1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGOpenCLRuntime.h"
18#include "CGRecordLayout.h"
19#include "TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/CodeGen/CGFunctionInfo.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Module.h"
29using namespace clang;
30using namespace CodeGen;
31
32CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33  : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34    TheDataLayout(cgm.getDataLayout()),
35    Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
36    TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37  SkippedLayout = false;
38}
39
40CodeGenTypes::~CodeGenTypes() {
41  llvm::DeleteContainerSeconds(CGRecordLayouts);
42
43  for (llvm::FoldingSet<CGFunctionInfo>::iterator
44       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45    delete &*I++;
46}
47
48void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                     llvm::StructType *Ty,
50                                     StringRef suffix) {
51  SmallString<256> TypeName;
52  llvm::raw_svector_ostream OS(TypeName);
53  OS << RD->getKindName() << '.';
54
55  // Name the codegen type after the typedef name
56  // if there is no tag type name available
57  if (RD->getIdentifier()) {
58    // FIXME: We should not have to check for a null decl context here.
59    // Right now we do it because the implicit Obj-C decls don't have one.
60    if (RD->getDeclContext())
61      RD->printQualifiedName(OS);
62    else
63      RD->printName(OS);
64  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65    // FIXME: We should not have to check for a null decl context here.
66    // Right now we do it because the implicit Obj-C decls don't have one.
67    if (TDD->getDeclContext())
68      TDD->printQualifiedName(OS);
69    else
70      TDD->printName(OS);
71  } else
72    OS << "anon";
73
74  if (!suffix.empty())
75    OS << suffix;
76
77  Ty->setName(OS.str());
78}
79
80/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
81/// ConvertType in that it is used to convert to the memory representation for
82/// a type.  For example, the scalar representation for _Bool is i1, but the
83/// memory representation is usually i8 or i32, depending on the target.
84llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
85  llvm::Type *R = ConvertType(T);
86
87  // If this is a non-bool type, don't map it.
88  if (!R->isIntegerTy(1))
89    return R;
90
91  // Otherwise, return an integer of the target-specified size.
92  return llvm::IntegerType::get(getLLVMContext(),
93                                (unsigned)Context.getTypeSize(T));
94}
95
96
97/// isRecordLayoutComplete - Return true if the specified type is already
98/// completely laid out.
99bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101  RecordDeclTypes.find(Ty);
102  return I != RecordDeclTypes.end() && !I->second->isOpaque();
103}
104
105static bool
106isSafeToConvert(QualType T, CodeGenTypes &CGT,
107                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108
109
110/// isSafeToConvert - Return true if it is safe to convert the specified record
111/// decl to IR and lay it out, false if doing so would cause us to get into a
112/// recursive compilation mess.
113static bool
114isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116  // If we have already checked this type (maybe the same type is used by-value
117  // multiple times in multiple structure fields, don't check again.
118  if (!AlreadyChecked.insert(RD).second)
119    return true;
120
121  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
122
123  // If this type is already laid out, converting it is a noop.
124  if (CGT.isRecordLayoutComplete(Key)) return true;
125
126  // If this type is currently being laid out, we can't recursively compile it.
127  if (CGT.isRecordBeingLaidOut(Key))
128    return false;
129
130  // If this type would require laying out bases that are currently being laid
131  // out, don't do it.  This includes virtual base classes which get laid out
132  // when a class is translated, even though they aren't embedded by-value into
133  // the class.
134  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
135    for (const auto &I : CRD->bases())
136      if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
137                           CGT, AlreadyChecked))
138        return false;
139  }
140
141  // If this type would require laying out members that are currently being laid
142  // out, don't do it.
143  for (const auto *I : RD->fields())
144    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
145      return false;
146
147  // If there are no problems, lets do it.
148  return true;
149}
150
151/// isSafeToConvert - Return true if it is safe to convert this field type,
152/// which requires the structure elements contained by-value to all be
153/// recursively safe to convert.
154static bool
155isSafeToConvert(QualType T, CodeGenTypes &CGT,
156                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
157  T = T.getCanonicalType();
158
159  // If this is a record, check it.
160  if (const RecordType *RT = dyn_cast<RecordType>(T))
161    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
162
163  // If this is an array, check the elements, which are embedded inline.
164  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
165    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
166
167  // Otherwise, there is no concern about transforming this.  We only care about
168  // things that are contained by-value in a structure that can have another
169  // structure as a member.
170  return true;
171}
172
173
174/// isSafeToConvert - Return true if it is safe to convert the specified record
175/// decl to IR and lay it out, false if doing so would cause us to get into a
176/// recursive compilation mess.
177static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
178  // If no structs are being laid out, we can certainly do this one.
179  if (CGT.noRecordsBeingLaidOut()) return true;
180
181  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
182  return isSafeToConvert(RD, CGT, AlreadyChecked);
183}
184
185/// isFuncParamTypeConvertible - Return true if the specified type in a
186/// function parameter or result position can be converted to an IR type at this
187/// point.  This boils down to being whether it is complete, as well as whether
188/// we've temporarily deferred expanding the type because we're in a recursive
189/// context.
190bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
191  // Some ABIs cannot have their member pointers represented in IR unless
192  // certain circumstances have been reached.
193  if (const auto *MPT = Ty->getAs<MemberPointerType>())
194    return getCXXABI().isMemberPointerConvertible(MPT);
195
196  // If this isn't a tagged type, we can convert it!
197  const TagType *TT = Ty->getAs<TagType>();
198  if (!TT) return true;
199
200  // Incomplete types cannot be converted.
201  if (TT->isIncompleteType())
202    return false;
203
204  // If this is an enum, then it is always safe to convert.
205  const RecordType *RT = dyn_cast<RecordType>(TT);
206  if (!RT) return true;
207
208  // Otherwise, we have to be careful.  If it is a struct that we're in the
209  // process of expanding, then we can't convert the function type.  That's ok
210  // though because we must be in a pointer context under the struct, so we can
211  // just convert it to a dummy type.
212  //
213  // We decide this by checking whether ConvertRecordDeclType returns us an
214  // opaque type for a struct that we know is defined.
215  return isSafeToConvert(RT->getDecl(), *this);
216}
217
218
219/// Code to verify a given function type is complete, i.e. the return type
220/// and all of the parameter types are complete.  Also check to see if we are in
221/// a RS_StructPointer context, and if so whether any struct types have been
222/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
223/// that cannot be converted to an IR type.
224bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225  if (!isFuncParamTypeConvertible(FT->getReturnType()))
226    return false;
227
228  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229    for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
230      if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
231        return false;
232
233  return true;
234}
235
236/// UpdateCompletedType - When we find the full definition for a TagDecl,
237/// replace the 'opaque' type we previously made for it if applicable.
238void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239  // If this is an enum being completed, then we flush all non-struct types from
240  // the cache.  This allows function types and other things that may be derived
241  // from the enum to be recomputed.
242  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243    // Only flush the cache if we've actually already converted this type.
244    if (TypeCache.count(ED->getTypeForDecl())) {
245      // Okay, we formed some types based on this.  We speculated that the enum
246      // would be lowered to i32, so we only need to flush the cache if this
247      // didn't happen.
248      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249        TypeCache.clear();
250    }
251    // If necessary, provide the full definition of a type only used with a
252    // declaration so far.
253    if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
254      DI->completeType(ED);
255    return;
256  }
257
258  // If we completed a RecordDecl that we previously used and converted to an
259  // anonymous type, then go ahead and complete it now.
260  const RecordDecl *RD = cast<RecordDecl>(TD);
261  if (RD->isDependentType()) return;
262
263  // Only complete it if we converted it already.  If we haven't converted it
264  // yet, we'll just do it lazily.
265  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
266    ConvertRecordDeclType(RD);
267
268  // If necessary, provide the full definition of a type only used with a
269  // declaration so far.
270  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
271    DI->completeType(RD);
272}
273
274static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
275                                    const llvm::fltSemantics &format,
276                                    bool UseNativeHalf = false) {
277  if (&format == &llvm::APFloat::IEEEhalf) {
278    if (UseNativeHalf)
279      return llvm::Type::getHalfTy(VMContext);
280    else
281      return llvm::Type::getInt16Ty(VMContext);
282  }
283  if (&format == &llvm::APFloat::IEEEsingle)
284    return llvm::Type::getFloatTy(VMContext);
285  if (&format == &llvm::APFloat::IEEEdouble)
286    return llvm::Type::getDoubleTy(VMContext);
287  if (&format == &llvm::APFloat::IEEEquad)
288    return llvm::Type::getFP128Ty(VMContext);
289  if (&format == &llvm::APFloat::PPCDoubleDouble)
290    return llvm::Type::getPPC_FP128Ty(VMContext);
291  if (&format == &llvm::APFloat::x87DoubleExtended)
292    return llvm::Type::getX86_FP80Ty(VMContext);
293  llvm_unreachable("Unknown float format!");
294}
295
296/// ConvertType - Convert the specified type to its LLVM form.
297llvm::Type *CodeGenTypes::ConvertType(QualType T) {
298  T = Context.getCanonicalType(T);
299
300  const Type *Ty = T.getTypePtr();
301
302  // RecordTypes are cached and processed specially.
303  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
304    return ConvertRecordDeclType(RT->getDecl());
305
306  // See if type is already cached.
307  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
308  // If type is found in map then use it. Otherwise, convert type T.
309  if (TCI != TypeCache.end())
310    return TCI->second;
311
312  // If we don't have it in the cache, convert it now.
313  llvm::Type *ResultType = nullptr;
314  switch (Ty->getTypeClass()) {
315  case Type::Record: // Handled above.
316#define TYPE(Class, Base)
317#define ABSTRACT_TYPE(Class, Base)
318#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
319#define DEPENDENT_TYPE(Class, Base) case Type::Class:
320#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
321#include "clang/AST/TypeNodes.def"
322    llvm_unreachable("Non-canonical or dependent types aren't possible.");
323
324  case Type::Builtin: {
325    switch (cast<BuiltinType>(Ty)->getKind()) {
326    case BuiltinType::Void:
327    case BuiltinType::ObjCId:
328    case BuiltinType::ObjCClass:
329    case BuiltinType::ObjCSel:
330      // LLVM void type can only be used as the result of a function call.  Just
331      // map to the same as char.
332      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
333      break;
334
335    case BuiltinType::Bool:
336      // Note that we always return bool as i1 for use as a scalar type.
337      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
338      break;
339
340    case BuiltinType::Char_S:
341    case BuiltinType::Char_U:
342    case BuiltinType::SChar:
343    case BuiltinType::UChar:
344    case BuiltinType::Short:
345    case BuiltinType::UShort:
346    case BuiltinType::Int:
347    case BuiltinType::UInt:
348    case BuiltinType::Long:
349    case BuiltinType::ULong:
350    case BuiltinType::LongLong:
351    case BuiltinType::ULongLong:
352    case BuiltinType::WChar_S:
353    case BuiltinType::WChar_U:
354    case BuiltinType::Char16:
355    case BuiltinType::Char32:
356      ResultType = llvm::IntegerType::get(getLLVMContext(),
357                                 static_cast<unsigned>(Context.getTypeSize(T)));
358      break;
359
360    case BuiltinType::Half:
361      // Half FP can either be storage-only (lowered to i16) or native.
362      ResultType =
363          getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
364                           Context.getLangOpts().NativeHalfType ||
365                               Context.getLangOpts().HalfArgsAndReturns);
366      break;
367    case BuiltinType::Float:
368    case BuiltinType::Double:
369    case BuiltinType::LongDouble:
370      ResultType = getTypeForFormat(getLLVMContext(),
371                                    Context.getFloatTypeSemantics(T),
372                                    /* UseNativeHalf = */ false);
373      break;
374
375    case BuiltinType::NullPtr:
376      // Model std::nullptr_t as i8*
377      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
378      break;
379
380    case BuiltinType::UInt128:
381    case BuiltinType::Int128:
382      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
383      break;
384
385    case BuiltinType::OCLImage1d:
386    case BuiltinType::OCLImage1dArray:
387    case BuiltinType::OCLImage1dBuffer:
388    case BuiltinType::OCLImage2d:
389    case BuiltinType::OCLImage2dArray:
390    case BuiltinType::OCLImage3d:
391    case BuiltinType::OCLSampler:
392    case BuiltinType::OCLEvent:
393      ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
394      break;
395
396    case BuiltinType::Dependent:
397#define BUILTIN_TYPE(Id, SingletonId)
398#define PLACEHOLDER_TYPE(Id, SingletonId) \
399    case BuiltinType::Id:
400#include "clang/AST/BuiltinTypes.def"
401      llvm_unreachable("Unexpected placeholder builtin type!");
402    }
403    break;
404  }
405  case Type::Auto:
406    llvm_unreachable("Unexpected undeduced auto type!");
407  case Type::Complex: {
408    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
409    ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
410    break;
411  }
412  case Type::LValueReference:
413  case Type::RValueReference: {
414    const ReferenceType *RTy = cast<ReferenceType>(Ty);
415    QualType ETy = RTy->getPointeeType();
416    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
417    unsigned AS = Context.getTargetAddressSpace(ETy);
418    ResultType = llvm::PointerType::get(PointeeType, AS);
419    break;
420  }
421  case Type::Pointer: {
422    const PointerType *PTy = cast<PointerType>(Ty);
423    QualType ETy = PTy->getPointeeType();
424    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
425    if (PointeeType->isVoidTy())
426      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
427    unsigned AS = Context.getTargetAddressSpace(ETy);
428    ResultType = llvm::PointerType::get(PointeeType, AS);
429    break;
430  }
431
432  case Type::VariableArray: {
433    const VariableArrayType *A = cast<VariableArrayType>(Ty);
434    assert(A->getIndexTypeCVRQualifiers() == 0 &&
435           "FIXME: We only handle trivial array types so far!");
436    // VLAs resolve to the innermost element type; this matches
437    // the return of alloca, and there isn't any obviously better choice.
438    ResultType = ConvertTypeForMem(A->getElementType());
439    break;
440  }
441  case Type::IncompleteArray: {
442    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
443    assert(A->getIndexTypeCVRQualifiers() == 0 &&
444           "FIXME: We only handle trivial array types so far!");
445    // int X[] -> [0 x int], unless the element type is not sized.  If it is
446    // unsized (e.g. an incomplete struct) just use [0 x i8].
447    ResultType = ConvertTypeForMem(A->getElementType());
448    if (!ResultType->isSized()) {
449      SkippedLayout = true;
450      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
451    }
452    ResultType = llvm::ArrayType::get(ResultType, 0);
453    break;
454  }
455  case Type::ConstantArray: {
456    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
457    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
458
459    // Lower arrays of undefined struct type to arrays of i8 just to have a
460    // concrete type.
461    if (!EltTy->isSized()) {
462      SkippedLayout = true;
463      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
464    }
465
466    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
467    break;
468  }
469  case Type::ExtVector:
470  case Type::Vector: {
471    const VectorType *VT = cast<VectorType>(Ty);
472    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
473                                       VT->getNumElements());
474    break;
475  }
476  case Type::FunctionNoProto:
477  case Type::FunctionProto: {
478    const FunctionType *FT = cast<FunctionType>(Ty);
479    // First, check whether we can build the full function type.  If the
480    // function type depends on an incomplete type (e.g. a struct or enum), we
481    // cannot lower the function type.
482    if (!isFuncTypeConvertible(FT)) {
483      // This function's type depends on an incomplete tag type.
484
485      // Force conversion of all the relevant record types, to make sure
486      // we re-convert the FunctionType when appropriate.
487      if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
488        ConvertRecordDeclType(RT->getDecl());
489      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
490        for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
491          if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
492            ConvertRecordDeclType(RT->getDecl());
493
494      // Return a placeholder type.
495      ResultType = llvm::StructType::get(getLLVMContext());
496
497      SkippedLayout = true;
498      break;
499    }
500
501    // While we're converting the parameter types for a function, we don't want
502    // to recursively convert any pointed-to structs.  Converting directly-used
503    // structs is ok though.
504    if (!RecordsBeingLaidOut.insert(Ty).second) {
505      ResultType = llvm::StructType::get(getLLVMContext());
506
507      SkippedLayout = true;
508      break;
509    }
510
511    // The function type can be built; call the appropriate routines to
512    // build it.
513    const CGFunctionInfo *FI;
514    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
515      FI = &arrangeFreeFunctionType(
516                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
517    } else {
518      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
519      FI = &arrangeFreeFunctionType(
520                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
521    }
522
523    // If there is something higher level prodding our CGFunctionInfo, then
524    // don't recurse into it again.
525    if (FunctionsBeingProcessed.count(FI)) {
526
527      ResultType = llvm::StructType::get(getLLVMContext());
528      SkippedLayout = true;
529    } else {
530
531      // Otherwise, we're good to go, go ahead and convert it.
532      ResultType = GetFunctionType(*FI);
533    }
534
535    RecordsBeingLaidOut.erase(Ty);
536
537    if (SkippedLayout)
538      TypeCache.clear();
539
540    if (RecordsBeingLaidOut.empty())
541      while (!DeferredRecords.empty())
542        ConvertRecordDeclType(DeferredRecords.pop_back_val());
543    break;
544  }
545
546  case Type::ObjCObject:
547    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
548    break;
549
550  case Type::ObjCInterface: {
551    // Objective-C interfaces are always opaque (outside of the
552    // runtime, which can do whatever it likes); we never refine
553    // these.
554    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
555    if (!T)
556      T = llvm::StructType::create(getLLVMContext());
557    ResultType = T;
558    break;
559  }
560
561  case Type::ObjCObjectPointer: {
562    // Protocol qualifications do not influence the LLVM type, we just return a
563    // pointer to the underlying interface type. We don't need to worry about
564    // recursive conversion.
565    llvm::Type *T =
566      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
567    ResultType = T->getPointerTo();
568    break;
569  }
570
571  case Type::Enum: {
572    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
573    if (ED->isCompleteDefinition() || ED->isFixed())
574      return ConvertType(ED->getIntegerType());
575    // Return a placeholder 'i32' type.  This can be changed later when the
576    // type is defined (see UpdateCompletedType), but is likely to be the
577    // "right" answer.
578    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
579    break;
580  }
581
582  case Type::BlockPointer: {
583    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
584    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
585    unsigned AS = Context.getTargetAddressSpace(FTy);
586    ResultType = llvm::PointerType::get(PointeeType, AS);
587    break;
588  }
589
590  case Type::MemberPointer: {
591    if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
592      return llvm::StructType::create(getLLVMContext());
593    ResultType =
594      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
595    break;
596  }
597
598  case Type::Atomic: {
599    QualType valueType = cast<AtomicType>(Ty)->getValueType();
600    ResultType = ConvertTypeForMem(valueType);
601
602    // Pad out to the inflated size if necessary.
603    uint64_t valueSize = Context.getTypeSize(valueType);
604    uint64_t atomicSize = Context.getTypeSize(Ty);
605    if (valueSize != atomicSize) {
606      assert(valueSize < atomicSize);
607      llvm::Type *elts[] = {
608        ResultType,
609        llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
610      };
611      ResultType = llvm::StructType::get(getLLVMContext(),
612                                         llvm::makeArrayRef(elts));
613    }
614    break;
615  }
616  }
617
618  assert(ResultType && "Didn't convert a type?");
619
620  TypeCache[Ty] = ResultType;
621  return ResultType;
622}
623
624bool CodeGenModule::isPaddedAtomicType(QualType type) {
625  return isPaddedAtomicType(type->castAs<AtomicType>());
626}
627
628bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
629  return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
630}
631
632/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
633llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
634  // TagDecl's are not necessarily unique, instead use the (clang)
635  // type connected to the decl.
636  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
637
638  llvm::StructType *&Entry = RecordDeclTypes[Key];
639
640  // If we don't have a StructType at all yet, create the forward declaration.
641  if (!Entry) {
642    Entry = llvm::StructType::create(getLLVMContext());
643    addRecordTypeName(RD, Entry, "");
644  }
645  llvm::StructType *Ty = Entry;
646
647  // If this is still a forward declaration, or the LLVM type is already
648  // complete, there's nothing more to do.
649  RD = RD->getDefinition();
650  if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
651    return Ty;
652
653  // If converting this type would cause us to infinitely loop, don't do it!
654  if (!isSafeToConvert(RD, *this)) {
655    DeferredRecords.push_back(RD);
656    return Ty;
657  }
658
659  // Okay, this is a definition of a type.  Compile the implementation now.
660  bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
661  (void)InsertResult;
662  assert(InsertResult && "Recursively compiling a struct?");
663
664  // Force conversion of non-virtual base classes recursively.
665  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
666    for (const auto &I : CRD->bases()) {
667      if (I.isVirtual()) continue;
668
669      ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
670    }
671  }
672
673  // Layout fields.
674  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
675  CGRecordLayouts[Key] = Layout;
676
677  // We're done laying out this struct.
678  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
679  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
680
681  // If this struct blocked a FunctionType conversion, then recompute whatever
682  // was derived from that.
683  // FIXME: This is hugely overconservative.
684  if (SkippedLayout)
685    TypeCache.clear();
686
687  // If we're done converting the outer-most record, then convert any deferred
688  // structs as well.
689  if (RecordsBeingLaidOut.empty())
690    while (!DeferredRecords.empty())
691      ConvertRecordDeclType(DeferredRecords.pop_back_val());
692
693  return Ty;
694}
695
696/// getCGRecordLayout - Return record layout info for the given record decl.
697const CGRecordLayout &
698CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
699  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
700
701  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
702  if (!Layout) {
703    // Compute the type information.
704    ConvertRecordDeclType(RD);
705
706    // Now try again.
707    Layout = CGRecordLayouts.lookup(Key);
708  }
709
710  assert(Layout && "Unable to find record layout information for type");
711  return *Layout;
712}
713
714bool CodeGenTypes::isZeroInitializable(QualType T) {
715  // No need to check for member pointers when not compiling C++.
716  if (!Context.getLangOpts().CPlusPlus)
717    return true;
718
719  T = Context.getBaseElementType(T);
720
721  // Records are non-zero-initializable if they contain any
722  // non-zero-initializable subobjects.
723  if (const RecordType *RT = T->getAs<RecordType>()) {
724    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
725    return isZeroInitializable(RD);
726  }
727
728  // We have to ask the ABI about member pointers.
729  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
730    return getCXXABI().isZeroInitializable(MPT);
731
732  // Everything else is okay.
733  return true;
734}
735
736bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
737  return getCGRecordLayout(RD).isZeroInitializable();
738}
739