1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Stmt nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGDebugInfo.h" 16#include "CodeGenModule.h" 17#include "TargetInfo.h" 18#include "clang/AST/StmtVisitor.h" 19#include "clang/Basic/PrettyStackTrace.h" 20#include "clang/Basic/TargetInfo.h" 21#include "clang/Sema/LoopHint.h" 22#include "clang/Sema/SemaDiagnostic.h" 23#include "llvm/ADT/StringExtras.h" 24#include "llvm/IR/CallSite.h" 25#include "llvm/IR/DataLayout.h" 26#include "llvm/IR/InlineAsm.h" 27#include "llvm/IR/Intrinsics.h" 28using namespace clang; 29using namespace CodeGen; 30 31//===----------------------------------------------------------------------===// 32// Statement Emission 33//===----------------------------------------------------------------------===// 34 35void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43} 44 45void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 case Stmt::SEHLeaveStmtClass: 92 llvm_unreachable("should have emitted these statements as simple"); 93 94#define STMT(Type, Base) 95#define ABSTRACT_STMT(Op) 96#define EXPR(Type, Base) \ 97 case Stmt::Type##Class: 98#include "clang/AST/StmtNodes.inc" 99 { 100 // Remember the block we came in on. 101 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 102 assert(incoming && "expression emission must have an insertion point"); 103 104 EmitIgnoredExpr(cast<Expr>(S)); 105 106 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 107 assert(outgoing && "expression emission cleared block!"); 108 109 // The expression emitters assume (reasonably!) that the insertion 110 // point is always set. To maintain that, the call-emission code 111 // for noreturn functions has to enter a new block with no 112 // predecessors. We want to kill that block and mark the current 113 // insertion point unreachable in the common case of a call like 114 // "exit();". Since expression emission doesn't otherwise create 115 // blocks with no predecessors, we can just test for that. 116 // However, we must be careful not to do this to our incoming 117 // block, because *statement* emission does sometimes create 118 // reachable blocks which will have no predecessors until later in 119 // the function. This occurs with, e.g., labels that are not 120 // reachable by fallthrough. 121 if (incoming != outgoing && outgoing->use_empty()) { 122 outgoing->eraseFromParent(); 123 Builder.ClearInsertionPoint(); 124 } 125 break; 126 } 127 128 case Stmt::IndirectGotoStmtClass: 129 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 130 131 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 132 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 133 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 134 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 135 136 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 137 138 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 139 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 140 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 141 case Stmt::CapturedStmtClass: { 142 const CapturedStmt *CS = cast<CapturedStmt>(S); 143 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 144 } 145 break; 146 case Stmt::ObjCAtTryStmtClass: 147 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 148 break; 149 case Stmt::ObjCAtCatchStmtClass: 150 llvm_unreachable( 151 "@catch statements should be handled by EmitObjCAtTryStmt"); 152 case Stmt::ObjCAtFinallyStmtClass: 153 llvm_unreachable( 154 "@finally statements should be handled by EmitObjCAtTryStmt"); 155 case Stmt::ObjCAtThrowStmtClass: 156 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 157 break; 158 case Stmt::ObjCAtSynchronizedStmtClass: 159 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 160 break; 161 case Stmt::ObjCForCollectionStmtClass: 162 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 163 break; 164 case Stmt::ObjCAutoreleasePoolStmtClass: 165 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 166 break; 167 168 case Stmt::CXXTryStmtClass: 169 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 170 break; 171 case Stmt::CXXForRangeStmtClass: 172 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 173 break; 174 case Stmt::SEHTryStmtClass: 175 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 176 break; 177 case Stmt::OMPParallelDirectiveClass: 178 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 179 break; 180 case Stmt::OMPSimdDirectiveClass: 181 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 182 break; 183 case Stmt::OMPForDirectiveClass: 184 EmitOMPForDirective(cast<OMPForDirective>(*S)); 185 break; 186 case Stmt::OMPForSimdDirectiveClass: 187 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 188 break; 189 case Stmt::OMPSectionsDirectiveClass: 190 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 191 break; 192 case Stmt::OMPSectionDirectiveClass: 193 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 194 break; 195 case Stmt::OMPSingleDirectiveClass: 196 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 197 break; 198 case Stmt::OMPMasterDirectiveClass: 199 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 200 break; 201 case Stmt::OMPCriticalDirectiveClass: 202 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 203 break; 204 case Stmt::OMPParallelForDirectiveClass: 205 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 206 break; 207 case Stmt::OMPParallelForSimdDirectiveClass: 208 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 209 break; 210 case Stmt::OMPParallelSectionsDirectiveClass: 211 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 212 break; 213 case Stmt::OMPTaskDirectiveClass: 214 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 215 break; 216 case Stmt::OMPTaskyieldDirectiveClass: 217 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 218 break; 219 case Stmt::OMPBarrierDirectiveClass: 220 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 221 break; 222 case Stmt::OMPTaskwaitDirectiveClass: 223 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 224 break; 225 case Stmt::OMPFlushDirectiveClass: 226 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 227 break; 228 case Stmt::OMPOrderedDirectiveClass: 229 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 230 break; 231 case Stmt::OMPAtomicDirectiveClass: 232 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 233 break; 234 case Stmt::OMPTargetDirectiveClass: 235 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 236 break; 237 case Stmt::OMPTeamsDirectiveClass: 238 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 239 break; 240 } 241} 242 243bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 244 switch (S->getStmtClass()) { 245 default: return false; 246 case Stmt::NullStmtClass: break; 247 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 248 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 249 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 250 case Stmt::AttributedStmtClass: 251 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 252 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 253 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 254 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 255 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 256 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 257 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 258 } 259 260 return true; 261} 262 263/// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 264/// this captures the expression result of the last sub-statement and returns it 265/// (for use by the statement expression extension). 266llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 267 AggValueSlot AggSlot) { 268 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 269 "LLVM IR generation of compound statement ('{}')"); 270 271 // Keep track of the current cleanup stack depth, including debug scopes. 272 LexicalScope Scope(*this, S.getSourceRange()); 273 274 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 275} 276 277llvm::Value* 278CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 279 bool GetLast, 280 AggValueSlot AggSlot) { 281 282 for (CompoundStmt::const_body_iterator I = S.body_begin(), 283 E = S.body_end()-GetLast; I != E; ++I) 284 EmitStmt(*I); 285 286 llvm::Value *RetAlloca = nullptr; 287 if (GetLast) { 288 // We have to special case labels here. They are statements, but when put 289 // at the end of a statement expression, they yield the value of their 290 // subexpression. Handle this by walking through all labels we encounter, 291 // emitting them before we evaluate the subexpr. 292 const Stmt *LastStmt = S.body_back(); 293 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 294 EmitLabel(LS->getDecl()); 295 LastStmt = LS->getSubStmt(); 296 } 297 298 EnsureInsertPoint(); 299 300 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 301 if (hasAggregateEvaluationKind(ExprTy)) { 302 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 303 } else { 304 // We can't return an RValue here because there might be cleanups at 305 // the end of the StmtExpr. Because of that, we have to emit the result 306 // here into a temporary alloca. 307 RetAlloca = CreateMemTemp(ExprTy); 308 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 309 /*IsInit*/false); 310 } 311 312 } 313 314 return RetAlloca; 315} 316 317void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 318 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 319 320 // If there is a cleanup stack, then we it isn't worth trying to 321 // simplify this block (we would need to remove it from the scope map 322 // and cleanup entry). 323 if (!EHStack.empty()) 324 return; 325 326 // Can only simplify direct branches. 327 if (!BI || !BI->isUnconditional()) 328 return; 329 330 // Can only simplify empty blocks. 331 if (BI != BB->begin()) 332 return; 333 334 BB->replaceAllUsesWith(BI->getSuccessor(0)); 335 BI->eraseFromParent(); 336 BB->eraseFromParent(); 337} 338 339void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 340 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 341 342 // Fall out of the current block (if necessary). 343 EmitBranch(BB); 344 345 if (IsFinished && BB->use_empty()) { 346 delete BB; 347 return; 348 } 349 350 // Place the block after the current block, if possible, or else at 351 // the end of the function. 352 if (CurBB && CurBB->getParent()) 353 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 354 else 355 CurFn->getBasicBlockList().push_back(BB); 356 Builder.SetInsertPoint(BB); 357} 358 359void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 360 // Emit a branch from the current block to the target one if this 361 // was a real block. If this was just a fall-through block after a 362 // terminator, don't emit it. 363 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 364 365 if (!CurBB || CurBB->getTerminator()) { 366 // If there is no insert point or the previous block is already 367 // terminated, don't touch it. 368 } else { 369 // Otherwise, create a fall-through branch. 370 Builder.CreateBr(Target); 371 } 372 373 Builder.ClearInsertionPoint(); 374} 375 376void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 377 bool inserted = false; 378 for (llvm::User *u : block->users()) { 379 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 380 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 381 inserted = true; 382 break; 383 } 384 } 385 386 if (!inserted) 387 CurFn->getBasicBlockList().push_back(block); 388 389 Builder.SetInsertPoint(block); 390} 391 392CodeGenFunction::JumpDest 393CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 394 JumpDest &Dest = LabelMap[D]; 395 if (Dest.isValid()) return Dest; 396 397 // Create, but don't insert, the new block. 398 Dest = JumpDest(createBasicBlock(D->getName()), 399 EHScopeStack::stable_iterator::invalid(), 400 NextCleanupDestIndex++); 401 return Dest; 402} 403 404void CodeGenFunction::EmitLabel(const LabelDecl *D) { 405 // Add this label to the current lexical scope if we're within any 406 // normal cleanups. Jumps "in" to this label --- when permitted by 407 // the language --- may need to be routed around such cleanups. 408 if (EHStack.hasNormalCleanups() && CurLexicalScope) 409 CurLexicalScope->addLabel(D); 410 411 JumpDest &Dest = LabelMap[D]; 412 413 // If we didn't need a forward reference to this label, just go 414 // ahead and create a destination at the current scope. 415 if (!Dest.isValid()) { 416 Dest = getJumpDestInCurrentScope(D->getName()); 417 418 // Otherwise, we need to give this label a target depth and remove 419 // it from the branch-fixups list. 420 } else { 421 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 422 Dest.setScopeDepth(EHStack.stable_begin()); 423 ResolveBranchFixups(Dest.getBlock()); 424 } 425 426 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 427 EmitBlock(Dest.getBlock()); 428 Cnt.beginRegion(Builder); 429} 430 431/// Change the cleanup scope of the labels in this lexical scope to 432/// match the scope of the enclosing context. 433void CodeGenFunction::LexicalScope::rescopeLabels() { 434 assert(!Labels.empty()); 435 EHScopeStack::stable_iterator innermostScope 436 = CGF.EHStack.getInnermostNormalCleanup(); 437 438 // Change the scope depth of all the labels. 439 for (SmallVectorImpl<const LabelDecl*>::const_iterator 440 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 441 assert(CGF.LabelMap.count(*i)); 442 JumpDest &dest = CGF.LabelMap.find(*i)->second; 443 assert(dest.getScopeDepth().isValid()); 444 assert(innermostScope.encloses(dest.getScopeDepth())); 445 dest.setScopeDepth(innermostScope); 446 } 447 448 // Reparent the labels if the new scope also has cleanups. 449 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 450 ParentScope->Labels.append(Labels.begin(), Labels.end()); 451 } 452} 453 454 455void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 456 EmitLabel(S.getDecl()); 457 EmitStmt(S.getSubStmt()); 458} 459 460void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 461 const Stmt *SubStmt = S.getSubStmt(); 462 switch (SubStmt->getStmtClass()) { 463 case Stmt::DoStmtClass: 464 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 465 break; 466 case Stmt::ForStmtClass: 467 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 468 break; 469 case Stmt::WhileStmtClass: 470 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 471 break; 472 case Stmt::CXXForRangeStmtClass: 473 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 474 break; 475 default: 476 EmitStmt(SubStmt); 477 } 478} 479 480void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 481 // If this code is reachable then emit a stop point (if generating 482 // debug info). We have to do this ourselves because we are on the 483 // "simple" statement path. 484 if (HaveInsertPoint()) 485 EmitStopPoint(&S); 486 487 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 488} 489 490 491void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 492 if (const LabelDecl *Target = S.getConstantTarget()) { 493 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 494 return; 495 } 496 497 // Ensure that we have an i8* for our PHI node. 498 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 499 Int8PtrTy, "addr"); 500 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 501 502 // Get the basic block for the indirect goto. 503 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 504 505 // The first instruction in the block has to be the PHI for the switch dest, 506 // add an entry for this branch. 507 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 508 509 EmitBranch(IndGotoBB); 510} 511 512void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 513 // C99 6.8.4.1: The first substatement is executed if the expression compares 514 // unequal to 0. The condition must be a scalar type. 515 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 516 RegionCounter Cnt = getPGORegionCounter(&S); 517 518 if (S.getConditionVariable()) 519 EmitAutoVarDecl(*S.getConditionVariable()); 520 521 // If the condition constant folds and can be elided, try to avoid emitting 522 // the condition and the dead arm of the if/else. 523 bool CondConstant; 524 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 525 // Figure out which block (then or else) is executed. 526 const Stmt *Executed = S.getThen(); 527 const Stmt *Skipped = S.getElse(); 528 if (!CondConstant) // Condition false? 529 std::swap(Executed, Skipped); 530 531 // If the skipped block has no labels in it, just emit the executed block. 532 // This avoids emitting dead code and simplifies the CFG substantially. 533 if (!ContainsLabel(Skipped)) { 534 if (CondConstant) 535 Cnt.beginRegion(Builder); 536 if (Executed) { 537 RunCleanupsScope ExecutedScope(*this); 538 EmitStmt(Executed); 539 } 540 return; 541 } 542 } 543 544 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 545 // the conditional branch. 546 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 547 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 548 llvm::BasicBlock *ElseBlock = ContBlock; 549 if (S.getElse()) 550 ElseBlock = createBasicBlock("if.else"); 551 552 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 553 554 // Emit the 'then' code. 555 EmitBlock(ThenBlock); 556 Cnt.beginRegion(Builder); 557 { 558 RunCleanupsScope ThenScope(*this); 559 EmitStmt(S.getThen()); 560 } 561 EmitBranch(ContBlock); 562 563 // Emit the 'else' code if present. 564 if (const Stmt *Else = S.getElse()) { 565 { 566 // There is no need to emit line number for an unconditional branch. 567 auto NL = ApplyDebugLocation::CreateEmpty(*this); 568 EmitBlock(ElseBlock); 569 } 570 { 571 RunCleanupsScope ElseScope(*this); 572 EmitStmt(Else); 573 } 574 { 575 // There is no need to emit line number for an unconditional branch. 576 auto NL = ApplyDebugLocation::CreateEmpty(*this); 577 EmitBranch(ContBlock); 578 } 579 } 580 581 // Emit the continuation block for code after the if. 582 EmitBlock(ContBlock, true); 583} 584 585void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 586 llvm::BranchInst *CondBr, 587 ArrayRef<const Attr *> Attrs) { 588 // Return if there are no hints. 589 if (Attrs.empty()) 590 return; 591 592 // Add vectorize and unroll hints to the metadata on the conditional branch. 593 // 594 // FIXME: Should this really start with a size of 1? 595 SmallVector<llvm::Metadata *, 2> Metadata(1); 596 for (const auto *Attr : Attrs) { 597 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 598 599 // Skip non loop hint attributes 600 if (!LH) 601 continue; 602 603 LoopHintAttr::OptionType Option = LH->getOption(); 604 LoopHintAttr::LoopHintState State = LH->getState(); 605 const char *MetadataName; 606 switch (Option) { 607 case LoopHintAttr::Vectorize: 608 case LoopHintAttr::VectorizeWidth: 609 MetadataName = "llvm.loop.vectorize.width"; 610 break; 611 case LoopHintAttr::Interleave: 612 case LoopHintAttr::InterleaveCount: 613 MetadataName = "llvm.loop.interleave.count"; 614 break; 615 case LoopHintAttr::Unroll: 616 // With the unroll loop hint, a non-zero value indicates full unrolling. 617 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 618 : "llvm.loop.unroll.full"; 619 break; 620 case LoopHintAttr::UnrollCount: 621 MetadataName = "llvm.loop.unroll.count"; 622 break; 623 } 624 625 Expr *ValueExpr = LH->getValue(); 626 int ValueInt = 1; 627 if (ValueExpr) { 628 llvm::APSInt ValueAPS = 629 ValueExpr->EvaluateKnownConstInt(CGM.getContext()); 630 ValueInt = static_cast<int>(ValueAPS.getSExtValue()); 631 } 632 633 llvm::Constant *Value; 634 llvm::MDString *Name; 635 switch (Option) { 636 case LoopHintAttr::Vectorize: 637 case LoopHintAttr::Interleave: 638 if (State != LoopHintAttr::Disable) { 639 // FIXME: In the future I will modifiy the behavior of the metadata 640 // so we can enable/disable vectorization and interleaving separately. 641 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 642 Value = Builder.getTrue(); 643 break; 644 } 645 // Vectorization/interleaving is disabled, set width/count to 1. 646 ValueInt = 1; 647 // Fallthrough. 648 case LoopHintAttr::VectorizeWidth: 649 case LoopHintAttr::InterleaveCount: 650 case LoopHintAttr::UnrollCount: 651 Name = llvm::MDString::get(Context, MetadataName); 652 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 653 break; 654 case LoopHintAttr::Unroll: 655 Name = llvm::MDString::get(Context, MetadataName); 656 Value = nullptr; 657 break; 658 } 659 660 SmallVector<llvm::Metadata *, 2> OpValues; 661 OpValues.push_back(Name); 662 if (Value) 663 OpValues.push_back(llvm::ConstantAsMetadata::get(Value)); 664 665 // Set or overwrite metadata indicated by Name. 666 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 667 } 668 669 // FIXME: This condition is never false. Should it be an assert? 670 if (!Metadata.empty()) { 671 // Add llvm.loop MDNode to CondBr. 672 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 673 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 674 675 CondBr->setMetadata("llvm.loop", LoopID); 676 } 677} 678 679void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 680 ArrayRef<const Attr *> WhileAttrs) { 681 RegionCounter Cnt = getPGORegionCounter(&S); 682 683 // Emit the header for the loop, which will also become 684 // the continue target. 685 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 686 EmitBlock(LoopHeader.getBlock()); 687 688 LoopStack.push(LoopHeader.getBlock()); 689 690 // Create an exit block for when the condition fails, which will 691 // also become the break target. 692 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 693 694 // Store the blocks to use for break and continue. 695 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 696 697 // C++ [stmt.while]p2: 698 // When the condition of a while statement is a declaration, the 699 // scope of the variable that is declared extends from its point 700 // of declaration (3.3.2) to the end of the while statement. 701 // [...] 702 // The object created in a condition is destroyed and created 703 // with each iteration of the loop. 704 RunCleanupsScope ConditionScope(*this); 705 706 if (S.getConditionVariable()) 707 EmitAutoVarDecl(*S.getConditionVariable()); 708 709 // Evaluate the conditional in the while header. C99 6.8.5.1: The 710 // evaluation of the controlling expression takes place before each 711 // execution of the loop body. 712 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 713 714 // while(1) is common, avoid extra exit blocks. Be sure 715 // to correctly handle break/continue though. 716 bool EmitBoolCondBranch = true; 717 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 718 if (C->isOne()) 719 EmitBoolCondBranch = false; 720 721 // As long as the condition is true, go to the loop body. 722 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 723 if (EmitBoolCondBranch) { 724 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 725 if (ConditionScope.requiresCleanups()) 726 ExitBlock = createBasicBlock("while.exit"); 727 llvm::BranchInst *CondBr = 728 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 729 PGO.createLoopWeights(S.getCond(), Cnt)); 730 731 if (ExitBlock != LoopExit.getBlock()) { 732 EmitBlock(ExitBlock); 733 EmitBranchThroughCleanup(LoopExit); 734 } 735 736 // Attach metadata to loop body conditional branch. 737 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 738 } 739 740 // Emit the loop body. We have to emit this in a cleanup scope 741 // because it might be a singleton DeclStmt. 742 { 743 RunCleanupsScope BodyScope(*this); 744 EmitBlock(LoopBody); 745 Cnt.beginRegion(Builder); 746 EmitStmt(S.getBody()); 747 } 748 749 BreakContinueStack.pop_back(); 750 751 // Immediately force cleanup. 752 ConditionScope.ForceCleanup(); 753 754 EmitStopPoint(&S); 755 // Branch to the loop header again. 756 EmitBranch(LoopHeader.getBlock()); 757 758 LoopStack.pop(); 759 760 // Emit the exit block. 761 EmitBlock(LoopExit.getBlock(), true); 762 763 // The LoopHeader typically is just a branch if we skipped emitting 764 // a branch, try to erase it. 765 if (!EmitBoolCondBranch) 766 SimplifyForwardingBlocks(LoopHeader.getBlock()); 767} 768 769void CodeGenFunction::EmitDoStmt(const DoStmt &S, 770 ArrayRef<const Attr *> DoAttrs) { 771 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 772 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 773 774 RegionCounter Cnt = getPGORegionCounter(&S); 775 776 // Store the blocks to use for break and continue. 777 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 778 779 // Emit the body of the loop. 780 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 781 782 LoopStack.push(LoopBody); 783 784 EmitBlockWithFallThrough(LoopBody, Cnt); 785 { 786 RunCleanupsScope BodyScope(*this); 787 EmitStmt(S.getBody()); 788 } 789 790 EmitBlock(LoopCond.getBlock()); 791 792 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 793 // after each execution of the loop body." 794 795 // Evaluate the conditional in the while header. 796 // C99 6.8.5p2/p4: The first substatement is executed if the expression 797 // compares unequal to 0. The condition must be a scalar type. 798 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 799 800 BreakContinueStack.pop_back(); 801 802 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 803 // to correctly handle break/continue though. 804 bool EmitBoolCondBranch = true; 805 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 806 if (C->isZero()) 807 EmitBoolCondBranch = false; 808 809 // As long as the condition is true, iterate the loop. 810 if (EmitBoolCondBranch) { 811 llvm::BranchInst *CondBr = 812 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 813 PGO.createLoopWeights(S.getCond(), Cnt)); 814 815 // Attach metadata to loop body conditional branch. 816 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 817 } 818 819 LoopStack.pop(); 820 821 // Emit the exit block. 822 EmitBlock(LoopExit.getBlock()); 823 824 // The DoCond block typically is just a branch if we skipped 825 // emitting a branch, try to erase it. 826 if (!EmitBoolCondBranch) 827 SimplifyForwardingBlocks(LoopCond.getBlock()); 828} 829 830void CodeGenFunction::EmitForStmt(const ForStmt &S, 831 ArrayRef<const Attr *> ForAttrs) { 832 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 833 834 LexicalScope ForScope(*this, S.getSourceRange()); 835 836 // Evaluate the first part before the loop. 837 if (S.getInit()) 838 EmitStmt(S.getInit()); 839 840 RegionCounter Cnt = getPGORegionCounter(&S); 841 842 // Start the loop with a block that tests the condition. 843 // If there's an increment, the continue scope will be overwritten 844 // later. 845 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 846 llvm::BasicBlock *CondBlock = Continue.getBlock(); 847 EmitBlock(CondBlock); 848 849 LoopStack.push(CondBlock); 850 851 // If the for loop doesn't have an increment we can just use the 852 // condition as the continue block. Otherwise we'll need to create 853 // a block for it (in the current scope, i.e. in the scope of the 854 // condition), and that we will become our continue block. 855 if (S.getInc()) 856 Continue = getJumpDestInCurrentScope("for.inc"); 857 858 // Store the blocks to use for break and continue. 859 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 860 861 // Create a cleanup scope for the condition variable cleanups. 862 LexicalScope ConditionScope(*this, S.getSourceRange()); 863 864 if (S.getCond()) { 865 // If the for statement has a condition scope, emit the local variable 866 // declaration. 867 if (S.getConditionVariable()) { 868 EmitAutoVarDecl(*S.getConditionVariable()); 869 } 870 871 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 872 // If there are any cleanups between here and the loop-exit scope, 873 // create a block to stage a loop exit along. 874 if (ForScope.requiresCleanups()) 875 ExitBlock = createBasicBlock("for.cond.cleanup"); 876 877 // As long as the condition is true, iterate the loop. 878 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 879 880 // C99 6.8.5p2/p4: The first substatement is executed if the expression 881 // compares unequal to 0. The condition must be a scalar type. 882 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 883 llvm::BranchInst *CondBr = 884 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 885 PGO.createLoopWeights(S.getCond(), Cnt)); 886 887 // Attach metadata to loop body conditional branch. 888 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 889 890 if (ExitBlock != LoopExit.getBlock()) { 891 EmitBlock(ExitBlock); 892 EmitBranchThroughCleanup(LoopExit); 893 } 894 895 EmitBlock(ForBody); 896 } else { 897 // Treat it as a non-zero constant. Don't even create a new block for the 898 // body, just fall into it. 899 } 900 Cnt.beginRegion(Builder); 901 902 { 903 // Create a separate cleanup scope for the body, in case it is not 904 // a compound statement. 905 RunCleanupsScope BodyScope(*this); 906 EmitStmt(S.getBody()); 907 } 908 909 // If there is an increment, emit it next. 910 if (S.getInc()) { 911 EmitBlock(Continue.getBlock()); 912 EmitStmt(S.getInc()); 913 } 914 915 BreakContinueStack.pop_back(); 916 917 ConditionScope.ForceCleanup(); 918 919 EmitStopPoint(&S); 920 EmitBranch(CondBlock); 921 922 ForScope.ForceCleanup(); 923 924 LoopStack.pop(); 925 926 // Emit the fall-through block. 927 EmitBlock(LoopExit.getBlock(), true); 928} 929 930void 931CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 932 ArrayRef<const Attr *> ForAttrs) { 933 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 934 935 LexicalScope ForScope(*this, S.getSourceRange()); 936 937 // Evaluate the first pieces before the loop. 938 EmitStmt(S.getRangeStmt()); 939 EmitStmt(S.getBeginEndStmt()); 940 941 RegionCounter Cnt = getPGORegionCounter(&S); 942 943 // Start the loop with a block that tests the condition. 944 // If there's an increment, the continue scope will be overwritten 945 // later. 946 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 947 EmitBlock(CondBlock); 948 949 LoopStack.push(CondBlock); 950 951 // If there are any cleanups between here and the loop-exit scope, 952 // create a block to stage a loop exit along. 953 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 954 if (ForScope.requiresCleanups()) 955 ExitBlock = createBasicBlock("for.cond.cleanup"); 956 957 // The loop body, consisting of the specified body and the loop variable. 958 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 959 960 // The body is executed if the expression, contextually converted 961 // to bool, is true. 962 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 963 llvm::BranchInst *CondBr = Builder.CreateCondBr( 964 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 965 966 // Attach metadata to loop body conditional branch. 967 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 968 969 if (ExitBlock != LoopExit.getBlock()) { 970 EmitBlock(ExitBlock); 971 EmitBranchThroughCleanup(LoopExit); 972 } 973 974 EmitBlock(ForBody); 975 Cnt.beginRegion(Builder); 976 977 // Create a block for the increment. In case of a 'continue', we jump there. 978 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 979 980 // Store the blocks to use for break and continue. 981 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 982 983 { 984 // Create a separate cleanup scope for the loop variable and body. 985 LexicalScope BodyScope(*this, S.getSourceRange()); 986 EmitStmt(S.getLoopVarStmt()); 987 EmitStmt(S.getBody()); 988 } 989 990 EmitStopPoint(&S); 991 // If there is an increment, emit it next. 992 EmitBlock(Continue.getBlock()); 993 EmitStmt(S.getInc()); 994 995 BreakContinueStack.pop_back(); 996 997 EmitBranch(CondBlock); 998 999 ForScope.ForceCleanup(); 1000 1001 LoopStack.pop(); 1002 1003 // Emit the fall-through block. 1004 EmitBlock(LoopExit.getBlock(), true); 1005} 1006 1007void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1008 if (RV.isScalar()) { 1009 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1010 } else if (RV.isAggregate()) { 1011 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 1012 } else { 1013 EmitStoreOfComplex(RV.getComplexVal(), 1014 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 1015 /*init*/ true); 1016 } 1017 EmitBranchThroughCleanup(ReturnBlock); 1018} 1019 1020/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1021/// if the function returns void, or may be missing one if the function returns 1022/// non-void. Fun stuff :). 1023void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1024 // Returning from an outlined SEH helper is UB, and we already warn on it. 1025 if (IsOutlinedSEHHelper) { 1026 Builder.CreateUnreachable(); 1027 Builder.ClearInsertionPoint(); 1028 } 1029 1030 // Emit the result value, even if unused, to evalute the side effects. 1031 const Expr *RV = S.getRetValue(); 1032 1033 // Treat block literals in a return expression as if they appeared 1034 // in their own scope. This permits a small, easily-implemented 1035 // exception to our over-conservative rules about not jumping to 1036 // statements following block literals with non-trivial cleanups. 1037 RunCleanupsScope cleanupScope(*this); 1038 if (const ExprWithCleanups *cleanups = 1039 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1040 enterFullExpression(cleanups); 1041 RV = cleanups->getSubExpr(); 1042 } 1043 1044 // FIXME: Clean this up by using an LValue for ReturnTemp, 1045 // EmitStoreThroughLValue, and EmitAnyExpr. 1046 if (getLangOpts().ElideConstructors && 1047 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1048 // Apply the named return value optimization for this return statement, 1049 // which means doing nothing: the appropriate result has already been 1050 // constructed into the NRVO variable. 1051 1052 // If there is an NRVO flag for this variable, set it to 1 into indicate 1053 // that the cleanup code should not destroy the variable. 1054 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1055 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1056 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1057 // Make sure not to return anything, but evaluate the expression 1058 // for side effects. 1059 if (RV) 1060 EmitAnyExpr(RV); 1061 } else if (!RV) { 1062 // Do nothing (return value is left uninitialized) 1063 } else if (FnRetTy->isReferenceType()) { 1064 // If this function returns a reference, take the address of the expression 1065 // rather than the value. 1066 RValue Result = EmitReferenceBindingToExpr(RV); 1067 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1068 } else { 1069 switch (getEvaluationKind(RV->getType())) { 1070 case TEK_Scalar: 1071 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1072 break; 1073 case TEK_Complex: 1074 EmitComplexExprIntoLValue(RV, 1075 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1076 /*isInit*/ true); 1077 break; 1078 case TEK_Aggregate: { 1079 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1080 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1081 Qualifiers(), 1082 AggValueSlot::IsDestructed, 1083 AggValueSlot::DoesNotNeedGCBarriers, 1084 AggValueSlot::IsNotAliased)); 1085 break; 1086 } 1087 } 1088 } 1089 1090 ++NumReturnExprs; 1091 if (!RV || RV->isEvaluatable(getContext())) 1092 ++NumSimpleReturnExprs; 1093 1094 cleanupScope.ForceCleanup(); 1095 EmitBranchThroughCleanup(ReturnBlock); 1096} 1097 1098void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1099 // As long as debug info is modeled with instructions, we have to ensure we 1100 // have a place to insert here and write the stop point here. 1101 if (HaveInsertPoint()) 1102 EmitStopPoint(&S); 1103 1104 for (const auto *I : S.decls()) 1105 EmitDecl(*I); 1106} 1107 1108void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1109 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1110 1111 // If this code is reachable then emit a stop point (if generating 1112 // debug info). We have to do this ourselves because we are on the 1113 // "simple" statement path. 1114 if (HaveInsertPoint()) 1115 EmitStopPoint(&S); 1116 1117 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1118} 1119 1120void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1121 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1122 1123 // If this code is reachable then emit a stop point (if generating 1124 // debug info). We have to do this ourselves because we are on the 1125 // "simple" statement path. 1126 if (HaveInsertPoint()) 1127 EmitStopPoint(&S); 1128 1129 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1130} 1131 1132/// EmitCaseStmtRange - If case statement range is not too big then 1133/// add multiple cases to switch instruction, one for each value within 1134/// the range. If range is too big then emit "if" condition check. 1135void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1136 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1137 1138 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1139 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1140 1141 RegionCounter CaseCnt = getPGORegionCounter(&S); 1142 1143 // Emit the code for this case. We do this first to make sure it is 1144 // properly chained from our predecessor before generating the 1145 // switch machinery to enter this block. 1146 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1147 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1148 EmitStmt(S.getSubStmt()); 1149 1150 // If range is empty, do nothing. 1151 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1152 return; 1153 1154 llvm::APInt Range = RHS - LHS; 1155 // FIXME: parameters such as this should not be hardcoded. 1156 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1157 // Range is small enough to add multiple switch instruction cases. 1158 uint64_t Total = CaseCnt.getCount(); 1159 unsigned NCases = Range.getZExtValue() + 1; 1160 // We only have one region counter for the entire set of cases here, so we 1161 // need to divide the weights evenly between the generated cases, ensuring 1162 // that the total weight is preserved. E.g., a weight of 5 over three cases 1163 // will be distributed as weights of 2, 2, and 1. 1164 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1165 for (unsigned I = 0; I != NCases; ++I) { 1166 if (SwitchWeights) 1167 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1168 if (Rem) 1169 Rem--; 1170 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1171 LHS++; 1172 } 1173 return; 1174 } 1175 1176 // The range is too big. Emit "if" condition into a new block, 1177 // making sure to save and restore the current insertion point. 1178 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1179 1180 // Push this test onto the chain of range checks (which terminates 1181 // in the default basic block). The switch's default will be changed 1182 // to the top of this chain after switch emission is complete. 1183 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1184 CaseRangeBlock = createBasicBlock("sw.caserange"); 1185 1186 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1187 Builder.SetInsertPoint(CaseRangeBlock); 1188 1189 // Emit range check. 1190 llvm::Value *Diff = 1191 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1192 llvm::Value *Cond = 1193 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1194 1195 llvm::MDNode *Weights = nullptr; 1196 if (SwitchWeights) { 1197 uint64_t ThisCount = CaseCnt.getCount(); 1198 uint64_t DefaultCount = (*SwitchWeights)[0]; 1199 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1200 1201 // Since we're chaining the switch default through each large case range, we 1202 // need to update the weight for the default, ie, the first case, to include 1203 // this case. 1204 (*SwitchWeights)[0] += ThisCount; 1205 } 1206 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1207 1208 // Restore the appropriate insertion point. 1209 if (RestoreBB) 1210 Builder.SetInsertPoint(RestoreBB); 1211 else 1212 Builder.ClearInsertionPoint(); 1213} 1214 1215void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1216 // If there is no enclosing switch instance that we're aware of, then this 1217 // case statement and its block can be elided. This situation only happens 1218 // when we've constant-folded the switch, are emitting the constant case, 1219 // and part of the constant case includes another case statement. For 1220 // instance: switch (4) { case 4: do { case 5: } while (1); } 1221 if (!SwitchInsn) { 1222 EmitStmt(S.getSubStmt()); 1223 return; 1224 } 1225 1226 // Handle case ranges. 1227 if (S.getRHS()) { 1228 EmitCaseStmtRange(S); 1229 return; 1230 } 1231 1232 RegionCounter CaseCnt = getPGORegionCounter(&S); 1233 llvm::ConstantInt *CaseVal = 1234 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1235 1236 // If the body of the case is just a 'break', try to not emit an empty block. 1237 // If we're profiling or we're not optimizing, leave the block in for better 1238 // debug and coverage analysis. 1239 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1240 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1241 isa<BreakStmt>(S.getSubStmt())) { 1242 JumpDest Block = BreakContinueStack.back().BreakBlock; 1243 1244 // Only do this optimization if there are no cleanups that need emitting. 1245 if (isObviouslyBranchWithoutCleanups(Block)) { 1246 if (SwitchWeights) 1247 SwitchWeights->push_back(CaseCnt.getCount()); 1248 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1249 1250 // If there was a fallthrough into this case, make sure to redirect it to 1251 // the end of the switch as well. 1252 if (Builder.GetInsertBlock()) { 1253 Builder.CreateBr(Block.getBlock()); 1254 Builder.ClearInsertionPoint(); 1255 } 1256 return; 1257 } 1258 } 1259 1260 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1261 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1262 if (SwitchWeights) 1263 SwitchWeights->push_back(CaseCnt.getCount()); 1264 SwitchInsn->addCase(CaseVal, CaseDest); 1265 1266 // Recursively emitting the statement is acceptable, but is not wonderful for 1267 // code where we have many case statements nested together, i.e.: 1268 // case 1: 1269 // case 2: 1270 // case 3: etc. 1271 // Handling this recursively will create a new block for each case statement 1272 // that falls through to the next case which is IR intensive. It also causes 1273 // deep recursion which can run into stack depth limitations. Handle 1274 // sequential non-range case statements specially. 1275 const CaseStmt *CurCase = &S; 1276 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1277 1278 // Otherwise, iteratively add consecutive cases to this switch stmt. 1279 while (NextCase && NextCase->getRHS() == nullptr) { 1280 CurCase = NextCase; 1281 llvm::ConstantInt *CaseVal = 1282 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1283 1284 CaseCnt = getPGORegionCounter(NextCase); 1285 if (SwitchWeights) 1286 SwitchWeights->push_back(CaseCnt.getCount()); 1287 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1288 CaseDest = createBasicBlock("sw.bb"); 1289 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1290 } 1291 1292 SwitchInsn->addCase(CaseVal, CaseDest); 1293 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1294 } 1295 1296 // Normal default recursion for non-cases. 1297 EmitStmt(CurCase->getSubStmt()); 1298} 1299 1300void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1301 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1302 assert(DefaultBlock->empty() && 1303 "EmitDefaultStmt: Default block already defined?"); 1304 1305 RegionCounter Cnt = getPGORegionCounter(&S); 1306 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1307 1308 EmitStmt(S.getSubStmt()); 1309} 1310 1311/// CollectStatementsForCase - Given the body of a 'switch' statement and a 1312/// constant value that is being switched on, see if we can dead code eliminate 1313/// the body of the switch to a simple series of statements to emit. Basically, 1314/// on a switch (5) we want to find these statements: 1315/// case 5: 1316/// printf(...); <-- 1317/// ++i; <-- 1318/// break; 1319/// 1320/// and add them to the ResultStmts vector. If it is unsafe to do this 1321/// transformation (for example, one of the elided statements contains a label 1322/// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1323/// should include statements after it (e.g. the printf() line is a substmt of 1324/// the case) then return CSFC_FallThrough. If we handled it and found a break 1325/// statement, then return CSFC_Success. 1326/// 1327/// If Case is non-null, then we are looking for the specified case, checking 1328/// that nothing we jump over contains labels. If Case is null, then we found 1329/// the case and are looking for the break. 1330/// 1331/// If the recursive walk actually finds our Case, then we set FoundCase to 1332/// true. 1333/// 1334enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1335static CSFC_Result CollectStatementsForCase(const Stmt *S, 1336 const SwitchCase *Case, 1337 bool &FoundCase, 1338 SmallVectorImpl<const Stmt*> &ResultStmts) { 1339 // If this is a null statement, just succeed. 1340 if (!S) 1341 return Case ? CSFC_Success : CSFC_FallThrough; 1342 1343 // If this is the switchcase (case 4: or default) that we're looking for, then 1344 // we're in business. Just add the substatement. 1345 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1346 if (S == Case) { 1347 FoundCase = true; 1348 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1349 ResultStmts); 1350 } 1351 1352 // Otherwise, this is some other case or default statement, just ignore it. 1353 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1354 ResultStmts); 1355 } 1356 1357 // If we are in the live part of the code and we found our break statement, 1358 // return a success! 1359 if (!Case && isa<BreakStmt>(S)) 1360 return CSFC_Success; 1361 1362 // If this is a switch statement, then it might contain the SwitchCase, the 1363 // break, or neither. 1364 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1365 // Handle this as two cases: we might be looking for the SwitchCase (if so 1366 // the skipped statements must be skippable) or we might already have it. 1367 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1368 if (Case) { 1369 // Keep track of whether we see a skipped declaration. The code could be 1370 // using the declaration even if it is skipped, so we can't optimize out 1371 // the decl if the kept statements might refer to it. 1372 bool HadSkippedDecl = false; 1373 1374 // If we're looking for the case, just see if we can skip each of the 1375 // substatements. 1376 for (; Case && I != E; ++I) { 1377 HadSkippedDecl |= isa<DeclStmt>(*I); 1378 1379 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1380 case CSFC_Failure: return CSFC_Failure; 1381 case CSFC_Success: 1382 // A successful result means that either 1) that the statement doesn't 1383 // have the case and is skippable, or 2) does contain the case value 1384 // and also contains the break to exit the switch. In the later case, 1385 // we just verify the rest of the statements are elidable. 1386 if (FoundCase) { 1387 // If we found the case and skipped declarations, we can't do the 1388 // optimization. 1389 if (HadSkippedDecl) 1390 return CSFC_Failure; 1391 1392 for (++I; I != E; ++I) 1393 if (CodeGenFunction::ContainsLabel(*I, true)) 1394 return CSFC_Failure; 1395 return CSFC_Success; 1396 } 1397 break; 1398 case CSFC_FallThrough: 1399 // If we have a fallthrough condition, then we must have found the 1400 // case started to include statements. Consider the rest of the 1401 // statements in the compound statement as candidates for inclusion. 1402 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1403 // We recursively found Case, so we're not looking for it anymore. 1404 Case = nullptr; 1405 1406 // If we found the case and skipped declarations, we can't do the 1407 // optimization. 1408 if (HadSkippedDecl) 1409 return CSFC_Failure; 1410 break; 1411 } 1412 } 1413 } 1414 1415 // If we have statements in our range, then we know that the statements are 1416 // live and need to be added to the set of statements we're tracking. 1417 for (; I != E; ++I) { 1418 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1419 case CSFC_Failure: return CSFC_Failure; 1420 case CSFC_FallThrough: 1421 // A fallthrough result means that the statement was simple and just 1422 // included in ResultStmt, keep adding them afterwards. 1423 break; 1424 case CSFC_Success: 1425 // A successful result means that we found the break statement and 1426 // stopped statement inclusion. We just ensure that any leftover stmts 1427 // are skippable and return success ourselves. 1428 for (++I; I != E; ++I) 1429 if (CodeGenFunction::ContainsLabel(*I, true)) 1430 return CSFC_Failure; 1431 return CSFC_Success; 1432 } 1433 } 1434 1435 return Case ? CSFC_Success : CSFC_FallThrough; 1436 } 1437 1438 // Okay, this is some other statement that we don't handle explicitly, like a 1439 // for statement or increment etc. If we are skipping over this statement, 1440 // just verify it doesn't have labels, which would make it invalid to elide. 1441 if (Case) { 1442 if (CodeGenFunction::ContainsLabel(S, true)) 1443 return CSFC_Failure; 1444 return CSFC_Success; 1445 } 1446 1447 // Otherwise, we want to include this statement. Everything is cool with that 1448 // so long as it doesn't contain a break out of the switch we're in. 1449 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1450 1451 // Otherwise, everything is great. Include the statement and tell the caller 1452 // that we fall through and include the next statement as well. 1453 ResultStmts.push_back(S); 1454 return CSFC_FallThrough; 1455} 1456 1457/// FindCaseStatementsForValue - Find the case statement being jumped to and 1458/// then invoke CollectStatementsForCase to find the list of statements to emit 1459/// for a switch on constant. See the comment above CollectStatementsForCase 1460/// for more details. 1461static bool FindCaseStatementsForValue(const SwitchStmt &S, 1462 const llvm::APSInt &ConstantCondValue, 1463 SmallVectorImpl<const Stmt*> &ResultStmts, 1464 ASTContext &C, 1465 const SwitchCase *&ResultCase) { 1466 // First step, find the switch case that is being branched to. We can do this 1467 // efficiently by scanning the SwitchCase list. 1468 const SwitchCase *Case = S.getSwitchCaseList(); 1469 const DefaultStmt *DefaultCase = nullptr; 1470 1471 for (; Case; Case = Case->getNextSwitchCase()) { 1472 // It's either a default or case. Just remember the default statement in 1473 // case we're not jumping to any numbered cases. 1474 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1475 DefaultCase = DS; 1476 continue; 1477 } 1478 1479 // Check to see if this case is the one we're looking for. 1480 const CaseStmt *CS = cast<CaseStmt>(Case); 1481 // Don't handle case ranges yet. 1482 if (CS->getRHS()) return false; 1483 1484 // If we found our case, remember it as 'case'. 1485 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1486 break; 1487 } 1488 1489 // If we didn't find a matching case, we use a default if it exists, or we 1490 // elide the whole switch body! 1491 if (!Case) { 1492 // It is safe to elide the body of the switch if it doesn't contain labels 1493 // etc. If it is safe, return successfully with an empty ResultStmts list. 1494 if (!DefaultCase) 1495 return !CodeGenFunction::ContainsLabel(&S); 1496 Case = DefaultCase; 1497 } 1498 1499 // Ok, we know which case is being jumped to, try to collect all the 1500 // statements that follow it. This can fail for a variety of reasons. Also, 1501 // check to see that the recursive walk actually found our case statement. 1502 // Insane cases like this can fail to find it in the recursive walk since we 1503 // don't handle every stmt kind: 1504 // switch (4) { 1505 // while (1) { 1506 // case 4: ... 1507 bool FoundCase = false; 1508 ResultCase = Case; 1509 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1510 ResultStmts) != CSFC_Failure && 1511 FoundCase; 1512} 1513 1514void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1515 // Handle nested switch statements. 1516 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1517 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1518 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1519 1520 // See if we can constant fold the condition of the switch and therefore only 1521 // emit the live case statement (if any) of the switch. 1522 llvm::APSInt ConstantCondValue; 1523 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1524 SmallVector<const Stmt*, 4> CaseStmts; 1525 const SwitchCase *Case = nullptr; 1526 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1527 getContext(), Case)) { 1528 if (Case) { 1529 RegionCounter CaseCnt = getPGORegionCounter(Case); 1530 CaseCnt.beginRegion(Builder); 1531 } 1532 RunCleanupsScope ExecutedScope(*this); 1533 1534 // Emit the condition variable if needed inside the entire cleanup scope 1535 // used by this special case for constant folded switches. 1536 if (S.getConditionVariable()) 1537 EmitAutoVarDecl(*S.getConditionVariable()); 1538 1539 // At this point, we are no longer "within" a switch instance, so 1540 // we can temporarily enforce this to ensure that any embedded case 1541 // statements are not emitted. 1542 SwitchInsn = nullptr; 1543 1544 // Okay, we can dead code eliminate everything except this case. Emit the 1545 // specified series of statements and we're good. 1546 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1547 EmitStmt(CaseStmts[i]); 1548 RegionCounter ExitCnt = getPGORegionCounter(&S); 1549 ExitCnt.beginRegion(Builder); 1550 1551 // Now we want to restore the saved switch instance so that nested 1552 // switches continue to function properly 1553 SwitchInsn = SavedSwitchInsn; 1554 1555 return; 1556 } 1557 } 1558 1559 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1560 1561 RunCleanupsScope ConditionScope(*this); 1562 if (S.getConditionVariable()) 1563 EmitAutoVarDecl(*S.getConditionVariable()); 1564 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1565 1566 // Create basic block to hold stuff that comes after switch 1567 // statement. We also need to create a default block now so that 1568 // explicit case ranges tests can have a place to jump to on 1569 // failure. 1570 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1571 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1572 if (PGO.haveRegionCounts()) { 1573 // Walk the SwitchCase list to find how many there are. 1574 uint64_t DefaultCount = 0; 1575 unsigned NumCases = 0; 1576 for (const SwitchCase *Case = S.getSwitchCaseList(); 1577 Case; 1578 Case = Case->getNextSwitchCase()) { 1579 if (isa<DefaultStmt>(Case)) 1580 DefaultCount = getPGORegionCounter(Case).getCount(); 1581 NumCases += 1; 1582 } 1583 SwitchWeights = new SmallVector<uint64_t, 16>(); 1584 SwitchWeights->reserve(NumCases); 1585 // The default needs to be first. We store the edge count, so we already 1586 // know the right weight. 1587 SwitchWeights->push_back(DefaultCount); 1588 } 1589 CaseRangeBlock = DefaultBlock; 1590 1591 // Clear the insertion point to indicate we are in unreachable code. 1592 Builder.ClearInsertionPoint(); 1593 1594 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1595 // then reuse last ContinueBlock. 1596 JumpDest OuterContinue; 1597 if (!BreakContinueStack.empty()) 1598 OuterContinue = BreakContinueStack.back().ContinueBlock; 1599 1600 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1601 1602 // Emit switch body. 1603 EmitStmt(S.getBody()); 1604 1605 BreakContinueStack.pop_back(); 1606 1607 // Update the default block in case explicit case range tests have 1608 // been chained on top. 1609 SwitchInsn->setDefaultDest(CaseRangeBlock); 1610 1611 // If a default was never emitted: 1612 if (!DefaultBlock->getParent()) { 1613 // If we have cleanups, emit the default block so that there's a 1614 // place to jump through the cleanups from. 1615 if (ConditionScope.requiresCleanups()) { 1616 EmitBlock(DefaultBlock); 1617 1618 // Otherwise, just forward the default block to the switch end. 1619 } else { 1620 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1621 delete DefaultBlock; 1622 } 1623 } 1624 1625 ConditionScope.ForceCleanup(); 1626 1627 // Emit continuation. 1628 EmitBlock(SwitchExit.getBlock(), true); 1629 RegionCounter ExitCnt = getPGORegionCounter(&S); 1630 ExitCnt.beginRegion(Builder); 1631 1632 if (SwitchWeights) { 1633 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1634 "switch weights do not match switch cases"); 1635 // If there's only one jump destination there's no sense weighting it. 1636 if (SwitchWeights->size() > 1) 1637 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1638 PGO.createBranchWeights(*SwitchWeights)); 1639 delete SwitchWeights; 1640 } 1641 SwitchInsn = SavedSwitchInsn; 1642 SwitchWeights = SavedSwitchWeights; 1643 CaseRangeBlock = SavedCRBlock; 1644} 1645 1646static std::string 1647SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1648 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1649 std::string Result; 1650 1651 while (*Constraint) { 1652 switch (*Constraint) { 1653 default: 1654 Result += Target.convertConstraint(Constraint); 1655 break; 1656 // Ignore these 1657 case '*': 1658 case '?': 1659 case '!': 1660 case '=': // Will see this and the following in mult-alt constraints. 1661 case '+': 1662 break; 1663 case '#': // Ignore the rest of the constraint alternative. 1664 while (Constraint[1] && Constraint[1] != ',') 1665 Constraint++; 1666 break; 1667 case '&': 1668 case '%': 1669 Result += *Constraint; 1670 while (Constraint[1] && Constraint[1] == *Constraint) 1671 Constraint++; 1672 break; 1673 case ',': 1674 Result += "|"; 1675 break; 1676 case 'g': 1677 Result += "imr"; 1678 break; 1679 case '[': { 1680 assert(OutCons && 1681 "Must pass output names to constraints with a symbolic name"); 1682 unsigned Index; 1683 bool result = Target.resolveSymbolicName(Constraint, 1684 &(*OutCons)[0], 1685 OutCons->size(), Index); 1686 assert(result && "Could not resolve symbolic name"); (void)result; 1687 Result += llvm::utostr(Index); 1688 break; 1689 } 1690 } 1691 1692 Constraint++; 1693 } 1694 1695 return Result; 1696} 1697 1698/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1699/// as using a particular register add that as a constraint that will be used 1700/// in this asm stmt. 1701static std::string 1702AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1703 const TargetInfo &Target, CodeGenModule &CGM, 1704 const AsmStmt &Stmt, const bool EarlyClobber) { 1705 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1706 if (!AsmDeclRef) 1707 return Constraint; 1708 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1709 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1710 if (!Variable) 1711 return Constraint; 1712 if (Variable->getStorageClass() != SC_Register) 1713 return Constraint; 1714 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1715 if (!Attr) 1716 return Constraint; 1717 StringRef Register = Attr->getLabel(); 1718 assert(Target.isValidGCCRegisterName(Register)); 1719 // We're using validateOutputConstraint here because we only care if 1720 // this is a register constraint. 1721 TargetInfo::ConstraintInfo Info(Constraint, ""); 1722 if (Target.validateOutputConstraint(Info) && 1723 !Info.allowsRegister()) { 1724 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1725 return Constraint; 1726 } 1727 // Canonicalize the register here before returning it. 1728 Register = Target.getNormalizedGCCRegisterName(Register); 1729 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1730} 1731 1732llvm::Value* 1733CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1734 LValue InputValue, QualType InputType, 1735 std::string &ConstraintStr, 1736 SourceLocation Loc) { 1737 llvm::Value *Arg; 1738 if (Info.allowsRegister() || !Info.allowsMemory()) { 1739 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1740 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1741 } else { 1742 llvm::Type *Ty = ConvertType(InputType); 1743 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1744 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1745 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1746 Ty = llvm::PointerType::getUnqual(Ty); 1747 1748 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1749 Ty)); 1750 } else { 1751 Arg = InputValue.getAddress(); 1752 ConstraintStr += '*'; 1753 } 1754 } 1755 } else { 1756 Arg = InputValue.getAddress(); 1757 ConstraintStr += '*'; 1758 } 1759 1760 return Arg; 1761} 1762 1763llvm::Value* CodeGenFunction::EmitAsmInput( 1764 const TargetInfo::ConstraintInfo &Info, 1765 const Expr *InputExpr, 1766 std::string &ConstraintStr) { 1767 if (Info.allowsRegister() || !Info.allowsMemory()) 1768 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1769 return EmitScalarExpr(InputExpr); 1770 1771 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1772 LValue Dest = EmitLValue(InputExpr); 1773 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1774 InputExpr->getExprLoc()); 1775} 1776 1777/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1778/// asm call instruction. The !srcloc MDNode contains a list of constant 1779/// integers which are the source locations of the start of each line in the 1780/// asm. 1781static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1782 CodeGenFunction &CGF) { 1783 SmallVector<llvm::Metadata *, 8> Locs; 1784 // Add the location of the first line to the MDNode. 1785 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1786 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1787 StringRef StrVal = Str->getString(); 1788 if (!StrVal.empty()) { 1789 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1790 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1791 1792 // Add the location of the start of each subsequent line of the asm to the 1793 // MDNode. 1794 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1795 if (StrVal[i] != '\n') continue; 1796 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1797 CGF.getTarget()); 1798 Locs.push_back(llvm::ConstantAsMetadata::get( 1799 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1800 } 1801 } 1802 1803 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1804} 1805 1806void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1807 // Assemble the final asm string. 1808 std::string AsmString = S.generateAsmString(getContext()); 1809 1810 // Get all the output and input constraints together. 1811 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1812 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1813 1814 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1815 StringRef Name; 1816 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1817 Name = GAS->getOutputName(i); 1818 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1819 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1820 assert(IsValid && "Failed to parse output constraint"); 1821 OutputConstraintInfos.push_back(Info); 1822 } 1823 1824 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1825 StringRef Name; 1826 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1827 Name = GAS->getInputName(i); 1828 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1829 bool IsValid = 1830 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1831 S.getNumOutputs(), Info); 1832 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1833 InputConstraintInfos.push_back(Info); 1834 } 1835 1836 std::string Constraints; 1837 1838 std::vector<LValue> ResultRegDests; 1839 std::vector<QualType> ResultRegQualTys; 1840 std::vector<llvm::Type *> ResultRegTypes; 1841 std::vector<llvm::Type *> ResultTruncRegTypes; 1842 std::vector<llvm::Type *> ArgTypes; 1843 std::vector<llvm::Value*> Args; 1844 1845 // Keep track of inout constraints. 1846 std::string InOutConstraints; 1847 std::vector<llvm::Value*> InOutArgs; 1848 std::vector<llvm::Type*> InOutArgTypes; 1849 1850 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1851 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1852 1853 // Simplify the output constraint. 1854 std::string OutputConstraint(S.getOutputConstraint(i)); 1855 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1856 getTarget()); 1857 1858 const Expr *OutExpr = S.getOutputExpr(i); 1859 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1860 1861 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1862 getTarget(), CGM, S, 1863 Info.earlyClobber()); 1864 1865 LValue Dest = EmitLValue(OutExpr); 1866 if (!Constraints.empty()) 1867 Constraints += ','; 1868 1869 // If this is a register output, then make the inline asm return it 1870 // by-value. If this is a memory result, return the value by-reference. 1871 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1872 Constraints += "=" + OutputConstraint; 1873 ResultRegQualTys.push_back(OutExpr->getType()); 1874 ResultRegDests.push_back(Dest); 1875 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1876 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1877 1878 // If this output is tied to an input, and if the input is larger, then 1879 // we need to set the actual result type of the inline asm node to be the 1880 // same as the input type. 1881 if (Info.hasMatchingInput()) { 1882 unsigned InputNo; 1883 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1884 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1885 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1886 break; 1887 } 1888 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1889 1890 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1891 QualType OutputType = OutExpr->getType(); 1892 1893 uint64_t InputSize = getContext().getTypeSize(InputTy); 1894 if (getContext().getTypeSize(OutputType) < InputSize) { 1895 // Form the asm to return the value as a larger integer or fp type. 1896 ResultRegTypes.back() = ConvertType(InputTy); 1897 } 1898 } 1899 if (llvm::Type* AdjTy = 1900 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1901 ResultRegTypes.back())) 1902 ResultRegTypes.back() = AdjTy; 1903 else { 1904 CGM.getDiags().Report(S.getAsmLoc(), 1905 diag::err_asm_invalid_type_in_input) 1906 << OutExpr->getType() << OutputConstraint; 1907 } 1908 } else { 1909 ArgTypes.push_back(Dest.getAddress()->getType()); 1910 Args.push_back(Dest.getAddress()); 1911 Constraints += "=*"; 1912 Constraints += OutputConstraint; 1913 } 1914 1915 if (Info.isReadWrite()) { 1916 InOutConstraints += ','; 1917 1918 const Expr *InputExpr = S.getOutputExpr(i); 1919 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1920 InOutConstraints, 1921 InputExpr->getExprLoc()); 1922 1923 if (llvm::Type* AdjTy = 1924 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1925 Arg->getType())) 1926 Arg = Builder.CreateBitCast(Arg, AdjTy); 1927 1928 if (Info.allowsRegister()) 1929 InOutConstraints += llvm::utostr(i); 1930 else 1931 InOutConstraints += OutputConstraint; 1932 1933 InOutArgTypes.push_back(Arg->getType()); 1934 InOutArgs.push_back(Arg); 1935 } 1936 } 1937 1938 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1939 // to the return value slot. Only do this when returning in registers. 1940 if (isa<MSAsmStmt>(&S)) { 1941 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1942 if (RetAI.isDirect() || RetAI.isExtend()) { 1943 // Make a fake lvalue for the return value slot. 1944 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1945 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1946 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1947 ResultRegDests, AsmString, S.getNumOutputs()); 1948 SawAsmBlock = true; 1949 } 1950 } 1951 1952 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1953 const Expr *InputExpr = S.getInputExpr(i); 1954 1955 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1956 1957 if (!Constraints.empty()) 1958 Constraints += ','; 1959 1960 // Simplify the input constraint. 1961 std::string InputConstraint(S.getInputConstraint(i)); 1962 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1963 &OutputConstraintInfos); 1964 1965 InputConstraint = AddVariableConstraints( 1966 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 1967 getTarget(), CGM, S, false /* No EarlyClobber */); 1968 1969 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1970 1971 // If this input argument is tied to a larger output result, extend the 1972 // input to be the same size as the output. The LLVM backend wants to see 1973 // the input and output of a matching constraint be the same size. Note 1974 // that GCC does not define what the top bits are here. We use zext because 1975 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1976 if (Info.hasTiedOperand()) { 1977 unsigned Output = Info.getTiedOperand(); 1978 QualType OutputType = S.getOutputExpr(Output)->getType(); 1979 QualType InputTy = InputExpr->getType(); 1980 1981 if (getContext().getTypeSize(OutputType) > 1982 getContext().getTypeSize(InputTy)) { 1983 // Use ptrtoint as appropriate so that we can do our extension. 1984 if (isa<llvm::PointerType>(Arg->getType())) 1985 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1986 llvm::Type *OutputTy = ConvertType(OutputType); 1987 if (isa<llvm::IntegerType>(OutputTy)) 1988 Arg = Builder.CreateZExt(Arg, OutputTy); 1989 else if (isa<llvm::PointerType>(OutputTy)) 1990 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1991 else { 1992 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1993 Arg = Builder.CreateFPExt(Arg, OutputTy); 1994 } 1995 } 1996 } 1997 if (llvm::Type* AdjTy = 1998 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1999 Arg->getType())) 2000 Arg = Builder.CreateBitCast(Arg, AdjTy); 2001 else 2002 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2003 << InputExpr->getType() << InputConstraint; 2004 2005 ArgTypes.push_back(Arg->getType()); 2006 Args.push_back(Arg); 2007 Constraints += InputConstraint; 2008 } 2009 2010 // Append the "input" part of inout constraints last. 2011 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2012 ArgTypes.push_back(InOutArgTypes[i]); 2013 Args.push_back(InOutArgs[i]); 2014 } 2015 Constraints += InOutConstraints; 2016 2017 // Clobbers 2018 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2019 StringRef Clobber = S.getClobber(i); 2020 2021 if (Clobber != "memory" && Clobber != "cc") 2022 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2023 2024 if (!Constraints.empty()) 2025 Constraints += ','; 2026 2027 Constraints += "~{"; 2028 Constraints += Clobber; 2029 Constraints += '}'; 2030 } 2031 2032 // Add machine specific clobbers 2033 std::string MachineClobbers = getTarget().getClobbers(); 2034 if (!MachineClobbers.empty()) { 2035 if (!Constraints.empty()) 2036 Constraints += ','; 2037 Constraints += MachineClobbers; 2038 } 2039 2040 llvm::Type *ResultType; 2041 if (ResultRegTypes.empty()) 2042 ResultType = VoidTy; 2043 else if (ResultRegTypes.size() == 1) 2044 ResultType = ResultRegTypes[0]; 2045 else 2046 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2047 2048 llvm::FunctionType *FTy = 2049 llvm::FunctionType::get(ResultType, ArgTypes, false); 2050 2051 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2052 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2053 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2054 llvm::InlineAsm *IA = 2055 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2056 /* IsAlignStack */ false, AsmDialect); 2057 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2058 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2059 llvm::Attribute::NoUnwind); 2060 2061 // Slap the source location of the inline asm into a !srcloc metadata on the 2062 // call. 2063 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2064 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2065 *this)); 2066 } else { 2067 // At least put the line number on MS inline asm blobs. 2068 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2069 Result->setMetadata("srcloc", 2070 llvm::MDNode::get(getLLVMContext(), 2071 llvm::ConstantAsMetadata::get(Loc))); 2072 } 2073 2074 // Extract all of the register value results from the asm. 2075 std::vector<llvm::Value*> RegResults; 2076 if (ResultRegTypes.size() == 1) { 2077 RegResults.push_back(Result); 2078 } else { 2079 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2080 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2081 RegResults.push_back(Tmp); 2082 } 2083 } 2084 2085 assert(RegResults.size() == ResultRegTypes.size()); 2086 assert(RegResults.size() == ResultTruncRegTypes.size()); 2087 assert(RegResults.size() == ResultRegDests.size()); 2088 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2089 llvm::Value *Tmp = RegResults[i]; 2090 2091 // If the result type of the LLVM IR asm doesn't match the result type of 2092 // the expression, do the conversion. 2093 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2094 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2095 2096 // Truncate the integer result to the right size, note that TruncTy can be 2097 // a pointer. 2098 if (TruncTy->isFloatingPointTy()) 2099 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2100 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2101 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2102 Tmp = Builder.CreateTrunc(Tmp, 2103 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2104 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2105 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2106 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2107 Tmp = Builder.CreatePtrToInt(Tmp, 2108 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2109 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2110 } else if (TruncTy->isIntegerTy()) { 2111 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2112 } else if (TruncTy->isVectorTy()) { 2113 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2114 } 2115 } 2116 2117 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2118 } 2119} 2120 2121LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2122 const RecordDecl *RD = S.getCapturedRecordDecl(); 2123 QualType RecordTy = getContext().getRecordType(RD); 2124 2125 // Initialize the captured struct. 2126 LValue SlotLV = MakeNaturalAlignAddrLValue( 2127 CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2128 2129 RecordDecl::field_iterator CurField = RD->field_begin(); 2130 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2131 E = S.capture_init_end(); 2132 I != E; ++I, ++CurField) { 2133 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2134 if (CurField->hasCapturedVLAType()) { 2135 auto VAT = CurField->getCapturedVLAType(); 2136 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2137 } else { 2138 EmitInitializerForField(*CurField, LV, *I, None); 2139 } 2140 } 2141 2142 return SlotLV; 2143} 2144 2145/// Generate an outlined function for the body of a CapturedStmt, store any 2146/// captured variables into the captured struct, and call the outlined function. 2147llvm::Function * 2148CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2149 LValue CapStruct = InitCapturedStruct(S); 2150 2151 // Emit the CapturedDecl 2152 CodeGenFunction CGF(CGM, true); 2153 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2154 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2155 delete CGF.CapturedStmtInfo; 2156 2157 // Emit call to the helper function. 2158 EmitCallOrInvoke(F, CapStruct.getAddress()); 2159 2160 return F; 2161} 2162 2163llvm::Value * 2164CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2165 LValue CapStruct = InitCapturedStruct(S); 2166 return CapStruct.getAddress(); 2167} 2168 2169/// Creates the outlined function for a CapturedStmt. 2170llvm::Function * 2171CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2172 assert(CapturedStmtInfo && 2173 "CapturedStmtInfo should be set when generating the captured function"); 2174 const CapturedDecl *CD = S.getCapturedDecl(); 2175 const RecordDecl *RD = S.getCapturedRecordDecl(); 2176 SourceLocation Loc = S.getLocStart(); 2177 assert(CD->hasBody() && "missing CapturedDecl body"); 2178 2179 // Build the argument list. 2180 ASTContext &Ctx = CGM.getContext(); 2181 FunctionArgList Args; 2182 Args.append(CD->param_begin(), CD->param_end()); 2183 2184 // Create the function declaration. 2185 FunctionType::ExtInfo ExtInfo; 2186 const CGFunctionInfo &FuncInfo = 2187 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2188 /*IsVariadic=*/false); 2189 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2190 2191 llvm::Function *F = 2192 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2193 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2194 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2195 if (CD->isNothrow()) 2196 F->addFnAttr(llvm::Attribute::NoUnwind); 2197 2198 // Generate the function. 2199 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2200 CD->getLocation(), 2201 CD->getBody()->getLocStart()); 2202 // Set the context parameter in CapturedStmtInfo. 2203 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2204 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2205 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2206 2207 // Initialize variable-length arrays. 2208 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2209 Ctx.getTagDeclType(RD)); 2210 for (auto *FD : RD->fields()) { 2211 if (FD->hasCapturedVLAType()) { 2212 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2213 S.getLocStart()).getScalarVal(); 2214 auto VAT = FD->getCapturedVLAType(); 2215 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2216 } 2217 } 2218 2219 // If 'this' is captured, load it into CXXThisValue. 2220 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2221 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2222 LValue ThisLValue = EmitLValueForField(Base, FD); 2223 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2224 } 2225 2226 PGO.assignRegionCounters(CD, F); 2227 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2228 FinishFunction(CD->getBodyRBrace()); 2229 2230 return F; 2231} 2232