
843  // If there's an increment, the continue scope will be overwritten
844  // later.
845  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
846  llvm::BasicBlock *CondBlock = Continue.getBlock();
847  EmitBlock(CondBlock);
848
849  LoopStack.push(CondBlock);
850
851  // If the for loop doesn't have an increment we can just use the
852  // condition as the continue block.  Otherwise we'll need to create
853  // a block for it (in the current scope, i.e. in the scope of the
854  // condition), and that we will become our continue block.
855  if (S.getInc())
856    Continue = getJumpDestInCurrentScope("for.inc");
857
858  // Store the blocks to use for break and continue.
859  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
860
861  // Create a cleanup scope for the condition variable cleanups.
862  LexicalScope ConditionScope(*this, S.getSourceRange());
863
864  if (S.getCond()) {
865    // If the for statement has a condition scope, emit the local variable
866    // declaration.
867    if (S.getConditionVariable()) {
868      EmitAutoVarDecl(*S.getConditionVariable());
869    }
870
871    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
872    // If there are any cleanups between here and the loop-exit scope,
873    // create a block to stage a loop exit along.
874    if (ForScope.requiresCleanups())
875      ExitBlock = createBasicBlock("for.cond.cleanup");
876
877    // As long as the condition is true, iterate the loop.
878    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
879
880    // C99 6.8.5p2/p4: The first substatement is executed if the expression
881    // compares unequal to 0.  The condition must be a scalar type.
882    llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
883    llvm::BranchInst *CondBr =
884        Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
885                             PGO.createLoopWeights(S.getCond(), Cnt));
886
887    // Attach metadata to loop body conditional branch.
888    EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
889
890    if (ExitBlock != LoopExit.getBlock()) {
891      EmitBlock(ExitBlock);
892      EmitBranchThroughCleanup(LoopExit);
893    }
894
895    EmitBlock(ForBody);
896  } else {
897    // Treat it as a non-zero constant.  Don't even create a new block for the
898    // body, just fall into it.
899  }
900  Cnt.beginRegion(Builder);
901
902  {
903    // Create a separate cleanup scope for the body, in case it is not
904    // a compound statement.
905    RunCleanupsScope BodyScope(*this);
906    EmitStmt(S.getBody());
907  }
908
909  // If there is an increment, emit it next.
910  if (S.getInc()) {
911    EmitBlock(Continue.getBlock());
912    EmitStmt(S.getInc());
913  }
914
915  BreakContinueStack.pop_back();
916
917  ConditionScope.ForceCleanup();
918
919  EmitStopPoint(&S);
920  EmitBranch(CondBlock);
921
922  ForScope.ForceCleanup();
923
924  LoopStack.pop();
925
926  // Emit the fall-through block.
927  EmitBlock(LoopExit.getBlock(), true);
928}
929
930void
931CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
932                                     ArrayRef<const Attr *> ForAttrs) {
933  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
934
935  LexicalScope ForScope(*this, S.getSourceRange());
936
937  // Evaluate the first pieces before the loop.
938  EmitStmt(S.getRangeStmt());
939  EmitStmt(S.getBeginEndStmt());
940
941  RegionCounter Cnt = getPGORegionCounter(&S);
942
943  // Start the loop with a block that tests the condition.
944  // If there's an increment, the continue scope will be overwritten
945  // later.
946  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
947  EmitBlock(CondBlock);
948
949  LoopStack.push(CondBlock);
950
951  // If there are any cleanups between here and the loop-exit scope,
952  // create a block to stage a loop exit along.
953  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
954  if (ForScope.requiresCleanups())
955    ExitBlock = createBasicBlock("for.cond.cleanup");
956
957  // The loop body, consisting of the specified body and the loop variable.
958  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
959
960  // The body is executed if the expression, contextually converted
961  // to bool, is true.
962  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
963  llvm::BranchInst *CondBr = Builder.CreateCondBr(
964      BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
965
966  // Attach metadata to loop body conditional branch.
967  EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
968
969  if (ExitBlock != LoopExit.getBlock()) {
970    EmitBlock(ExitBlock);
971    EmitBranchThroughCleanup(LoopExit);
972  }
973
974  EmitBlock(ForBody);
975  Cnt.beginRegion(Builder);
976
977  // Create a block for the increment. In case of a 'continue', we jump there.
978  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
979
980  // Store the blocks to use for break and continue.
981  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
982
983  {
984    // Create a separate cleanup scope for the loop variable and body.
985    LexicalScope BodyScope(*this, S.getSourceRange());
986    EmitStmt(S.getLoopVarStmt());
987    EmitStmt(S.getBody());
988  }
989
990  EmitStopPoint(&S);
991  // If there is an increment, emit it next.
992  EmitBlock(Continue.getBlock());
993  EmitStmt(S.getInc());
994
995  BreakContinueStack.pop_back();
996
997  EmitBranch(CondBlock);
998
999  ForScope.ForceCleanup();
1000
1001  LoopStack.pop();
1002
1003  // Emit the fall-through block.
1004  EmitBlock(LoopExit.getBlock(), true);
1005}
1006
1007void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1008  if (RV.isScalar()) {
1009    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1010  } else if (RV.isAggregate()) {
1011    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
1012  } else {
1013    EmitStoreOfComplex(RV.getComplexVal(),
1014                       MakeNaturalAlignAddrLValue(ReturnValue, Ty),
1015                       /*init*/ true);
1016  }
1017  EmitBranchThroughCleanup(ReturnBlock);
1018}
1019
1020/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1021/// if the function returns void, or may be missing one if the function returns
1022/// non-void.  Fun stuff :).
1023void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1024  // Returning from an outlined SEH helper is UB, and we already warn on it.
1025  if (IsOutlinedSEHHelper) {
1026    Builder.CreateUnreachable();
1027    Builder.ClearInsertionPoint();
1028  }
1029
1030  // Emit the result value, even if unused, to evalute the side effects.
1031  const Expr *RV = S.getRetValue();
1032
1033  // Treat block literals in a return expression as if they appeared
1034  // in their own scope.  This permits a small, easily-implemented
1035  // exception to our over-conservative rules about not jumping to
1036  // statements following block literals with non-trivial cleanups.
1037  RunCleanupsScope cleanupScope(*this);
1038  if (const ExprWithCleanups *cleanups =
1039        dyn_cast_or_null<ExprWithCleanups>(RV)) {
1040    enterFullExpression(cleanups);
1041    RV = cleanups->getSubExpr();
1042  }
1043
1044  // FIXME: Clean this up by using an LValue for ReturnTemp,
1045  // EmitStoreThroughLValue, and EmitAnyExpr.
1046  if (getLangOpts().ElideConstructors &&
1047      S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1048    // Apply the named return value optimization for this return statement,
1049    // which means doing nothing: the appropriate result has already been
1050    // constructed into the NRVO variable.
1051
1052    // If there is an NRVO flag for this variable, set it to 1 into indicate
1053    // that the cleanup code should not destroy the variable.
1054    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1055      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
1056  } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
1057    // Make sure not to return anything, but evaluate the expression
1058    // for side effects.
1059    if (RV)
1060      EmitAnyExpr(RV);
1061  } else if (!RV) {
1062    // Do nothing (return value is left uninitialized)
1063  } else if (FnRetTy->isReferenceType()) {
1064    // If this function returns a reference, take the address of the expression
1065    // rather than the value.
1066    RValue Result = EmitReferenceBindingToExpr(RV);
1067    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1068  } else {
1069    switch (getEvaluationKind(RV->getType())) {
1070    case TEK_Scalar:
1071      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1072      break;
1073    case TEK_Complex:
1074      EmitComplexExprIntoLValue(RV,
1075                     MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1076                                /*isInit*/ true);
1077      break;
1078    case TEK_Aggregate: {
1079      CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1080      EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1081                                            Qualifiers(),
1082                                            AggValueSlot::IsDestructed,
1083                                            AggValueSlot::DoesNotNeedGCBarriers,
1084                                            AggValueSlot::IsNotAliased));
1085      break;
1086    }
1087    }
1088  }
1089
1090  ++NumReturnExprs;
1091  if (!RV || RV->isEvaluatable(getContext()))
1092    ++NumSimpleReturnExprs;
1093
1094  cleanupScope.ForceCleanup();
1095  EmitBranchThroughCleanup(ReturnBlock);
1096}
1097
1098void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1099  // As long as debug info is modeled with instructions, we have to ensure we
1100  // have a place to insert here and write the stop point here.
1101  if (HaveInsertPoint())
1102    EmitStopPoint(&S);
1103
1104  for (const auto *I : S.decls())
1105    EmitDecl(*I);
1106}
1107
1108void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1109  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1110
1111  // If this code is reachable then emit a stop point (if generating
1112  // debug info). We have to do this ourselves because we are on the
1113  // "simple" statement path.
1114  if (HaveInsertPoint())
1115    EmitStopPoint(&S);
1116
1117  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1118}
1119
1120void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1121  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1122
1123  // If this code is reachable then emit a stop point (if generating
1124  // debug info). We have to do this ourselves because we are on the
1125  // "simple" statement path.
1126  if (HaveInsertPoint())
1127    EmitStopPoint(&S);
1128
1129  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1130}
1131
1132/// EmitCaseStmtRange - If case statement range is not too big then
1133/// add multiple cases to switch instruction, one for each value within
1134/// the range. If range is too big then emit "if" condition check.
1135void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1136  assert(S.getRHS() && "Expected RHS value in CaseStmt");
1137
1138  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1139  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1140
1141  RegionCounter CaseCnt = getPGORegionCounter(&S);
1142
1143  // Emit the code for this case. We do this first to make sure it is
1144  // properly chained from our predecessor before generating the
1145  // switch machinery to enter this block.
1146  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1147  EmitBlockWithFallThrough(CaseDest, CaseCnt);
1148  EmitStmt(S.getSubStmt());
1149
1150  // If range is empty, do nothing.
1151  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1152    return;
1153
1154  llvm::APInt Range = RHS - LHS;
1155  // FIXME: parameters such as this should not be hardcoded.
1156  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1157    // Range is small enough to add multiple switch instruction cases.
1158    uint64_t Total = CaseCnt.getCount();
1159    unsigned NCases = Range.getZExtValue() + 1;
1160    // We only have one region counter for the entire set of cases here, so we
1161    // need to divide the weights evenly between the generated cases, ensuring
1162    // that the total weight is preserved. E.g., a weight of 5 over three cases
1163    // will be distributed as weights of 2, 2, and 1.
1164    uint64_t Weight = Total / NCases, Rem = Total % NCases;
1165    for (unsigned I = 0; I != NCases; ++I) {
1166      if (SwitchWeights)
1167        SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1168      if (Rem)
1169        Rem--;
1170      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1171      LHS++;
1172    }
1173    return;
1174  }
1175
1176  // The range is too big. Emit "if" condition into a new block,
1177  // making sure to save and restore the current insertion point.
1178  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1179
1180  // Push this test onto the chain of range checks (which terminates
1181  // in the default basic block). The switch's default will be changed
1182  // to the top of this chain after switch emission is complete.
1183  llvm::BasicBlock *FalseDest = CaseRangeBlock;
1184  CaseRangeBlock = createBasicBlock("sw.caserange");
1185
1186  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1187  Builder.SetInsertPoint(CaseRangeBlock);
1188
1189  // Emit range check.
1190  llvm::Value *Diff =
1191    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1192  llvm::Value *Cond =
1193    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1194
1195  llvm::MDNode *Weights = nullptr;
1196  if (SwitchWeights) {
1197    uint64_t ThisCount = CaseCnt.getCount();
1198    uint64_t DefaultCount = (*SwitchWeights)[0];
1199    Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1200
1201    // Since we're chaining the switch default through each large case range, we
1202    // need to update the weight for the default, ie, the first case, to include
1203    // this case.
1204    (*SwitchWeights)[0] += ThisCount;
1205  }
1206  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1207
1208  // Restore the appropriate insertion point.
1209  if (RestoreBB)
1210    Builder.SetInsertPoint(RestoreBB);
1211  else
1212    Builder.ClearInsertionPoint();
1213}
1214
1215void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1216  // If there is no enclosing switch instance that we're aware of, then this
1217  // case statement and its block can be elided.  This situation only happens
1218  // when we've constant-folded the switch, are emitting the constant case,
1219  // and part of the constant case includes another case statement.  For
1220  // instance: switch (4) { case 4: do { case 5: } while (1); }
1221  if (!SwitchInsn) {
1222    EmitStmt(S.getSubStmt());
1223    return;
1224  }
1225
1226  // Handle case ranges.
1227  if (S.getRHS()) {
1228    EmitCaseStmtRange(S);
1229    return;
1230  }
1231
1232  RegionCounter CaseCnt = getPGORegionCounter(&S);
1233  llvm::ConstantInt *CaseVal =
1234    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1235
1236  // If the body of the case is just a 'break', try to not emit an empty block.
1237  // If we're profiling or we're not optimizing, leave the block in for better
1238  // debug and coverage analysis.
1239  if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1240      CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1241      isa<BreakStmt>(S.getSubStmt())) {
1242    JumpDest Block = BreakContinueStack.back().BreakBlock;
1243
1244    // Only do this optimization if there are no cleanups that need emitting.
1245    if (isObviouslyBranchWithoutCleanups(Block)) {
1246      if (SwitchWeights)
1247        SwitchWeights->push_back(CaseCnt.getCount());
1248      SwitchInsn->addCase(CaseVal, Block.getBlock());
1249
1250      // If there was a fallthrough into this case, make sure to redirect it to
1251      // the end of the switch as well.
1252      if (Builder.GetInsertBlock()) {
1253        Builder.CreateBr(Block.getBlock());
1254        Builder.ClearInsertionPoint();
1255      }
1256      return;
1257    }
1258  }
1259
1260  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1261  EmitBlockWithFallThrough(CaseDest, CaseCnt);
1262  if (SwitchWeights)
1263    SwitchWeights->push_back(CaseCnt.getCount());
1264  SwitchInsn->addCase(CaseVal, CaseDest);
1265
1266  // Recursively emitting the statement is acceptable, but is not wonderful for
1267  // code where we have many case statements nested together, i.e.:
1268  //  case 1:
1269  //    case 2:
1270  //      case 3: etc.
1271  // Handling this recursively will create a new block for each case statement
1272  // that falls through to the next case which is IR intensive.  It also causes
1273  // deep recursion which can run into stack depth limitations.  Handle
1274  // sequential non-range case statements specially.
1275  const CaseStmt *CurCase = &S;
1276  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1277
1278  // Otherwise, iteratively add consecutive cases to this switch stmt.
1279  while (NextCase && NextCase->getRHS() == nullptr) {
1280    CurCase = NextCase;
1281    llvm::ConstantInt *CaseVal =
1282      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1283
1284    CaseCnt = getPGORegionCounter(NextCase);
1285    if (SwitchWeights)
1286      SwitchWeights->push_back(CaseCnt.getCount());
1287    if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1288      CaseDest = createBasicBlock("sw.bb");
1289      EmitBlockWithFallThrough(CaseDest, CaseCnt);
1290    }
1291
1292    SwitchInsn->addCase(CaseVal, CaseDest);
1293    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1294  }
1295
1296  // Normal default recursion for non-cases.
1297  EmitStmt(CurCase->getSubStmt());
1298}
1299
1300void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1301  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1302  assert(DefaultBlock->empty() &&
1303         "EmitDefaultStmt: Default block already defined?");
1304
1305  RegionCounter Cnt = getPGORegionCounter(&S);
1306  EmitBlockWithFallThrough(DefaultBlock, Cnt);
1307
1308  EmitStmt(S.getSubStmt());
1309}
1310
1311/// CollectStatementsForCase - Given the body of a 'switch' statement and a
1312/// constant value that is being switched on, see if we can dead code eliminate
1313/// the body of the switch to a simple series of statements to emit.  Basically,
1314/// on a switch (5) we want to find these statements:
1315///    case 5:
1316///      printf(...);    <--
1317///      ++i;            <--
1318///      break;
1319///
1320/// and add them to the ResultStmts vector.  If it is unsafe to do this
1321/// transformation (for example, one of the elided statements contains a label
1322/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1323/// should include statements after it (e.g. the printf() line is a substmt of
1324/// the case) then return CSFC_FallThrough.  If we handled it and found a break
1325/// statement, then return CSFC_Success.
1326///
1327/// If Case is non-null, then we are looking for the specified case, checking
1328/// that nothing we jump over contains labels.  If Case is null, then we found
1329/// the case and are looking for the break.
1330///
1331/// If the recursive walk actually finds our Case, then we set FoundCase to
1332/// true.
1333///
1334enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1335static CSFC_Result CollectStatementsForCase(const Stmt *S,
1336                                            const SwitchCase *Case,
1337                                            bool &FoundCase,
1338                              SmallVectorImpl<const Stmt*> &ResultStmts) {
1339  // If this is a null statement, just succeed.
1340  if (!S)
1341    return Case ? CSFC_Success : CSFC_FallThrough;
1342
1343  // If this is the switchcase (case 4: or default) that we're looking for, then
1344  // we're in business.  Just add the substatement.
1345  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1346    if (S == Case) {
1347      FoundCase = true;
1348      return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1349                                      ResultStmts);
1350    }
1351
1352    // Otherwise, this is some other case or default statement, just ignore it.
1353    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1354                                    ResultStmts);
1355  }
1356
1357  // If we are in the live part of the code and we found our break statement,
1358  // return a success!
1359  if (!Case && isa<BreakStmt>(S))
1360    return CSFC_Success;
1361
1362  // If this is a switch statement, then it might contain the SwitchCase, the
1363  // break, or neither.
1364  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1365    // Handle this as two cases: we might be looking for the SwitchCase (if so
1366    // the skipped statements must be skippable) or we might already have it.
1367    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1368    if (Case) {
1369      // Keep track of whether we see a skipped declaration.  The code could be
1370      // using the declaration even if it is skipped, so we can't optimize out
1371      // the decl if the kept statements might refer to it.
1372      bool HadSkippedDecl = false;
1373
1374      // If we're looking for the case, just see if we can skip each of the
1375      // substatements.
1376      for (; Case && I != E; ++I) {
1377        HadSkippedDecl |= isa<DeclStmt>(*I);
1378
1379        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1380        case CSFC_Failure: return CSFC_Failure;
1381        case CSFC_Success:
1382          // A successful result means that either 1) that the statement doesn't
1383          // have the case and is skippable, or 2) does contain the case value
1384          // and also contains the break to exit the switch.  In the later case,
1385          // we just verify the rest of the statements are elidable.
1386          if (FoundCase) {
1387            // If we found the case and skipped declarations, we can't do the
1388            // optimization.
1389            if (HadSkippedDecl)
1390              return CSFC_Failure;
1391
1392            for (++I; I != E; ++I)
1393              if (CodeGenFunction::ContainsLabel(*I, true))
1394                return CSFC_Failure;
1395            return CSFC_Success;
1396          }
1397          break;
1398        case CSFC_FallThrough:
1399          // If we have a fallthrough condition, then we must have found the
1400          // case started to include statements.  Consider the rest of the
1401          // statements in the compound statement as candidates for inclusion.
1402          assert(FoundCase && "Didn't find case but returned fallthrough?");
1403          // We recursively found Case, so we're not looking for it anymore.
1404          Case = nullptr;
1405
1406          // If we found the case and skipped declarations, we can't do the
1407          // optimization.
1408          if (HadSkippedDecl)
1409            return CSFC_Failure;
1410          break;
1411        }
1412      }
1413    }
1414
1415    // If we have statements in our range, then we know that the statements are
1416    // live and need to be added to the set of statements we're tracking.
1417    for (; I != E; ++I) {
1418      switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1419      case CSFC_Failure: return CSFC_Failure;
1420      case CSFC_FallThrough:
1421        // A fallthrough result means that the statement was simple and just
1422        // included in ResultStmt, keep adding them afterwards.
1423        break;
1424      case CSFC_Success:
1425        // A successful result means that we found the break statement and
1426        // stopped statement inclusion.  We just ensure that any leftover stmts
1427        // are skippable and return success ourselves.
1428        for (++I; I != E; ++I)
1429          if (CodeGenFunction::ContainsLabel(*I, true))
1430            return CSFC_Failure;
1431        return CSFC_Success;
1432      }
1433    }
1434
1435    return Case ? CSFC_Success : CSFC_FallThrough;
1436  }
1437
1438  // Okay, this is some other statement that we don't handle explicitly, like a
1439  // for statement or increment etc.  If we are skipping over this statement,
1440  // just verify it doesn't have labels, which would make it invalid to elide.
1441  if (Case) {
1442    if (CodeGenFunction::ContainsLabel(S, true))
1443      return CSFC_Failure;
1444    return CSFC_Success;
1445  }
1446
1447  // Otherwise, we want to include this statement.  Everything is cool with that
1448  // so long as it doesn't contain a break out of the switch we're in.
1449  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1450
1451  // Otherwise, everything is great.  Include the statement and tell the caller
1452  // that we fall through and include the next statement as well.
1453  ResultStmts.push_back(S);
1454  return CSFC_FallThrough;
1455}
1456
1457/// FindCaseStatementsForValue - Find the case statement being jumped to and
1458/// then invoke CollectStatementsForCase to find the list of statements to emit
1459/// for a switch on constant.  See the comment above CollectStatementsForCase
1460/// for more details.
1461static bool FindCaseStatementsForValue(const SwitchStmt &S,
1462                                       const llvm::APSInt &ConstantCondValue,
1463                                SmallVectorImpl<const Stmt*> &ResultStmts,
1464                                       ASTContext &C,
1465                                       const SwitchCase *&ResultCase) {
1466  // First step, find the switch case that is being branched to.  We can do this
1467  // efficiently by scanning the SwitchCase list.
1468  const SwitchCase *Case = S.getSwitchCaseList();
1469  const DefaultStmt *DefaultCase = nullptr;
1470
1471  for (; Case; Case = Case->getNextSwitchCase()) {
1472    // It's either a default or case.  Just remember the default statement in
1473    // case we're not jumping to any numbered cases.
1474    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1475      DefaultCase = DS;
1476      continue;
1477    }
1478
1479    // Check to see if this case is the one we're looking for.
1480    const CaseStmt *CS = cast<CaseStmt>(Case);
1481    // Don't handle case ranges yet.
1482    if (CS->getRHS()) return false;
1483
1484    // If we found our case, remember it as 'case'.
1485    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1486      break;
1487  }
1488
1489  // If we didn't find a matching case, we use a default if it exists, or we
1490  // elide the whole switch body!
1491  if (!Case) {
1492    // It is safe to elide the body of the switch if it doesn't contain labels
1493    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1494    if (!DefaultCase)
1495      return !CodeGenFunction::ContainsLabel(&S);
1496    Case = DefaultCase;
1497  }
1498
1499  // Ok, we know which case is being jumped to, try to collect all the
1500  // statements that follow it.  This can fail for a variety of reasons.  Also,
1501  // check to see that the recursive walk actually found our case statement.
1502  // Insane cases like this can fail to find it in the recursive walk since we
1503  // don't handle every stmt kind:
1504  // switch (4) {
1505  //   while (1) {
1506  //     case 4: ...
1507  bool FoundCase = false;
1508  ResultCase = Case;
1509  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1510                                  ResultStmts) != CSFC_Failure &&
1511         FoundCase;
1512}
1513
1514void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1515  // Handle nested switch statements.
1516  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1517  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1518  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1519
1520  // See if we can constant fold the condition of the switch and therefore only
1521  // emit the live case statement (if any) of the switch.
1522  llvm::APSInt ConstantCondValue;
1523  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1524    SmallVector<const Stmt*, 4> CaseStmts;
1525    const SwitchCase *Case = nullptr;
1526    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1527                                   getContext(), Case)) {
1528      if (Case) {
1529        RegionCounter CaseCnt = getPGORegionCounter(Case);
1530        CaseCnt.beginRegion(Builder);
1531      }
1532      RunCleanupsScope ExecutedScope(*this);
1533
1534      // Emit the condition variable if needed inside the entire cleanup scope
1535      // used by this special case for constant folded switches.
1536      if (S.getConditionVariable())
1537        EmitAutoVarDecl(*S.getConditionVariable());
1538
1539      // At this point, we are no longer "within" a switch instance, so
1540      // we can temporarily enforce this to ensure that any embedded case
1541      // statements are not emitted.
1542      SwitchInsn = nullptr;
1543
1544      // Okay, we can dead code eliminate everything except this case.  Emit the
1545      // specified series of statements and we're good.
1546      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1547        EmitStmt(CaseStmts[i]);
1548      RegionCounter ExitCnt = getPGORegionCounter(&S);
1549      ExitCnt.beginRegion(Builder);
1550
1551      // Now we want to restore the saved switch instance so that nested
1552      // switches continue to function properly
1553      SwitchInsn = SavedSwitchInsn;
1554
1555      return;
1556    }
1557  }
1558
1559  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1560
1561  RunCleanupsScope ConditionScope(*this);
1562  if (S.getConditionVariable())
1563    EmitAutoVarDecl(*S.getConditionVariable());
1564  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1565
1566  // Create basic block to hold stuff that comes after switch
1567  // statement. We also need to create a default block now so that
1568  // explicit case ranges tests can have a place to jump to on
1569  // failure.
1570  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1571  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1572  if (PGO.haveRegionCounts()) {
1573    // Walk the SwitchCase list to find how many there are.
1574    uint64_t DefaultCount = 0;
1575    unsigned NumCases = 0;
1576    for (const SwitchCase *Case = S.getSwitchCaseList();
1577         Case;
1578         Case = Case->getNextSwitchCase()) {
1579      if (isa<DefaultStmt>(Case))
1580        DefaultCount = getPGORegionCounter(Case).getCount();
1581      NumCases += 1;
1582    }
1583    SwitchWeights = new SmallVector<uint64_t, 16>();
1584    SwitchWeights->reserve(NumCases);
1585    // The default needs to be first. We store the edge count, so we already
1586    // know the right weight.
1587    SwitchWeights->push_back(DefaultCount);
1588  }
1589  CaseRangeBlock = DefaultBlock;
1590
1591  // Clear the insertion point to indicate we are in unreachable code.
1592  Builder.ClearInsertionPoint();
1593
1594  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1595  // then reuse last ContinueBlock.
1596  JumpDest OuterContinue;
1597  if (!BreakContinueStack.empty())
1598    OuterContinue = BreakContinueStack.back().ContinueBlock;
1599
1600  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1601
1602  // Emit switch body.
1603  EmitStmt(S.getBody());
1604
1605  BreakContinueStack.pop_back();
1606
1607  // Update the default block in case explicit case range tests have
1608  // been chained on top.
1609  SwitchInsn->setDefaultDest(CaseRangeBlock);
1610
1611  // If a default was never emitted:
1612  if (!DefaultBlock->getParent()) {
1613    // If we have cleanups, emit the default block so that there's a
1614    // place to jump through the cleanups from.
1615    if (ConditionScope.requiresCleanups()) {
1616      EmitBlock(DefaultBlock);
1617
1618    // Otherwise, just forward the default block to the switch end.
1619    } else {
1620      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1621      delete DefaultBlock;
1622    }
1623  }
1624
1625  ConditionScope.ForceCleanup();
1626
1627  // Emit continuation.
1628  EmitBlock(SwitchExit.getBlock(), true);
1629  RegionCounter ExitCnt = getPGORegionCounter(&S);
1630  ExitCnt.beginRegion(Builder);
1631
1632  if (SwitchWeights) {
1633    assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1634           "switch weights do not match switch cases");
1635    // If there's only one jump destination there's no sense weighting it.
1636    if (SwitchWeights->size() > 1)
1637      SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1638                              PGO.createBranchWeights(*SwitchWeights));
1639    delete SwitchWeights;
1640  }
1641  SwitchInsn = SavedSwitchInsn;
1642  SwitchWeights = SavedSwitchWeights;
1643  CaseRangeBlock = SavedCRBlock;
1644}
1645
1646static std::string
1647SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1648                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1649  std::string Result;
1650
1651  while (*Constraint) {
1652    switch (*Constraint) {
1653    default:
1654      Result += Target.convertConstraint(Constraint);
1655      break;
1656    // Ignore these
1657    case '*':
1658    case '?':
1659    case '!':
1660    case '=': // Will see this and the following in mult-alt constraints.
1661    case '+':
1662      break;
1663    case '#': // Ignore the rest of the constraint alternative.
1664      while (Constraint[1] && Constraint[1] != ',')
1665        Constraint++;
1666      break;
1667    case '&':
1668    case '%':
1669      Result += *Constraint;
1670      while (Constraint[1] && Constraint[1] == *Constraint)
1671        Constraint++;
1672      break;
1673    case ',':
1674      Result += "|";
1675      break;
1676    case 'g':
1677      Result += "imr";
1678      break;
1679    case '[': {
1680      assert(OutCons &&
1681             "Must pass output names to constraints with a symbolic name");
1682      unsigned Index;
1683      bool result = Target.resolveSymbolicName(Constraint,
1684                                               &(*OutCons)[0],
1685                                               OutCons->size(), Index);
1686      assert(result && "Could not resolve symbolic name"); (void)result;
1687      Result += llvm::utostr(Index);
1688      break;
1689    }
1690    }
1691
1692    Constraint++;
1693  }
1694
1695  return Result;
1696}
1697
1698/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1699/// as using a particular register add that as a constraint that will be used
1700/// in this asm stmt.
1701static std::string
1702AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1703                       const TargetInfo &Target, CodeGenModule &CGM,
1704                       const AsmStmt &Stmt, const bool EarlyClobber) {
1705  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1706  if (!AsmDeclRef)
1707    return Constraint;
1708  const ValueDecl &Value = *AsmDeclRef->getDecl();
1709  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1710  if (!Variable)
1711    return Constraint;
1712  if (Variable->getStorageClass() != SC_Register)
1713    return Constraint;
1714  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1715  if (!Attr)
1716    return Constraint;
1717  StringRef Register = Attr->getLabel();
1718  assert(Target.isValidGCCRegisterName(Register));
1719  // We're using validateOutputConstraint here because we only care if
1720  // this is a register constraint.
1721  TargetInfo::ConstraintInfo Info(Constraint, "");
1722  if (Target.validateOutputConstraint(Info) &&
1723      !Info.allowsRegister()) {
1724    CGM.ErrorUnsupported(&Stmt, "__asm__");
1725    return Constraint;
1726  }
1727  // Canonicalize the register here before returning it.
1728  Register = Target.getNormalizedGCCRegisterName(Register);
1729  return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1730}
1731
1732llvm::Value*
1733CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1734                                    LValue InputValue, QualType InputType,
1735                                    std::string &ConstraintStr,
1736                                    SourceLocation Loc) {
1737  llvm::Value *Arg;
1738  if (Info.allowsRegister() || !Info.allowsMemory()) {
1739    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1740      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1741    } else {
1742      llvm::Type *Ty = ConvertType(InputType);
1743      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1744      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1745        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1746        Ty = llvm::PointerType::getUnqual(Ty);
1747
1748        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1749                                                       Ty));
1750      } else {
1751        Arg = InputValue.getAddress();
1752        ConstraintStr += '*';
1753      }
1754    }
1755  } else {
1756    Arg = InputValue.getAddress();
1757    ConstraintStr += '*';
1758  }
1759
1760  return Arg;
1761}
1762
1763llvm::Value* CodeGenFunction::EmitAsmInput(
1764                                         const TargetInfo::ConstraintInfo &Info,
1765                                           const Expr *InputExpr,
1766                                           std::string &ConstraintStr) {
1767  if (Info.allowsRegister() || !Info.allowsMemory())
1768    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1769      return EmitScalarExpr(InputExpr);
1770
1771  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1772  LValue Dest = EmitLValue(InputExpr);
1773  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1774                            InputExpr->getExprLoc());
1775}
1776
1777/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1778/// asm call instruction.  The !srcloc MDNode contains a list of constant
1779/// integers which are the source locations of the start of each line in the
1780/// asm.
1781static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1782                                      CodeGenFunction &CGF) {
1783  SmallVector<llvm::Metadata *, 8> Locs;
1784  // Add the location of the first line to the MDNode.
1785  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1786      CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1787  StringRef StrVal = Str->getString();
1788  if (!StrVal.empty()) {
1789    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1790    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1791
1792    // Add the location of the start of each subsequent line of the asm to the
1793    // MDNode.
1794    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1795      if (StrVal[i] != '\n') continue;
1796      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1797                                                      CGF.getTarget());
1798      Locs.push_back(llvm::ConstantAsMetadata::get(
1799          llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1800    }
1801  }
1802
1803  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1804}
1805
1806void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1807  // Assemble the final asm string.
1808  std::string AsmString = S.generateAsmString(getContext());
1809
1810  // Get all the output and input constraints together.
1811  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1812  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1813
1814  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1815    StringRef Name;
1816    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1817      Name = GAS->getOutputName(i);
1818    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1819    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1820    assert(IsValid && "Failed to parse output constraint");
1821    OutputConstraintInfos.push_back(Info);
1822  }
1823
1824  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1825    StringRef Name;
1826    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1827      Name = GAS->getInputName(i);
1828    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1829    bool IsValid =
1830      getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1831                                          S.getNumOutputs(), Info);
1832    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1833    InputConstraintInfos.push_back(Info);
1834  }
1835
1836  std::string Constraints;
1837
1838  std::vector<LValue> ResultRegDests;
1839  std::vector<QualType> ResultRegQualTys;
1840  std::vector<llvm::Type *> ResultRegTypes;
1841  std::vector<llvm::Type *> ResultTruncRegTypes;
1842  std::vector<llvm::Type *> ArgTypes;
1843  std::vector<llvm::Value*> Args;
1844
1845  // Keep track of inout constraints.
1846  std::string InOutConstraints;
1847  std::vector<llvm::Value*> InOutArgs;
1848  std::vector<llvm::Type*> InOutArgTypes;
1849
1850  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1851    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1852
1853    // Simplify the output constraint.
1854    std::string OutputConstraint(S.getOutputConstraint(i));
1855    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1856                                          getTarget());
1857
1858    const Expr *OutExpr = S.getOutputExpr(i);
1859    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1860
1861    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1862                                              getTarget(), CGM, S,
1863                                              Info.earlyClobber());
1864
1865    LValue Dest = EmitLValue(OutExpr);
1866    if (!Constraints.empty())
1867      Constraints += ',';
1868
1869    // If this is a register output, then make the inline asm return it
1870    // by-value.  If this is a memory result, return the value by-reference.
1871    if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1872      Constraints += "=" + OutputConstraint;
1873      ResultRegQualTys.push_back(OutExpr->getType());
1874      ResultRegDests.push_back(Dest);
1875      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1876      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1877
1878      // If this output is tied to an input, and if the input is larger, then
1879      // we need to set the actual result type of the inline asm node to be the
1880      // same as the input type.
1881      if (Info.hasMatchingInput()) {
1882        unsigned InputNo;
1883        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1884          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1885          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1886            break;
1887        }
1888        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1889
1890        QualType InputTy = S.getInputExpr(InputNo)->getType();
1891        QualType OutputType = OutExpr->getType();
1892
1893        uint64_t InputSize = getContext().getTypeSize(InputTy);
1894        if (getContext().getTypeSize(OutputType) < InputSize) {
1895          // Form the asm to return the value as a larger integer or fp type.
1896          ResultRegTypes.back() = ConvertType(InputTy);
1897        }
1898      }
1899      if (llvm::Type* AdjTy =
1900            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1901                                                 ResultRegTypes.back()))
1902        ResultRegTypes.back() = AdjTy;
1903      else {
1904        CGM.getDiags().Report(S.getAsmLoc(),
1905                              diag::err_asm_invalid_type_in_input)
1906            << OutExpr->getType() << OutputConstraint;
1907      }
1908    } else {
1909      ArgTypes.push_back(Dest.getAddress()->getType());
1910      Args.push_back(Dest.getAddress());
1911      Constraints += "=*";
1912      Constraints += OutputConstraint;
1913    }
1914
1915    if (Info.isReadWrite()) {
1916      InOutConstraints += ',';
1917
1918      const Expr *InputExpr = S.getOutputExpr(i);
1919      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1920                                            InOutConstraints,
1921                                            InputExpr->getExprLoc());
1922
1923      if (llvm::Type* AdjTy =
1924          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1925                                               Arg->getType()))
1926        Arg = Builder.CreateBitCast(Arg, AdjTy);
1927
1928      if (Info.allowsRegister())
1929        InOutConstraints += llvm::utostr(i);
1930      else
1931        InOutConstraints += OutputConstraint;
1932
1933      InOutArgTypes.push_back(Arg->getType());
1934      InOutArgs.push_back(Arg);
1935    }
1936  }
1937
1938  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1939  // to the return value slot. Only do this when returning in registers.
1940  if (isa<MSAsmStmt>(&S)) {
1941    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1942    if (RetAI.isDirect() || RetAI.isExtend()) {
1943      // Make a fake lvalue for the return value slot.
1944      LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1945      CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1946          *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1947          ResultRegDests, AsmString, S.getNumOutputs());
1948      SawAsmBlock = true;
1949    }
1950  }
1951
1952  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1953    const Expr *InputExpr = S.getInputExpr(i);
1954
1955    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1956
1957    if (!Constraints.empty())
1958      Constraints += ',';
1959
1960    // Simplify the input constraint.
1961    std::string InputConstraint(S.getInputConstraint(i));
1962    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1963                                         &OutputConstraintInfos);
1964
1965    InputConstraint = AddVariableConstraints(
1966        InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1967        getTarget(), CGM, S, false /* No EarlyClobber */);
1968
1969    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1970
1971    // If this input argument is tied to a larger output result, extend the
1972    // input to be the same size as the output.  The LLVM backend wants to see
1973    // the input and output of a matching constraint be the same size.  Note
1974    // that GCC does not define what the top bits are here.  We use zext because
1975    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1976    if (Info.hasTiedOperand()) {
1977      unsigned Output = Info.getTiedOperand();
1978      QualType OutputType = S.getOutputExpr(Output)->getType();
1979      QualType InputTy = InputExpr->getType();
1980
1981      if (getContext().getTypeSize(OutputType) >
1982          getContext().getTypeSize(InputTy)) {
1983        // Use ptrtoint as appropriate so that we can do our extension.
1984        if (isa<llvm::PointerType>(Arg->getType()))
1985          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1986        llvm::Type *OutputTy = ConvertType(OutputType);
1987        if (isa<llvm::IntegerType>(OutputTy))
1988          Arg = Builder.CreateZExt(Arg, OutputTy);
1989        else if (isa<llvm::PointerType>(OutputTy))
1990          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1991        else {
1992          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1993          Arg = Builder.CreateFPExt(Arg, OutputTy);
1994        }
1995      }
1996    }
1997    if (llvm::Type* AdjTy =
1998              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1999                                                   Arg->getType()))
2000      Arg = Builder.CreateBitCast(Arg, AdjTy);
2001    else
2002      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2003          << InputExpr->getType() << InputConstraint;
2004
2005    ArgTypes.push_back(Arg->getType());
2006    Args.push_back(Arg);
2007    Constraints += InputConstraint;
2008  }
2009
2010  // Append the "input" part of inout constraints last.
2011  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2012    ArgTypes.push_back(InOutArgTypes[i]);
2013    Args.push_back(InOutArgs[i]);
2014  }
2015  Constraints += InOutConstraints;
2016
2017  // Clobbers
2018  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2019    StringRef Clobber = S.getClobber(i);
2020
2021    if (Clobber != "memory" && Clobber != "cc")
2022      Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2023
2024    if (!Constraints.empty())
2025      Constraints += ',';
2026
2027    Constraints += "~{";
2028    Constraints += Clobber;
2029    Constraints += '}';
2030  }
2031
2032  // Add machine specific clobbers
2033  std::string MachineClobbers = getTarget().getClobbers();
2034  if (!MachineClobbers.empty()) {
2035    if (!Constraints.empty())
2036      Constraints += ',';
2037    Constraints += MachineClobbers;
2038  }
2039
2040  llvm::Type *ResultType;
2041  if (ResultRegTypes.empty())
2042    ResultType = VoidTy;
2043  else if (ResultRegTypes.size() == 1)
2044    ResultType = ResultRegTypes[0];
2045  else
2046    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2047
2048  llvm::FunctionType *FTy =
2049    llvm::FunctionType::get(ResultType, ArgTypes, false);
2050
2051  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2052  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2053    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2054  llvm::InlineAsm *IA =
2055    llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2056                         /* IsAlignStack */ false, AsmDialect);
2057  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2058  Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2059                       llvm::Attribute::NoUnwind);
2060
2061  // Slap the source location of the inline asm into a !srcloc metadata on the
2062  // call.
2063  if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2064    Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2065                                                   *this));
2066  } else {
2067    // At least put the line number on MS inline asm blobs.
2068    auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2069    Result->setMetadata("srcloc",
2070                        llvm::MDNode::get(getLLVMContext(),
2071                                          llvm::ConstantAsMetadata::get(Loc)));
2072  }
2073
2074  // Extract all of the register value results from the asm.
2075  std::vector<llvm::Value*> RegResults;
2076  if (ResultRegTypes.size() == 1) {
2077    RegResults.push_back(Result);
2078  } else {
2079    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2080      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2081      RegResults.push_back(Tmp);
2082    }
2083  }
2084
2085  assert(RegResults.size() == ResultRegTypes.size());
2086  assert(RegResults.size() == ResultTruncRegTypes.size());
2087  assert(RegResults.size() == ResultRegDests.size());
2088  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2089    llvm::Value *Tmp = RegResults[i];
2090
2091    // If the result type of the LLVM IR asm doesn't match the result type of
2092    // the expression, do the conversion.
2093    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2094      llvm::Type *TruncTy = ResultTruncRegTypes[i];
2095
2096      // Truncate the integer result to the right size, note that TruncTy can be
2097      // a pointer.
2098      if (TruncTy->isFloatingPointTy())
2099        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2100      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2101        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2102        Tmp = Builder.CreateTrunc(Tmp,
2103                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2104        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2105      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2106        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2107        Tmp = Builder.CreatePtrToInt(Tmp,
2108                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2109        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2110      } else if (TruncTy->isIntegerTy()) {
2111        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2112      } else if (TruncTy->isVectorTy()) {
2113        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2114      }
2115    }
2116
2117    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2118  }
2119}
2120
2121LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2122  const RecordDecl *RD = S.getCapturedRecordDecl();
2123  QualType RecordTy = getContext().getRecordType(RD);
2124
2125  // Initialize the captured struct.
2126  LValue SlotLV = MakeNaturalAlignAddrLValue(
2127      CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2128
2129  RecordDecl::field_iterator CurField = RD->field_begin();
2130  for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2131                                           E = S.capture_init_end();
2132       I != E; ++I, ++CurField) {
2133    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2134    if (CurField->hasCapturedVLAType()) {
2135      auto VAT = CurField->getCapturedVLAType();
2136      EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2137    } else {
2138      EmitInitializerForField(*CurField, LV, *I, None);
2139    }
2140  }
2141
2142  return SlotLV;
2143}
2144
2145/// Generate an outlined function for the body of a CapturedStmt, store any
2146/// captured variables into the captured struct, and call the outlined function.
2147llvm::Function *
2148CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2149  LValue CapStruct = InitCapturedStruct(S);
2150
2151  // Emit the CapturedDecl
2152  CodeGenFunction CGF(CGM, true);
2153  CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2154  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2155  delete CGF.CapturedStmtInfo;
2156
2157  // Emit call to the helper function.
2158  EmitCallOrInvoke(F, CapStruct.getAddress());
2159
2160  return F;
2161}
2162
2163llvm::Value *
2164CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2165  LValue CapStruct = InitCapturedStruct(S);
2166  return CapStruct.getAddress();
2167}
2168
2169/// Creates the outlined function for a CapturedStmt.
2170llvm::Function *
2171CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2172  assert(CapturedStmtInfo &&
2173    "CapturedStmtInfo should be set when generating the captured function");
2174  const CapturedDecl *CD = S.getCapturedDecl();
2175  const RecordDecl *RD = S.getCapturedRecordDecl();
2176  SourceLocation Loc = S.getLocStart();
2177  assert(CD->hasBody() && "missing CapturedDecl body");
2178
2179  // Build the argument list.
2180  ASTContext &Ctx = CGM.getContext();
2181  FunctionArgList Args;
2182  Args.append(CD->param_begin(), CD->param_end());
2183
2184  // Create the function declaration.
2185  FunctionType::ExtInfo ExtInfo;
2186  const CGFunctionInfo &FuncInfo =
2187      CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2188                                                    /*IsVariadic=*/false);
2189  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2190
2191  llvm::Function *F =
2192    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2193                           CapturedStmtInfo->getHelperName(), &CGM.getModule());
2194  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2195  if (CD->isNothrow())
2196    F->addFnAttr(llvm::Attribute::NoUnwind);
2197
2198  // Generate the function.
2199  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2200                CD->getLocation(),
2201                CD->getBody()->getLocStart());
2202  // Set the context parameter in CapturedStmtInfo.
2203  llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2204  assert(DeclPtr && "missing context parameter for CapturedStmt");
2205  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2206
2207  // Initialize variable-length arrays.
2208  LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2209                                           Ctx.getTagDeclType(RD));
2210  for (auto *FD : RD->fields()) {
2211    if (FD->hasCapturedVLAType()) {
2212      auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2213                                       S.getLocStart()).getScalarVal();
2214      auto VAT = FD->getCapturedVLAType();
2215      VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2216    }
2217  }
2218
2219  // If 'this' is captured, load it into CXXThisValue.
2220  if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2221    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2222    LValue ThisLValue = EmitLValueForField(Base, FD);
2223    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2224  }
2225
2226  PGO.assignRegionCounters(CD, F);
2227  CapturedStmtInfo->EmitBody(*this, CD->getBody());
2228  FinishFunction(CD->getBodyRBrace());
2229
2230  return F;
2231}
2232