1//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for inline asm statements. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/AST/ExprCXX.h" 16#include "clang/AST/RecordLayout.h" 17#include "clang/AST/TypeLoc.h" 18#include "clang/Basic/TargetInfo.h" 19#include "clang/Lex/Preprocessor.h" 20#include "clang/Sema/Initialization.h" 21#include "clang/Sema/Lookup.h" 22#include "clang/Sema/Scope.h" 23#include "clang/Sema/ScopeInfo.h" 24#include "llvm/ADT/ArrayRef.h" 25#include "llvm/ADT/BitVector.h" 26#include "llvm/MC/MCParser/MCAsmParser.h" 27using namespace clang; 28using namespace sema; 29 30/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 31/// ignore "noop" casts in places where an lvalue is required by an inline asm. 32/// We emulate this behavior when -fheinous-gnu-extensions is specified, but 33/// provide a strong guidance to not use it. 34/// 35/// This method checks to see if the argument is an acceptable l-value and 36/// returns false if it is a case we can handle. 37static bool CheckAsmLValue(const Expr *E, Sema &S) { 38 // Type dependent expressions will be checked during instantiation. 39 if (E->isTypeDependent()) 40 return false; 41 42 if (E->isLValue()) 43 return false; // Cool, this is an lvalue. 44 45 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 46 // are supposed to allow. 47 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 48 if (E != E2 && E2->isLValue()) { 49 if (!S.getLangOpts().HeinousExtensions) 50 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) 51 << E->getSourceRange(); 52 else 53 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 54 << E->getSourceRange(); 55 // Accept, even if we emitted an error diagnostic. 56 return false; 57 } 58 59 // None of the above, just randomly invalid non-lvalue. 60 return true; 61} 62 63/// isOperandMentioned - Return true if the specified operand # is mentioned 64/// anywhere in the decomposed asm string. 65static bool isOperandMentioned(unsigned OpNo, 66 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 67 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 68 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 69 if (!Piece.isOperand()) continue; 70 71 // If this is a reference to the input and if the input was the smaller 72 // one, then we have to reject this asm. 73 if (Piece.getOperandNo() == OpNo) 74 return true; 75 } 76 return false; 77} 78 79static bool CheckNakedParmReference(Expr *E, Sema &S) { 80 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 81 if (!Func) 82 return false; 83 if (!Func->hasAttr<NakedAttr>()) 84 return false; 85 86 SmallVector<Expr*, 4> WorkList; 87 WorkList.push_back(E); 88 while (WorkList.size()) { 89 Expr *E = WorkList.pop_back_val(); 90 if (isa<CXXThisExpr>(E)) { 91 S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref); 92 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 93 return true; 94 } 95 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 96 if (isa<ParmVarDecl>(DRE->getDecl())) { 97 S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref); 98 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 99 return true; 100 } 101 } 102 for (Stmt *Child : E->children()) { 103 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 104 WorkList.push_back(E); 105 } 106 } 107 return false; 108} 109 110StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 111 bool IsVolatile, unsigned NumOutputs, 112 unsigned NumInputs, IdentifierInfo **Names, 113 MultiExprArg constraints, MultiExprArg Exprs, 114 Expr *asmString, MultiExprArg clobbers, 115 SourceLocation RParenLoc) { 116 unsigned NumClobbers = clobbers.size(); 117 StringLiteral **Constraints = 118 reinterpret_cast<StringLiteral**>(constraints.data()); 119 StringLiteral *AsmString = cast<StringLiteral>(asmString); 120 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 121 122 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 123 124 // The parser verifies that there is a string literal here. 125 assert(AsmString->isAscii()); 126 127 bool ValidateConstraints = true; 128 if (getLangOpts().CUDA) { 129 // In CUDA mode don't verify asm constraints in device functions during host 130 // compilation and vice versa. 131 bool InDeviceMode = getLangOpts().CUDAIsDevice; 132 FunctionDecl *FD = getCurFunctionDecl(); 133 bool IsDeviceFunction = 134 FD && (FD->hasAttr<CUDADeviceAttr>() || FD->hasAttr<CUDAGlobalAttr>()); 135 ValidateConstraints = IsDeviceFunction == InDeviceMode; 136 } 137 138 for (unsigned i = 0; i != NumOutputs; i++) { 139 StringLiteral *Literal = Constraints[i]; 140 assert(Literal->isAscii()); 141 142 StringRef OutputName; 143 if (Names[i]) 144 OutputName = Names[i]->getName(); 145 146 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 147 if (ValidateConstraints && 148 !Context.getTargetInfo().validateOutputConstraint(Info)) 149 return StmtError(Diag(Literal->getLocStart(), 150 diag::err_asm_invalid_output_constraint) 151 << Info.getConstraintStr()); 152 153 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 154 if (ER.isInvalid()) 155 return StmtError(); 156 Exprs[i] = ER.get(); 157 158 // Check that the output exprs are valid lvalues. 159 Expr *OutputExpr = Exprs[i]; 160 161 // Referring to parameters is not allowed in naked functions. 162 if (CheckNakedParmReference(OutputExpr, *this)) 163 return StmtError(); 164 165 OutputConstraintInfos.push_back(Info); 166 167 // If this is dependent, just continue. 168 if (OutputExpr->isTypeDependent()) 169 continue; 170 171 Expr::isModifiableLvalueResult IsLV = 172 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 173 switch (IsLV) { 174 case Expr::MLV_Valid: 175 // Cool, this is an lvalue. 176 break; 177 case Expr::MLV_ArrayType: 178 // This is OK too. 179 break; 180 case Expr::MLV_LValueCast: { 181 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 182 if (!getLangOpts().HeinousExtensions) { 183 Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue) 184 << OutputExpr->getSourceRange(); 185 } else { 186 Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 187 << OutputExpr->getSourceRange(); 188 } 189 // Accept, even if we emitted an error diagnostic. 190 break; 191 } 192 case Expr::MLV_IncompleteType: 193 case Expr::MLV_IncompleteVoidType: 194 if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(), 195 diag::err_dereference_incomplete_type)) 196 return StmtError(); 197 default: 198 return StmtError(Diag(OutputExpr->getLocStart(), 199 diag::err_asm_invalid_lvalue_in_output) 200 << OutputExpr->getSourceRange()); 201 } 202 203 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 204 if (!Context.getTargetInfo().validateOutputSize(Literal->getString(), 205 Size)) 206 return StmtError(Diag(OutputExpr->getLocStart(), 207 diag::err_asm_invalid_output_size) 208 << Info.getConstraintStr()); 209 } 210 211 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 212 213 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 214 StringLiteral *Literal = Constraints[i]; 215 assert(Literal->isAscii()); 216 217 StringRef InputName; 218 if (Names[i]) 219 InputName = Names[i]->getName(); 220 221 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 222 if (ValidateConstraints && 223 !Context.getTargetInfo().validateInputConstraint( 224 OutputConstraintInfos.data(), NumOutputs, Info)) { 225 return StmtError(Diag(Literal->getLocStart(), 226 diag::err_asm_invalid_input_constraint) 227 << Info.getConstraintStr()); 228 } 229 230 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 231 if (ER.isInvalid()) 232 return StmtError(); 233 Exprs[i] = ER.get(); 234 235 Expr *InputExpr = Exprs[i]; 236 237 // Referring to parameters is not allowed in naked functions. 238 if (CheckNakedParmReference(InputExpr, *this)) 239 return StmtError(); 240 241 // Only allow void types for memory constraints. 242 if (Info.allowsMemory() && !Info.allowsRegister()) { 243 if (CheckAsmLValue(InputExpr, *this)) 244 return StmtError(Diag(InputExpr->getLocStart(), 245 diag::err_asm_invalid_lvalue_in_input) 246 << Info.getConstraintStr() 247 << InputExpr->getSourceRange()); 248 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 249 llvm::APSInt Result; 250 if (!InputExpr->EvaluateAsInt(Result, Context)) 251 return StmtError( 252 Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected) 253 << Info.getConstraintStr() << InputExpr->getSourceRange()); 254 if (Result.slt(Info.getImmConstantMin()) || 255 Result.sgt(Info.getImmConstantMax())) 256 return StmtError(Diag(InputExpr->getLocStart(), 257 diag::err_invalid_asm_value_for_constraint) 258 << Result.toString(10) << Info.getConstraintStr() 259 << InputExpr->getSourceRange()); 260 261 } else { 262 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 263 if (Result.isInvalid()) 264 return StmtError(); 265 266 Exprs[i] = Result.get(); 267 } 268 269 if (Info.allowsRegister()) { 270 if (InputExpr->getType()->isVoidType()) { 271 return StmtError(Diag(InputExpr->getLocStart(), 272 diag::err_asm_invalid_type_in_input) 273 << InputExpr->getType() << Info.getConstraintStr() 274 << InputExpr->getSourceRange()); 275 } 276 } 277 278 InputConstraintInfos.push_back(Info); 279 280 const Type *Ty = Exprs[i]->getType().getTypePtr(); 281 if (Ty->isDependentType()) 282 continue; 283 284 if (!Ty->isVoidType() || !Info.allowsMemory()) 285 if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(), 286 diag::err_dereference_incomplete_type)) 287 return StmtError(); 288 289 unsigned Size = Context.getTypeSize(Ty); 290 if (!Context.getTargetInfo().validateInputSize(Literal->getString(), 291 Size)) 292 return StmtError(Diag(InputExpr->getLocStart(), 293 diag::err_asm_invalid_input_size) 294 << Info.getConstraintStr()); 295 } 296 297 // Check that the clobbers are valid. 298 for (unsigned i = 0; i != NumClobbers; i++) { 299 StringLiteral *Literal = Clobbers[i]; 300 assert(Literal->isAscii()); 301 302 StringRef Clobber = Literal->getString(); 303 304 if (!Context.getTargetInfo().isValidClobber(Clobber)) 305 return StmtError(Diag(Literal->getLocStart(), 306 diag::err_asm_unknown_register_name) << Clobber); 307 } 308 309 GCCAsmStmt *NS = 310 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 311 NumInputs, Names, Constraints, Exprs.data(), 312 AsmString, NumClobbers, Clobbers, RParenLoc); 313 // Validate the asm string, ensuring it makes sense given the operands we 314 // have. 315 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 316 unsigned DiagOffs; 317 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 318 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 319 << AsmString->getSourceRange(); 320 return StmtError(); 321 } 322 323 // Validate constraints and modifiers. 324 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 325 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 326 if (!Piece.isOperand()) continue; 327 328 // Look for the correct constraint index. 329 unsigned ConstraintIdx = Piece.getOperandNo(); 330 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 331 332 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 333 // modifier '+'. 334 if (ConstraintIdx >= NumOperands) { 335 unsigned I = 0, E = NS->getNumOutputs(); 336 337 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 338 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 339 ConstraintIdx = I; 340 break; 341 } 342 343 assert(I != E && "Invalid operand number should have been caught in " 344 " AnalyzeAsmString"); 345 } 346 347 // Now that we have the right indexes go ahead and check. 348 StringLiteral *Literal = Constraints[ConstraintIdx]; 349 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 350 if (Ty->isDependentType() || Ty->isIncompleteType()) 351 continue; 352 353 unsigned Size = Context.getTypeSize(Ty); 354 std::string SuggestedModifier; 355 if (!Context.getTargetInfo().validateConstraintModifier( 356 Literal->getString(), Piece.getModifier(), Size, 357 SuggestedModifier)) { 358 Diag(Exprs[ConstraintIdx]->getLocStart(), 359 diag::warn_asm_mismatched_size_modifier); 360 361 if (!SuggestedModifier.empty()) { 362 auto B = Diag(Piece.getRange().getBegin(), 363 diag::note_asm_missing_constraint_modifier) 364 << SuggestedModifier; 365 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 366 B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(), 367 SuggestedModifier)); 368 } 369 } 370 } 371 372 // Validate tied input operands for type mismatches. 373 unsigned NumAlternatives = ~0U; 374 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 375 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 376 StringRef ConstraintStr = Info.getConstraintStr(); 377 unsigned AltCount = ConstraintStr.count(',') + 1; 378 if (NumAlternatives == ~0U) 379 NumAlternatives = AltCount; 380 else if (NumAlternatives != AltCount) 381 return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(), 382 diag::err_asm_unexpected_constraint_alternatives) 383 << NumAlternatives << AltCount); 384 } 385 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 386 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 387 StringRef ConstraintStr = Info.getConstraintStr(); 388 unsigned AltCount = ConstraintStr.count(',') + 1; 389 if (NumAlternatives == ~0U) 390 NumAlternatives = AltCount; 391 else if (NumAlternatives != AltCount) 392 return StmtError(Diag(NS->getInputExpr(i)->getLocStart(), 393 diag::err_asm_unexpected_constraint_alternatives) 394 << NumAlternatives << AltCount); 395 396 // If this is a tied constraint, verify that the output and input have 397 // either exactly the same type, or that they are int/ptr operands with the 398 // same size (int/long, int*/long, are ok etc). 399 if (!Info.hasTiedOperand()) continue; 400 401 unsigned TiedTo = Info.getTiedOperand(); 402 unsigned InputOpNo = i+NumOutputs; 403 Expr *OutputExpr = Exprs[TiedTo]; 404 Expr *InputExpr = Exprs[InputOpNo]; 405 406 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 407 continue; 408 409 QualType InTy = InputExpr->getType(); 410 QualType OutTy = OutputExpr->getType(); 411 if (Context.hasSameType(InTy, OutTy)) 412 continue; // All types can be tied to themselves. 413 414 // Decide if the input and output are in the same domain (integer/ptr or 415 // floating point. 416 enum AsmDomain { 417 AD_Int, AD_FP, AD_Other 418 } InputDomain, OutputDomain; 419 420 if (InTy->isIntegerType() || InTy->isPointerType()) 421 InputDomain = AD_Int; 422 else if (InTy->isRealFloatingType()) 423 InputDomain = AD_FP; 424 else 425 InputDomain = AD_Other; 426 427 if (OutTy->isIntegerType() || OutTy->isPointerType()) 428 OutputDomain = AD_Int; 429 else if (OutTy->isRealFloatingType()) 430 OutputDomain = AD_FP; 431 else 432 OutputDomain = AD_Other; 433 434 // They are ok if they are the same size and in the same domain. This 435 // allows tying things like: 436 // void* to int* 437 // void* to int if they are the same size. 438 // double to long double if they are the same size. 439 // 440 uint64_t OutSize = Context.getTypeSize(OutTy); 441 uint64_t InSize = Context.getTypeSize(InTy); 442 if (OutSize == InSize && InputDomain == OutputDomain && 443 InputDomain != AD_Other) 444 continue; 445 446 // If the smaller input/output operand is not mentioned in the asm string, 447 // then we can promote the smaller one to a larger input and the asm string 448 // won't notice. 449 bool SmallerValueMentioned = false; 450 451 // If this is a reference to the input and if the input was the smaller 452 // one, then we have to reject this asm. 453 if (isOperandMentioned(InputOpNo, Pieces)) { 454 // This is a use in the asm string of the smaller operand. Since we 455 // codegen this by promoting to a wider value, the asm will get printed 456 // "wrong". 457 SmallerValueMentioned |= InSize < OutSize; 458 } 459 if (isOperandMentioned(TiedTo, Pieces)) { 460 // If this is a reference to the output, and if the output is the larger 461 // value, then it's ok because we'll promote the input to the larger type. 462 SmallerValueMentioned |= OutSize < InSize; 463 } 464 465 // If the smaller value wasn't mentioned in the asm string, and if the 466 // output was a register, just extend the shorter one to the size of the 467 // larger one. 468 if (!SmallerValueMentioned && InputDomain != AD_Other && 469 OutputConstraintInfos[TiedTo].allowsRegister()) 470 continue; 471 472 // Either both of the operands were mentioned or the smaller one was 473 // mentioned. One more special case that we'll allow: if the tied input is 474 // integer, unmentioned, and is a constant, then we'll allow truncating it 475 // down to the size of the destination. 476 if (InputDomain == AD_Int && OutputDomain == AD_Int && 477 !isOperandMentioned(InputOpNo, Pieces) && 478 InputExpr->isEvaluatable(Context)) { 479 CastKind castKind = 480 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 481 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 482 Exprs[InputOpNo] = InputExpr; 483 NS->setInputExpr(i, InputExpr); 484 continue; 485 } 486 487 Diag(InputExpr->getLocStart(), 488 diag::err_asm_tying_incompatible_types) 489 << InTy << OutTy << OutputExpr->getSourceRange() 490 << InputExpr->getSourceRange(); 491 return StmtError(); 492 } 493 494 return NS; 495} 496 497ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 498 SourceLocation TemplateKWLoc, 499 UnqualifiedId &Id, 500 llvm::InlineAsmIdentifierInfo &Info, 501 bool IsUnevaluatedContext) { 502 Info.clear(); 503 504 if (IsUnevaluatedContext) 505 PushExpressionEvaluationContext(UnevaluatedAbstract, 506 ReuseLambdaContextDecl); 507 508 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 509 /*trailing lparen*/ false, 510 /*is & operand*/ false, 511 /*CorrectionCandidateCallback=*/nullptr, 512 /*IsInlineAsmIdentifier=*/ true); 513 514 if (IsUnevaluatedContext) 515 PopExpressionEvaluationContext(); 516 517 if (!Result.isUsable()) return Result; 518 519 Result = CheckPlaceholderExpr(Result.get()); 520 if (!Result.isUsable()) return Result; 521 522 // Referring to parameters is not allowed in naked functions. 523 if (CheckNakedParmReference(Result.get(), *this)) 524 return ExprError(); 525 526 QualType T = Result.get()->getType(); 527 528 // For now, reject dependent types. 529 if (T->isDependentType()) { 530 Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T; 531 return ExprError(); 532 } 533 534 // Any sort of function type is fine. 535 if (T->isFunctionType()) { 536 return Result; 537 } 538 539 // Otherwise, it needs to be a complete type. 540 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 541 return ExprError(); 542 } 543 544 // Compute the type size (and array length if applicable?). 545 Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity(); 546 if (T->isArrayType()) { 547 const ArrayType *ATy = Context.getAsArrayType(T); 548 Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 549 Info.Length = Info.Size / Info.Type; 550 } 551 552 // We can work with the expression as long as it's not an r-value. 553 if (!Result.get()->isRValue()) 554 Info.IsVarDecl = true; 555 556 return Result; 557} 558 559bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 560 unsigned &Offset, SourceLocation AsmLoc) { 561 Offset = 0; 562 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 563 LookupOrdinaryName); 564 565 if (!LookupName(BaseResult, getCurScope())) 566 return true; 567 568 if (!BaseResult.isSingleResult()) 569 return true; 570 571 const RecordType *RT = nullptr; 572 NamedDecl *FoundDecl = BaseResult.getFoundDecl(); 573 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 574 RT = VD->getType()->getAs<RecordType>(); 575 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 576 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 577 RT = TD->getUnderlyingType()->getAs<RecordType>(); 578 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 579 RT = TD->getTypeForDecl()->getAs<RecordType>(); 580 if (!RT) 581 return true; 582 583 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0)) 584 return true; 585 586 LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(), 587 LookupMemberName); 588 589 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 590 return true; 591 592 // FIXME: Handle IndirectFieldDecl? 593 FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 594 if (!FD) 595 return true; 596 597 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 598 unsigned i = FD->getFieldIndex(); 599 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 600 Offset = (unsigned)Result.getQuantity(); 601 602 return false; 603} 604 605StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 606 ArrayRef<Token> AsmToks, 607 StringRef AsmString, 608 unsigned NumOutputs, unsigned NumInputs, 609 ArrayRef<StringRef> Constraints, 610 ArrayRef<StringRef> Clobbers, 611 ArrayRef<Expr*> Exprs, 612 SourceLocation EndLoc) { 613 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 614 getCurFunction()->setHasBranchProtectedScope(); 615 MSAsmStmt *NS = 616 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 617 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 618 Constraints, Exprs, AsmString, 619 Clobbers, EndLoc); 620 return NS; 621} 622 623LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 624 SourceLocation Location, 625 bool AlwaysCreate) { 626 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 627 Location); 628 629 if (Label->isMSAsmLabel()) { 630 // If we have previously created this label implicitly, mark it as used. 631 Label->markUsed(Context); 632 } else { 633 // Otherwise, insert it, but only resolve it if we have seen the label itself. 634 std::string InternalName; 635 llvm::raw_string_ostream OS(InternalName); 636 // Create an internal name for the label. The name should not be a valid mangled 637 // name, and should be unique. We use a dot to make the name an invalid mangled 638 // name. 639 OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName; 640 Label->setMSAsmLabel(OS.str()); 641 } 642 if (AlwaysCreate) { 643 // The label might have been created implicitly from a previously encountered 644 // goto statement. So, for both newly created and looked up labels, we mark 645 // them as resolved. 646 Label->setMSAsmLabelResolved(); 647 } 648 // Adjust their location for being able to generate accurate diagnostics. 649 Label->setLocation(Location); 650 651 return Label; 652} 653