1//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
11// The class in this file generates structures that follow the Microsoft
12// Visual C++ ABI, which is actually not very well documented at all outside
13// of Microsoft.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGCXXABI.h"
18#include "CGVTables.h"
19#include "CodeGenModule.h"
20#include "CodeGenTypes.h"
21#include "TargetInfo.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/VTableBuilder.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/StringSet.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/Intrinsics.h"
30
31using namespace clang;
32using namespace CodeGen;
33
34namespace {
35
36/// Holds all the vbtable globals for a given class.
37struct VBTableGlobals {
38  const VPtrInfoVector *VBTables;
39  SmallVector<llvm::GlobalVariable *, 2> Globals;
40};
41
42class MicrosoftCXXABI : public CGCXXABI {
43public:
44  MicrosoftCXXABI(CodeGenModule &CGM)
45      : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
46        ClassHierarchyDescriptorType(nullptr),
47        CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
48        ThrowInfoType(nullptr), CatchHandlerTypeType(nullptr) {}
49
50  bool HasThisReturn(GlobalDecl GD) const override;
51  bool hasMostDerivedReturn(GlobalDecl GD) const override;
52
53  bool classifyReturnType(CGFunctionInfo &FI) const override;
54
55  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
56
57  bool isSRetParameterAfterThis() const override { return true; }
58
59  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
60                              FunctionArgList &Args) const override {
61    assert(Args.size() >= 2 &&
62           "expected the arglist to have at least two args!");
63    // The 'most_derived' parameter goes second if the ctor is variadic and
64    // has v-bases.
65    if (CD->getParent()->getNumVBases() > 0 &&
66        CD->getType()->castAs<FunctionProtoType>()->isVariadic())
67      return 2;
68    return 1;
69  }
70
71  StringRef GetPureVirtualCallName() override { return "_purecall"; }
72  StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
73
74  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
75                               llvm::Value *Ptr, QualType ElementType,
76                               const CXXDestructorDecl *Dtor) override;
77
78  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
79  void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
80
81  void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
82
83  llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
84                                                   const VPtrInfo *Info);
85
86  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
87  llvm::Constant *
88  getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
89
90  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
91  void EmitBadTypeidCall(CodeGenFunction &CGF) override;
92  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
93                          llvm::Value *ThisPtr,
94                          llvm::Type *StdTypeInfoPtrTy) override;
95
96  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
97                                          QualType SrcRecordTy) override;
98
99  llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
100                                   QualType SrcRecordTy, QualType DestTy,
101                                   QualType DestRecordTy,
102                                   llvm::BasicBlock *CastEnd) override;
103
104  llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
105                                     QualType SrcRecordTy,
106                                     QualType DestTy) override;
107
108  bool EmitBadCastCall(CodeGenFunction &CGF) override;
109
110  llvm::Value *
111  GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
112                            const CXXRecordDecl *ClassDecl,
113                            const CXXRecordDecl *BaseClassDecl) override;
114
115  llvm::BasicBlock *
116  EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
117                                const CXXRecordDecl *RD) override;
118
119  void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
120                                              const CXXRecordDecl *RD) override;
121
122  void EmitCXXConstructors(const CXXConstructorDecl *D) override;
123
124  // Background on MSVC destructors
125  // ==============================
126  //
127  // Both Itanium and MSVC ABIs have destructor variants.  The variant names
128  // roughly correspond in the following way:
129  //   Itanium       Microsoft
130  //   Base       -> no name, just ~Class
131  //   Complete   -> vbase destructor
132  //   Deleting   -> scalar deleting destructor
133  //                 vector deleting destructor
134  //
135  // The base and complete destructors are the same as in Itanium, although the
136  // complete destructor does not accept a VTT parameter when there are virtual
137  // bases.  A separate mechanism involving vtordisps is used to ensure that
138  // virtual methods of destroyed subobjects are not called.
139  //
140  // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
141  // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
142  // pointer points to an array.  The scalar deleting destructor assumes that
143  // bit 2 is zero, and therefore does not contain a loop.
144  //
145  // For virtual destructors, only one entry is reserved in the vftable, and it
146  // always points to the vector deleting destructor.  The vector deleting
147  // destructor is the most general, so it can be used to destroy objects in
148  // place, delete single heap objects, or delete arrays.
149  //
150  // A TU defining a non-inline destructor is only guaranteed to emit a base
151  // destructor, and all of the other variants are emitted on an as-needed basis
152  // in COMDATs.  Because a non-base destructor can be emitted in a TU that
153  // lacks a definition for the destructor, non-base destructors must always
154  // delegate to or alias the base destructor.
155
156  void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
157                              SmallVectorImpl<CanQualType> &ArgTys) override;
158
159  /// Non-base dtors should be emitted as delegating thunks in this ABI.
160  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
161                              CXXDtorType DT) const override {
162    return DT != Dtor_Base;
163  }
164
165  void EmitCXXDestructors(const CXXDestructorDecl *D) override;
166
167  const CXXRecordDecl *
168  getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
169    MD = MD->getCanonicalDecl();
170    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
171      MicrosoftVTableContext::MethodVFTableLocation ML =
172          CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
173      // The vbases might be ordered differently in the final overrider object
174      // and the complete object, so the "this" argument may sometimes point to
175      // memory that has no particular type (e.g. past the complete object).
176      // In this case, we just use a generic pointer type.
177      // FIXME: might want to have a more precise type in the non-virtual
178      // multiple inheritance case.
179      if (ML.VBase || !ML.VFPtrOffset.isZero())
180        return nullptr;
181    }
182    return MD->getParent();
183  }
184
185  llvm::Value *
186  adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
187                                           llvm::Value *This,
188                                           bool VirtualCall) override;
189
190  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
191                                 FunctionArgList &Params) override;
192
193  llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
194      CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
195
196  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
197
198  unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
199                                      const CXXConstructorDecl *D,
200                                      CXXCtorType Type, bool ForVirtualBase,
201                                      bool Delegating,
202                                      CallArgList &Args) override;
203
204  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
205                          CXXDtorType Type, bool ForVirtualBase,
206                          bool Delegating, llvm::Value *This) override;
207
208  void emitVTableDefinitions(CodeGenVTables &CGVT,
209                             const CXXRecordDecl *RD) override;
210
211  llvm::Value *getVTableAddressPointInStructor(
212      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
213      BaseSubobject Base, const CXXRecordDecl *NearestVBase,
214      bool &NeedsVirtualOffset) override;
215
216  llvm::Constant *
217  getVTableAddressPointForConstExpr(BaseSubobject Base,
218                                    const CXXRecordDecl *VTableClass) override;
219
220  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
221                                        CharUnits VPtrOffset) override;
222
223  llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
224                                         llvm::Value *This,
225                                         llvm::Type *Ty) override;
226
227  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
228                                         const CXXDestructorDecl *Dtor,
229                                         CXXDtorType DtorType,
230                                         llvm::Value *This,
231                                         const CXXMemberCallExpr *CE) override;
232
233  void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
234                                        CallArgList &CallArgs) override {
235    assert(GD.getDtorType() == Dtor_Deleting &&
236           "Only deleting destructor thunks are available in this ABI");
237    CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
238                 getContext().IntTy);
239  }
240
241  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
242
243  llvm::GlobalVariable *
244  getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
245                   llvm::GlobalVariable::LinkageTypes Linkage);
246
247  void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
248                             llvm::GlobalVariable *GV) const;
249
250  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
251                       GlobalDecl GD, bool ReturnAdjustment) override {
252    // Never dllimport/dllexport thunks.
253    Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
254
255    GVALinkage Linkage =
256        getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
257
258    if (Linkage == GVA_Internal)
259      Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
260    else if (ReturnAdjustment)
261      Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
262    else
263      Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
264  }
265
266  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
267                                     const ThisAdjustment &TA) override;
268
269  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
270                                       const ReturnAdjustment &RA) override;
271
272  void EmitThreadLocalInitFuncs(
273      CodeGenModule &CGM,
274      ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
275          CXXThreadLocals,
276      ArrayRef<llvm::Function *> CXXThreadLocalInits,
277      ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
278
279  bool usesThreadWrapperFunction() const override { return false; }
280  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
281                                      QualType LValType) override;
282
283  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
284                       llvm::GlobalVariable *DeclPtr,
285                       bool PerformInit) override;
286  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
287                          llvm::Constant *Dtor, llvm::Constant *Addr) override;
288
289  // ==== Notes on array cookies =========
290  //
291  // MSVC seems to only use cookies when the class has a destructor; a
292  // two-argument usual array deallocation function isn't sufficient.
293  //
294  // For example, this code prints "100" and "1":
295  //   struct A {
296  //     char x;
297  //     void *operator new[](size_t sz) {
298  //       printf("%u\n", sz);
299  //       return malloc(sz);
300  //     }
301  //     void operator delete[](void *p, size_t sz) {
302  //       printf("%u\n", sz);
303  //       free(p);
304  //     }
305  //   };
306  //   int main() {
307  //     A *p = new A[100];
308  //     delete[] p;
309  //   }
310  // Whereas it prints "104" and "104" if you give A a destructor.
311
312  bool requiresArrayCookie(const CXXDeleteExpr *expr,
313                           QualType elementType) override;
314  bool requiresArrayCookie(const CXXNewExpr *expr) override;
315  CharUnits getArrayCookieSizeImpl(QualType type) override;
316  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
317                                     llvm::Value *NewPtr,
318                                     llvm::Value *NumElements,
319                                     const CXXNewExpr *expr,
320                                     QualType ElementType) override;
321  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
322                                   llvm::Value *allocPtr,
323                                   CharUnits cookieSize) override;
324
325  friend struct MSRTTIBuilder;
326
327  bool isImageRelative() const {
328    return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
329  }
330
331  // 5 routines for constructing the llvm types for MS RTTI structs.
332  llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
333    llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
334    TDTypeName += llvm::utostr(TypeInfoString.size());
335    llvm::StructType *&TypeDescriptorType =
336        TypeDescriptorTypeMap[TypeInfoString.size()];
337    if (TypeDescriptorType)
338      return TypeDescriptorType;
339    llvm::Type *FieldTypes[] = {
340        CGM.Int8PtrPtrTy,
341        CGM.Int8PtrTy,
342        llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
343    TypeDescriptorType =
344        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
345    return TypeDescriptorType;
346  }
347
348  llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
349    if (!isImageRelative())
350      return PtrType;
351    return CGM.IntTy;
352  }
353
354  llvm::StructType *getBaseClassDescriptorType() {
355    if (BaseClassDescriptorType)
356      return BaseClassDescriptorType;
357    llvm::Type *FieldTypes[] = {
358        getImageRelativeType(CGM.Int8PtrTy),
359        CGM.IntTy,
360        CGM.IntTy,
361        CGM.IntTy,
362        CGM.IntTy,
363        CGM.IntTy,
364        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
365    };
366    BaseClassDescriptorType = llvm::StructType::create(
367        CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
368    return BaseClassDescriptorType;
369  }
370
371  llvm::StructType *getClassHierarchyDescriptorType() {
372    if (ClassHierarchyDescriptorType)
373      return ClassHierarchyDescriptorType;
374    // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
375    ClassHierarchyDescriptorType = llvm::StructType::create(
376        CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
377    llvm::Type *FieldTypes[] = {
378        CGM.IntTy,
379        CGM.IntTy,
380        CGM.IntTy,
381        getImageRelativeType(
382            getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
383    };
384    ClassHierarchyDescriptorType->setBody(FieldTypes);
385    return ClassHierarchyDescriptorType;
386  }
387
388  llvm::StructType *getCompleteObjectLocatorType() {
389    if (CompleteObjectLocatorType)
390      return CompleteObjectLocatorType;
391    CompleteObjectLocatorType = llvm::StructType::create(
392        CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
393    llvm::Type *FieldTypes[] = {
394        CGM.IntTy,
395        CGM.IntTy,
396        CGM.IntTy,
397        getImageRelativeType(CGM.Int8PtrTy),
398        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
399        getImageRelativeType(CompleteObjectLocatorType),
400    };
401    llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
402    if (!isImageRelative())
403      FieldTypesRef = FieldTypesRef.drop_back();
404    CompleteObjectLocatorType->setBody(FieldTypesRef);
405    return CompleteObjectLocatorType;
406  }
407
408  llvm::GlobalVariable *getImageBase() {
409    StringRef Name = "__ImageBase";
410    if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
411      return GV;
412
413    return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
414                                    /*isConstant=*/true,
415                                    llvm::GlobalValue::ExternalLinkage,
416                                    /*Initializer=*/nullptr, Name);
417  }
418
419  llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
420    if (!isImageRelative())
421      return PtrVal;
422
423    if (PtrVal->isNullValue())
424      return llvm::Constant::getNullValue(CGM.IntTy);
425
426    llvm::Constant *ImageBaseAsInt =
427        llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
428    llvm::Constant *PtrValAsInt =
429        llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
430    llvm::Constant *Diff =
431        llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
432                                   /*HasNUW=*/true, /*HasNSW=*/true);
433    return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
434  }
435
436private:
437  MicrosoftMangleContext &getMangleContext() {
438    return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
439  }
440
441  llvm::Constant *getZeroInt() {
442    return llvm::ConstantInt::get(CGM.IntTy, 0);
443  }
444
445  llvm::Constant *getAllOnesInt() {
446    return  llvm::Constant::getAllOnesValue(CGM.IntTy);
447  }
448
449  llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
450    return C ? C : getZeroInt();
451  }
452
453  llvm::Value *getValueOrZeroInt(llvm::Value *C) {
454    return C ? C : getZeroInt();
455  }
456
457  CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
458
459  void
460  GetNullMemberPointerFields(const MemberPointerType *MPT,
461                             llvm::SmallVectorImpl<llvm::Constant *> &fields);
462
463  /// \brief Shared code for virtual base adjustment.  Returns the offset from
464  /// the vbptr to the virtual base.  Optionally returns the address of the
465  /// vbptr itself.
466  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
467                                       llvm::Value *Base,
468                                       llvm::Value *VBPtrOffset,
469                                       llvm::Value *VBTableOffset,
470                                       llvm::Value **VBPtr = nullptr);
471
472  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
473                                       llvm::Value *Base,
474                                       int32_t VBPtrOffset,
475                                       int32_t VBTableOffset,
476                                       llvm::Value **VBPtr = nullptr) {
477    assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
478    llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
479                *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
480    return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
481  }
482
483  std::pair<llvm::Value *, llvm::Value *>
484  performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
485                        QualType SrcRecordTy);
486
487  /// \brief Performs a full virtual base adjustment.  Used to dereference
488  /// pointers to members of virtual bases.
489  llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
490                                 const CXXRecordDecl *RD, llvm::Value *Base,
491                                 llvm::Value *VirtualBaseAdjustmentOffset,
492                                 llvm::Value *VBPtrOffset /* optional */);
493
494  /// \brief Emits a full member pointer with the fields common to data and
495  /// function member pointers.
496  llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
497                                        bool IsMemberFunction,
498                                        const CXXRecordDecl *RD,
499                                        CharUnits NonVirtualBaseAdjustment);
500
501  llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
502                                     const CXXMethodDecl *MD,
503                                     CharUnits NonVirtualBaseAdjustment);
504
505  bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
506                                   llvm::Constant *MP);
507
508  /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
509  void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
510
511  /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
512  const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
513
514  /// \brief Generate a thunk for calling a virtual member function MD.
515  llvm::Function *EmitVirtualMemPtrThunk(
516      const CXXMethodDecl *MD,
517      const MicrosoftVTableContext::MethodVFTableLocation &ML);
518
519public:
520  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
521
522  bool isZeroInitializable(const MemberPointerType *MPT) override;
523
524  bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
525    const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
526    return RD->hasAttr<MSInheritanceAttr>();
527  }
528
529  bool isTypeInfoCalculable(QualType Ty) const override {
530    if (!CGCXXABI::isTypeInfoCalculable(Ty))
531      return false;
532    if (const auto *MPT = Ty->getAs<MemberPointerType>()) {
533      const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
534      if (!RD->hasAttr<MSInheritanceAttr>())
535        return false;
536    }
537    return true;
538  }
539
540  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
541
542  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
543                                        CharUnits offset) override;
544  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
545  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
546
547  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
548                                           llvm::Value *L,
549                                           llvm::Value *R,
550                                           const MemberPointerType *MPT,
551                                           bool Inequality) override;
552
553  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
554                                          llvm::Value *MemPtr,
555                                          const MemberPointerType *MPT) override;
556
557  llvm::Value *
558  EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
559                               llvm::Value *Base, llvm::Value *MemPtr,
560                               const MemberPointerType *MPT) override;
561
562  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
563                                           const CastExpr *E,
564                                           llvm::Value *Src) override;
565
566  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
567                                              llvm::Constant *Src) override;
568
569  llvm::Value *
570  EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
571                                  llvm::Value *&This, llvm::Value *MemPtr,
572                                  const MemberPointerType *MPT) override;
573
574  void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
575
576  llvm::StructType *getCatchHandlerTypeType() {
577    if (!CatchHandlerTypeType) {
578      llvm::Type *FieldTypes[] = {
579          CGM.IntTy,     // Flags
580          CGM.Int8PtrTy, // TypeDescriptor
581      };
582      CatchHandlerTypeType = llvm::StructType::create(
583          CGM.getLLVMContext(), FieldTypes, "eh.CatchHandlerType");
584    }
585    return CatchHandlerTypeType;
586  }
587
588  llvm::StructType *getCatchableTypeType() {
589    if (CatchableTypeType)
590      return CatchableTypeType;
591    llvm::Type *FieldTypes[] = {
592        CGM.IntTy,                           // Flags
593        getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
594        CGM.IntTy,                           // NonVirtualAdjustment
595        CGM.IntTy,                           // OffsetToVBPtr
596        CGM.IntTy,                           // VBTableIndex
597        CGM.IntTy,                           // Size
598        getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
599    };
600    CatchableTypeType = llvm::StructType::create(
601        CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
602    return CatchableTypeType;
603  }
604
605  llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
606    llvm::StructType *&CatchableTypeArrayType =
607        CatchableTypeArrayTypeMap[NumEntries];
608    if (CatchableTypeArrayType)
609      return CatchableTypeArrayType;
610
611    llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
612    CTATypeName += llvm::utostr(NumEntries);
613    llvm::Type *CTType =
614        getImageRelativeType(getCatchableTypeType()->getPointerTo());
615    llvm::Type *FieldTypes[] = {
616        CGM.IntTy,                               // NumEntries
617        llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
618    };
619    CatchableTypeArrayType =
620        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
621    return CatchableTypeArrayType;
622  }
623
624  llvm::StructType *getThrowInfoType() {
625    if (ThrowInfoType)
626      return ThrowInfoType;
627    llvm::Type *FieldTypes[] = {
628        CGM.IntTy,                           // Flags
629        getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
630        getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
631        getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
632    };
633    ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
634                                             "eh.ThrowInfo");
635    return ThrowInfoType;
636  }
637
638  llvm::Constant *getThrowFn() {
639    // _CxxThrowException is passed an exception object and a ThrowInfo object
640    // which describes the exception.
641    llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
642    llvm::FunctionType *FTy =
643        llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
644    auto *Fn = cast<llvm::Function>(
645        CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
646    // _CxxThrowException is stdcall on 32-bit x86 platforms.
647    if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
648      Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
649    return Fn;
650  }
651
652  llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
653                                          CXXCtorType CT);
654
655  llvm::Constant *getCatchableType(QualType T,
656                                   uint32_t NVOffset = 0,
657                                   int32_t VBPtrOffset = -1,
658                                   uint32_t VBIndex = 0);
659
660  llvm::GlobalVariable *getCatchableTypeArray(QualType T);
661
662  llvm::GlobalVariable *getThrowInfo(QualType T) override;
663
664private:
665  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
666  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
667  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
668  /// \brief All the vftables that have been referenced.
669  VFTablesMapTy VFTablesMap;
670  VTablesMapTy VTablesMap;
671
672  /// \brief This set holds the record decls we've deferred vtable emission for.
673  llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
674
675
676  /// \brief All the vbtables which have been referenced.
677  llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
678
679  /// Info on the global variable used to guard initialization of static locals.
680  /// The BitIndex field is only used for externally invisible declarations.
681  struct GuardInfo {
682    GuardInfo() : Guard(nullptr), BitIndex(0) {}
683    llvm::GlobalVariable *Guard;
684    unsigned BitIndex;
685  };
686
687  /// Map from DeclContext to the current guard variable.  We assume that the
688  /// AST is visited in source code order.
689  llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
690
691  llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
692  llvm::StructType *BaseClassDescriptorType;
693  llvm::StructType *ClassHierarchyDescriptorType;
694  llvm::StructType *CompleteObjectLocatorType;
695
696  llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
697
698  llvm::StructType *CatchableTypeType;
699  llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
700  llvm::StructType *ThrowInfoType;
701  llvm::StructType *CatchHandlerTypeType;
702};
703
704}
705
706CGCXXABI::RecordArgABI
707MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
708  switch (CGM.getTarget().getTriple().getArch()) {
709  default:
710    // FIXME: Implement for other architectures.
711    return RAA_Default;
712
713  case llvm::Triple::x86:
714    // All record arguments are passed in memory on x86.  Decide whether to
715    // construct the object directly in argument memory, or to construct the
716    // argument elsewhere and copy the bytes during the call.
717
718    // If C++ prohibits us from making a copy, construct the arguments directly
719    // into argument memory.
720    if (!canCopyArgument(RD))
721      return RAA_DirectInMemory;
722
723    // Otherwise, construct the argument into a temporary and copy the bytes
724    // into the outgoing argument memory.
725    return RAA_Default;
726
727  case llvm::Triple::x86_64:
728    // Win64 passes objects with non-trivial copy ctors indirectly.
729    if (RD->hasNonTrivialCopyConstructor())
730      return RAA_Indirect;
731
732    // If an object has a destructor, we'd really like to pass it indirectly
733    // because it allows us to elide copies.  Unfortunately, MSVC makes that
734    // impossible for small types, which it will pass in a single register or
735    // stack slot. Most objects with dtors are large-ish, so handle that early.
736    // We can't call out all large objects as being indirect because there are
737    // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
738    // how we pass large POD types.
739    if (RD->hasNonTrivialDestructor() &&
740        getContext().getTypeSize(RD->getTypeForDecl()) > 64)
741      return RAA_Indirect;
742
743    // We have a trivial copy constructor or no copy constructors, but we have
744    // to make sure it isn't deleted.
745    bool CopyDeleted = false;
746    for (const CXXConstructorDecl *CD : RD->ctors()) {
747      if (CD->isCopyConstructor()) {
748        assert(CD->isTrivial());
749        // We had at least one undeleted trivial copy ctor.  Return directly.
750        if (!CD->isDeleted())
751          return RAA_Default;
752        CopyDeleted = true;
753      }
754    }
755
756    // The trivial copy constructor was deleted.  Return indirectly.
757    if (CopyDeleted)
758      return RAA_Indirect;
759
760    // There were no copy ctors.  Return in RAX.
761    return RAA_Default;
762  }
763
764  llvm_unreachable("invalid enum");
765}
766
767void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
768                                              const CXXDeleteExpr *DE,
769                                              llvm::Value *Ptr,
770                                              QualType ElementType,
771                                              const CXXDestructorDecl *Dtor) {
772  // FIXME: Provide a source location here even though there's no
773  // CXXMemberCallExpr for dtor call.
774  bool UseGlobalDelete = DE->isGlobalDelete();
775  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
776  llvm::Value *MDThis =
777      EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
778  if (UseGlobalDelete)
779    CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
780}
781
782void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
783  llvm::Value *Args[] = {
784      llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
785      llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
786  auto *Fn = getThrowFn();
787  if (isNoReturn)
788    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
789  else
790    CGF.EmitRuntimeCallOrInvoke(Fn, Args);
791}
792
793namespace {
794struct CallEndCatchMSVC : EHScopeStack::Cleanup {
795  CallEndCatchMSVC() {}
796  void Emit(CodeGenFunction &CGF, Flags flags) override {
797    CGF.EmitNounwindRuntimeCall(
798        CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_endcatch));
799  }
800};
801}
802
803void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
804                                     const CXXCatchStmt *S) {
805  // In the MS ABI, the runtime handles the copy, and the catch handler is
806  // responsible for destruction.
807  VarDecl *CatchParam = S->getExceptionDecl();
808  llvm::Value *Exn = CGF.getExceptionFromSlot();
809  llvm::Function *BeginCatch =
810      CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_begincatch);
811
812  // If this is a catch-all or the catch parameter is unnamed, we don't need to
813  // emit an alloca to the object.
814  if (!CatchParam || !CatchParam->getDeclName()) {
815    llvm::Value *Args[2] = {Exn, llvm::Constant::getNullValue(CGF.Int8PtrTy)};
816    CGF.EmitNounwindRuntimeCall(BeginCatch, Args);
817    CGF.EHStack.pushCleanup<CallEndCatchMSVC>(NormalAndEHCleanup);
818    return;
819  }
820
821  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
822  llvm::Value *ParamAddr =
823      CGF.Builder.CreateBitCast(var.getObjectAddress(CGF), CGF.Int8PtrTy);
824  llvm::Value *Args[2] = {Exn, ParamAddr};
825  CGF.EmitNounwindRuntimeCall(BeginCatch, Args);
826  // FIXME: Do we really need exceptional endcatch cleanups?
827  CGF.EHStack.pushCleanup<CallEndCatchMSVC>(NormalAndEHCleanup);
828  CGF.EmitAutoVarCleanups(var);
829}
830
831std::pair<llvm::Value *, llvm::Value *>
832MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
833                                       QualType SrcRecordTy) {
834  Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
835  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
836  const ASTContext &Context = getContext();
837
838  if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
839    return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
840
841  // Perform a base adjustment.
842  const CXXBaseSpecifier *PolymorphicBase = std::find_if(
843      SrcDecl->vbases_begin(), SrcDecl->vbases_end(),
844      [&](const CXXBaseSpecifier &Base) {
845        const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
846        return Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr();
847      });
848  llvm::Value *Offset = GetVirtualBaseClassOffset(
849      CGF, Value, SrcDecl, PolymorphicBase->getType()->getAsCXXRecordDecl());
850  Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
851  Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
852  return std::make_pair(Value, Offset);
853}
854
855bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
856                                                QualType SrcRecordTy) {
857  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
858  return IsDeref &&
859         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
860}
861
862static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
863                                       llvm::Value *Argument) {
864  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
865  llvm::FunctionType *FTy =
866      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
867  llvm::Value *Args[] = {Argument};
868  llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
869  return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
870}
871
872void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
873  llvm::CallSite Call =
874      emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
875  Call.setDoesNotReturn();
876  CGF.Builder.CreateUnreachable();
877}
878
879llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
880                                         QualType SrcRecordTy,
881                                         llvm::Value *ThisPtr,
882                                         llvm::Type *StdTypeInfoPtrTy) {
883  llvm::Value *Offset;
884  std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
885  return CGF.Builder.CreateBitCast(
886      emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
887}
888
889bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
890                                                         QualType SrcRecordTy) {
891  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
892  return SrcIsPtr &&
893         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
894}
895
896llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
897    CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
898    QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
899  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
900
901  llvm::Value *SrcRTTI =
902      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
903  llvm::Value *DestRTTI =
904      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
905
906  llvm::Value *Offset;
907  std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
908
909  // PVOID __RTDynamicCast(
910  //   PVOID inptr,
911  //   LONG VfDelta,
912  //   PVOID SrcType,
913  //   PVOID TargetType,
914  //   BOOL isReference)
915  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
916                            CGF.Int8PtrTy, CGF.Int32Ty};
917  llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
918      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
919      "__RTDynamicCast");
920  llvm::Value *Args[] = {
921      Value, Offset, SrcRTTI, DestRTTI,
922      llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
923  Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
924  return CGF.Builder.CreateBitCast(Value, DestLTy);
925}
926
927llvm::Value *
928MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
929                                       QualType SrcRecordTy,
930                                       QualType DestTy) {
931  llvm::Value *Offset;
932  std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
933
934  // PVOID __RTCastToVoid(
935  //   PVOID inptr)
936  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
937  llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
938      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
939      "__RTCastToVoid");
940  llvm::Value *Args[] = {Value};
941  return CGF.EmitRuntimeCall(Function, Args);
942}
943
944bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
945  return false;
946}
947
948llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
949    CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl,
950    const CXXRecordDecl *BaseClassDecl) {
951  const ASTContext &Context = getContext();
952  int64_t VBPtrChars =
953      Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
954  llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
955  CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
956  CharUnits VBTableChars =
957      IntSize *
958      CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
959  llvm::Value *VBTableOffset =
960      llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
961
962  llvm::Value *VBPtrToNewBase =
963      GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
964  VBPtrToNewBase =
965      CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
966  return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
967}
968
969bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
970  return isa<CXXConstructorDecl>(GD.getDecl());
971}
972
973static bool isDeletingDtor(GlobalDecl GD) {
974  return isa<CXXDestructorDecl>(GD.getDecl()) &&
975         GD.getDtorType() == Dtor_Deleting;
976}
977
978bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
979  return isDeletingDtor(GD);
980}
981
982bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
983  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
984  if (!RD)
985    return false;
986
987  if (FI.isInstanceMethod()) {
988    // If it's an instance method, aggregates are always returned indirectly via
989    // the second parameter.
990    FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
991    FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
992    return true;
993  } else if (!RD->isPOD()) {
994    // If it's a free function, non-POD types are returned indirectly.
995    FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
996    return true;
997  }
998
999  // Otherwise, use the C ABI rules.
1000  return false;
1001}
1002
1003llvm::BasicBlock *
1004MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1005                                               const CXXRecordDecl *RD) {
1006  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1007  assert(IsMostDerivedClass &&
1008         "ctor for a class with virtual bases must have an implicit parameter");
1009  llvm::Value *IsCompleteObject =
1010    CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1011
1012  llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1013  llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1014  CGF.Builder.CreateCondBr(IsCompleteObject,
1015                           CallVbaseCtorsBB, SkipVbaseCtorsBB);
1016
1017  CGF.EmitBlock(CallVbaseCtorsBB);
1018
1019  // Fill in the vbtable pointers here.
1020  EmitVBPtrStores(CGF, RD);
1021
1022  // CGF will put the base ctor calls in this basic block for us later.
1023
1024  return SkipVbaseCtorsBB;
1025}
1026
1027void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1028    CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1029  // In most cases, an override for a vbase virtual method can adjust
1030  // the "this" parameter by applying a constant offset.
1031  // However, this is not enough while a constructor or a destructor of some
1032  // class X is being executed if all the following conditions are met:
1033  //  - X has virtual bases, (1)
1034  //  - X overrides a virtual method M of a vbase Y, (2)
1035  //  - X itself is a vbase of the most derived class.
1036  //
1037  // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1038  // which holds the extra amount of "this" adjustment we must do when we use
1039  // the X vftables (i.e. during X ctor or dtor).
1040  // Outside the ctors and dtors, the values of vtorDisps are zero.
1041
1042  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1043  typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1044  const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1045  CGBuilderTy &Builder = CGF.Builder;
1046
1047  unsigned AS =
1048      cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
1049  llvm::Value *Int8This = nullptr;  // Initialize lazily.
1050
1051  for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
1052        I != E; ++I) {
1053    if (!I->second.hasVtorDisp())
1054      continue;
1055
1056    llvm::Value *VBaseOffset =
1057        GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
1058    // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
1059    // just to Trunc back immediately.
1060    VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
1061    uint64_t ConstantVBaseOffset =
1062        Layout.getVBaseClassOffset(I->first).getQuantity();
1063
1064    // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1065    llvm::Value *VtorDispValue = Builder.CreateSub(
1066        VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
1067        "vtordisp.value");
1068
1069    if (!Int8This)
1070      Int8This = Builder.CreateBitCast(getThisValue(CGF),
1071                                       CGF.Int8Ty->getPointerTo(AS));
1072    llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1073    // vtorDisp is always the 32-bits before the vbase in the class layout.
1074    VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1075    VtorDispPtr = Builder.CreateBitCast(
1076        VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1077
1078    Builder.CreateStore(VtorDispValue, VtorDispPtr);
1079  }
1080}
1081
1082static bool hasDefaultCXXMethodCC(ASTContext &Context,
1083                                  const CXXMethodDecl *MD) {
1084  CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1085      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1086  CallingConv ActualCallingConv =
1087      MD->getType()->getAs<FunctionProtoType>()->getCallConv();
1088  return ExpectedCallingConv == ActualCallingConv;
1089}
1090
1091void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1092  // There's only one constructor type in this ABI.
1093  CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1094
1095  // Exported default constructors either have a simple call-site where they use
1096  // the typical calling convention and have a single 'this' pointer for an
1097  // argument -or- they get a wrapper function which appropriately thunks to the
1098  // real default constructor.  This thunk is the default constructor closure.
1099  if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
1100    if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1101      llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1102      Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1103      Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1104    }
1105}
1106
1107void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1108                                      const CXXRecordDecl *RD) {
1109  llvm::Value *ThisInt8Ptr =
1110    CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
1111  const ASTContext &Context = getContext();
1112  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1113
1114  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1115  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1116    const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1117    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1118    const ASTRecordLayout &SubobjectLayout =
1119        Context.getASTRecordLayout(VBT->BaseWithVPtr);
1120    CharUnits Offs = VBT->NonVirtualOffset;
1121    Offs += SubobjectLayout.getVBPtrOffset();
1122    if (VBT->getVBaseWithVPtr())
1123      Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1124    llvm::Value *VBPtr =
1125        CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
1126    llvm::Value *GVPtr =
1127        CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1128    VBPtr = CGF.Builder.CreateBitCast(VBPtr, GVPtr->getType()->getPointerTo(0),
1129                                      "vbptr." + VBT->ReusingBase->getName());
1130    CGF.Builder.CreateStore(GVPtr, VBPtr);
1131  }
1132}
1133
1134void
1135MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
1136                                        SmallVectorImpl<CanQualType> &ArgTys) {
1137  // TODO: 'for base' flag
1138  if (T == StructorType::Deleting) {
1139    // The scalar deleting destructor takes an implicit int parameter.
1140    ArgTys.push_back(getContext().IntTy);
1141  }
1142  auto *CD = dyn_cast<CXXConstructorDecl>(MD);
1143  if (!CD)
1144    return;
1145
1146  // All parameters are already in place except is_most_derived, which goes
1147  // after 'this' if it's variadic and last if it's not.
1148
1149  const CXXRecordDecl *Class = CD->getParent();
1150  const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1151  if (Class->getNumVBases()) {
1152    if (FPT->isVariadic())
1153      ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1154    else
1155      ArgTys.push_back(getContext().IntTy);
1156  }
1157}
1158
1159void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1160  // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1161  // other destructor variants are delegating thunks.
1162  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1163}
1164
1165CharUnits
1166MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1167  GD = GD.getCanonicalDecl();
1168  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1169
1170  GlobalDecl LookupGD = GD;
1171  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1172    // Complete destructors take a pointer to the complete object as a
1173    // parameter, thus don't need this adjustment.
1174    if (GD.getDtorType() == Dtor_Complete)
1175      return CharUnits();
1176
1177    // There's no Dtor_Base in vftable but it shares the this adjustment with
1178    // the deleting one, so look it up instead.
1179    LookupGD = GlobalDecl(DD, Dtor_Deleting);
1180  }
1181
1182  MicrosoftVTableContext::MethodVFTableLocation ML =
1183      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1184  CharUnits Adjustment = ML.VFPtrOffset;
1185
1186  // Normal virtual instance methods need to adjust from the vfptr that first
1187  // defined the virtual method to the virtual base subobject, but destructors
1188  // do not.  The vector deleting destructor thunk applies this adjustment for
1189  // us if necessary.
1190  if (isa<CXXDestructorDecl>(MD))
1191    Adjustment = CharUnits::Zero();
1192
1193  if (ML.VBase) {
1194    const ASTRecordLayout &DerivedLayout =
1195        getContext().getASTRecordLayout(MD->getParent());
1196    Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1197  }
1198
1199  return Adjustment;
1200}
1201
1202llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1203    CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
1204  if (!VirtualCall) {
1205    // If the call of a virtual function is not virtual, we just have to
1206    // compensate for the adjustment the virtual function does in its prologue.
1207    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1208    if (Adjustment.isZero())
1209      return This;
1210
1211    unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1212    llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1213    This = CGF.Builder.CreateBitCast(This, charPtrTy);
1214    assert(Adjustment.isPositive());
1215    return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
1216  }
1217
1218  GD = GD.getCanonicalDecl();
1219  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1220
1221  GlobalDecl LookupGD = GD;
1222  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1223    // Complete dtors take a pointer to the complete object,
1224    // thus don't need adjustment.
1225    if (GD.getDtorType() == Dtor_Complete)
1226      return This;
1227
1228    // There's only Dtor_Deleting in vftable but it shares the this adjustment
1229    // with the base one, so look up the deleting one instead.
1230    LookupGD = GlobalDecl(DD, Dtor_Deleting);
1231  }
1232  MicrosoftVTableContext::MethodVFTableLocation ML =
1233      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1234
1235  unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1236  llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1237  CharUnits StaticOffset = ML.VFPtrOffset;
1238
1239  // Base destructors expect 'this' to point to the beginning of the base
1240  // subobject, not the first vfptr that happens to contain the virtual dtor.
1241  // However, we still need to apply the virtual base adjustment.
1242  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1243    StaticOffset = CharUnits::Zero();
1244
1245  if (ML.VBase) {
1246    This = CGF.Builder.CreateBitCast(This, charPtrTy);
1247    llvm::Value *VBaseOffset =
1248        GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
1249    This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
1250  }
1251  if (!StaticOffset.isZero()) {
1252    assert(StaticOffset.isPositive());
1253    This = CGF.Builder.CreateBitCast(This, charPtrTy);
1254    if (ML.VBase) {
1255      // Non-virtual adjustment might result in a pointer outside the allocated
1256      // object, e.g. if the final overrider class is laid out after the virtual
1257      // base that declares a method in the most derived class.
1258      // FIXME: Update the code that emits this adjustment in thunks prologues.
1259      This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
1260    } else {
1261      This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1262                                                    StaticOffset.getQuantity());
1263    }
1264  }
1265  return This;
1266}
1267
1268void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1269                                                QualType &ResTy,
1270                                                FunctionArgList &Params) {
1271  ASTContext &Context = getContext();
1272  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1273  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1274  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1275    ImplicitParamDecl *IsMostDerived
1276      = ImplicitParamDecl::Create(Context, nullptr,
1277                                  CGF.CurGD.getDecl()->getLocation(),
1278                                  &Context.Idents.get("is_most_derived"),
1279                                  Context.IntTy);
1280    // The 'most_derived' parameter goes second if the ctor is variadic and last
1281    // if it's not.  Dtors can't be variadic.
1282    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1283    if (FPT->isVariadic())
1284      Params.insert(Params.begin() + 1, IsMostDerived);
1285    else
1286      Params.push_back(IsMostDerived);
1287    getStructorImplicitParamDecl(CGF) = IsMostDerived;
1288  } else if (isDeletingDtor(CGF.CurGD)) {
1289    ImplicitParamDecl *ShouldDelete
1290      = ImplicitParamDecl::Create(Context, nullptr,
1291                                  CGF.CurGD.getDecl()->getLocation(),
1292                                  &Context.Idents.get("should_call_delete"),
1293                                  Context.IntTy);
1294    Params.push_back(ShouldDelete);
1295    getStructorImplicitParamDecl(CGF) = ShouldDelete;
1296  }
1297}
1298
1299llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
1300    CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
1301  // In this ABI, every virtual function takes a pointer to one of the
1302  // subobjects that first defines it as the 'this' parameter, rather than a
1303  // pointer to the final overrider subobject. Thus, we need to adjust it back
1304  // to the final overrider subobject before use.
1305  // See comments in the MicrosoftVFTableContext implementation for the details.
1306  CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1307  if (Adjustment.isZero())
1308    return This;
1309
1310  unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1311  llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1312             *thisTy = This->getType();
1313
1314  This = CGF.Builder.CreateBitCast(This, charPtrTy);
1315  assert(Adjustment.isPositive());
1316  This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1317                                                -Adjustment.getQuantity());
1318  return CGF.Builder.CreateBitCast(This, thisTy);
1319}
1320
1321void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1322  EmitThisParam(CGF);
1323
1324  /// If this is a function that the ABI specifies returns 'this', initialize
1325  /// the return slot to 'this' at the start of the function.
1326  ///
1327  /// Unlike the setting of return types, this is done within the ABI
1328  /// implementation instead of by clients of CGCXXABI because:
1329  /// 1) getThisValue is currently protected
1330  /// 2) in theory, an ABI could implement 'this' returns some other way;
1331  ///    HasThisReturn only specifies a contract, not the implementation
1332  if (HasThisReturn(CGF.CurGD))
1333    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1334  else if (hasMostDerivedReturn(CGF.CurGD))
1335    CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1336                            CGF.ReturnValue);
1337
1338  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1339  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1340    assert(getStructorImplicitParamDecl(CGF) &&
1341           "no implicit parameter for a constructor with virtual bases?");
1342    getStructorImplicitParamValue(CGF)
1343      = CGF.Builder.CreateLoad(
1344          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1345          "is_most_derived");
1346  }
1347
1348  if (isDeletingDtor(CGF.CurGD)) {
1349    assert(getStructorImplicitParamDecl(CGF) &&
1350           "no implicit parameter for a deleting destructor?");
1351    getStructorImplicitParamValue(CGF)
1352      = CGF.Builder.CreateLoad(
1353          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1354          "should_call_delete");
1355  }
1356}
1357
1358unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
1359    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1360    bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1361  assert(Type == Ctor_Complete || Type == Ctor_Base);
1362
1363  // Check if we need a 'most_derived' parameter.
1364  if (!D->getParent()->getNumVBases())
1365    return 0;
1366
1367  // Add the 'most_derived' argument second if we are variadic or last if not.
1368  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1369  llvm::Value *MostDerivedArg =
1370      llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1371  RValue RV = RValue::get(MostDerivedArg);
1372  if (MostDerivedArg) {
1373    if (FPT->isVariadic())
1374      Args.insert(Args.begin() + 1,
1375                  CallArg(RV, getContext().IntTy, /*needscopy=*/false));
1376    else
1377      Args.add(RV, getContext().IntTy);
1378  }
1379
1380  return 1;  // Added one arg.
1381}
1382
1383void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1384                                         const CXXDestructorDecl *DD,
1385                                         CXXDtorType Type, bool ForVirtualBase,
1386                                         bool Delegating, llvm::Value *This) {
1387  llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
1388
1389  if (DD->isVirtual()) {
1390    assert(Type != CXXDtorType::Dtor_Deleting &&
1391           "The deleting destructor should only be called via a virtual call");
1392    This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1393                                                    This, false);
1394  }
1395
1396  CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This,
1397                          /*ImplicitParam=*/nullptr,
1398                          /*ImplicitParamTy=*/QualType(), nullptr,
1399                          getFromDtorType(Type));
1400}
1401
1402void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1403                                            const CXXRecordDecl *RD) {
1404  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1405  const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1406
1407  for (VPtrInfo *Info : VFPtrs) {
1408    llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1409    if (VTable->hasInitializer())
1410      continue;
1411
1412    llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
1413                               ? getMSCompleteObjectLocator(RD, Info)
1414                               : nullptr;
1415
1416    const VTableLayout &VTLayout =
1417      VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1418    llvm::Constant *Init = CGVT.CreateVTableInitializer(
1419        RD, VTLayout.vtable_component_begin(),
1420        VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
1421        VTLayout.getNumVTableThunks(), RTTI);
1422
1423    VTable->setInitializer(Init);
1424  }
1425}
1426
1427llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1428    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1429    const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
1430  NeedsVirtualOffset = (NearestVBase != nullptr);
1431
1432  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1433  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1434  llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
1435  if (!VTableAddressPoint) {
1436    assert(Base.getBase()->getNumVBases() &&
1437           !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1438  }
1439  return VTableAddressPoint;
1440}
1441
1442static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1443                              const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
1444                              SmallString<256> &Name) {
1445  llvm::raw_svector_ostream Out(Name);
1446  MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
1447}
1448
1449llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1450    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1451  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1452  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1453  llvm::GlobalValue *VFTable = VFTablesMap[ID];
1454  assert(VFTable && "Couldn't find a vftable for the given base?");
1455  return VFTable;
1456}
1457
1458llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1459                                                       CharUnits VPtrOffset) {
1460  // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1461  // shouldn't be used in the given record type. We want to cache this result in
1462  // VFTablesMap, thus a simple zero check is not sufficient.
1463  VFTableIdTy ID(RD, VPtrOffset);
1464  VTablesMapTy::iterator I;
1465  bool Inserted;
1466  std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1467  if (!Inserted)
1468    return I->second;
1469
1470  llvm::GlobalVariable *&VTable = I->second;
1471
1472  MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1473  const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1474
1475  if (DeferredVFTables.insert(RD).second) {
1476    // We haven't processed this record type before.
1477    // Queue up this v-table for possible deferred emission.
1478    CGM.addDeferredVTable(RD);
1479
1480#ifndef NDEBUG
1481    // Create all the vftables at once in order to make sure each vftable has
1482    // a unique mangled name.
1483    llvm::StringSet<> ObservedMangledNames;
1484    for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1485      SmallString<256> Name;
1486      mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
1487      if (!ObservedMangledNames.insert(Name.str()).second)
1488        llvm_unreachable("Already saw this mangling before?");
1489    }
1490#endif
1491  }
1492
1493  VPtrInfo *const *VFPtrI =
1494      std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) {
1495        return VPI->FullOffsetInMDC == VPtrOffset;
1496      });
1497  if (VFPtrI == VFPtrs.end()) {
1498    VFTablesMap[ID] = nullptr;
1499    return nullptr;
1500  }
1501  VPtrInfo *VFPtr = *VFPtrI;
1502
1503  SmallString<256> VFTableName;
1504  mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName);
1505
1506  llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
1507  bool VFTableComesFromAnotherTU =
1508      llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1509      llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1510  bool VTableAliasIsRequred =
1511      !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1512
1513  if (llvm::GlobalValue *VFTable =
1514          CGM.getModule().getNamedGlobal(VFTableName)) {
1515    VFTablesMap[ID] = VFTable;
1516    return VTableAliasIsRequred
1517               ? cast<llvm::GlobalVariable>(
1518                     cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1519               : cast<llvm::GlobalVariable>(VFTable);
1520  }
1521
1522  uint64_t NumVTableSlots =
1523      VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC)
1524          .getNumVTableComponents();
1525  llvm::GlobalValue::LinkageTypes VTableLinkage =
1526      VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1527
1528  StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1529
1530  llvm::ArrayType *VTableType =
1531      llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
1532
1533  // Create a backing variable for the contents of VTable.  The VTable may
1534  // or may not include space for a pointer to RTTI data.
1535  llvm::GlobalValue *VFTable;
1536  VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1537                                    /*isConstant=*/true, VTableLinkage,
1538                                    /*Initializer=*/nullptr, VTableName);
1539  VTable->setUnnamedAddr(true);
1540
1541  llvm::Comdat *C = nullptr;
1542  if (!VFTableComesFromAnotherTU &&
1543      (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1544       (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1545        VTableAliasIsRequred)))
1546    C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1547
1548  // Only insert a pointer into the VFTable for RTTI data if we are not
1549  // importing it.  We never reference the RTTI data directly so there is no
1550  // need to make room for it.
1551  if (VTableAliasIsRequred) {
1552    llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
1553                                 llvm::ConstantInt::get(CGM.IntTy, 1)};
1554    // Create a GEP which points just after the first entry in the VFTable,
1555    // this should be the location of the first virtual method.
1556    llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1557        VTable->getValueType(), VTable, GEPIndices);
1558    if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1559      VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1560      if (C)
1561        C->setSelectionKind(llvm::Comdat::Largest);
1562    }
1563    VFTable = llvm::GlobalAlias::create(
1564        cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(),
1565        /*AddressSpace=*/0, VFTableLinkage, VFTableName.str(), VTableGEP,
1566        &CGM.getModule());
1567    VFTable->setUnnamedAddr(true);
1568  } else {
1569    // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1570    // be referencing any RTTI data.
1571    // The GlobalVariable will end up being an appropriate definition of the
1572    // VFTable.
1573    VFTable = VTable;
1574  }
1575  if (C)
1576    VTable->setComdat(C);
1577
1578  if (RD->hasAttr<DLLImportAttr>())
1579    VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1580  else if (RD->hasAttr<DLLExportAttr>())
1581    VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1582
1583  VFTablesMap[ID] = VFTable;
1584  return VTable;
1585}
1586
1587llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1588                                                        GlobalDecl GD,
1589                                                        llvm::Value *This,
1590                                                        llvm::Type *Ty) {
1591  GD = GD.getCanonicalDecl();
1592  CGBuilderTy &Builder = CGF.Builder;
1593
1594  Ty = Ty->getPointerTo()->getPointerTo();
1595  llvm::Value *VPtr =
1596      adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1597  llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
1598
1599  MicrosoftVTableContext::MethodVFTableLocation ML =
1600      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1601  llvm::Value *VFuncPtr =
1602      Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1603  return Builder.CreateLoad(VFuncPtr);
1604}
1605
1606llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1607    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1608    llvm::Value *This, const CXXMemberCallExpr *CE) {
1609  assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1610  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1611
1612  // We have only one destructor in the vftable but can get both behaviors
1613  // by passing an implicit int parameter.
1614  GlobalDecl GD(Dtor, Dtor_Deleting);
1615  const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
1616      Dtor, StructorType::Deleting);
1617  llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1618  llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
1619
1620  ASTContext &Context = getContext();
1621  llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1622      llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1623      DtorType == Dtor_Deleting);
1624
1625  This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1626  RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(), This,
1627                                      ImplicitParam, Context.IntTy, CE,
1628                                      StructorType::Deleting);
1629  return RV.getScalarVal();
1630}
1631
1632const VBTableGlobals &
1633MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1634  // At this layer, we can key the cache off of a single class, which is much
1635  // easier than caching each vbtable individually.
1636  llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1637  bool Added;
1638  std::tie(Entry, Added) =
1639      VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1640  VBTableGlobals &VBGlobals = Entry->second;
1641  if (!Added)
1642    return VBGlobals;
1643
1644  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1645  VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1646
1647  // Cache the globals for all vbtables so we don't have to recompute the
1648  // mangled names.
1649  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1650  for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1651                                      E = VBGlobals.VBTables->end();
1652       I != E; ++I) {
1653    VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1654  }
1655
1656  return VBGlobals;
1657}
1658
1659llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
1660    const CXXMethodDecl *MD,
1661    const MicrosoftVTableContext::MethodVFTableLocation &ML) {
1662  assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1663         "can't form pointers to ctors or virtual dtors");
1664
1665  // Calculate the mangled name.
1666  SmallString<256> ThunkName;
1667  llvm::raw_svector_ostream Out(ThunkName);
1668  getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
1669  Out.flush();
1670
1671  // If the thunk has been generated previously, just return it.
1672  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1673    return cast<llvm::Function>(GV);
1674
1675  // Create the llvm::Function.
1676  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
1677  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1678  llvm::Function *ThunkFn =
1679      llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1680                             ThunkName.str(), &CGM.getModule());
1681  assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1682
1683  ThunkFn->setLinkage(MD->isExternallyVisible()
1684                          ? llvm::GlobalValue::LinkOnceODRLinkage
1685                          : llvm::GlobalValue::InternalLinkage);
1686  if (MD->isExternallyVisible())
1687    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
1688
1689  CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1690  CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1691
1692  // Add the "thunk" attribute so that LLVM knows that the return type is
1693  // meaningless. These thunks can be used to call functions with differing
1694  // return types, and the caller is required to cast the prototype
1695  // appropriately to extract the correct value.
1696  ThunkFn->addFnAttr("thunk");
1697
1698  // These thunks can be compared, so they are not unnamed.
1699  ThunkFn->setUnnamedAddr(false);
1700
1701  // Start codegen.
1702  CodeGenFunction CGF(CGM);
1703  CGF.CurGD = GlobalDecl(MD);
1704  CGF.CurFuncIsThunk = true;
1705
1706  // Build FunctionArgs, but only include the implicit 'this' parameter
1707  // declaration.
1708  FunctionArgList FunctionArgs;
1709  buildThisParam(CGF, FunctionArgs);
1710
1711  // Start defining the function.
1712  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
1713                    FunctionArgs, MD->getLocation(), SourceLocation());
1714  EmitThisParam(CGF);
1715
1716  // Load the vfptr and then callee from the vftable.  The callee should have
1717  // adjusted 'this' so that the vfptr is at offset zero.
1718  llvm::Value *VTable = CGF.GetVTablePtr(
1719      getThisValue(CGF), ThunkTy->getPointerTo()->getPointerTo());
1720  llvm::Value *VFuncPtr =
1721      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1722  llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
1723
1724  CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
1725
1726  return ThunkFn;
1727}
1728
1729void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1730  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1731  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1732    const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1733    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1734    if (GV->isDeclaration())
1735      emitVBTableDefinition(*VBT, RD, GV);
1736  }
1737}
1738
1739llvm::GlobalVariable *
1740MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
1741                                  llvm::GlobalVariable::LinkageTypes Linkage) {
1742  SmallString<256> OutName;
1743  llvm::raw_svector_ostream Out(OutName);
1744  getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
1745  Out.flush();
1746  StringRef Name = OutName.str();
1747
1748  llvm::ArrayType *VBTableType =
1749      llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
1750
1751  assert(!CGM.getModule().getNamedGlobal(Name) &&
1752         "vbtable with this name already exists: mangling bug?");
1753  llvm::GlobalVariable *GV =
1754      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
1755  GV->setUnnamedAddr(true);
1756
1757  if (RD->hasAttr<DLLImportAttr>())
1758    GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1759  else if (RD->hasAttr<DLLExportAttr>())
1760    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1761
1762  if (!GV->hasExternalLinkage())
1763    emitVBTableDefinition(VBT, RD, GV);
1764
1765  return GV;
1766}
1767
1768void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
1769                                            const CXXRecordDecl *RD,
1770                                            llvm::GlobalVariable *GV) const {
1771  const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
1772
1773  assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
1774         "should only emit vbtables for classes with vbtables");
1775
1776  const ASTRecordLayout &BaseLayout =
1777      getContext().getASTRecordLayout(VBT.BaseWithVPtr);
1778  const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
1779
1780  SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
1781                                           nullptr);
1782
1783  // The offset from ReusingBase's vbptr to itself always leads.
1784  CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
1785  Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
1786
1787  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1788  for (const auto &I : ReusingBase->vbases()) {
1789    const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
1790    CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
1791    assert(!Offset.isNegative());
1792
1793    // Make it relative to the subobject vbptr.
1794    CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
1795    if (VBT.getVBaseWithVPtr())
1796      CompleteVBPtrOffset +=
1797          DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
1798    Offset -= CompleteVBPtrOffset;
1799
1800    unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
1801    assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
1802    Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
1803  }
1804
1805  assert(Offsets.size() ==
1806         cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
1807                               ->getElementType())->getNumElements());
1808  llvm::ArrayType *VBTableType =
1809    llvm::ArrayType::get(CGM.IntTy, Offsets.size());
1810  llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
1811  GV->setInitializer(Init);
1812}
1813
1814llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
1815                                                    llvm::Value *This,
1816                                                    const ThisAdjustment &TA) {
1817  if (TA.isEmpty())
1818    return This;
1819
1820  llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
1821
1822  if (!TA.Virtual.isEmpty()) {
1823    assert(TA.Virtual.Microsoft.VtordispOffset < 0);
1824    // Adjust the this argument based on the vtordisp value.
1825    llvm::Value *VtorDispPtr =
1826        CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
1827    VtorDispPtr =
1828        CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
1829    llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
1830    V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
1831
1832    if (TA.Virtual.Microsoft.VBPtrOffset) {
1833      // If the final overrider is defined in a virtual base other than the one
1834      // that holds the vfptr, we have to use a vtordispex thunk which looks up
1835      // the vbtable of the derived class.
1836      assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
1837      assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
1838      llvm::Value *VBPtr;
1839      llvm::Value *VBaseOffset =
1840          GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
1841                                  TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
1842      V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1843    }
1844  }
1845
1846  if (TA.NonVirtual) {
1847    // Non-virtual adjustment might result in a pointer outside the allocated
1848    // object, e.g. if the final overrider class is laid out after the virtual
1849    // base that declares a method in the most derived class.
1850    V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
1851  }
1852
1853  // Don't need to bitcast back, the call CodeGen will handle this.
1854  return V;
1855}
1856
1857llvm::Value *
1858MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
1859                                         const ReturnAdjustment &RA) {
1860  if (RA.isEmpty())
1861    return Ret;
1862
1863  llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
1864
1865  if (RA.Virtual.Microsoft.VBIndex) {
1866    assert(RA.Virtual.Microsoft.VBIndex > 0);
1867    const ASTContext &Context = getContext();
1868    int32_t IntSize = Context.getTypeSizeInChars(Context.IntTy).getQuantity();
1869    llvm::Value *VBPtr;
1870    llvm::Value *VBaseOffset =
1871        GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
1872                                IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
1873    V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1874  }
1875
1876  if (RA.NonVirtual)
1877    V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
1878
1879  // Cast back to the original type.
1880  return CGF.Builder.CreateBitCast(V, Ret->getType());
1881}
1882
1883bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
1884                                   QualType elementType) {
1885  // Microsoft seems to completely ignore the possibility of a
1886  // two-argument usual deallocation function.
1887  return elementType.isDestructedType();
1888}
1889
1890bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
1891  // Microsoft seems to completely ignore the possibility of a
1892  // two-argument usual deallocation function.
1893  return expr->getAllocatedType().isDestructedType();
1894}
1895
1896CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
1897  // The array cookie is always a size_t; we then pad that out to the
1898  // alignment of the element type.
1899  ASTContext &Ctx = getContext();
1900  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
1901                  Ctx.getTypeAlignInChars(type));
1902}
1903
1904llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
1905                                                  llvm::Value *allocPtr,
1906                                                  CharUnits cookieSize) {
1907  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1908  llvm::Value *numElementsPtr =
1909    CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
1910  return CGF.Builder.CreateLoad(numElementsPtr);
1911}
1912
1913llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
1914                                                    llvm::Value *newPtr,
1915                                                    llvm::Value *numElements,
1916                                                    const CXXNewExpr *expr,
1917                                                    QualType elementType) {
1918  assert(requiresArrayCookie(expr));
1919
1920  // The size of the cookie.
1921  CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
1922
1923  // Compute an offset to the cookie.
1924  llvm::Value *cookiePtr = newPtr;
1925
1926  // Write the number of elements into the appropriate slot.
1927  unsigned AS = newPtr->getType()->getPointerAddressSpace();
1928  llvm::Value *numElementsPtr
1929    = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
1930  CGF.Builder.CreateStore(numElements, numElementsPtr);
1931
1932  // Finally, compute a pointer to the actual data buffer by skipping
1933  // over the cookie completely.
1934  return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
1935                                                cookieSize.getQuantity());
1936}
1937
1938static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
1939                                        llvm::Constant *Dtor,
1940                                        llvm::Constant *Addr) {
1941  // Create a function which calls the destructor.
1942  llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
1943
1944  // extern "C" int __tlregdtor(void (*f)(void));
1945  llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
1946      CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
1947
1948  llvm::Constant *TLRegDtor =
1949      CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
1950  if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
1951    TLRegDtorFn->setDoesNotThrow();
1952
1953  CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
1954}
1955
1956void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
1957                                         llvm::Constant *Dtor,
1958                                         llvm::Constant *Addr) {
1959  if (D.getTLSKind())
1960    return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
1961
1962  // The default behavior is to use atexit.
1963  CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
1964}
1965
1966void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
1967    CodeGenModule &CGM,
1968    ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
1969        CXXThreadLocals,
1970    ArrayRef<llvm::Function *> CXXThreadLocalInits,
1971    ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
1972  // This will create a GV in the .CRT$XDU section.  It will point to our
1973  // initialization function.  The CRT will call all of these function
1974  // pointers at start-up time and, eventually, at thread-creation time.
1975  auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
1976    llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
1977        CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
1978        llvm::GlobalVariable::InternalLinkage, InitFunc,
1979        Twine(InitFunc->getName(), "$initializer$"));
1980    InitFuncPtr->setSection(".CRT$XDU");
1981    // This variable has discardable linkage, we have to add it to @llvm.used to
1982    // ensure it won't get discarded.
1983    CGM.addUsedGlobal(InitFuncPtr);
1984    return InitFuncPtr;
1985  };
1986
1987  std::vector<llvm::Function *> NonComdatInits;
1988  for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
1989    llvm::GlobalVariable *GV = CXXThreadLocalInitVars[I];
1990    llvm::Function *F = CXXThreadLocalInits[I];
1991
1992    // If the GV is already in a comdat group, then we have to join it.
1993    if (llvm::Comdat *C = GV->getComdat())
1994      AddToXDU(F)->setComdat(C);
1995    else
1996      NonComdatInits.push_back(F);
1997  }
1998
1999  if (!NonComdatInits.empty()) {
2000    llvm::FunctionType *FTy =
2001        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2002    llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
2003        FTy, "__tls_init", SourceLocation(),
2004        /*TLS=*/true);
2005    CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2006
2007    AddToXDU(InitFunc);
2008  }
2009}
2010
2011LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2012                                                     const VarDecl *VD,
2013                                                     QualType LValType) {
2014  CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2015  return LValue();
2016}
2017
2018void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2019                                      llvm::GlobalVariable *GV,
2020                                      bool PerformInit) {
2021  // MSVC only uses guards for static locals.
2022  if (!D.isStaticLocal()) {
2023    assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2024    // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2025    llvm::Function *F = CGF.CurFn;
2026    F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2027    F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2028    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2029    return;
2030  }
2031
2032  // MSVC always uses an i32 bitfield to guard initialization, which is *not*
2033  // threadsafe.  Since the user may be linking in inline functions compiled by
2034  // cl.exe, there's no reason to provide a false sense of security by using
2035  // critical sections here.
2036
2037  if (D.getTLSKind())
2038    CGM.ErrorUnsupported(&D, "dynamic TLS initialization");
2039
2040  CGBuilderTy &Builder = CGF.Builder;
2041  llvm::IntegerType *GuardTy = CGF.Int32Ty;
2042  llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2043
2044  // Get the guard variable for this function if we have one already.
2045  GuardInfo *GI = &GuardVariableMap[D.getDeclContext()];
2046
2047  unsigned BitIndex;
2048  if (D.isStaticLocal() && D.isExternallyVisible()) {
2049    // Externally visible variables have to be numbered in Sema to properly
2050    // handle unreachable VarDecls.
2051    BitIndex = getContext().getStaticLocalNumber(&D);
2052    assert(BitIndex > 0);
2053    BitIndex--;
2054  } else {
2055    // Non-externally visible variables are numbered here in CodeGen.
2056    BitIndex = GI->BitIndex++;
2057  }
2058
2059  if (BitIndex >= 32) {
2060    if (D.isExternallyVisible())
2061      ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2062    BitIndex %= 32;
2063    GI->Guard = nullptr;
2064  }
2065
2066  // Lazily create the i32 bitfield for this function.
2067  if (!GI->Guard) {
2068    // Mangle the name for the guard.
2069    SmallString<256> GuardName;
2070    {
2071      llvm::raw_svector_ostream Out(GuardName);
2072      getMangleContext().mangleStaticGuardVariable(&D, Out);
2073      Out.flush();
2074    }
2075
2076    // Create the guard variable with a zero-initializer. Just absorb linkage,
2077    // visibility and dll storage class from the guarded variable.
2078    GI->Guard =
2079        new llvm::GlobalVariable(CGM.getModule(), GuardTy, false,
2080                                 GV->getLinkage(), Zero, GuardName.str());
2081    GI->Guard->setVisibility(GV->getVisibility());
2082    GI->Guard->setDLLStorageClass(GV->getDLLStorageClass());
2083    if (GI->Guard->isWeakForLinker())
2084      GI->Guard->setComdat(
2085          CGM.getModule().getOrInsertComdat(GI->Guard->getName()));
2086  } else {
2087    assert(GI->Guard->getLinkage() == GV->getLinkage() &&
2088           "static local from the same function had different linkage");
2089  }
2090
2091  // Pseudo code for the test:
2092  // if (!(GuardVar & MyGuardBit)) {
2093  //   GuardVar |= MyGuardBit;
2094  //   ... initialize the object ...;
2095  // }
2096
2097  // Test our bit from the guard variable.
2098  llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex);
2099  llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard);
2100  llvm::Value *IsInitialized =
2101      Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
2102  llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2103  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2104  Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
2105
2106  // Set our bit in the guard variable and emit the initializer and add a global
2107  // destructor if appropriate.
2108  CGF.EmitBlock(InitBlock);
2109  Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard);
2110  CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2111  Builder.CreateBr(EndBlock);
2112
2113  // Continue.
2114  CGF.EmitBlock(EndBlock);
2115}
2116
2117bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2118  // Null-ness for function memptrs only depends on the first field, which is
2119  // the function pointer.  The rest don't matter, so we can zero initialize.
2120  if (MPT->isMemberFunctionPointer())
2121    return true;
2122
2123  // The virtual base adjustment field is always -1 for null, so if we have one
2124  // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2125  // valid field offset.
2126  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2127  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2128  return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
2129          RD->nullFieldOffsetIsZero());
2130}
2131
2132llvm::Type *
2133MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2134  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2135  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2136  llvm::SmallVector<llvm::Type *, 4> fields;
2137  if (MPT->isMemberFunctionPointer())
2138    fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2139  else
2140    fields.push_back(CGM.IntTy);  // FieldOffset
2141
2142  if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2143                                          Inheritance))
2144    fields.push_back(CGM.IntTy);
2145  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2146    fields.push_back(CGM.IntTy);
2147  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2148    fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2149
2150  if (fields.size() == 1)
2151    return fields[0];
2152  return llvm::StructType::get(CGM.getLLVMContext(), fields);
2153}
2154
2155void MicrosoftCXXABI::
2156GetNullMemberPointerFields(const MemberPointerType *MPT,
2157                           llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2158  assert(fields.empty());
2159  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2160  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2161  if (MPT->isMemberFunctionPointer()) {
2162    // FunctionPointerOrVirtualThunk
2163    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2164  } else {
2165    if (RD->nullFieldOffsetIsZero())
2166      fields.push_back(getZeroInt());  // FieldOffset
2167    else
2168      fields.push_back(getAllOnesInt());  // FieldOffset
2169  }
2170
2171  if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2172                                          Inheritance))
2173    fields.push_back(getZeroInt());
2174  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2175    fields.push_back(getZeroInt());
2176  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2177    fields.push_back(getAllOnesInt());
2178}
2179
2180llvm::Constant *
2181MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2182  llvm::SmallVector<llvm::Constant *, 4> fields;
2183  GetNullMemberPointerFields(MPT, fields);
2184  if (fields.size() == 1)
2185    return fields[0];
2186  llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2187  assert(Res->getType() == ConvertMemberPointerType(MPT));
2188  return Res;
2189}
2190
2191llvm::Constant *
2192MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2193                                       bool IsMemberFunction,
2194                                       const CXXRecordDecl *RD,
2195                                       CharUnits NonVirtualBaseAdjustment)
2196{
2197  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2198
2199  // Single inheritance class member pointer are represented as scalars instead
2200  // of aggregates.
2201  if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2202    return FirstField;
2203
2204  llvm::SmallVector<llvm::Constant *, 4> fields;
2205  fields.push_back(FirstField);
2206
2207  if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2208    fields.push_back(llvm::ConstantInt::get(
2209      CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2210
2211  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2212    CharUnits Offs = CharUnits::Zero();
2213    if (RD->getNumVBases())
2214      Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2215    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2216  }
2217
2218  // The rest of the fields are adjusted by conversions to a more derived class.
2219  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2220    fields.push_back(getZeroInt());
2221
2222  return llvm::ConstantStruct::getAnon(fields);
2223}
2224
2225llvm::Constant *
2226MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2227                                       CharUnits offset) {
2228  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2229  llvm::Constant *FirstField =
2230    llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2231  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2232                               CharUnits::Zero());
2233}
2234
2235llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
2236  return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
2237}
2238
2239llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2240                                                   QualType MPType) {
2241  const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
2242  const ValueDecl *MPD = MP.getMemberPointerDecl();
2243  if (!MPD)
2244    return EmitNullMemberPointer(MPT);
2245
2246  CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
2247
2248  // FIXME PR15713: Support virtual inheritance paths.
2249
2250  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
2251    return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
2252                              ThisAdjustment);
2253
2254  CharUnits FieldOffset =
2255    getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
2256  return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
2257}
2258
2259llvm::Constant *
2260MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
2261                                    const CXXMethodDecl *MD,
2262                                    CharUnits NonVirtualBaseAdjustment) {
2263  assert(MD->isInstance() && "Member function must not be static!");
2264  MD = MD->getCanonicalDecl();
2265  RD = RD->getMostRecentDecl();
2266  CodeGenTypes &Types = CGM.getTypes();
2267
2268  llvm::Constant *FirstField;
2269  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2270  if (!MD->isVirtual()) {
2271    llvm::Type *Ty;
2272    // Check whether the function has a computable LLVM signature.
2273    if (Types.isFuncTypeConvertible(FPT)) {
2274      // The function has a computable LLVM signature; use the correct type.
2275      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2276    } else {
2277      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2278      // function type is incomplete.
2279      Ty = CGM.PtrDiffTy;
2280    }
2281    FirstField = CGM.GetAddrOfFunction(MD, Ty);
2282    FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2283  } else {
2284    MicrosoftVTableContext::MethodVFTableLocation ML =
2285        CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
2286    if (!CGM.getTypes().isFuncTypeConvertible(
2287            MD->getType()->castAs<FunctionType>())) {
2288      CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
2289                               "incomplete return or parameter type");
2290      FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2291    } else if (FPT->getCallConv() == CC_X86FastCall) {
2292      CGM.ErrorUnsupported(MD, "pointer to fastcall virtual member function");
2293      FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2294    } else if (ML.VBase) {
2295      CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding "
2296                               "member function in virtual base class");
2297      FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2298    } else {
2299      llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
2300      FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
2301      // Include the vfptr adjustment if the method is in a non-primary vftable.
2302      NonVirtualBaseAdjustment += ML.VFPtrOffset;
2303    }
2304  }
2305
2306  // The rest of the fields are common with data member pointers.
2307  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2308                               NonVirtualBaseAdjustment);
2309}
2310
2311/// Member pointers are the same if they're either bitwise identical *or* both
2312/// null.  Null-ness for function members is determined by the first field,
2313/// while for data member pointers we must compare all fields.
2314llvm::Value *
2315MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2316                                             llvm::Value *L,
2317                                             llvm::Value *R,
2318                                             const MemberPointerType *MPT,
2319                                             bool Inequality) {
2320  CGBuilderTy &Builder = CGF.Builder;
2321
2322  // Handle != comparisons by switching the sense of all boolean operations.
2323  llvm::ICmpInst::Predicate Eq;
2324  llvm::Instruction::BinaryOps And, Or;
2325  if (Inequality) {
2326    Eq = llvm::ICmpInst::ICMP_NE;
2327    And = llvm::Instruction::Or;
2328    Or = llvm::Instruction::And;
2329  } else {
2330    Eq = llvm::ICmpInst::ICMP_EQ;
2331    And = llvm::Instruction::And;
2332    Or = llvm::Instruction::Or;
2333  }
2334
2335  // If this is a single field member pointer (single inheritance), this is a
2336  // single icmp.
2337  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2338  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2339  if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2340                                         Inheritance))
2341    return Builder.CreateICmp(Eq, L, R);
2342
2343  // Compare the first field.
2344  llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2345  llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2346  llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2347
2348  // Compare everything other than the first field.
2349  llvm::Value *Res = nullptr;
2350  llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2351  for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2352    llvm::Value *LF = Builder.CreateExtractValue(L, I);
2353    llvm::Value *RF = Builder.CreateExtractValue(R, I);
2354    llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2355    if (Res)
2356      Res = Builder.CreateBinOp(And, Res, Cmp);
2357    else
2358      Res = Cmp;
2359  }
2360
2361  // Check if the first field is 0 if this is a function pointer.
2362  if (MPT->isMemberFunctionPointer()) {
2363    // (l1 == r1 && ...) || l0 == 0
2364    llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2365    llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2366    Res = Builder.CreateBinOp(Or, Res, IsZero);
2367  }
2368
2369  // Combine the comparison of the first field, which must always be true for
2370  // this comparison to succeeed.
2371  return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2372}
2373
2374llvm::Value *
2375MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2376                                            llvm::Value *MemPtr,
2377                                            const MemberPointerType *MPT) {
2378  CGBuilderTy &Builder = CGF.Builder;
2379  llvm::SmallVector<llvm::Constant *, 4> fields;
2380  // We only need one field for member functions.
2381  if (MPT->isMemberFunctionPointer())
2382    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2383  else
2384    GetNullMemberPointerFields(MPT, fields);
2385  assert(!fields.empty());
2386  llvm::Value *FirstField = MemPtr;
2387  if (MemPtr->getType()->isStructTy())
2388    FirstField = Builder.CreateExtractValue(MemPtr, 0);
2389  llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2390
2391  // For function member pointers, we only need to test the function pointer
2392  // field.  The other fields if any can be garbage.
2393  if (MPT->isMemberFunctionPointer())
2394    return Res;
2395
2396  // Otherwise, emit a series of compares and combine the results.
2397  for (int I = 1, E = fields.size(); I < E; ++I) {
2398    llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2399    llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2400    Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2401  }
2402  return Res;
2403}
2404
2405bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2406                                                  llvm::Constant *Val) {
2407  // Function pointers are null if the pointer in the first field is null.
2408  if (MPT->isMemberFunctionPointer()) {
2409    llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2410      Val->getAggregateElement(0U) : Val;
2411    return FirstField->isNullValue();
2412  }
2413
2414  // If it's not a function pointer and it's zero initializable, we can easily
2415  // check zero.
2416  if (isZeroInitializable(MPT) && Val->isNullValue())
2417    return true;
2418
2419  // Otherwise, break down all the fields for comparison.  Hopefully these
2420  // little Constants are reused, while a big null struct might not be.
2421  llvm::SmallVector<llvm::Constant *, 4> Fields;
2422  GetNullMemberPointerFields(MPT, Fields);
2423  if (Fields.size() == 1) {
2424    assert(Val->getType()->isIntegerTy());
2425    return Val == Fields[0];
2426  }
2427
2428  unsigned I, E;
2429  for (I = 0, E = Fields.size(); I != E; ++I) {
2430    if (Val->getAggregateElement(I) != Fields[I])
2431      break;
2432  }
2433  return I == E;
2434}
2435
2436llvm::Value *
2437MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2438                                         llvm::Value *This,
2439                                         llvm::Value *VBPtrOffset,
2440                                         llvm::Value *VBTableOffset,
2441                                         llvm::Value **VBPtrOut) {
2442  CGBuilderTy &Builder = CGF.Builder;
2443  // Load the vbtable pointer from the vbptr in the instance.
2444  This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
2445  llvm::Value *VBPtr =
2446    Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
2447  if (VBPtrOut) *VBPtrOut = VBPtr;
2448  VBPtr = Builder.CreateBitCast(VBPtr,
2449                                CGM.Int32Ty->getPointerTo(0)->getPointerTo(0));
2450  llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
2451
2452  // Translate from byte offset to table index. It improves analyzability.
2453  llvm::Value *VBTableIndex = Builder.CreateAShr(
2454      VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2455      "vbtindex", /*isExact=*/true);
2456
2457  // Load an i32 offset from the vb-table.
2458  llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2459  VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2460  return Builder.CreateLoad(VBaseOffs, "vbase_offs");
2461}
2462
2463// Returns an adjusted base cast to i8*, since we do more address arithmetic on
2464// it.
2465llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2466    CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2467    llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2468  CGBuilderTy &Builder = CGF.Builder;
2469  Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
2470  llvm::BasicBlock *OriginalBB = nullptr;
2471  llvm::BasicBlock *SkipAdjustBB = nullptr;
2472  llvm::BasicBlock *VBaseAdjustBB = nullptr;
2473
2474  // In the unspecified inheritance model, there might not be a vbtable at all,
2475  // in which case we need to skip the virtual base lookup.  If there is a
2476  // vbtable, the first entry is a no-op entry that gives back the original
2477  // base, so look for a virtual base adjustment offset of zero.
2478  if (VBPtrOffset) {
2479    OriginalBB = Builder.GetInsertBlock();
2480    VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2481    SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2482    llvm::Value *IsVirtual =
2483      Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2484                           "memptr.is_vbase");
2485    Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2486    CGF.EmitBlock(VBaseAdjustBB);
2487  }
2488
2489  // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
2490  // know the vbptr offset.
2491  if (!VBPtrOffset) {
2492    CharUnits offs = CharUnits::Zero();
2493    if (!RD->hasDefinition()) {
2494      DiagnosticsEngine &Diags = CGF.CGM.getDiags();
2495      unsigned DiagID = Diags.getCustomDiagID(
2496          DiagnosticsEngine::Error,
2497          "member pointer representation requires a "
2498          "complete class type for %0 to perform this expression");
2499      Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
2500    } else if (RD->getNumVBases())
2501      offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2502    VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
2503  }
2504  llvm::Value *VBPtr = nullptr;
2505  llvm::Value *VBaseOffs =
2506    GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
2507  llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
2508
2509  // Merge control flow with the case where we didn't have to adjust.
2510  if (VBaseAdjustBB) {
2511    Builder.CreateBr(SkipAdjustBB);
2512    CGF.EmitBlock(SkipAdjustBB);
2513    llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
2514    Phi->addIncoming(Base, OriginalBB);
2515    Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
2516    return Phi;
2517  }
2518  return AdjustedBase;
2519}
2520
2521llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
2522    CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
2523    const MemberPointerType *MPT) {
2524  assert(MPT->isMemberDataPointer());
2525  unsigned AS = Base->getType()->getPointerAddressSpace();
2526  llvm::Type *PType =
2527      CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
2528  CGBuilderTy &Builder = CGF.Builder;
2529  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2530  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2531
2532  // Extract the fields we need, regardless of model.  We'll apply them if we
2533  // have them.
2534  llvm::Value *FieldOffset = MemPtr;
2535  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2536  llvm::Value *VBPtrOffset = nullptr;
2537  if (MemPtr->getType()->isStructTy()) {
2538    // We need to extract values.
2539    unsigned I = 0;
2540    FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
2541    if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2542      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2543    if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2544      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2545  }
2546
2547  if (VirtualBaseAdjustmentOffset) {
2548    Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
2549                             VBPtrOffset);
2550  }
2551
2552  // Cast to char*.
2553  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
2554
2555  // Apply the offset, which we assume is non-null.
2556  llvm::Value *Addr =
2557    Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
2558
2559  // Cast the address to the appropriate pointer type, adopting the address
2560  // space of the base pointer.
2561  return Builder.CreateBitCast(Addr, PType);
2562}
2563
2564static MSInheritanceAttr::Spelling
2565getInheritanceFromMemptr(const MemberPointerType *MPT) {
2566  return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
2567}
2568
2569llvm::Value *
2570MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
2571                                             const CastExpr *E,
2572                                             llvm::Value *Src) {
2573  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
2574         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
2575         E->getCastKind() == CK_ReinterpretMemberPointer);
2576
2577  // Use constant emission if we can.
2578  if (isa<llvm::Constant>(Src))
2579    return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
2580
2581  // We may be adding or dropping fields from the member pointer, so we need
2582  // both types and the inheritance models of both records.
2583  const MemberPointerType *SrcTy =
2584    E->getSubExpr()->getType()->castAs<MemberPointerType>();
2585  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2586  bool IsFunc = SrcTy->isMemberFunctionPointer();
2587
2588  // If the classes use the same null representation, reinterpret_cast is a nop.
2589  bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
2590  if (IsReinterpret && IsFunc)
2591    return Src;
2592
2593  CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
2594  CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
2595  if (IsReinterpret &&
2596      SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
2597    return Src;
2598
2599  CGBuilderTy &Builder = CGF.Builder;
2600
2601  // Branch past the conversion if Src is null.
2602  llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
2603  llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
2604
2605  // C++ 5.2.10p9: The null member pointer value is converted to the null member
2606  //   pointer value of the destination type.
2607  if (IsReinterpret) {
2608    // For reinterpret casts, sema ensures that src and dst are both functions
2609    // or data and have the same size, which means the LLVM types should match.
2610    assert(Src->getType() == DstNull->getType());
2611    return Builder.CreateSelect(IsNotNull, Src, DstNull);
2612  }
2613
2614  llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
2615  llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
2616  llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
2617  Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
2618  CGF.EmitBlock(ConvertBB);
2619
2620  // Decompose src.
2621  llvm::Value *FirstField = Src;
2622  llvm::Value *NonVirtualBaseAdjustment = nullptr;
2623  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2624  llvm::Value *VBPtrOffset = nullptr;
2625  MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
2626  if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2627    // We need to extract values.
2628    unsigned I = 0;
2629    FirstField = Builder.CreateExtractValue(Src, I++);
2630    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2631      NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
2632    if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2633      VBPtrOffset = Builder.CreateExtractValue(Src, I++);
2634    if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2635      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
2636  }
2637
2638  // For data pointers, we adjust the field offset directly.  For functions, we
2639  // have a separate field.
2640  llvm::Constant *Adj = getMemberPointerAdjustment(E);
2641  if (Adj) {
2642    Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2643    llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
2644    bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2645    if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
2646      NVAdjustField = getZeroInt();
2647    if (isDerivedToBase)
2648      NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
2649    else
2650      NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
2651  }
2652
2653  // FIXME PR15713: Support conversions through virtually derived classes.
2654
2655  // Recompose dst from the null struct and the adjusted fields from src.
2656  MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
2657  llvm::Value *Dst;
2658  if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
2659    Dst = FirstField;
2660  } else {
2661    Dst = llvm::UndefValue::get(DstNull->getType());
2662    unsigned Idx = 0;
2663    Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
2664    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2665      Dst = Builder.CreateInsertValue(
2666        Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
2667    if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2668      Dst = Builder.CreateInsertValue(
2669        Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
2670    if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2671      Dst = Builder.CreateInsertValue(
2672        Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
2673  }
2674  Builder.CreateBr(ContinueBB);
2675
2676  // In the continuation, choose between DstNull and Dst.
2677  CGF.EmitBlock(ContinueBB);
2678  llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
2679  Phi->addIncoming(DstNull, OriginalBB);
2680  Phi->addIncoming(Dst, ConvertBB);
2681  return Phi;
2682}
2683
2684llvm::Constant *
2685MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
2686                                             llvm::Constant *Src) {
2687  const MemberPointerType *SrcTy =
2688    E->getSubExpr()->getType()->castAs<MemberPointerType>();
2689  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2690
2691  // If src is null, emit a new null for dst.  We can't return src because dst
2692  // might have a new representation.
2693  if (MemberPointerConstantIsNull(SrcTy, Src))
2694    return EmitNullMemberPointer(DstTy);
2695
2696  // We don't need to do anything for reinterpret_casts of non-null member
2697  // pointers.  We should only get here when the two type representations have
2698  // the same size.
2699  if (E->getCastKind() == CK_ReinterpretMemberPointer)
2700    return Src;
2701
2702  MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
2703  MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
2704
2705  // Decompose src.
2706  llvm::Constant *FirstField = Src;
2707  llvm::Constant *NonVirtualBaseAdjustment = nullptr;
2708  llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
2709  llvm::Constant *VBPtrOffset = nullptr;
2710  bool IsFunc = SrcTy->isMemberFunctionPointer();
2711  if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2712    // We need to extract values.
2713    unsigned I = 0;
2714    FirstField = Src->getAggregateElement(I++);
2715    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2716      NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
2717    if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2718      VBPtrOffset = Src->getAggregateElement(I++);
2719    if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2720      VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
2721  }
2722
2723  // For data pointers, we adjust the field offset directly.  For functions, we
2724  // have a separate field.
2725  llvm::Constant *Adj = getMemberPointerAdjustment(E);
2726  if (Adj) {
2727    Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2728    llvm::Constant *&NVAdjustField =
2729      IsFunc ? NonVirtualBaseAdjustment : FirstField;
2730    bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2731    if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
2732      NVAdjustField = getZeroInt();
2733    if (IsDerivedToBase)
2734      NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
2735    else
2736      NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
2737  }
2738
2739  // FIXME PR15713: Support conversions through virtually derived classes.
2740
2741  // Recompose dst from the null struct and the adjusted fields from src.
2742  if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
2743    return FirstField;
2744
2745  llvm::SmallVector<llvm::Constant *, 4> Fields;
2746  Fields.push_back(FirstField);
2747  if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2748    Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
2749  if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2750    Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
2751  if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2752    Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
2753  return llvm::ConstantStruct::getAnon(Fields);
2754}
2755
2756llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
2757    CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
2758    llvm::Value *MemPtr, const MemberPointerType *MPT) {
2759  assert(MPT->isMemberFunctionPointer());
2760  const FunctionProtoType *FPT =
2761    MPT->getPointeeType()->castAs<FunctionProtoType>();
2762  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2763  llvm::FunctionType *FTy =
2764    CGM.getTypes().GetFunctionType(
2765      CGM.getTypes().arrangeCXXMethodType(RD, FPT));
2766  CGBuilderTy &Builder = CGF.Builder;
2767
2768  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2769
2770  // Extract the fields we need, regardless of model.  We'll apply them if we
2771  // have them.
2772  llvm::Value *FunctionPointer = MemPtr;
2773  llvm::Value *NonVirtualBaseAdjustment = nullptr;
2774  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2775  llvm::Value *VBPtrOffset = nullptr;
2776  if (MemPtr->getType()->isStructTy()) {
2777    // We need to extract values.
2778    unsigned I = 0;
2779    FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
2780    if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
2781      NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
2782    if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2783      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2784    if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2785      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2786  }
2787
2788  if (VirtualBaseAdjustmentOffset) {
2789    This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
2790                             VBPtrOffset);
2791  }
2792
2793  if (NonVirtualBaseAdjustment) {
2794    // Apply the adjustment and cast back to the original struct type.
2795    llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
2796    Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
2797    This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
2798  }
2799
2800  return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
2801}
2802
2803CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
2804  return new MicrosoftCXXABI(CGM);
2805}
2806
2807// MS RTTI Overview:
2808// The run time type information emitted by cl.exe contains 5 distinct types of
2809// structures.  Many of them reference each other.
2810//
2811// TypeInfo:  Static classes that are returned by typeid.
2812//
2813// CompleteObjectLocator:  Referenced by vftables.  They contain information
2814//   required for dynamic casting, including OffsetFromTop.  They also contain
2815//   a reference to the TypeInfo for the type and a reference to the
2816//   CompleteHierarchyDescriptor for the type.
2817//
2818// ClassHieararchyDescriptor: Contains information about a class hierarchy.
2819//   Used during dynamic_cast to walk a class hierarchy.  References a base
2820//   class array and the size of said array.
2821//
2822// BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
2823//   somewhat of a misnomer because the most derived class is also in the list
2824//   as well as multiple copies of virtual bases (if they occur multiple times
2825//   in the hiearchy.)  The BaseClassArray contains one BaseClassDescriptor for
2826//   every path in the hierarchy, in pre-order depth first order.  Note, we do
2827//   not declare a specific llvm type for BaseClassArray, it's merely an array
2828//   of BaseClassDescriptor pointers.
2829//
2830// BaseClassDescriptor: Contains information about a class in a class hierarchy.
2831//   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
2832//   BaseClassArray is.  It contains information about a class within a
2833//   hierarchy such as: is this base is ambiguous and what is its offset in the
2834//   vbtable.  The names of the BaseClassDescriptors have all of their fields
2835//   mangled into them so they can be aggressively deduplicated by the linker.
2836
2837static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
2838  StringRef MangledName("\01??_7type_info@@6B@");
2839  if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
2840    return VTable;
2841  return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
2842                                  /*Constant=*/true,
2843                                  llvm::GlobalVariable::ExternalLinkage,
2844                                  /*Initializer=*/nullptr, MangledName);
2845}
2846
2847namespace {
2848
2849/// \brief A Helper struct that stores information about a class in a class
2850/// hierarchy.  The information stored in these structs struct is used during
2851/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
2852// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
2853// implicit depth first pre-order tree connectivity.  getFirstChild and
2854// getNextSibling allow us to walk the tree efficiently.
2855struct MSRTTIClass {
2856  enum {
2857    IsPrivateOnPath = 1 | 8,
2858    IsAmbiguous = 2,
2859    IsPrivate = 4,
2860    IsVirtual = 16,
2861    HasHierarchyDescriptor = 64
2862  };
2863  MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
2864  uint32_t initialize(const MSRTTIClass *Parent,
2865                      const CXXBaseSpecifier *Specifier);
2866
2867  MSRTTIClass *getFirstChild() { return this + 1; }
2868  static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
2869    return Child + 1 + Child->NumBases;
2870  }
2871
2872  const CXXRecordDecl *RD, *VirtualRoot;
2873  uint32_t Flags, NumBases, OffsetInVBase;
2874};
2875
2876/// \brief Recursively initialize the base class array.
2877uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
2878                                 const CXXBaseSpecifier *Specifier) {
2879  Flags = HasHierarchyDescriptor;
2880  if (!Parent) {
2881    VirtualRoot = nullptr;
2882    OffsetInVBase = 0;
2883  } else {
2884    if (Specifier->getAccessSpecifier() != AS_public)
2885      Flags |= IsPrivate | IsPrivateOnPath;
2886    if (Specifier->isVirtual()) {
2887      Flags |= IsVirtual;
2888      VirtualRoot = RD;
2889      OffsetInVBase = 0;
2890    } else {
2891      if (Parent->Flags & IsPrivateOnPath)
2892        Flags |= IsPrivateOnPath;
2893      VirtualRoot = Parent->VirtualRoot;
2894      OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
2895          .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
2896    }
2897  }
2898  NumBases = 0;
2899  MSRTTIClass *Child = getFirstChild();
2900  for (const CXXBaseSpecifier &Base : RD->bases()) {
2901    NumBases += Child->initialize(this, &Base) + 1;
2902    Child = getNextChild(Child);
2903  }
2904  return NumBases;
2905}
2906
2907static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
2908  switch (Ty->getLinkage()) {
2909  case NoLinkage:
2910  case InternalLinkage:
2911  case UniqueExternalLinkage:
2912    return llvm::GlobalValue::InternalLinkage;
2913
2914  case VisibleNoLinkage:
2915  case ExternalLinkage:
2916    return llvm::GlobalValue::LinkOnceODRLinkage;
2917  }
2918  llvm_unreachable("Invalid linkage!");
2919}
2920
2921/// \brief An ephemeral helper class for building MS RTTI types.  It caches some
2922/// calls to the module and information about the most derived class in a
2923/// hierarchy.
2924struct MSRTTIBuilder {
2925  enum {
2926    HasBranchingHierarchy = 1,
2927    HasVirtualBranchingHierarchy = 2,
2928    HasAmbiguousBases = 4
2929  };
2930
2931  MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
2932      : CGM(ABI.CGM), Context(CGM.getContext()),
2933        VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
2934        Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
2935        ABI(ABI) {}
2936
2937  llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
2938  llvm::GlobalVariable *
2939  getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
2940  llvm::GlobalVariable *getClassHierarchyDescriptor();
2941  llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
2942
2943  CodeGenModule &CGM;
2944  ASTContext &Context;
2945  llvm::LLVMContext &VMContext;
2946  llvm::Module &Module;
2947  const CXXRecordDecl *RD;
2948  llvm::GlobalVariable::LinkageTypes Linkage;
2949  MicrosoftCXXABI &ABI;
2950};
2951
2952} // namespace
2953
2954/// \brief Recursively serializes a class hierarchy in pre-order depth first
2955/// order.
2956static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
2957                                    const CXXRecordDecl *RD) {
2958  Classes.push_back(MSRTTIClass(RD));
2959  for (const CXXBaseSpecifier &Base : RD->bases())
2960    serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
2961}
2962
2963/// \brief Find ambiguity among base classes.
2964static void
2965detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
2966  llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
2967  llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
2968  llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
2969  for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
2970    if ((Class->Flags & MSRTTIClass::IsVirtual) &&
2971        !VirtualBases.insert(Class->RD).second) {
2972      Class = MSRTTIClass::getNextChild(Class);
2973      continue;
2974    }
2975    if (!UniqueBases.insert(Class->RD).second)
2976      AmbiguousBases.insert(Class->RD);
2977    Class++;
2978  }
2979  if (AmbiguousBases.empty())
2980    return;
2981  for (MSRTTIClass &Class : Classes)
2982    if (AmbiguousBases.count(Class.RD))
2983      Class.Flags |= MSRTTIClass::IsAmbiguous;
2984}
2985
2986llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
2987  SmallString<256> MangledName;
2988  {
2989    llvm::raw_svector_ostream Out(MangledName);
2990    ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
2991  }
2992
2993  // Check to see if we've already declared this ClassHierarchyDescriptor.
2994  if (auto CHD = Module.getNamedGlobal(MangledName))
2995    return CHD;
2996
2997  // Serialize the class hierarchy and initialize the CHD Fields.
2998  SmallVector<MSRTTIClass, 8> Classes;
2999  serializeClassHierarchy(Classes, RD);
3000  Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3001  detectAmbiguousBases(Classes);
3002  int Flags = 0;
3003  for (auto Class : Classes) {
3004    if (Class.RD->getNumBases() > 1)
3005      Flags |= HasBranchingHierarchy;
3006    // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3007    // believe the field isn't actually used.
3008    if (Class.Flags & MSRTTIClass::IsAmbiguous)
3009      Flags |= HasAmbiguousBases;
3010  }
3011  if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3012    Flags |= HasVirtualBranchingHierarchy;
3013  // These gep indices are used to get the address of the first element of the
3014  // base class array.
3015  llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3016                               llvm::ConstantInt::get(CGM.IntTy, 0)};
3017
3018  // Forward-declare the class hierarchy descriptor
3019  auto Type = ABI.getClassHierarchyDescriptorType();
3020  auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3021                                      /*Initializer=*/nullptr,
3022                                      StringRef(MangledName));
3023  if (CHD->isWeakForLinker())
3024    CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3025
3026  auto *Bases = getBaseClassArray(Classes);
3027
3028  // Initialize the base class ClassHierarchyDescriptor.
3029  llvm::Constant *Fields[] = {
3030      llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
3031      llvm::ConstantInt::get(CGM.IntTy, Flags),
3032      llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3033      ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3034          Bases->getValueType(), Bases,
3035          llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3036  };
3037  CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3038  return CHD;
3039}
3040
3041llvm::GlobalVariable *
3042MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3043  SmallString<256> MangledName;
3044  {
3045    llvm::raw_svector_ostream Out(MangledName);
3046    ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3047  }
3048
3049  // Forward-declare the base class array.
3050  // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3051  // mode) bytes of padding.  We provide a pointer sized amount of padding by
3052  // adding +1 to Classes.size().  The sections have pointer alignment and are
3053  // marked pick-any so it shouldn't matter.
3054  llvm::Type *PtrType = ABI.getImageRelativeType(
3055      ABI.getBaseClassDescriptorType()->getPointerTo());
3056  auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3057  auto *BCA =
3058      new llvm::GlobalVariable(Module, ArrType,
3059                               /*Constant=*/true, Linkage,
3060                               /*Initializer=*/nullptr, StringRef(MangledName));
3061  if (BCA->isWeakForLinker())
3062    BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3063
3064  // Initialize the BaseClassArray.
3065  SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3066  for (MSRTTIClass &Class : Classes)
3067    BaseClassArrayData.push_back(
3068        ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3069  BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3070  BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3071  return BCA;
3072}
3073
3074llvm::GlobalVariable *
3075MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3076  // Compute the fields for the BaseClassDescriptor.  They are computed up front
3077  // because they are mangled into the name of the object.
3078  uint32_t OffsetInVBTable = 0;
3079  int32_t VBPtrOffset = -1;
3080  if (Class.VirtualRoot) {
3081    auto &VTableContext = CGM.getMicrosoftVTableContext();
3082    OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3083    VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3084  }
3085
3086  SmallString<256> MangledName;
3087  {
3088    llvm::raw_svector_ostream Out(MangledName);
3089    ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3090        Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3091        Class.Flags, Out);
3092  }
3093
3094  // Check to see if we've already declared this object.
3095  if (auto BCD = Module.getNamedGlobal(MangledName))
3096    return BCD;
3097
3098  // Forward-declare the base class descriptor.
3099  auto Type = ABI.getBaseClassDescriptorType();
3100  auto BCD =
3101      new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3102                               /*Initializer=*/nullptr, StringRef(MangledName));
3103  if (BCD->isWeakForLinker())
3104    BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3105
3106  // Initialize the BaseClassDescriptor.
3107  llvm::Constant *Fields[] = {
3108      ABI.getImageRelativeConstant(
3109          ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3110      llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3111      llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3112      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3113      llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3114      llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3115      ABI.getImageRelativeConstant(
3116          MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3117  };
3118  BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3119  return BCD;
3120}
3121
3122llvm::GlobalVariable *
3123MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
3124  SmallString<256> MangledName;
3125  {
3126    llvm::raw_svector_ostream Out(MangledName);
3127    ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
3128  }
3129
3130  // Check to see if we've already computed this complete object locator.
3131  if (auto COL = Module.getNamedGlobal(MangledName))
3132    return COL;
3133
3134  // Compute the fields of the complete object locator.
3135  int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
3136  int VFPtrOffset = 0;
3137  // The offset includes the vtordisp if one exists.
3138  if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
3139    if (Context.getASTRecordLayout(RD)
3140      .getVBaseOffsetsMap()
3141      .find(VBase)
3142      ->second.hasVtorDisp())
3143      VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
3144
3145  // Forward-declare the complete object locator.
3146  llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3147  auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3148    /*Initializer=*/nullptr, StringRef(MangledName));
3149
3150  // Initialize the CompleteObjectLocator.
3151  llvm::Constant *Fields[] = {
3152      llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3153      llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3154      llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3155      ABI.getImageRelativeConstant(
3156          CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3157      ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3158      ABI.getImageRelativeConstant(COL),
3159  };
3160  llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3161  if (!ABI.isImageRelative())
3162    FieldsRef = FieldsRef.drop_back();
3163  COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3164  if (COL->isWeakForLinker())
3165    COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3166  return COL;
3167}
3168
3169static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3170                                   bool &IsConst, bool &IsVolatile) {
3171  T = Context.getExceptionObjectType(T);
3172
3173  // C++14 [except.handle]p3:
3174  //   A handler is a match for an exception object of type E if [...]
3175  //     - the handler is of type cv T or const T& where T is a pointer type and
3176  //       E is a pointer type that can be converted to T by [...]
3177  //         - a qualification conversion
3178  IsConst = false;
3179  IsVolatile = false;
3180  QualType PointeeType = T->getPointeeType();
3181  if (!PointeeType.isNull()) {
3182    IsConst = PointeeType.isConstQualified();
3183    IsVolatile = PointeeType.isVolatileQualified();
3184  }
3185
3186  // Member pointer types like "const int A::*" are represented by having RTTI
3187  // for "int A::*" and separately storing the const qualifier.
3188  if (const auto *MPTy = T->getAs<MemberPointerType>())
3189    T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3190                                     MPTy->getClass());
3191
3192  // Pointer types like "const int * const *" are represented by having RTTI
3193  // for "const int **" and separately storing the const qualifier.
3194  if (T->isPointerType())
3195    T = Context.getPointerType(PointeeType.getUnqualifiedType());
3196
3197  return T;
3198}
3199
3200llvm::Constant *
3201MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3202                                              QualType CatchHandlerType) {
3203  // TypeDescriptors for exceptions never have qualified pointer types,
3204  // qualifiers are stored seperately in order to support qualification
3205  // conversions.
3206  bool IsConst, IsVolatile;
3207  Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile);
3208
3209  bool IsReference = CatchHandlerType->isReferenceType();
3210
3211  uint32_t Flags = 0;
3212  if (IsConst)
3213    Flags |= 1;
3214  if (IsVolatile)
3215    Flags |= 2;
3216  if (IsReference)
3217    Flags |= 8;
3218
3219  SmallString<256> MangledName;
3220  {
3221    llvm::raw_svector_ostream Out(MangledName);
3222    getMangleContext().mangleCXXCatchHandlerType(Type, Flags, Out);
3223  }
3224
3225  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3226    return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3227
3228  llvm::Constant *Fields[] = {
3229      llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
3230      getAddrOfRTTIDescriptor(Type),            // TypeDescriptor
3231  };
3232  llvm::StructType *CatchHandlerTypeType = getCatchHandlerTypeType();
3233  auto *Var = new llvm::GlobalVariable(
3234      CGM.getModule(), CatchHandlerTypeType, /*Constant=*/true,
3235      llvm::GlobalValue::PrivateLinkage,
3236      llvm::ConstantStruct::get(CatchHandlerTypeType, Fields),
3237      StringRef(MangledName));
3238  Var->setUnnamedAddr(true);
3239  Var->setSection("llvm.metadata");
3240  return Var;
3241}
3242
3243/// \brief Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3244/// llvm::GlobalVariable * because different type descriptors have different
3245/// types, and need to be abstracted.  They are abstracting by casting the
3246/// address to an Int8PtrTy.
3247llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3248  SmallString<256> MangledName;
3249  {
3250    llvm::raw_svector_ostream Out(MangledName);
3251    getMangleContext().mangleCXXRTTI(Type, Out);
3252  }
3253
3254  // Check to see if we've already declared this TypeDescriptor.
3255  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3256    return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3257
3258  // Compute the fields for the TypeDescriptor.
3259  SmallString<256> TypeInfoString;
3260  {
3261    llvm::raw_svector_ostream Out(TypeInfoString);
3262    getMangleContext().mangleCXXRTTIName(Type, Out);
3263  }
3264
3265  // Declare and initialize the TypeDescriptor.
3266  llvm::Constant *Fields[] = {
3267    getTypeInfoVTable(CGM),                        // VFPtr
3268    llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3269    llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3270  llvm::StructType *TypeDescriptorType =
3271      getTypeDescriptorType(TypeInfoString);
3272  auto *Var = new llvm::GlobalVariable(
3273      CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
3274      getLinkageForRTTI(Type),
3275      llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3276      StringRef(MangledName));
3277  if (Var->isWeakForLinker())
3278    Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3279  return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3280}
3281
3282/// \brief Gets or a creates a Microsoft CompleteObjectLocator.
3283llvm::GlobalVariable *
3284MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3285                                            const VPtrInfo *Info) {
3286  return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3287}
3288
3289static void emitCXXConstructor(CodeGenModule &CGM,
3290                               const CXXConstructorDecl *ctor,
3291                               StructorType ctorType) {
3292  // There are no constructor variants, always emit the complete destructor.
3293  llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete);
3294  CGM.maybeSetTrivialComdat(*ctor, *Fn);
3295}
3296
3297static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
3298                              StructorType dtorType) {
3299  // The complete destructor is equivalent to the base destructor for
3300  // classes with no virtual bases, so try to emit it as an alias.
3301  if (!dtor->getParent()->getNumVBases() &&
3302      (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
3303    bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
3304        GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
3305    if (ProducedAlias) {
3306      if (dtorType == StructorType::Complete)
3307        return;
3308      if (dtor->isVirtual())
3309        CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
3310    }
3311  }
3312
3313  // The base destructor is equivalent to the base destructor of its
3314  // base class if there is exactly one non-virtual base class with a
3315  // non-trivial destructor, there are no fields with a non-trivial
3316  // destructor, and the body of the destructor is trivial.
3317  if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3318    return;
3319
3320  llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType);
3321  if (Fn->isWeakForLinker())
3322    Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3323}
3324
3325void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
3326                                      StructorType Type) {
3327  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
3328    emitCXXConstructor(CGM, CD, Type);
3329    return;
3330  }
3331  emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
3332}
3333
3334llvm::Function *
3335MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3336                                         CXXCtorType CT) {
3337  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3338
3339  // Calculate the mangled name.
3340  SmallString<256> ThunkName;
3341  llvm::raw_svector_ostream Out(ThunkName);
3342  getMangleContext().mangleCXXCtor(CD, CT, Out);
3343  Out.flush();
3344
3345  // If the thunk has been generated previously, just return it.
3346  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3347    return cast<llvm::Function>(GV);
3348
3349  // Create the llvm::Function.
3350  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3351  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3352  const CXXRecordDecl *RD = CD->getParent();
3353  QualType RecordTy = getContext().getRecordType(RD);
3354  llvm::Function *ThunkFn = llvm::Function::Create(
3355      ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3356  ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3357      FnInfo.getEffectiveCallingConvention()));
3358  bool IsCopy = CT == Ctor_CopyingClosure;
3359
3360  // Start codegen.
3361  CodeGenFunction CGF(CGM);
3362  CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3363
3364  // Build FunctionArgs.
3365  FunctionArgList FunctionArgs;
3366
3367  // A constructor always starts with a 'this' pointer as its first argument.
3368  buildThisParam(CGF, FunctionArgs);
3369
3370  // Following the 'this' pointer is a reference to the source object that we
3371  // are copying from.
3372  ImplicitParamDecl SrcParam(
3373      getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"),
3374      getContext().getLValueReferenceType(RecordTy,
3375                                          /*SpelledAsLValue=*/true));
3376  if (IsCopy)
3377    FunctionArgs.push_back(&SrcParam);
3378
3379  // Constructors for classes which utilize virtual bases have an additional
3380  // parameter which indicates whether or not it is being delegated to by a more
3381  // derived constructor.
3382  ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(),
3383                                  &getContext().Idents.get("is_most_derived"),
3384                                  getContext().IntTy);
3385  // Only add the parameter to the list if thie class has virtual bases.
3386  if (RD->getNumVBases() > 0)
3387    FunctionArgs.push_back(&IsMostDerived);
3388
3389  // Start defining the function.
3390  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
3391                    FunctionArgs, CD->getLocation(), SourceLocation());
3392  EmitThisParam(CGF);
3393  llvm::Value *This = getThisValue(CGF);
3394
3395  llvm::Value *SrcVal =
3396      IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
3397             : nullptr;
3398
3399  CallArgList Args;
3400
3401  // Push the this ptr.
3402  Args.add(RValue::get(This), CD->getThisType(getContext()));
3403
3404  // Push the src ptr.
3405  if (SrcVal)
3406    Args.add(RValue::get(SrcVal), SrcParam.getType());
3407
3408  // Add the rest of the default arguments.
3409  std::vector<Stmt *> ArgVec;
3410  for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) {
3411    Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I);
3412    assert(DefaultArg && "sema forgot to instantiate default args");
3413    ArgVec.push_back(DefaultArg);
3414  }
3415
3416  CodeGenFunction::RunCleanupsScope Cleanups(CGF);
3417
3418  const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
3419  ConstExprIterator ArgBegin(ArgVec.data()),
3420      ArgEnd(ArgVec.data() + ArgVec.size());
3421  CGF.EmitCallArgs(Args, FPT, ArgBegin, ArgEnd, CD, IsCopy ? 1 : 0);
3422
3423  // Insert any ABI-specific implicit constructor arguments.
3424  unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
3425                                                  /*ForVirtualBase=*/false,
3426                                                  /*Delegating=*/false, Args);
3427
3428  // Call the destructor with our arguments.
3429  llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
3430  const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
3431      Args, CD, Ctor_Complete, ExtraArgs);
3432  CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD);
3433
3434  Cleanups.ForceCleanup();
3435
3436  // Emit the ret instruction, remove any temporary instructions created for the
3437  // aid of CodeGen.
3438  CGF.FinishFunction(SourceLocation());
3439
3440  return ThunkFn;
3441}
3442
3443llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
3444                                                  uint32_t NVOffset,
3445                                                  int32_t VBPtrOffset,
3446                                                  uint32_t VBIndex) {
3447  assert(!T->isReferenceType());
3448
3449  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
3450  const CXXConstructorDecl *CD =
3451      RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
3452  CXXCtorType CT = Ctor_Complete;
3453  if (CD)
3454    if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
3455      CT = Ctor_CopyingClosure;
3456
3457  uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
3458  SmallString<256> MangledName;
3459  {
3460    llvm::raw_svector_ostream Out(MangledName);
3461    getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
3462                                              VBPtrOffset, VBIndex, Out);
3463  }
3464  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3465    return getImageRelativeConstant(GV);
3466
3467  // The TypeDescriptor is used by the runtime to determine if a catch handler
3468  // is appropriate for the exception object.
3469  llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
3470
3471  // The runtime is responsible for calling the copy constructor if the
3472  // exception is caught by value.
3473  llvm::Constant *CopyCtor;
3474  if (CD) {
3475    if (CT == Ctor_CopyingClosure)
3476      CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
3477    else
3478      CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
3479
3480    CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
3481  } else {
3482    CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
3483  }
3484  CopyCtor = getImageRelativeConstant(CopyCtor);
3485
3486  bool IsScalar = !RD;
3487  bool HasVirtualBases = false;
3488  bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
3489  QualType PointeeType = T;
3490  if (T->isPointerType())
3491    PointeeType = T->getPointeeType();
3492  if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
3493    HasVirtualBases = RD->getNumVBases() > 0;
3494    if (IdentifierInfo *II = RD->getIdentifier())
3495      IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
3496  }
3497
3498  // Encode the relevant CatchableType properties into the Flags bitfield.
3499  // FIXME: Figure out how bits 2 or 8 can get set.
3500  uint32_t Flags = 0;
3501  if (IsScalar)
3502    Flags |= 1;
3503  if (HasVirtualBases)
3504    Flags |= 4;
3505  if (IsStdBadAlloc)
3506    Flags |= 16;
3507
3508  llvm::Constant *Fields[] = {
3509      llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
3510      TD,                                             // TypeDescriptor
3511      llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
3512      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
3513      llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
3514      llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
3515      CopyCtor                                        // CopyCtor
3516  };
3517  llvm::StructType *CTType = getCatchableTypeType();
3518  auto *GV = new llvm::GlobalVariable(
3519      CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T),
3520      llvm::ConstantStruct::get(CTType, Fields), StringRef(MangledName));
3521  GV->setUnnamedAddr(true);
3522  GV->setSection(".xdata");
3523  if (GV->isWeakForLinker())
3524    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
3525  return getImageRelativeConstant(GV);
3526}
3527
3528llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
3529  assert(!T->isReferenceType());
3530
3531  // See if we've already generated a CatchableTypeArray for this type before.
3532  llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
3533  if (CTA)
3534    return CTA;
3535
3536  // Ensure that we don't have duplicate entries in our CatchableTypeArray by
3537  // using a SmallSetVector.  Duplicates may arise due to virtual bases
3538  // occurring more than once in the hierarchy.
3539  llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
3540
3541  // C++14 [except.handle]p3:
3542  //   A handler is a match for an exception object of type E if [...]
3543  //     - the handler is of type cv T or cv T& and T is an unambiguous public
3544  //       base class of E, or
3545  //     - the handler is of type cv T or const T& where T is a pointer type and
3546  //       E is a pointer type that can be converted to T by [...]
3547  //         - a standard pointer conversion (4.10) not involving conversions to
3548  //           pointers to private or protected or ambiguous classes
3549  const CXXRecordDecl *MostDerivedClass = nullptr;
3550  bool IsPointer = T->isPointerType();
3551  if (IsPointer)
3552    MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
3553  else
3554    MostDerivedClass = T->getAsCXXRecordDecl();
3555
3556  // Collect all the unambiguous public bases of the MostDerivedClass.
3557  if (MostDerivedClass) {
3558    const ASTContext &Context = getContext();
3559    const ASTRecordLayout &MostDerivedLayout =
3560        Context.getASTRecordLayout(MostDerivedClass);
3561    MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
3562    SmallVector<MSRTTIClass, 8> Classes;
3563    serializeClassHierarchy(Classes, MostDerivedClass);
3564    Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3565    detectAmbiguousBases(Classes);
3566    for (const MSRTTIClass &Class : Classes) {
3567      // Skip any ambiguous or private bases.
3568      if (Class.Flags &
3569          (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
3570        continue;
3571      // Write down how to convert from a derived pointer to a base pointer.
3572      uint32_t OffsetInVBTable = 0;
3573      int32_t VBPtrOffset = -1;
3574      if (Class.VirtualRoot) {
3575        OffsetInVBTable =
3576          VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
3577        VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
3578      }
3579
3580      // Turn our record back into a pointer if the exception object is a
3581      // pointer.
3582      QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
3583      if (IsPointer)
3584        RTTITy = Context.getPointerType(RTTITy);
3585      CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
3586                                             VBPtrOffset, OffsetInVBTable));
3587    }
3588  }
3589
3590  // C++14 [except.handle]p3:
3591  //   A handler is a match for an exception object of type E if
3592  //     - The handler is of type cv T or cv T& and E and T are the same type
3593  //       (ignoring the top-level cv-qualifiers)
3594  CatchableTypes.insert(getCatchableType(T));
3595
3596  // C++14 [except.handle]p3:
3597  //   A handler is a match for an exception object of type E if
3598  //     - the handler is of type cv T or const T& where T is a pointer type and
3599  //       E is a pointer type that can be converted to T by [...]
3600  //         - a standard pointer conversion (4.10) not involving conversions to
3601  //           pointers to private or protected or ambiguous classes
3602  //
3603  // C++14 [conv.ptr]p2:
3604  //   A prvalue of type "pointer to cv T," where T is an object type, can be
3605  //   converted to a prvalue of type "pointer to cv void".
3606  if (IsPointer && T->getPointeeType()->isObjectType())
3607    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
3608
3609  // C++14 [except.handle]p3:
3610  //   A handler is a match for an exception object of type E if [...]
3611  //     - the handler is of type cv T or const T& where T is a pointer or
3612  //       pointer to member type and E is std::nullptr_t.
3613  //
3614  // We cannot possibly list all possible pointer types here, making this
3615  // implementation incompatible with the standard.  However, MSVC includes an
3616  // entry for pointer-to-void in this case.  Let's do the same.
3617  if (T->isNullPtrType())
3618    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
3619
3620  uint32_t NumEntries = CatchableTypes.size();
3621  llvm::Type *CTType =
3622      getImageRelativeType(getCatchableTypeType()->getPointerTo());
3623  llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
3624  llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
3625  llvm::Constant *Fields[] = {
3626      llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
3627      llvm::ConstantArray::get(
3628          AT, llvm::makeArrayRef(CatchableTypes.begin(),
3629                                 CatchableTypes.end())) // CatchableTypes
3630  };
3631  SmallString<256> MangledName;
3632  {
3633    llvm::raw_svector_ostream Out(MangledName);
3634    getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
3635  }
3636  CTA = new llvm::GlobalVariable(
3637      CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T),
3638      llvm::ConstantStruct::get(CTAType, Fields), StringRef(MangledName));
3639  CTA->setUnnamedAddr(true);
3640  CTA->setSection(".xdata");
3641  if (CTA->isWeakForLinker())
3642    CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
3643  return CTA;
3644}
3645
3646llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
3647  bool IsConst, IsVolatile;
3648  T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile);
3649
3650  // The CatchableTypeArray enumerates the various (CV-unqualified) types that
3651  // the exception object may be caught as.
3652  llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
3653  // The first field in a CatchableTypeArray is the number of CatchableTypes.
3654  // This is used as a component of the mangled name which means that we need to
3655  // know what it is in order to see if we have previously generated the
3656  // ThrowInfo.
3657  uint32_t NumEntries =
3658      cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
3659          ->getLimitedValue();
3660
3661  SmallString<256> MangledName;
3662  {
3663    llvm::raw_svector_ostream Out(MangledName);
3664    getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, NumEntries,
3665                                          Out);
3666  }
3667
3668  // Reuse a previously generated ThrowInfo if we have generated an appropriate
3669  // one before.
3670  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3671    return GV;
3672
3673  // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
3674  // be at least as CV qualified.  Encode this requirement into the Flags
3675  // bitfield.
3676  uint32_t Flags = 0;
3677  if (IsConst)
3678    Flags |= 1;
3679  if (IsVolatile)
3680    Flags |= 2;
3681
3682  // The cleanup-function (a destructor) must be called when the exception
3683  // object's lifetime ends.
3684  llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
3685  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3686    if (CXXDestructorDecl *DtorD = RD->getDestructor())
3687      if (!DtorD->isTrivial())
3688        CleanupFn = llvm::ConstantExpr::getBitCast(
3689            CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete),
3690            CGM.Int8PtrTy);
3691  // This is unused as far as we can tell, initialize it to null.
3692  llvm::Constant *ForwardCompat =
3693      getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
3694  llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
3695      llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
3696  llvm::StructType *TIType = getThrowInfoType();
3697  llvm::Constant *Fields[] = {
3698      llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
3699      getImageRelativeConstant(CleanupFn),      // CleanupFn
3700      ForwardCompat,                            // ForwardCompat
3701      PointerToCatchableTypes                   // CatchableTypeArray
3702  };
3703  auto *GV = new llvm::GlobalVariable(
3704      CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T),
3705      llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
3706  GV->setUnnamedAddr(true);
3707  GV->setSection(".xdata");
3708  if (GV->isWeakForLinker())
3709    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
3710  return GV;
3711}
3712
3713void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
3714  const Expr *SubExpr = E->getSubExpr();
3715  QualType ThrowType = SubExpr->getType();
3716  // The exception object lives on the stack and it's address is passed to the
3717  // runtime function.
3718  llvm::AllocaInst *AI = CGF.CreateMemTemp(ThrowType);
3719  CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
3720                       /*IsInit=*/true);
3721
3722  // The so-called ThrowInfo is used to describe how the exception object may be
3723  // caught.
3724  llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
3725
3726  // Call into the runtime to throw the exception.
3727  llvm::Value *Args[] = {CGF.Builder.CreateBitCast(AI, CGM.Int8PtrTy), TI};
3728  CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
3729}
3730