1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/TemplateDeduction.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/Sema.h"
24#include "clang/Sema/Template.h"
25#include "llvm/ADT/SmallBitVector.h"
26#include <algorithm>
27
28namespace clang {
29  using namespace sema;
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08,
53    /// \brief Whether we are performing template argument deduction for
54    /// parameters and arguments in a top-level template argument
55    TDF_TopLevelParameterTypeList = 0x10,
56    /// \brief Within template argument deduction from overload resolution per
57    /// C++ [over.over] allow matching function types that are compatible in
58    /// terms of noreturn and default calling convention adjustments.
59    TDF_InOverloadResolution = 0x20
60  };
61}
62
63using namespace clang;
64
65/// \brief Compare two APSInts, extending and switching the sign as
66/// necessary to compare their values regardless of underlying type.
67static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68  if (Y.getBitWidth() > X.getBitWidth())
69    X = X.extend(Y.getBitWidth());
70  else if (Y.getBitWidth() < X.getBitWidth())
71    Y = Y.extend(X.getBitWidth());
72
73  // If there is a signedness mismatch, correct it.
74  if (X.isSigned() != Y.isSigned()) {
75    // If the signed value is negative, then the values cannot be the same.
76    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77      return false;
78
79    Y.setIsSigned(true);
80    X.setIsSigned(true);
81  }
82
83  return X == Y;
84}
85
86static Sema::TemplateDeductionResult
87DeduceTemplateArguments(Sema &S,
88                        TemplateParameterList *TemplateParams,
89                        const TemplateArgument &Param,
90                        TemplateArgument Arg,
91                        TemplateDeductionInfo &Info,
92                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93
94static Sema::TemplateDeductionResult
95DeduceTemplateArgumentsByTypeMatch(Sema &S,
96                                   TemplateParameterList *TemplateParams,
97                                   QualType Param,
98                                   QualType Arg,
99                                   TemplateDeductionInfo &Info,
100                                   SmallVectorImpl<DeducedTemplateArgument> &
101                                                      Deduced,
102                                   unsigned TDF,
103                                   bool PartialOrdering = false);
104
105static Sema::TemplateDeductionResult
106DeduceTemplateArguments(Sema &S,
107                        TemplateParameterList *TemplateParams,
108                        const TemplateArgument *Params, unsigned NumParams,
109                        const TemplateArgument *Args, unsigned NumArgs,
110                        TemplateDeductionInfo &Info,
111                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);
112
113/// \brief If the given expression is of a form that permits the deduction
114/// of a non-type template parameter, return the declaration of that
115/// non-type template parameter.
116static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
117  // If we are within an alias template, the expression may have undergone
118  // any number of parameter substitutions already.
119  while (1) {
120    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
121      E = IC->getSubExpr();
122    else if (SubstNonTypeTemplateParmExpr *Subst =
123               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
124      E = Subst->getReplacement();
125    else
126      break;
127  }
128
129  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
130    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
131
132  return nullptr;
133}
134
135/// \brief Determine whether two declaration pointers refer to the same
136/// declaration.
137static bool isSameDeclaration(Decl *X, Decl *Y) {
138  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
139    X = NX->getUnderlyingDecl();
140  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
141    Y = NY->getUnderlyingDecl();
142
143  return X->getCanonicalDecl() == Y->getCanonicalDecl();
144}
145
146/// \brief Verify that the given, deduced template arguments are compatible.
147///
148/// \returns The deduced template argument, or a NULL template argument if
149/// the deduced template arguments were incompatible.
150static DeducedTemplateArgument
151checkDeducedTemplateArguments(ASTContext &Context,
152                              const DeducedTemplateArgument &X,
153                              const DeducedTemplateArgument &Y) {
154  // We have no deduction for one or both of the arguments; they're compatible.
155  if (X.isNull())
156    return Y;
157  if (Y.isNull())
158    return X;
159
160  switch (X.getKind()) {
161  case TemplateArgument::Null:
162    llvm_unreachable("Non-deduced template arguments handled above");
163
164  case TemplateArgument::Type:
165    // If two template type arguments have the same type, they're compatible.
166    if (Y.getKind() == TemplateArgument::Type &&
167        Context.hasSameType(X.getAsType(), Y.getAsType()))
168      return X;
169
170    return DeducedTemplateArgument();
171
172  case TemplateArgument::Integral:
173    // If we deduced a constant in one case and either a dependent expression or
174    // declaration in another case, keep the integral constant.
175    // If both are integral constants with the same value, keep that value.
176    if (Y.getKind() == TemplateArgument::Expression ||
177        Y.getKind() == TemplateArgument::Declaration ||
178        (Y.getKind() == TemplateArgument::Integral &&
179         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
180      return DeducedTemplateArgument(X,
181                                     X.wasDeducedFromArrayBound() &&
182                                     Y.wasDeducedFromArrayBound());
183
184    // All other combinations are incompatible.
185    return DeducedTemplateArgument();
186
187  case TemplateArgument::Template:
188    if (Y.getKind() == TemplateArgument::Template &&
189        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
190      return X;
191
192    // All other combinations are incompatible.
193    return DeducedTemplateArgument();
194
195  case TemplateArgument::TemplateExpansion:
196    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
197        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
198                                    Y.getAsTemplateOrTemplatePattern()))
199      return X;
200
201    // All other combinations are incompatible.
202    return DeducedTemplateArgument();
203
204  case TemplateArgument::Expression:
205    // If we deduced a dependent expression in one case and either an integral
206    // constant or a declaration in another case, keep the integral constant
207    // or declaration.
208    if (Y.getKind() == TemplateArgument::Integral ||
209        Y.getKind() == TemplateArgument::Declaration)
210      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
211                                     Y.wasDeducedFromArrayBound());
212
213    if (Y.getKind() == TemplateArgument::Expression) {
214      // Compare the expressions for equality
215      llvm::FoldingSetNodeID ID1, ID2;
216      X.getAsExpr()->Profile(ID1, Context, true);
217      Y.getAsExpr()->Profile(ID2, Context, true);
218      if (ID1 == ID2)
219        return X;
220    }
221
222    // All other combinations are incompatible.
223    return DeducedTemplateArgument();
224
225  case TemplateArgument::Declaration:
226    // If we deduced a declaration and a dependent expression, keep the
227    // declaration.
228    if (Y.getKind() == TemplateArgument::Expression)
229      return X;
230
231    // If we deduced a declaration and an integral constant, keep the
232    // integral constant.
233    if (Y.getKind() == TemplateArgument::Integral)
234      return Y;
235
236    // If we deduced two declarations, make sure they they refer to the
237    // same declaration.
238    if (Y.getKind() == TemplateArgument::Declaration &&
239        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
240      return X;
241
242    // All other combinations are incompatible.
243    return DeducedTemplateArgument();
244
245  case TemplateArgument::NullPtr:
246    // If we deduced a null pointer and a dependent expression, keep the
247    // null pointer.
248    if (Y.getKind() == TemplateArgument::Expression)
249      return X;
250
251    // If we deduced a null pointer and an integral constant, keep the
252    // integral constant.
253    if (Y.getKind() == TemplateArgument::Integral)
254      return Y;
255
256    // If we deduced two null pointers, make sure they have the same type.
257    if (Y.getKind() == TemplateArgument::NullPtr &&
258        Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
259      return X;
260
261    // All other combinations are incompatible.
262    return DeducedTemplateArgument();
263
264  case TemplateArgument::Pack:
265    if (Y.getKind() != TemplateArgument::Pack ||
266        X.pack_size() != Y.pack_size())
267      return DeducedTemplateArgument();
268
269    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
270                                      XAEnd = X.pack_end(),
271                                         YA = Y.pack_begin();
272         XA != XAEnd; ++XA, ++YA) {
273      // FIXME: Do we need to merge the results together here?
274      if (checkDeducedTemplateArguments(Context,
275                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
276                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
277            .isNull())
278        return DeducedTemplateArgument();
279    }
280
281    return X;
282  }
283
284  llvm_unreachable("Invalid TemplateArgument Kind!");
285}
286
287/// \brief Deduce the value of the given non-type template parameter
288/// from the given constant.
289static Sema::TemplateDeductionResult
290DeduceNonTypeTemplateArgument(Sema &S,
291                              NonTypeTemplateParmDecl *NTTP,
292                              llvm::APSInt Value, QualType ValueType,
293                              bool DeducedFromArrayBound,
294                              TemplateDeductionInfo &Info,
295                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
296  assert(NTTP->getDepth() == 0 &&
297         "Cannot deduce non-type template argument with depth > 0");
298
299  DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
300                                     DeducedFromArrayBound);
301  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
302                                                     Deduced[NTTP->getIndex()],
303                                                                 NewDeduced);
304  if (Result.isNull()) {
305    Info.Param = NTTP;
306    Info.FirstArg = Deduced[NTTP->getIndex()];
307    Info.SecondArg = NewDeduced;
308    return Sema::TDK_Inconsistent;
309  }
310
311  Deduced[NTTP->getIndex()] = Result;
312  return Sema::TDK_Success;
313}
314
315/// \brief Deduce the value of the given non-type template parameter
316/// from the given type- or value-dependent expression.
317///
318/// \returns true if deduction succeeded, false otherwise.
319static Sema::TemplateDeductionResult
320DeduceNonTypeTemplateArgument(Sema &S,
321                              NonTypeTemplateParmDecl *NTTP,
322                              Expr *Value,
323                              TemplateDeductionInfo &Info,
324                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
325  assert(NTTP->getDepth() == 0 &&
326         "Cannot deduce non-type template argument with depth > 0");
327  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
328         "Expression template argument must be type- or value-dependent.");
329
330  DeducedTemplateArgument NewDeduced(Value);
331  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
332                                                     Deduced[NTTP->getIndex()],
333                                                                 NewDeduced);
334
335  if (Result.isNull()) {
336    Info.Param = NTTP;
337    Info.FirstArg = Deduced[NTTP->getIndex()];
338    Info.SecondArg = NewDeduced;
339    return Sema::TDK_Inconsistent;
340  }
341
342  Deduced[NTTP->getIndex()] = Result;
343  return Sema::TDK_Success;
344}
345
346/// \brief Deduce the value of the given non-type template parameter
347/// from the given declaration.
348///
349/// \returns true if deduction succeeded, false otherwise.
350static Sema::TemplateDeductionResult
351DeduceNonTypeTemplateArgument(Sema &S,
352                            NonTypeTemplateParmDecl *NTTP,
353                            ValueDecl *D,
354                            TemplateDeductionInfo &Info,
355                            SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
356  assert(NTTP->getDepth() == 0 &&
357         "Cannot deduce non-type template argument with depth > 0");
358
359  D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
360  TemplateArgument New(D, NTTP->getType());
361  DeducedTemplateArgument NewDeduced(New);
362  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
363                                                     Deduced[NTTP->getIndex()],
364                                                                 NewDeduced);
365  if (Result.isNull()) {
366    Info.Param = NTTP;
367    Info.FirstArg = Deduced[NTTP->getIndex()];
368    Info.SecondArg = NewDeduced;
369    return Sema::TDK_Inconsistent;
370  }
371
372  Deduced[NTTP->getIndex()] = Result;
373  return Sema::TDK_Success;
374}
375
376static Sema::TemplateDeductionResult
377DeduceTemplateArguments(Sema &S,
378                        TemplateParameterList *TemplateParams,
379                        TemplateName Param,
380                        TemplateName Arg,
381                        TemplateDeductionInfo &Info,
382                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
383  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
384  if (!ParamDecl) {
385    // The parameter type is dependent and is not a template template parameter,
386    // so there is nothing that we can deduce.
387    return Sema::TDK_Success;
388  }
389
390  if (TemplateTemplateParmDecl *TempParam
391        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
392    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
393    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
394                                                 Deduced[TempParam->getIndex()],
395                                                                   NewDeduced);
396    if (Result.isNull()) {
397      Info.Param = TempParam;
398      Info.FirstArg = Deduced[TempParam->getIndex()];
399      Info.SecondArg = NewDeduced;
400      return Sema::TDK_Inconsistent;
401    }
402
403    Deduced[TempParam->getIndex()] = Result;
404    return Sema::TDK_Success;
405  }
406
407  // Verify that the two template names are equivalent.
408  if (S.Context.hasSameTemplateName(Param, Arg))
409    return Sema::TDK_Success;
410
411  // Mismatch of non-dependent template parameter to argument.
412  Info.FirstArg = TemplateArgument(Param);
413  Info.SecondArg = TemplateArgument(Arg);
414  return Sema::TDK_NonDeducedMismatch;
415}
416
417/// \brief Deduce the template arguments by comparing the template parameter
418/// type (which is a template-id) with the template argument type.
419///
420/// \param S the Sema
421///
422/// \param TemplateParams the template parameters that we are deducing
423///
424/// \param Param the parameter type
425///
426/// \param Arg the argument type
427///
428/// \param Info information about the template argument deduction itself
429///
430/// \param Deduced the deduced template arguments
431///
432/// \returns the result of template argument deduction so far. Note that a
433/// "success" result means that template argument deduction has not yet failed,
434/// but it may still fail, later, for other reasons.
435static Sema::TemplateDeductionResult
436DeduceTemplateArguments(Sema &S,
437                        TemplateParameterList *TemplateParams,
438                        const TemplateSpecializationType *Param,
439                        QualType Arg,
440                        TemplateDeductionInfo &Info,
441                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
442  assert(Arg.isCanonical() && "Argument type must be canonical");
443
444  // Check whether the template argument is a dependent template-id.
445  if (const TemplateSpecializationType *SpecArg
446        = dyn_cast<TemplateSpecializationType>(Arg)) {
447    // Perform template argument deduction for the template name.
448    if (Sema::TemplateDeductionResult Result
449          = DeduceTemplateArguments(S, TemplateParams,
450                                    Param->getTemplateName(),
451                                    SpecArg->getTemplateName(),
452                                    Info, Deduced))
453      return Result;
454
455
456    // Perform template argument deduction on each template
457    // argument. Ignore any missing/extra arguments, since they could be
458    // filled in by default arguments.
459    return DeduceTemplateArguments(S, TemplateParams,
460                                   Param->getArgs(), Param->getNumArgs(),
461                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
462                                   Info, Deduced);
463  }
464
465  // If the argument type is a class template specialization, we
466  // perform template argument deduction using its template
467  // arguments.
468  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
469  if (!RecordArg) {
470    Info.FirstArg = TemplateArgument(QualType(Param, 0));
471    Info.SecondArg = TemplateArgument(Arg);
472    return Sema::TDK_NonDeducedMismatch;
473  }
474
475  ClassTemplateSpecializationDecl *SpecArg
476    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
477  if (!SpecArg) {
478    Info.FirstArg = TemplateArgument(QualType(Param, 0));
479    Info.SecondArg = TemplateArgument(Arg);
480    return Sema::TDK_NonDeducedMismatch;
481  }
482
483  // Perform template argument deduction for the template name.
484  if (Sema::TemplateDeductionResult Result
485        = DeduceTemplateArguments(S,
486                                  TemplateParams,
487                                  Param->getTemplateName(),
488                               TemplateName(SpecArg->getSpecializedTemplate()),
489                                  Info, Deduced))
490    return Result;
491
492  // Perform template argument deduction for the template arguments.
493  return DeduceTemplateArguments(S, TemplateParams,
494                                 Param->getArgs(), Param->getNumArgs(),
495                                 SpecArg->getTemplateArgs().data(),
496                                 SpecArg->getTemplateArgs().size(),
497                                 Info, Deduced);
498}
499
500/// \brief Determines whether the given type is an opaque type that
501/// might be more qualified when instantiated.
502static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
503  switch (T->getTypeClass()) {
504  case Type::TypeOfExpr:
505  case Type::TypeOf:
506  case Type::DependentName:
507  case Type::Decltype:
508  case Type::UnresolvedUsing:
509  case Type::TemplateTypeParm:
510    return true;
511
512  case Type::ConstantArray:
513  case Type::IncompleteArray:
514  case Type::VariableArray:
515  case Type::DependentSizedArray:
516    return IsPossiblyOpaquelyQualifiedType(
517                                      cast<ArrayType>(T)->getElementType());
518
519  default:
520    return false;
521  }
522}
523
524/// \brief Retrieve the depth and index of a template parameter.
525static std::pair<unsigned, unsigned>
526getDepthAndIndex(NamedDecl *ND) {
527  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
528    return std::make_pair(TTP->getDepth(), TTP->getIndex());
529
530  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
531    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
532
533  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
534  return std::make_pair(TTP->getDepth(), TTP->getIndex());
535}
536
537/// \brief Retrieve the depth and index of an unexpanded parameter pack.
538static std::pair<unsigned, unsigned>
539getDepthAndIndex(UnexpandedParameterPack UPP) {
540  if (const TemplateTypeParmType *TTP
541                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
542    return std::make_pair(TTP->getDepth(), TTP->getIndex());
543
544  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
545}
546
547/// \brief Helper function to build a TemplateParameter when we don't
548/// know its type statically.
549static TemplateParameter makeTemplateParameter(Decl *D) {
550  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
551    return TemplateParameter(TTP);
552  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
553    return TemplateParameter(NTTP);
554
555  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
556}
557
558/// A pack that we're currently deducing.
559struct clang::DeducedPack {
560  DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
561
562  // The index of the pack.
563  unsigned Index;
564
565  // The old value of the pack before we started deducing it.
566  DeducedTemplateArgument Saved;
567
568  // A deferred value of this pack from an inner deduction, that couldn't be
569  // deduced because this deduction hadn't happened yet.
570  DeducedTemplateArgument DeferredDeduction;
571
572  // The new value of the pack.
573  SmallVector<DeducedTemplateArgument, 4> New;
574
575  // The outer deduction for this pack, if any.
576  DeducedPack *Outer;
577};
578
579namespace {
580/// A scope in which we're performing pack deduction.
581class PackDeductionScope {
582public:
583  PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
584                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
585                     TemplateDeductionInfo &Info, TemplateArgument Pattern)
586      : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
587    // Compute the set of template parameter indices that correspond to
588    // parameter packs expanded by the pack expansion.
589    {
590      llvm::SmallBitVector SawIndices(TemplateParams->size());
591      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
592      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
593      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
594        unsigned Depth, Index;
595        std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
596        if (Depth == 0 && !SawIndices[Index]) {
597          SawIndices[Index] = true;
598
599          // Save the deduced template argument for the parameter pack expanded
600          // by this pack expansion, then clear out the deduction.
601          DeducedPack Pack(Index);
602          Pack.Saved = Deduced[Index];
603          Deduced[Index] = TemplateArgument();
604
605          Packs.push_back(Pack);
606        }
607      }
608    }
609    assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
610
611    for (auto &Pack : Packs) {
612      if (Info.PendingDeducedPacks.size() > Pack.Index)
613        Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
614      else
615        Info.PendingDeducedPacks.resize(Pack.Index + 1);
616      Info.PendingDeducedPacks[Pack.Index] = &Pack;
617
618      if (S.CurrentInstantiationScope) {
619        // If the template argument pack was explicitly specified, add that to
620        // the set of deduced arguments.
621        const TemplateArgument *ExplicitArgs;
622        unsigned NumExplicitArgs;
623        NamedDecl *PartiallySubstitutedPack =
624            S.CurrentInstantiationScope->getPartiallySubstitutedPack(
625                &ExplicitArgs, &NumExplicitArgs);
626        if (PartiallySubstitutedPack &&
627            getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
628          Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
629      }
630    }
631  }
632
633  ~PackDeductionScope() {
634    for (auto &Pack : Packs)
635      Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
636  }
637
638  /// Move to deducing the next element in each pack that is being deduced.
639  void nextPackElement() {
640    // Capture the deduced template arguments for each parameter pack expanded
641    // by this pack expansion, add them to the list of arguments we've deduced
642    // for that pack, then clear out the deduced argument.
643    for (auto &Pack : Packs) {
644      DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
645      if (!DeducedArg.isNull()) {
646        Pack.New.push_back(DeducedArg);
647        DeducedArg = DeducedTemplateArgument();
648      }
649    }
650  }
651
652  /// \brief Finish template argument deduction for a set of argument packs,
653  /// producing the argument packs and checking for consistency with prior
654  /// deductions.
655  Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
656    // Build argument packs for each of the parameter packs expanded by this
657    // pack expansion.
658    for (auto &Pack : Packs) {
659      // Put back the old value for this pack.
660      Deduced[Pack.Index] = Pack.Saved;
661
662      // Build or find a new value for this pack.
663      DeducedTemplateArgument NewPack;
664      if (HasAnyArguments && Pack.New.empty()) {
665        if (Pack.DeferredDeduction.isNull()) {
666          // We were not able to deduce anything for this parameter pack
667          // (because it only appeared in non-deduced contexts), so just
668          // restore the saved argument pack.
669          continue;
670        }
671
672        NewPack = Pack.DeferredDeduction;
673        Pack.DeferredDeduction = TemplateArgument();
674      } else if (Pack.New.empty()) {
675        // If we deduced an empty argument pack, create it now.
676        NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
677      } else {
678        TemplateArgument *ArgumentPack =
679            new (S.Context) TemplateArgument[Pack.New.size()];
680        std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
681        NewPack = DeducedTemplateArgument(
682            TemplateArgument(ArgumentPack, Pack.New.size()),
683            Pack.New[0].wasDeducedFromArrayBound());
684      }
685
686      // Pick where we're going to put the merged pack.
687      DeducedTemplateArgument *Loc;
688      if (Pack.Outer) {
689        if (Pack.Outer->DeferredDeduction.isNull()) {
690          // Defer checking this pack until we have a complete pack to compare
691          // it against.
692          Pack.Outer->DeferredDeduction = NewPack;
693          continue;
694        }
695        Loc = &Pack.Outer->DeferredDeduction;
696      } else {
697        Loc = &Deduced[Pack.Index];
698      }
699
700      // Check the new pack matches any previous value.
701      DeducedTemplateArgument OldPack = *Loc;
702      DeducedTemplateArgument Result =
703          checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
704
705      // If we deferred a deduction of this pack, check that one now too.
706      if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
707        OldPack = Result;
708        NewPack = Pack.DeferredDeduction;
709        Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
710      }
711
712      if (Result.isNull()) {
713        Info.Param =
714            makeTemplateParameter(TemplateParams->getParam(Pack.Index));
715        Info.FirstArg = OldPack;
716        Info.SecondArg = NewPack;
717        return Sema::TDK_Inconsistent;
718      }
719
720      *Loc = Result;
721    }
722
723    return Sema::TDK_Success;
724  }
725
726private:
727  Sema &S;
728  TemplateParameterList *TemplateParams;
729  SmallVectorImpl<DeducedTemplateArgument> &Deduced;
730  TemplateDeductionInfo &Info;
731
732  SmallVector<DeducedPack, 2> Packs;
733};
734} // namespace
735
736/// \brief Deduce the template arguments by comparing the list of parameter
737/// types to the list of argument types, as in the parameter-type-lists of
738/// function types (C++ [temp.deduct.type]p10).
739///
740/// \param S The semantic analysis object within which we are deducing
741///
742/// \param TemplateParams The template parameters that we are deducing
743///
744/// \param Params The list of parameter types
745///
746/// \param NumParams The number of types in \c Params
747///
748/// \param Args The list of argument types
749///
750/// \param NumArgs The number of types in \c Args
751///
752/// \param Info information about the template argument deduction itself
753///
754/// \param Deduced the deduced template arguments
755///
756/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
757/// how template argument deduction is performed.
758///
759/// \param PartialOrdering If true, we are performing template argument
760/// deduction for during partial ordering for a call
761/// (C++0x [temp.deduct.partial]).
762///
763/// \returns the result of template argument deduction so far. Note that a
764/// "success" result means that template argument deduction has not yet failed,
765/// but it may still fail, later, for other reasons.
766static Sema::TemplateDeductionResult
767DeduceTemplateArguments(Sema &S,
768                        TemplateParameterList *TemplateParams,
769                        const QualType *Params, unsigned NumParams,
770                        const QualType *Args, unsigned NumArgs,
771                        TemplateDeductionInfo &Info,
772                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
773                        unsigned TDF,
774                        bool PartialOrdering = false) {
775  // Fast-path check to see if we have too many/too few arguments.
776  if (NumParams != NumArgs &&
777      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
778      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
779    return Sema::TDK_MiscellaneousDeductionFailure;
780
781  // C++0x [temp.deduct.type]p10:
782  //   Similarly, if P has a form that contains (T), then each parameter type
783  //   Pi of the respective parameter-type- list of P is compared with the
784  //   corresponding parameter type Ai of the corresponding parameter-type-list
785  //   of A. [...]
786  unsigned ArgIdx = 0, ParamIdx = 0;
787  for (; ParamIdx != NumParams; ++ParamIdx) {
788    // Check argument types.
789    const PackExpansionType *Expansion
790                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
791    if (!Expansion) {
792      // Simple case: compare the parameter and argument types at this point.
793
794      // Make sure we have an argument.
795      if (ArgIdx >= NumArgs)
796        return Sema::TDK_MiscellaneousDeductionFailure;
797
798      if (isa<PackExpansionType>(Args[ArgIdx])) {
799        // C++0x [temp.deduct.type]p22:
800        //   If the original function parameter associated with A is a function
801        //   parameter pack and the function parameter associated with P is not
802        //   a function parameter pack, then template argument deduction fails.
803        return Sema::TDK_MiscellaneousDeductionFailure;
804      }
805
806      if (Sema::TemplateDeductionResult Result
807            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
808                                                 Params[ParamIdx], Args[ArgIdx],
809                                                 Info, Deduced, TDF,
810                                                 PartialOrdering))
811        return Result;
812
813      ++ArgIdx;
814      continue;
815    }
816
817    // C++0x [temp.deduct.type]p5:
818    //   The non-deduced contexts are:
819    //     - A function parameter pack that does not occur at the end of the
820    //       parameter-declaration-clause.
821    if (ParamIdx + 1 < NumParams)
822      return Sema::TDK_Success;
823
824    // C++0x [temp.deduct.type]p10:
825    //   If the parameter-declaration corresponding to Pi is a function
826    //   parameter pack, then the type of its declarator- id is compared with
827    //   each remaining parameter type in the parameter-type-list of A. Each
828    //   comparison deduces template arguments for subsequent positions in the
829    //   template parameter packs expanded by the function parameter pack.
830
831    QualType Pattern = Expansion->getPattern();
832    PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
833
834    bool HasAnyArguments = false;
835    for (; ArgIdx < NumArgs; ++ArgIdx) {
836      HasAnyArguments = true;
837
838      // Deduce template arguments from the pattern.
839      if (Sema::TemplateDeductionResult Result
840            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
841                                                 Args[ArgIdx], Info, Deduced,
842                                                 TDF, PartialOrdering))
843        return Result;
844
845      PackScope.nextPackElement();
846    }
847
848    // Build argument packs for each of the parameter packs expanded by this
849    // pack expansion.
850    if (auto Result = PackScope.finish(HasAnyArguments))
851      return Result;
852  }
853
854  // Make sure we don't have any extra arguments.
855  if (ArgIdx < NumArgs)
856    return Sema::TDK_MiscellaneousDeductionFailure;
857
858  return Sema::TDK_Success;
859}
860
861/// \brief Determine whether the parameter has qualifiers that are either
862/// inconsistent with or a superset of the argument's qualifiers.
863static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
864                                                  QualType ArgType) {
865  Qualifiers ParamQs = ParamType.getQualifiers();
866  Qualifiers ArgQs = ArgType.getQualifiers();
867
868  if (ParamQs == ArgQs)
869    return false;
870
871  // Mismatched (but not missing) Objective-C GC attributes.
872  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
873      ParamQs.hasObjCGCAttr())
874    return true;
875
876  // Mismatched (but not missing) address spaces.
877  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
878      ParamQs.hasAddressSpace())
879    return true;
880
881  // Mismatched (but not missing) Objective-C lifetime qualifiers.
882  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
883      ParamQs.hasObjCLifetime())
884    return true;
885
886  // CVR qualifier superset.
887  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
888      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
889                                                == ParamQs.getCVRQualifiers());
890}
891
892/// \brief Compare types for equality with respect to possibly compatible
893/// function types (noreturn adjustment, implicit calling conventions). If any
894/// of parameter and argument is not a function, just perform type comparison.
895///
896/// \param Param the template parameter type.
897///
898/// \param Arg the argument type.
899bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
900                                          CanQualType Arg) {
901  const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
902                     *ArgFunction   = Arg->getAs<FunctionType>();
903
904  // Just compare if not functions.
905  if (!ParamFunction || !ArgFunction)
906    return Param == Arg;
907
908  // Noreturn adjustment.
909  QualType AdjustedParam;
910  if (IsNoReturnConversion(Param, Arg, AdjustedParam))
911    return Arg == Context.getCanonicalType(AdjustedParam);
912
913  // FIXME: Compatible calling conventions.
914
915  return Param == Arg;
916}
917
918/// \brief Deduce the template arguments by comparing the parameter type and
919/// the argument type (C++ [temp.deduct.type]).
920///
921/// \param S the semantic analysis object within which we are deducing
922///
923/// \param TemplateParams the template parameters that we are deducing
924///
925/// \param ParamIn the parameter type
926///
927/// \param ArgIn the argument type
928///
929/// \param Info information about the template argument deduction itself
930///
931/// \param Deduced the deduced template arguments
932///
933/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
934/// how template argument deduction is performed.
935///
936/// \param PartialOrdering Whether we're performing template argument deduction
937/// in the context of partial ordering (C++0x [temp.deduct.partial]).
938///
939/// \returns the result of template argument deduction so far. Note that a
940/// "success" result means that template argument deduction has not yet failed,
941/// but it may still fail, later, for other reasons.
942static Sema::TemplateDeductionResult
943DeduceTemplateArgumentsByTypeMatch(Sema &S,
944                                   TemplateParameterList *TemplateParams,
945                                   QualType ParamIn, QualType ArgIn,
946                                   TemplateDeductionInfo &Info,
947                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
948                                   unsigned TDF,
949                                   bool PartialOrdering) {
950  // We only want to look at the canonical types, since typedefs and
951  // sugar are not part of template argument deduction.
952  QualType Param = S.Context.getCanonicalType(ParamIn);
953  QualType Arg = S.Context.getCanonicalType(ArgIn);
954
955  // If the argument type is a pack expansion, look at its pattern.
956  // This isn't explicitly called out
957  if (const PackExpansionType *ArgExpansion
958                                            = dyn_cast<PackExpansionType>(Arg))
959    Arg = ArgExpansion->getPattern();
960
961  if (PartialOrdering) {
962    // C++11 [temp.deduct.partial]p5:
963    //   Before the partial ordering is done, certain transformations are
964    //   performed on the types used for partial ordering:
965    //     - If P is a reference type, P is replaced by the type referred to.
966    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
967    if (ParamRef)
968      Param = ParamRef->getPointeeType();
969
970    //     - If A is a reference type, A is replaced by the type referred to.
971    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
972    if (ArgRef)
973      Arg = ArgRef->getPointeeType();
974
975    if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
976      // C++11 [temp.deduct.partial]p9:
977      //   If, for a given type, deduction succeeds in both directions (i.e.,
978      //   the types are identical after the transformations above) and both
979      //   P and A were reference types [...]:
980      //     - if [one type] was an lvalue reference and [the other type] was
981      //       not, [the other type] is not considered to be at least as
982      //       specialized as [the first type]
983      //     - if [one type] is more cv-qualified than [the other type],
984      //       [the other type] is not considered to be at least as specialized
985      //       as [the first type]
986      // Objective-C ARC adds:
987      //     - [one type] has non-trivial lifetime, [the other type] has
988      //       __unsafe_unretained lifetime, and the types are otherwise
989      //       identical
990      //
991      // A is "considered to be at least as specialized" as P iff deduction
992      // succeeds, so we model this as a deduction failure. Note that
993      // [the first type] is P and [the other type] is A here; the standard
994      // gets this backwards.
995      Qualifiers ParamQuals = Param.getQualifiers();
996      Qualifiers ArgQuals = Arg.getQualifiers();
997      if ((ParamRef->isLValueReferenceType() &&
998           !ArgRef->isLValueReferenceType()) ||
999          ParamQuals.isStrictSupersetOf(ArgQuals) ||
1000          (ParamQuals.hasNonTrivialObjCLifetime() &&
1001           ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1002           ParamQuals.withoutObjCLifetime() ==
1003               ArgQuals.withoutObjCLifetime())) {
1004        Info.FirstArg = TemplateArgument(ParamIn);
1005        Info.SecondArg = TemplateArgument(ArgIn);
1006        return Sema::TDK_NonDeducedMismatch;
1007      }
1008    }
1009
1010    // C++11 [temp.deduct.partial]p7:
1011    //   Remove any top-level cv-qualifiers:
1012    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1013    //       version of P.
1014    Param = Param.getUnqualifiedType();
1015    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1016    //       version of A.
1017    Arg = Arg.getUnqualifiedType();
1018  } else {
1019    // C++0x [temp.deduct.call]p4 bullet 1:
1020    //   - If the original P is a reference type, the deduced A (i.e., the type
1021    //     referred to by the reference) can be more cv-qualified than the
1022    //     transformed A.
1023    if (TDF & TDF_ParamWithReferenceType) {
1024      Qualifiers Quals;
1025      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1026      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1027                             Arg.getCVRQualifiers());
1028      Param = S.Context.getQualifiedType(UnqualParam, Quals);
1029    }
1030
1031    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1032      // C++0x [temp.deduct.type]p10:
1033      //   If P and A are function types that originated from deduction when
1034      //   taking the address of a function template (14.8.2.2) or when deducing
1035      //   template arguments from a function declaration (14.8.2.6) and Pi and
1036      //   Ai are parameters of the top-level parameter-type-list of P and A,
1037      //   respectively, Pi is adjusted if it is an rvalue reference to a
1038      //   cv-unqualified template parameter and Ai is an lvalue reference, in
1039      //   which case the type of Pi is changed to be the template parameter
1040      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1041      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1042      //   deduced as X&. - end note ]
1043      TDF &= ~TDF_TopLevelParameterTypeList;
1044
1045      if (const RValueReferenceType *ParamRef
1046                                        = Param->getAs<RValueReferenceType>()) {
1047        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1048            !ParamRef->getPointeeType().getQualifiers())
1049          if (Arg->isLValueReferenceType())
1050            Param = ParamRef->getPointeeType();
1051      }
1052    }
1053  }
1054
1055  // C++ [temp.deduct.type]p9:
1056  //   A template type argument T, a template template argument TT or a
1057  //   template non-type argument i can be deduced if P and A have one of
1058  //   the following forms:
1059  //
1060  //     T
1061  //     cv-list T
1062  if (const TemplateTypeParmType *TemplateTypeParm
1063        = Param->getAs<TemplateTypeParmType>()) {
1064    // Just skip any attempts to deduce from a placeholder type.
1065    if (Arg->isPlaceholderType())
1066      return Sema::TDK_Success;
1067
1068    unsigned Index = TemplateTypeParm->getIndex();
1069    bool RecanonicalizeArg = false;
1070
1071    // If the argument type is an array type, move the qualifiers up to the
1072    // top level, so they can be matched with the qualifiers on the parameter.
1073    if (isa<ArrayType>(Arg)) {
1074      Qualifiers Quals;
1075      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1076      if (Quals) {
1077        Arg = S.Context.getQualifiedType(Arg, Quals);
1078        RecanonicalizeArg = true;
1079      }
1080    }
1081
1082    // The argument type can not be less qualified than the parameter
1083    // type.
1084    if (!(TDF & TDF_IgnoreQualifiers) &&
1085        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1086      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1087      Info.FirstArg = TemplateArgument(Param);
1088      Info.SecondArg = TemplateArgument(Arg);
1089      return Sema::TDK_Underqualified;
1090    }
1091
1092    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1093    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1094    QualType DeducedType = Arg;
1095
1096    // Remove any qualifiers on the parameter from the deduced type.
1097    // We checked the qualifiers for consistency above.
1098    Qualifiers DeducedQs = DeducedType.getQualifiers();
1099    Qualifiers ParamQs = Param.getQualifiers();
1100    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1101    if (ParamQs.hasObjCGCAttr())
1102      DeducedQs.removeObjCGCAttr();
1103    if (ParamQs.hasAddressSpace())
1104      DeducedQs.removeAddressSpace();
1105    if (ParamQs.hasObjCLifetime())
1106      DeducedQs.removeObjCLifetime();
1107
1108    // Objective-C ARC:
1109    //   If template deduction would produce a lifetime qualifier on a type
1110    //   that is not a lifetime type, template argument deduction fails.
1111    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1112        !DeducedType->isDependentType()) {
1113      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1114      Info.FirstArg = TemplateArgument(Param);
1115      Info.SecondArg = TemplateArgument(Arg);
1116      return Sema::TDK_Underqualified;
1117    }
1118
1119    // Objective-C ARC:
1120    //   If template deduction would produce an argument type with lifetime type
1121    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1122    if (S.getLangOpts().ObjCAutoRefCount &&
1123        DeducedType->isObjCLifetimeType() &&
1124        !DeducedQs.hasObjCLifetime())
1125      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1126
1127    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1128                                             DeducedQs);
1129
1130    if (RecanonicalizeArg)
1131      DeducedType = S.Context.getCanonicalType(DeducedType);
1132
1133    DeducedTemplateArgument NewDeduced(DeducedType);
1134    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1135                                                                 Deduced[Index],
1136                                                                   NewDeduced);
1137    if (Result.isNull()) {
1138      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1139      Info.FirstArg = Deduced[Index];
1140      Info.SecondArg = NewDeduced;
1141      return Sema::TDK_Inconsistent;
1142    }
1143
1144    Deduced[Index] = Result;
1145    return Sema::TDK_Success;
1146  }
1147
1148  // Set up the template argument deduction information for a failure.
1149  Info.FirstArg = TemplateArgument(ParamIn);
1150  Info.SecondArg = TemplateArgument(ArgIn);
1151
1152  // If the parameter is an already-substituted template parameter
1153  // pack, do nothing: we don't know which of its arguments to look
1154  // at, so we have to wait until all of the parameter packs in this
1155  // expansion have arguments.
1156  if (isa<SubstTemplateTypeParmPackType>(Param))
1157    return Sema::TDK_Success;
1158
1159  // Check the cv-qualifiers on the parameter and argument types.
1160  CanQualType CanParam = S.Context.getCanonicalType(Param);
1161  CanQualType CanArg = S.Context.getCanonicalType(Arg);
1162  if (!(TDF & TDF_IgnoreQualifiers)) {
1163    if (TDF & TDF_ParamWithReferenceType) {
1164      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1165        return Sema::TDK_NonDeducedMismatch;
1166    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1167      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1168        return Sema::TDK_NonDeducedMismatch;
1169    }
1170
1171    // If the parameter type is not dependent, there is nothing to deduce.
1172    if (!Param->isDependentType()) {
1173      if (!(TDF & TDF_SkipNonDependent)) {
1174        bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1175                          !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1176                          Param != Arg;
1177        if (NonDeduced) {
1178          return Sema::TDK_NonDeducedMismatch;
1179        }
1180      }
1181      return Sema::TDK_Success;
1182    }
1183  } else if (!Param->isDependentType()) {
1184    CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1185                ArgUnqualType = CanArg.getUnqualifiedType();
1186    bool Success = (TDF & TDF_InOverloadResolution)?
1187                   S.isSameOrCompatibleFunctionType(ParamUnqualType,
1188                                                    ArgUnqualType) :
1189                   ParamUnqualType == ArgUnqualType;
1190    if (Success)
1191      return Sema::TDK_Success;
1192  }
1193
1194  switch (Param->getTypeClass()) {
1195    // Non-canonical types cannot appear here.
1196#define NON_CANONICAL_TYPE(Class, Base) \
1197  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1198#define TYPE(Class, Base)
1199#include "clang/AST/TypeNodes.def"
1200
1201    case Type::TemplateTypeParm:
1202    case Type::SubstTemplateTypeParmPack:
1203      llvm_unreachable("Type nodes handled above");
1204
1205    // These types cannot be dependent, so simply check whether the types are
1206    // the same.
1207    case Type::Builtin:
1208    case Type::VariableArray:
1209    case Type::Vector:
1210    case Type::FunctionNoProto:
1211    case Type::Record:
1212    case Type::Enum:
1213    case Type::ObjCObject:
1214    case Type::ObjCInterface:
1215    case Type::ObjCObjectPointer: {
1216      if (TDF & TDF_SkipNonDependent)
1217        return Sema::TDK_Success;
1218
1219      if (TDF & TDF_IgnoreQualifiers) {
1220        Param = Param.getUnqualifiedType();
1221        Arg = Arg.getUnqualifiedType();
1222      }
1223
1224      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1225    }
1226
1227    //     _Complex T   [placeholder extension]
1228    case Type::Complex:
1229      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1230        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1231                                    cast<ComplexType>(Param)->getElementType(),
1232                                    ComplexArg->getElementType(),
1233                                    Info, Deduced, TDF);
1234
1235      return Sema::TDK_NonDeducedMismatch;
1236
1237    //     _Atomic T   [extension]
1238    case Type::Atomic:
1239      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1240        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1241                                       cast<AtomicType>(Param)->getValueType(),
1242                                       AtomicArg->getValueType(),
1243                                       Info, Deduced, TDF);
1244
1245      return Sema::TDK_NonDeducedMismatch;
1246
1247    //     T *
1248    case Type::Pointer: {
1249      QualType PointeeType;
1250      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1251        PointeeType = PointerArg->getPointeeType();
1252      } else if (const ObjCObjectPointerType *PointerArg
1253                   = Arg->getAs<ObjCObjectPointerType>()) {
1254        PointeeType = PointerArg->getPointeeType();
1255      } else {
1256        return Sema::TDK_NonDeducedMismatch;
1257      }
1258
1259      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1260      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1261                                     cast<PointerType>(Param)->getPointeeType(),
1262                                     PointeeType,
1263                                     Info, Deduced, SubTDF);
1264    }
1265
1266    //     T &
1267    case Type::LValueReference: {
1268      const LValueReferenceType *ReferenceArg =
1269          Arg->getAs<LValueReferenceType>();
1270      if (!ReferenceArg)
1271        return Sema::TDK_NonDeducedMismatch;
1272
1273      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1274                           cast<LValueReferenceType>(Param)->getPointeeType(),
1275                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1276    }
1277
1278    //     T && [C++0x]
1279    case Type::RValueReference: {
1280      const RValueReferenceType *ReferenceArg =
1281          Arg->getAs<RValueReferenceType>();
1282      if (!ReferenceArg)
1283        return Sema::TDK_NonDeducedMismatch;
1284
1285      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1286                             cast<RValueReferenceType>(Param)->getPointeeType(),
1287                             ReferenceArg->getPointeeType(),
1288                             Info, Deduced, 0);
1289    }
1290
1291    //     T [] (implied, but not stated explicitly)
1292    case Type::IncompleteArray: {
1293      const IncompleteArrayType *IncompleteArrayArg =
1294        S.Context.getAsIncompleteArrayType(Arg);
1295      if (!IncompleteArrayArg)
1296        return Sema::TDK_NonDeducedMismatch;
1297
1298      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1299      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1300                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1301                    IncompleteArrayArg->getElementType(),
1302                    Info, Deduced, SubTDF);
1303    }
1304
1305    //     T [integer-constant]
1306    case Type::ConstantArray: {
1307      const ConstantArrayType *ConstantArrayArg =
1308        S.Context.getAsConstantArrayType(Arg);
1309      if (!ConstantArrayArg)
1310        return Sema::TDK_NonDeducedMismatch;
1311
1312      const ConstantArrayType *ConstantArrayParm =
1313        S.Context.getAsConstantArrayType(Param);
1314      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1315        return Sema::TDK_NonDeducedMismatch;
1316
1317      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1318      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1319                                           ConstantArrayParm->getElementType(),
1320                                           ConstantArrayArg->getElementType(),
1321                                           Info, Deduced, SubTDF);
1322    }
1323
1324    //     type [i]
1325    case Type::DependentSizedArray: {
1326      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1327      if (!ArrayArg)
1328        return Sema::TDK_NonDeducedMismatch;
1329
1330      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1331
1332      // Check the element type of the arrays
1333      const DependentSizedArrayType *DependentArrayParm
1334        = S.Context.getAsDependentSizedArrayType(Param);
1335      if (Sema::TemplateDeductionResult Result
1336            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1337                                          DependentArrayParm->getElementType(),
1338                                          ArrayArg->getElementType(),
1339                                          Info, Deduced, SubTDF))
1340        return Result;
1341
1342      // Determine the array bound is something we can deduce.
1343      NonTypeTemplateParmDecl *NTTP
1344        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1345      if (!NTTP)
1346        return Sema::TDK_Success;
1347
1348      // We can perform template argument deduction for the given non-type
1349      // template parameter.
1350      assert(NTTP->getDepth() == 0 &&
1351             "Cannot deduce non-type template argument at depth > 0");
1352      if (const ConstantArrayType *ConstantArrayArg
1353            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1354        llvm::APSInt Size(ConstantArrayArg->getSize());
1355        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1356                                             S.Context.getSizeType(),
1357                                             /*ArrayBound=*/true,
1358                                             Info, Deduced);
1359      }
1360      if (const DependentSizedArrayType *DependentArrayArg
1361            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1362        if (DependentArrayArg->getSizeExpr())
1363          return DeduceNonTypeTemplateArgument(S, NTTP,
1364                                               DependentArrayArg->getSizeExpr(),
1365                                               Info, Deduced);
1366
1367      // Incomplete type does not match a dependently-sized array type
1368      return Sema::TDK_NonDeducedMismatch;
1369    }
1370
1371    //     type(*)(T)
1372    //     T(*)()
1373    //     T(*)(T)
1374    case Type::FunctionProto: {
1375      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1376      const FunctionProtoType *FunctionProtoArg =
1377        dyn_cast<FunctionProtoType>(Arg);
1378      if (!FunctionProtoArg)
1379        return Sema::TDK_NonDeducedMismatch;
1380
1381      const FunctionProtoType *FunctionProtoParam =
1382        cast<FunctionProtoType>(Param);
1383
1384      if (FunctionProtoParam->getTypeQuals()
1385            != FunctionProtoArg->getTypeQuals() ||
1386          FunctionProtoParam->getRefQualifier()
1387            != FunctionProtoArg->getRefQualifier() ||
1388          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1389        return Sema::TDK_NonDeducedMismatch;
1390
1391      // Check return types.
1392      if (Sema::TemplateDeductionResult Result =
1393              DeduceTemplateArgumentsByTypeMatch(
1394                  S, TemplateParams, FunctionProtoParam->getReturnType(),
1395                  FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1396        return Result;
1397
1398      return DeduceTemplateArguments(
1399          S, TemplateParams, FunctionProtoParam->param_type_begin(),
1400          FunctionProtoParam->getNumParams(),
1401          FunctionProtoArg->param_type_begin(),
1402          FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
1403    }
1404
1405    case Type::InjectedClassName: {
1406      // Treat a template's injected-class-name as if the template
1407      // specialization type had been used.
1408      Param = cast<InjectedClassNameType>(Param)
1409        ->getInjectedSpecializationType();
1410      assert(isa<TemplateSpecializationType>(Param) &&
1411             "injected class name is not a template specialization type");
1412      // fall through
1413    }
1414
1415    //     template-name<T> (where template-name refers to a class template)
1416    //     template-name<i>
1417    //     TT<T>
1418    //     TT<i>
1419    //     TT<>
1420    case Type::TemplateSpecialization: {
1421      const TemplateSpecializationType *SpecParam
1422        = cast<TemplateSpecializationType>(Param);
1423
1424      // Try to deduce template arguments from the template-id.
1425      Sema::TemplateDeductionResult Result
1426        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1427                                  Info, Deduced);
1428
1429      if (Result && (TDF & TDF_DerivedClass)) {
1430        // C++ [temp.deduct.call]p3b3:
1431        //   If P is a class, and P has the form template-id, then A can be a
1432        //   derived class of the deduced A. Likewise, if P is a pointer to a
1433        //   class of the form template-id, A can be a pointer to a derived
1434        //   class pointed to by the deduced A.
1435        //
1436        // More importantly:
1437        //   These alternatives are considered only if type deduction would
1438        //   otherwise fail.
1439        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1440          // We cannot inspect base classes as part of deduction when the type
1441          // is incomplete, so either instantiate any templates necessary to
1442          // complete the type, or skip over it if it cannot be completed.
1443          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1444            return Result;
1445
1446          // Use data recursion to crawl through the list of base classes.
1447          // Visited contains the set of nodes we have already visited, while
1448          // ToVisit is our stack of records that we still need to visit.
1449          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1450          SmallVector<const RecordType *, 8> ToVisit;
1451          ToVisit.push_back(RecordT);
1452          bool Successful = false;
1453          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1454                                                              Deduced.end());
1455          while (!ToVisit.empty()) {
1456            // Retrieve the next class in the inheritance hierarchy.
1457            const RecordType *NextT = ToVisit.pop_back_val();
1458
1459            // If we have already seen this type, skip it.
1460            if (!Visited.insert(NextT).second)
1461              continue;
1462
1463            // If this is a base class, try to perform template argument
1464            // deduction from it.
1465            if (NextT != RecordT) {
1466              TemplateDeductionInfo BaseInfo(Info.getLocation());
1467              Sema::TemplateDeductionResult BaseResult
1468                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1469                                          QualType(NextT, 0), BaseInfo,
1470                                          Deduced);
1471
1472              // If template argument deduction for this base was successful,
1473              // note that we had some success. Otherwise, ignore any deductions
1474              // from this base class.
1475              if (BaseResult == Sema::TDK_Success) {
1476                Successful = true;
1477                DeducedOrig.clear();
1478                DeducedOrig.append(Deduced.begin(), Deduced.end());
1479                Info.Param = BaseInfo.Param;
1480                Info.FirstArg = BaseInfo.FirstArg;
1481                Info.SecondArg = BaseInfo.SecondArg;
1482              }
1483              else
1484                Deduced = DeducedOrig;
1485            }
1486
1487            // Visit base classes
1488            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1489            for (const auto &Base : Next->bases()) {
1490              assert(Base.getType()->isRecordType() &&
1491                     "Base class that isn't a record?");
1492              ToVisit.push_back(Base.getType()->getAs<RecordType>());
1493            }
1494          }
1495
1496          if (Successful)
1497            return Sema::TDK_Success;
1498        }
1499
1500      }
1501
1502      return Result;
1503    }
1504
1505    //     T type::*
1506    //     T T::*
1507    //     T (type::*)()
1508    //     type (T::*)()
1509    //     type (type::*)(T)
1510    //     type (T::*)(T)
1511    //     T (type::*)(T)
1512    //     T (T::*)()
1513    //     T (T::*)(T)
1514    case Type::MemberPointer: {
1515      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1516      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1517      if (!MemPtrArg)
1518        return Sema::TDK_NonDeducedMismatch;
1519
1520      if (Sema::TemplateDeductionResult Result
1521            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1522                                                 MemPtrParam->getPointeeType(),
1523                                                 MemPtrArg->getPointeeType(),
1524                                                 Info, Deduced,
1525                                                 TDF & TDF_IgnoreQualifiers))
1526        return Result;
1527
1528      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1529                                           QualType(MemPtrParam->getClass(), 0),
1530                                           QualType(MemPtrArg->getClass(), 0),
1531                                           Info, Deduced,
1532                                           TDF & TDF_IgnoreQualifiers);
1533    }
1534
1535    //     (clang extension)
1536    //
1537    //     type(^)(T)
1538    //     T(^)()
1539    //     T(^)(T)
1540    case Type::BlockPointer: {
1541      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1542      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1543
1544      if (!BlockPtrArg)
1545        return Sema::TDK_NonDeducedMismatch;
1546
1547      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1548                                                BlockPtrParam->getPointeeType(),
1549                                                BlockPtrArg->getPointeeType(),
1550                                                Info, Deduced, 0);
1551    }
1552
1553    //     (clang extension)
1554    //
1555    //     T __attribute__(((ext_vector_type(<integral constant>))))
1556    case Type::ExtVector: {
1557      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1558      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1559        // Make sure that the vectors have the same number of elements.
1560        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1561          return Sema::TDK_NonDeducedMismatch;
1562
1563        // Perform deduction on the element types.
1564        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1565                                                  VectorParam->getElementType(),
1566                                                  VectorArg->getElementType(),
1567                                                  Info, Deduced, TDF);
1568      }
1569
1570      if (const DependentSizedExtVectorType *VectorArg
1571                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1572        // We can't check the number of elements, since the argument has a
1573        // dependent number of elements. This can only occur during partial
1574        // ordering.
1575
1576        // Perform deduction on the element types.
1577        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1578                                                  VectorParam->getElementType(),
1579                                                  VectorArg->getElementType(),
1580                                                  Info, Deduced, TDF);
1581      }
1582
1583      return Sema::TDK_NonDeducedMismatch;
1584    }
1585
1586    //     (clang extension)
1587    //
1588    //     T __attribute__(((ext_vector_type(N))))
1589    case Type::DependentSizedExtVector: {
1590      const DependentSizedExtVectorType *VectorParam
1591        = cast<DependentSizedExtVectorType>(Param);
1592
1593      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1594        // Perform deduction on the element types.
1595        if (Sema::TemplateDeductionResult Result
1596              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1597                                                  VectorParam->getElementType(),
1598                                                   VectorArg->getElementType(),
1599                                                   Info, Deduced, TDF))
1600          return Result;
1601
1602        // Perform deduction on the vector size, if we can.
1603        NonTypeTemplateParmDecl *NTTP
1604          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1605        if (!NTTP)
1606          return Sema::TDK_Success;
1607
1608        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1609        ArgSize = VectorArg->getNumElements();
1610        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1611                                             false, Info, Deduced);
1612      }
1613
1614      if (const DependentSizedExtVectorType *VectorArg
1615                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1616        // Perform deduction on the element types.
1617        if (Sema::TemplateDeductionResult Result
1618            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1619                                                 VectorParam->getElementType(),
1620                                                 VectorArg->getElementType(),
1621                                                 Info, Deduced, TDF))
1622          return Result;
1623
1624        // Perform deduction on the vector size, if we can.
1625        NonTypeTemplateParmDecl *NTTP
1626          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1627        if (!NTTP)
1628          return Sema::TDK_Success;
1629
1630        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1631                                             Info, Deduced);
1632      }
1633
1634      return Sema::TDK_NonDeducedMismatch;
1635    }
1636
1637    case Type::TypeOfExpr:
1638    case Type::TypeOf:
1639    case Type::DependentName:
1640    case Type::UnresolvedUsing:
1641    case Type::Decltype:
1642    case Type::UnaryTransform:
1643    case Type::Auto:
1644    case Type::DependentTemplateSpecialization:
1645    case Type::PackExpansion:
1646      // No template argument deduction for these types
1647      return Sema::TDK_Success;
1648  }
1649
1650  llvm_unreachable("Invalid Type Class!");
1651}
1652
1653static Sema::TemplateDeductionResult
1654DeduceTemplateArguments(Sema &S,
1655                        TemplateParameterList *TemplateParams,
1656                        const TemplateArgument &Param,
1657                        TemplateArgument Arg,
1658                        TemplateDeductionInfo &Info,
1659                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1660  // If the template argument is a pack expansion, perform template argument
1661  // deduction against the pattern of that expansion. This only occurs during
1662  // partial ordering.
1663  if (Arg.isPackExpansion())
1664    Arg = Arg.getPackExpansionPattern();
1665
1666  switch (Param.getKind()) {
1667  case TemplateArgument::Null:
1668    llvm_unreachable("Null template argument in parameter list");
1669
1670  case TemplateArgument::Type:
1671    if (Arg.getKind() == TemplateArgument::Type)
1672      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1673                                                Param.getAsType(),
1674                                                Arg.getAsType(),
1675                                                Info, Deduced, 0);
1676    Info.FirstArg = Param;
1677    Info.SecondArg = Arg;
1678    return Sema::TDK_NonDeducedMismatch;
1679
1680  case TemplateArgument::Template:
1681    if (Arg.getKind() == TemplateArgument::Template)
1682      return DeduceTemplateArguments(S, TemplateParams,
1683                                     Param.getAsTemplate(),
1684                                     Arg.getAsTemplate(), Info, Deduced);
1685    Info.FirstArg = Param;
1686    Info.SecondArg = Arg;
1687    return Sema::TDK_NonDeducedMismatch;
1688
1689  case TemplateArgument::TemplateExpansion:
1690    llvm_unreachable("caller should handle pack expansions");
1691
1692  case TemplateArgument::Declaration:
1693    if (Arg.getKind() == TemplateArgument::Declaration &&
1694        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1695      return Sema::TDK_Success;
1696
1697    Info.FirstArg = Param;
1698    Info.SecondArg = Arg;
1699    return Sema::TDK_NonDeducedMismatch;
1700
1701  case TemplateArgument::NullPtr:
1702    if (Arg.getKind() == TemplateArgument::NullPtr &&
1703        S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1704      return Sema::TDK_Success;
1705
1706    Info.FirstArg = Param;
1707    Info.SecondArg = Arg;
1708    return Sema::TDK_NonDeducedMismatch;
1709
1710  case TemplateArgument::Integral:
1711    if (Arg.getKind() == TemplateArgument::Integral) {
1712      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1713        return Sema::TDK_Success;
1714
1715      Info.FirstArg = Param;
1716      Info.SecondArg = Arg;
1717      return Sema::TDK_NonDeducedMismatch;
1718    }
1719
1720    if (Arg.getKind() == TemplateArgument::Expression) {
1721      Info.FirstArg = Param;
1722      Info.SecondArg = Arg;
1723      return Sema::TDK_NonDeducedMismatch;
1724    }
1725
1726    Info.FirstArg = Param;
1727    Info.SecondArg = Arg;
1728    return Sema::TDK_NonDeducedMismatch;
1729
1730  case TemplateArgument::Expression: {
1731    if (NonTypeTemplateParmDecl *NTTP
1732          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1733      if (Arg.getKind() == TemplateArgument::Integral)
1734        return DeduceNonTypeTemplateArgument(S, NTTP,
1735                                             Arg.getAsIntegral(),
1736                                             Arg.getIntegralType(),
1737                                             /*ArrayBound=*/false,
1738                                             Info, Deduced);
1739      if (Arg.getKind() == TemplateArgument::Expression)
1740        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1741                                             Info, Deduced);
1742      if (Arg.getKind() == TemplateArgument::Declaration)
1743        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1744                                             Info, Deduced);
1745
1746      Info.FirstArg = Param;
1747      Info.SecondArg = Arg;
1748      return Sema::TDK_NonDeducedMismatch;
1749    }
1750
1751    // Can't deduce anything, but that's okay.
1752    return Sema::TDK_Success;
1753  }
1754  case TemplateArgument::Pack:
1755    llvm_unreachable("Argument packs should be expanded by the caller!");
1756  }
1757
1758  llvm_unreachable("Invalid TemplateArgument Kind!");
1759}
1760
1761/// \brief Determine whether there is a template argument to be used for
1762/// deduction.
1763///
1764/// This routine "expands" argument packs in-place, overriding its input
1765/// parameters so that \c Args[ArgIdx] will be the available template argument.
1766///
1767/// \returns true if there is another template argument (which will be at
1768/// \c Args[ArgIdx]), false otherwise.
1769static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1770                                            unsigned &ArgIdx,
1771                                            unsigned &NumArgs) {
1772  if (ArgIdx == NumArgs)
1773    return false;
1774
1775  const TemplateArgument &Arg = Args[ArgIdx];
1776  if (Arg.getKind() != TemplateArgument::Pack)
1777    return true;
1778
1779  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1780  Args = Arg.pack_begin();
1781  NumArgs = Arg.pack_size();
1782  ArgIdx = 0;
1783  return ArgIdx < NumArgs;
1784}
1785
1786/// \brief Determine whether the given set of template arguments has a pack
1787/// expansion that is not the last template argument.
1788static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1789                                      unsigned NumArgs) {
1790  unsigned ArgIdx = 0;
1791  while (ArgIdx < NumArgs) {
1792    const TemplateArgument &Arg = Args[ArgIdx];
1793
1794    // Unwrap argument packs.
1795    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1796      Args = Arg.pack_begin();
1797      NumArgs = Arg.pack_size();
1798      ArgIdx = 0;
1799      continue;
1800    }
1801
1802    ++ArgIdx;
1803    if (ArgIdx == NumArgs)
1804      return false;
1805
1806    if (Arg.isPackExpansion())
1807      return true;
1808  }
1809
1810  return false;
1811}
1812
1813static Sema::TemplateDeductionResult
1814DeduceTemplateArguments(Sema &S,
1815                        TemplateParameterList *TemplateParams,
1816                        const TemplateArgument *Params, unsigned NumParams,
1817                        const TemplateArgument *Args, unsigned NumArgs,
1818                        TemplateDeductionInfo &Info,
1819                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1820  // C++0x [temp.deduct.type]p9:
1821  //   If the template argument list of P contains a pack expansion that is not
1822  //   the last template argument, the entire template argument list is a
1823  //   non-deduced context.
1824  if (hasPackExpansionBeforeEnd(Params, NumParams))
1825    return Sema::TDK_Success;
1826
1827  // C++0x [temp.deduct.type]p9:
1828  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1829  //   respective template argument list P is compared with the corresponding
1830  //   argument Ai of the corresponding template argument list of A.
1831  unsigned ArgIdx = 0, ParamIdx = 0;
1832  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1833       ++ParamIdx) {
1834    if (!Params[ParamIdx].isPackExpansion()) {
1835      // The simple case: deduce template arguments by matching Pi and Ai.
1836
1837      // Check whether we have enough arguments.
1838      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1839        return Sema::TDK_Success;
1840
1841      if (Args[ArgIdx].isPackExpansion()) {
1842        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1843        // but applied to pack expansions that are template arguments.
1844        return Sema::TDK_MiscellaneousDeductionFailure;
1845      }
1846
1847      // Perform deduction for this Pi/Ai pair.
1848      if (Sema::TemplateDeductionResult Result
1849            = DeduceTemplateArguments(S, TemplateParams,
1850                                      Params[ParamIdx], Args[ArgIdx],
1851                                      Info, Deduced))
1852        return Result;
1853
1854      // Move to the next argument.
1855      ++ArgIdx;
1856      continue;
1857    }
1858
1859    // The parameter is a pack expansion.
1860
1861    // C++0x [temp.deduct.type]p9:
1862    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1863    //   each remaining argument in the template argument list of A. Each
1864    //   comparison deduces template arguments for subsequent positions in the
1865    //   template parameter packs expanded by Pi.
1866    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1867
1868    // FIXME: If there are no remaining arguments, we can bail out early
1869    // and set any deduced parameter packs to an empty argument pack.
1870    // The latter part of this is a (minor) correctness issue.
1871
1872    // Prepare to deduce the packs within the pattern.
1873    PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1874
1875    // Keep track of the deduced template arguments for each parameter pack
1876    // expanded by this pack expansion (the outer index) and for each
1877    // template argument (the inner SmallVectors).
1878    bool HasAnyArguments = false;
1879    for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
1880      HasAnyArguments = true;
1881
1882      // Deduce template arguments from the pattern.
1883      if (Sema::TemplateDeductionResult Result
1884            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1885                                      Info, Deduced))
1886        return Result;
1887
1888      PackScope.nextPackElement();
1889    }
1890
1891    // Build argument packs for each of the parameter packs expanded by this
1892    // pack expansion.
1893    if (auto Result = PackScope.finish(HasAnyArguments))
1894      return Result;
1895  }
1896
1897  return Sema::TDK_Success;
1898}
1899
1900static Sema::TemplateDeductionResult
1901DeduceTemplateArguments(Sema &S,
1902                        TemplateParameterList *TemplateParams,
1903                        const TemplateArgumentList &ParamList,
1904                        const TemplateArgumentList &ArgList,
1905                        TemplateDeductionInfo &Info,
1906                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1907  return DeduceTemplateArguments(S, TemplateParams,
1908                                 ParamList.data(), ParamList.size(),
1909                                 ArgList.data(), ArgList.size(),
1910                                 Info, Deduced);
1911}
1912
1913/// \brief Determine whether two template arguments are the same.
1914static bool isSameTemplateArg(ASTContext &Context,
1915                              const TemplateArgument &X,
1916                              const TemplateArgument &Y) {
1917  if (X.getKind() != Y.getKind())
1918    return false;
1919
1920  switch (X.getKind()) {
1921    case TemplateArgument::Null:
1922      llvm_unreachable("Comparing NULL template argument");
1923
1924    case TemplateArgument::Type:
1925      return Context.getCanonicalType(X.getAsType()) ==
1926             Context.getCanonicalType(Y.getAsType());
1927
1928    case TemplateArgument::Declaration:
1929      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1930
1931    case TemplateArgument::NullPtr:
1932      return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1933
1934    case TemplateArgument::Template:
1935    case TemplateArgument::TemplateExpansion:
1936      return Context.getCanonicalTemplateName(
1937                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1938             Context.getCanonicalTemplateName(
1939                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1940
1941    case TemplateArgument::Integral:
1942      return X.getAsIntegral() == Y.getAsIntegral();
1943
1944    case TemplateArgument::Expression: {
1945      llvm::FoldingSetNodeID XID, YID;
1946      X.getAsExpr()->Profile(XID, Context, true);
1947      Y.getAsExpr()->Profile(YID, Context, true);
1948      return XID == YID;
1949    }
1950
1951    case TemplateArgument::Pack:
1952      if (X.pack_size() != Y.pack_size())
1953        return false;
1954
1955      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1956                                        XPEnd = X.pack_end(),
1957                                           YP = Y.pack_begin();
1958           XP != XPEnd; ++XP, ++YP)
1959        if (!isSameTemplateArg(Context, *XP, *YP))
1960          return false;
1961
1962      return true;
1963  }
1964
1965  llvm_unreachable("Invalid TemplateArgument Kind!");
1966}
1967
1968/// \brief Allocate a TemplateArgumentLoc where all locations have
1969/// been initialized to the given location.
1970///
1971/// \param S The semantic analysis object.
1972///
1973/// \param Arg The template argument we are producing template argument
1974/// location information for.
1975///
1976/// \param NTTPType For a declaration template argument, the type of
1977/// the non-type template parameter that corresponds to this template
1978/// argument.
1979///
1980/// \param Loc The source location to use for the resulting template
1981/// argument.
1982static TemplateArgumentLoc
1983getTrivialTemplateArgumentLoc(Sema &S,
1984                              const TemplateArgument &Arg,
1985                              QualType NTTPType,
1986                              SourceLocation Loc) {
1987  switch (Arg.getKind()) {
1988  case TemplateArgument::Null:
1989    llvm_unreachable("Can't get a NULL template argument here");
1990
1991  case TemplateArgument::Type:
1992    return TemplateArgumentLoc(Arg,
1993                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1994
1995  case TemplateArgument::Declaration: {
1996    Expr *E
1997      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1998          .getAs<Expr>();
1999    return TemplateArgumentLoc(TemplateArgument(E), E);
2000  }
2001
2002  case TemplateArgument::NullPtr: {
2003    Expr *E
2004      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2005          .getAs<Expr>();
2006    return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2007                               E);
2008  }
2009
2010  case TemplateArgument::Integral: {
2011    Expr *E
2012      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2013    return TemplateArgumentLoc(TemplateArgument(E), E);
2014  }
2015
2016    case TemplateArgument::Template:
2017    case TemplateArgument::TemplateExpansion: {
2018      NestedNameSpecifierLocBuilder Builder;
2019      TemplateName Template = Arg.getAsTemplate();
2020      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2021        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2022      else if (QualifiedTemplateName *QTN =
2023                   Template.getAsQualifiedTemplateName())
2024        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2025
2026      if (Arg.getKind() == TemplateArgument::Template)
2027        return TemplateArgumentLoc(Arg,
2028                                   Builder.getWithLocInContext(S.Context),
2029                                   Loc);
2030
2031
2032      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2033                                 Loc, Loc);
2034    }
2035
2036  case TemplateArgument::Expression:
2037    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2038
2039  case TemplateArgument::Pack:
2040    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2041  }
2042
2043  llvm_unreachable("Invalid TemplateArgument Kind!");
2044}
2045
2046
2047/// \brief Convert the given deduced template argument and add it to the set of
2048/// fully-converted template arguments.
2049static bool
2050ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2051                               DeducedTemplateArgument Arg,
2052                               NamedDecl *Template,
2053                               QualType NTTPType,
2054                               unsigned ArgumentPackIndex,
2055                               TemplateDeductionInfo &Info,
2056                               bool InFunctionTemplate,
2057                               SmallVectorImpl<TemplateArgument> &Output) {
2058  if (Arg.getKind() == TemplateArgument::Pack) {
2059    // This is a template argument pack, so check each of its arguments against
2060    // the template parameter.
2061    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2062    for (const auto &P : Arg.pack_elements()) {
2063      // When converting the deduced template argument, append it to the
2064      // general output list. We need to do this so that the template argument
2065      // checking logic has all of the prior template arguments available.
2066      DeducedTemplateArgument InnerArg(P);
2067      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2068      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2069                                         NTTPType, PackedArgsBuilder.size(),
2070                                         Info, InFunctionTemplate, Output))
2071        return true;
2072
2073      // Move the converted template argument into our argument pack.
2074      PackedArgsBuilder.push_back(Output.pop_back_val());
2075    }
2076
2077    // Create the resulting argument pack.
2078    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2079                                                      PackedArgsBuilder.data(),
2080                                                     PackedArgsBuilder.size()));
2081    return false;
2082  }
2083
2084  // Convert the deduced template argument into a template
2085  // argument that we can check, almost as if the user had written
2086  // the template argument explicitly.
2087  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2088                                                             Info.getLocation());
2089
2090  // Check the template argument, converting it as necessary.
2091  return S.CheckTemplateArgument(Param, ArgLoc,
2092                                 Template,
2093                                 Template->getLocation(),
2094                                 Template->getSourceRange().getEnd(),
2095                                 ArgumentPackIndex,
2096                                 Output,
2097                                 InFunctionTemplate
2098                                  ? (Arg.wasDeducedFromArrayBound()
2099                                       ? Sema::CTAK_DeducedFromArrayBound
2100                                       : Sema::CTAK_Deduced)
2101                                 : Sema::CTAK_Specified);
2102}
2103
2104/// Complete template argument deduction for a class template partial
2105/// specialization.
2106static Sema::TemplateDeductionResult
2107FinishTemplateArgumentDeduction(Sema &S,
2108                                ClassTemplatePartialSpecializationDecl *Partial,
2109                                const TemplateArgumentList &TemplateArgs,
2110                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2111                                TemplateDeductionInfo &Info) {
2112  // Unevaluated SFINAE context.
2113  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2114  Sema::SFINAETrap Trap(S);
2115
2116  Sema::ContextRAII SavedContext(S, Partial);
2117
2118  // C++ [temp.deduct.type]p2:
2119  //   [...] or if any template argument remains neither deduced nor
2120  //   explicitly specified, template argument deduction fails.
2121  SmallVector<TemplateArgument, 4> Builder;
2122  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2123  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2124    NamedDecl *Param = PartialParams->getParam(I);
2125    if (Deduced[I].isNull()) {
2126      Info.Param = makeTemplateParameter(Param);
2127      return Sema::TDK_Incomplete;
2128    }
2129
2130    // We have deduced this argument, so it still needs to be
2131    // checked and converted.
2132
2133    // First, for a non-type template parameter type that is
2134    // initialized by a declaration, we need the type of the
2135    // corresponding non-type template parameter.
2136    QualType NTTPType;
2137    if (NonTypeTemplateParmDecl *NTTP
2138                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2139      NTTPType = NTTP->getType();
2140      if (NTTPType->isDependentType()) {
2141        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2142                                          Builder.data(), Builder.size());
2143        NTTPType = S.SubstType(NTTPType,
2144                               MultiLevelTemplateArgumentList(TemplateArgs),
2145                               NTTP->getLocation(),
2146                               NTTP->getDeclName());
2147        if (NTTPType.isNull()) {
2148          Info.Param = makeTemplateParameter(Param);
2149          // FIXME: These template arguments are temporary. Free them!
2150          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2151                                                      Builder.data(),
2152                                                      Builder.size()));
2153          return Sema::TDK_SubstitutionFailure;
2154        }
2155      }
2156    }
2157
2158    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2159                                       Partial, NTTPType, 0, Info, false,
2160                                       Builder)) {
2161      Info.Param = makeTemplateParameter(Param);
2162      // FIXME: These template arguments are temporary. Free them!
2163      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2164                                                  Builder.size()));
2165      return Sema::TDK_SubstitutionFailure;
2166    }
2167  }
2168
2169  // Form the template argument list from the deduced template arguments.
2170  TemplateArgumentList *DeducedArgumentList
2171    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2172                                       Builder.size());
2173
2174  Info.reset(DeducedArgumentList);
2175
2176  // Substitute the deduced template arguments into the template
2177  // arguments of the class template partial specialization, and
2178  // verify that the instantiated template arguments are both valid
2179  // and are equivalent to the template arguments originally provided
2180  // to the class template.
2181  LocalInstantiationScope InstScope(S);
2182  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2183  const ASTTemplateArgumentListInfo *PartialTemplArgInfo
2184    = Partial->getTemplateArgsAsWritten();
2185  const TemplateArgumentLoc *PartialTemplateArgs
2186    = PartialTemplArgInfo->getTemplateArgs();
2187
2188  TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2189                                    PartialTemplArgInfo->RAngleLoc);
2190
2191  if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2192              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2193    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2194    if (ParamIdx >= Partial->getTemplateParameters()->size())
2195      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2196
2197    Decl *Param
2198      = const_cast<NamedDecl *>(
2199                          Partial->getTemplateParameters()->getParam(ParamIdx));
2200    Info.Param = makeTemplateParameter(Param);
2201    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2202    return Sema::TDK_SubstitutionFailure;
2203  }
2204
2205  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2206  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2207                                  InstArgs, false, ConvertedInstArgs))
2208    return Sema::TDK_SubstitutionFailure;
2209
2210  TemplateParameterList *TemplateParams
2211    = ClassTemplate->getTemplateParameters();
2212  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2213    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2214    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2215      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2216      Info.FirstArg = TemplateArgs[I];
2217      Info.SecondArg = InstArg;
2218      return Sema::TDK_NonDeducedMismatch;
2219    }
2220  }
2221
2222  if (Trap.hasErrorOccurred())
2223    return Sema::TDK_SubstitutionFailure;
2224
2225  return Sema::TDK_Success;
2226}
2227
2228/// \brief Perform template argument deduction to determine whether
2229/// the given template arguments match the given class template
2230/// partial specialization per C++ [temp.class.spec.match].
2231Sema::TemplateDeductionResult
2232Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2233                              const TemplateArgumentList &TemplateArgs,
2234                              TemplateDeductionInfo &Info) {
2235  if (Partial->isInvalidDecl())
2236    return TDK_Invalid;
2237
2238  // C++ [temp.class.spec.match]p2:
2239  //   A partial specialization matches a given actual template
2240  //   argument list if the template arguments of the partial
2241  //   specialization can be deduced from the actual template argument
2242  //   list (14.8.2).
2243
2244  // Unevaluated SFINAE context.
2245  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2246  SFINAETrap Trap(*this);
2247
2248  SmallVector<DeducedTemplateArgument, 4> Deduced;
2249  Deduced.resize(Partial->getTemplateParameters()->size());
2250  if (TemplateDeductionResult Result
2251        = ::DeduceTemplateArguments(*this,
2252                                    Partial->getTemplateParameters(),
2253                                    Partial->getTemplateArgs(),
2254                                    TemplateArgs, Info, Deduced))
2255    return Result;
2256
2257  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2258  InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2259                             Info);
2260  if (Inst.isInvalid())
2261    return TDK_InstantiationDepth;
2262
2263  if (Trap.hasErrorOccurred())
2264    return Sema::TDK_SubstitutionFailure;
2265
2266  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2267                                           Deduced, Info);
2268}
2269
2270/// Complete template argument deduction for a variable template partial
2271/// specialization.
2272/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
2273///       May require unifying ClassTemplate(Partial)SpecializationDecl and
2274///        VarTemplate(Partial)SpecializationDecl with a new data
2275///        structure Template(Partial)SpecializationDecl, and
2276///        using Template(Partial)SpecializationDecl as input type.
2277static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2278    Sema &S, VarTemplatePartialSpecializationDecl *Partial,
2279    const TemplateArgumentList &TemplateArgs,
2280    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2281    TemplateDeductionInfo &Info) {
2282  // Unevaluated SFINAE context.
2283  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2284  Sema::SFINAETrap Trap(S);
2285
2286  // C++ [temp.deduct.type]p2:
2287  //   [...] or if any template argument remains neither deduced nor
2288  //   explicitly specified, template argument deduction fails.
2289  SmallVector<TemplateArgument, 4> Builder;
2290  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2291  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2292    NamedDecl *Param = PartialParams->getParam(I);
2293    if (Deduced[I].isNull()) {
2294      Info.Param = makeTemplateParameter(Param);
2295      return Sema::TDK_Incomplete;
2296    }
2297
2298    // We have deduced this argument, so it still needs to be
2299    // checked and converted.
2300
2301    // First, for a non-type template parameter type that is
2302    // initialized by a declaration, we need the type of the
2303    // corresponding non-type template parameter.
2304    QualType NTTPType;
2305    if (NonTypeTemplateParmDecl *NTTP =
2306            dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2307      NTTPType = NTTP->getType();
2308      if (NTTPType->isDependentType()) {
2309        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2310                                          Builder.data(), Builder.size());
2311        NTTPType =
2312            S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
2313                        NTTP->getLocation(), NTTP->getDeclName());
2314        if (NTTPType.isNull()) {
2315          Info.Param = makeTemplateParameter(Param);
2316          // FIXME: These template arguments are temporary. Free them!
2317          Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2318                                                      Builder.size()));
2319          return Sema::TDK_SubstitutionFailure;
2320        }
2321      }
2322    }
2323
2324    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
2325                                       0, Info, false, Builder)) {
2326      Info.Param = makeTemplateParameter(Param);
2327      // FIXME: These template arguments are temporary. Free them!
2328      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2329                                                  Builder.size()));
2330      return Sema::TDK_SubstitutionFailure;
2331    }
2332  }
2333
2334  // Form the template argument list from the deduced template arguments.
2335  TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
2336      S.Context, Builder.data(), Builder.size());
2337
2338  Info.reset(DeducedArgumentList);
2339
2340  // Substitute the deduced template arguments into the template
2341  // arguments of the class template partial specialization, and
2342  // verify that the instantiated template arguments are both valid
2343  // and are equivalent to the template arguments originally provided
2344  // to the class template.
2345  LocalInstantiationScope InstScope(S);
2346  VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
2347  const ASTTemplateArgumentListInfo *PartialTemplArgInfo
2348    = Partial->getTemplateArgsAsWritten();
2349  const TemplateArgumentLoc *PartialTemplateArgs
2350    = PartialTemplArgInfo->getTemplateArgs();
2351
2352  TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2353                                    PartialTemplArgInfo->RAngleLoc);
2354
2355  if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2356              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2357    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2358    if (ParamIdx >= Partial->getTemplateParameters()->size())
2359      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2360
2361    Decl *Param = const_cast<NamedDecl *>(
2362        Partial->getTemplateParameters()->getParam(ParamIdx));
2363    Info.Param = makeTemplateParameter(Param);
2364    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2365    return Sema::TDK_SubstitutionFailure;
2366  }
2367  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2368  if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
2369                                  false, ConvertedInstArgs))
2370    return Sema::TDK_SubstitutionFailure;
2371
2372  TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
2373  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2374    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2375    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2376      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2377      Info.FirstArg = TemplateArgs[I];
2378      Info.SecondArg = InstArg;
2379      return Sema::TDK_NonDeducedMismatch;
2380    }
2381  }
2382
2383  if (Trap.hasErrorOccurred())
2384    return Sema::TDK_SubstitutionFailure;
2385
2386  return Sema::TDK_Success;
2387}
2388
2389/// \brief Perform template argument deduction to determine whether
2390/// the given template arguments match the given variable template
2391/// partial specialization per C++ [temp.class.spec.match].
2392/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
2393///       May require unifying ClassTemplate(Partial)SpecializationDecl and
2394///        VarTemplate(Partial)SpecializationDecl with a new data
2395///        structure Template(Partial)SpecializationDecl, and
2396///        using Template(Partial)SpecializationDecl as input type.
2397Sema::TemplateDeductionResult
2398Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2399                              const TemplateArgumentList &TemplateArgs,
2400                              TemplateDeductionInfo &Info) {
2401  if (Partial->isInvalidDecl())
2402    return TDK_Invalid;
2403
2404  // C++ [temp.class.spec.match]p2:
2405  //   A partial specialization matches a given actual template
2406  //   argument list if the template arguments of the partial
2407  //   specialization can be deduced from the actual template argument
2408  //   list (14.8.2).
2409
2410  // Unevaluated SFINAE context.
2411  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2412  SFINAETrap Trap(*this);
2413
2414  SmallVector<DeducedTemplateArgument, 4> Deduced;
2415  Deduced.resize(Partial->getTemplateParameters()->size());
2416  if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2417          *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2418          TemplateArgs, Info, Deduced))
2419    return Result;
2420
2421  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2422  InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2423                             Info);
2424  if (Inst.isInvalid())
2425    return TDK_InstantiationDepth;
2426
2427  if (Trap.hasErrorOccurred())
2428    return Sema::TDK_SubstitutionFailure;
2429
2430  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2431                                           Deduced, Info);
2432}
2433
2434/// \brief Determine whether the given type T is a simple-template-id type.
2435static bool isSimpleTemplateIdType(QualType T) {
2436  if (const TemplateSpecializationType *Spec
2437        = T->getAs<TemplateSpecializationType>())
2438    return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2439
2440  return false;
2441}
2442
2443/// \brief Substitute the explicitly-provided template arguments into the
2444/// given function template according to C++ [temp.arg.explicit].
2445///
2446/// \param FunctionTemplate the function template into which the explicit
2447/// template arguments will be substituted.
2448///
2449/// \param ExplicitTemplateArgs the explicitly-specified template
2450/// arguments.
2451///
2452/// \param Deduced the deduced template arguments, which will be populated
2453/// with the converted and checked explicit template arguments.
2454///
2455/// \param ParamTypes will be populated with the instantiated function
2456/// parameters.
2457///
2458/// \param FunctionType if non-NULL, the result type of the function template
2459/// will also be instantiated and the pointed-to value will be updated with
2460/// the instantiated function type.
2461///
2462/// \param Info if substitution fails for any reason, this object will be
2463/// populated with more information about the failure.
2464///
2465/// \returns TDK_Success if substitution was successful, or some failure
2466/// condition.
2467Sema::TemplateDeductionResult
2468Sema::SubstituteExplicitTemplateArguments(
2469                                      FunctionTemplateDecl *FunctionTemplate,
2470                               TemplateArgumentListInfo &ExplicitTemplateArgs,
2471                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2472                                 SmallVectorImpl<QualType> &ParamTypes,
2473                                          QualType *FunctionType,
2474                                          TemplateDeductionInfo &Info) {
2475  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2476  TemplateParameterList *TemplateParams
2477    = FunctionTemplate->getTemplateParameters();
2478
2479  if (ExplicitTemplateArgs.size() == 0) {
2480    // No arguments to substitute; just copy over the parameter types and
2481    // fill in the function type.
2482    for (auto P : Function->params())
2483      ParamTypes.push_back(P->getType());
2484
2485    if (FunctionType)
2486      *FunctionType = Function->getType();
2487    return TDK_Success;
2488  }
2489
2490  // Unevaluated SFINAE context.
2491  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2492  SFINAETrap Trap(*this);
2493
2494  // C++ [temp.arg.explicit]p3:
2495  //   Template arguments that are present shall be specified in the
2496  //   declaration order of their corresponding template-parameters. The
2497  //   template argument list shall not specify more template-arguments than
2498  //   there are corresponding template-parameters.
2499  SmallVector<TemplateArgument, 4> Builder;
2500
2501  // Enter a new template instantiation context where we check the
2502  // explicitly-specified template arguments against this function template,
2503  // and then substitute them into the function parameter types.
2504  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2505  InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
2506                             DeducedArgs,
2507           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2508                             Info);
2509  if (Inst.isInvalid())
2510    return TDK_InstantiationDepth;
2511
2512  if (CheckTemplateArgumentList(FunctionTemplate,
2513                                SourceLocation(),
2514                                ExplicitTemplateArgs,
2515                                true,
2516                                Builder) || Trap.hasErrorOccurred()) {
2517    unsigned Index = Builder.size();
2518    if (Index >= TemplateParams->size())
2519      Index = TemplateParams->size() - 1;
2520    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2521    return TDK_InvalidExplicitArguments;
2522  }
2523
2524  // Form the template argument list from the explicitly-specified
2525  // template arguments.
2526  TemplateArgumentList *ExplicitArgumentList
2527    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2528  Info.reset(ExplicitArgumentList);
2529
2530  // Template argument deduction and the final substitution should be
2531  // done in the context of the templated declaration.  Explicit
2532  // argument substitution, on the other hand, needs to happen in the
2533  // calling context.
2534  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2535
2536  // If we deduced template arguments for a template parameter pack,
2537  // note that the template argument pack is partially substituted and record
2538  // the explicit template arguments. They'll be used as part of deduction
2539  // for this template parameter pack.
2540  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2541    const TemplateArgument &Arg = Builder[I];
2542    if (Arg.getKind() == TemplateArgument::Pack) {
2543      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2544                                                 TemplateParams->getParam(I),
2545                                                             Arg.pack_begin(),
2546                                                             Arg.pack_size());
2547      break;
2548    }
2549  }
2550
2551  const FunctionProtoType *Proto
2552    = Function->getType()->getAs<FunctionProtoType>();
2553  assert(Proto && "Function template does not have a prototype?");
2554
2555  // Isolate our substituted parameters from our caller.
2556  LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
2557
2558  // Instantiate the types of each of the function parameters given the
2559  // explicitly-specified template arguments. If the function has a trailing
2560  // return type, substitute it after the arguments to ensure we substitute
2561  // in lexical order.
2562  if (Proto->hasTrailingReturn()) {
2563    if (SubstParmTypes(Function->getLocation(),
2564                       Function->param_begin(), Function->getNumParams(),
2565                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2566                       ParamTypes))
2567      return TDK_SubstitutionFailure;
2568  }
2569
2570  // Instantiate the return type.
2571  QualType ResultType;
2572  {
2573    // C++11 [expr.prim.general]p3:
2574    //   If a declaration declares a member function or member function
2575    //   template of a class X, the expression this is a prvalue of type
2576    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2577    //   and the end of the function-definition, member-declarator, or
2578    //   declarator.
2579    unsigned ThisTypeQuals = 0;
2580    CXXRecordDecl *ThisContext = nullptr;
2581    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2582      ThisContext = Method->getParent();
2583      ThisTypeQuals = Method->getTypeQualifiers();
2584    }
2585
2586    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2587                               getLangOpts().CPlusPlus11);
2588
2589    ResultType =
2590        SubstType(Proto->getReturnType(),
2591                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2592                  Function->getTypeSpecStartLoc(), Function->getDeclName());
2593    if (ResultType.isNull() || Trap.hasErrorOccurred())
2594      return TDK_SubstitutionFailure;
2595  }
2596
2597  // Instantiate the types of each of the function parameters given the
2598  // explicitly-specified template arguments if we didn't do so earlier.
2599  if (!Proto->hasTrailingReturn() &&
2600      SubstParmTypes(Function->getLocation(),
2601                     Function->param_begin(), Function->getNumParams(),
2602                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2603                     ParamTypes))
2604    return TDK_SubstitutionFailure;
2605
2606  if (FunctionType) {
2607    *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2608                                      Function->getLocation(),
2609                                      Function->getDeclName(),
2610                                      Proto->getExtProtoInfo());
2611    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2612      return TDK_SubstitutionFailure;
2613  }
2614
2615  // C++ [temp.arg.explicit]p2:
2616  //   Trailing template arguments that can be deduced (14.8.2) may be
2617  //   omitted from the list of explicit template-arguments. If all of the
2618  //   template arguments can be deduced, they may all be omitted; in this
2619  //   case, the empty template argument list <> itself may also be omitted.
2620  //
2621  // Take all of the explicitly-specified arguments and put them into
2622  // the set of deduced template arguments. Explicitly-specified
2623  // parameter packs, however, will be set to NULL since the deduction
2624  // mechanisms handle explicitly-specified argument packs directly.
2625  Deduced.reserve(TemplateParams->size());
2626  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2627    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2628    if (Arg.getKind() == TemplateArgument::Pack)
2629      Deduced.push_back(DeducedTemplateArgument());
2630    else
2631      Deduced.push_back(Arg);
2632  }
2633
2634  return TDK_Success;
2635}
2636
2637/// \brief Check whether the deduced argument type for a call to a function
2638/// template matches the actual argument type per C++ [temp.deduct.call]p4.
2639static bool
2640CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2641                              QualType DeducedA) {
2642  ASTContext &Context = S.Context;
2643
2644  QualType A = OriginalArg.OriginalArgType;
2645  QualType OriginalParamType = OriginalArg.OriginalParamType;
2646
2647  // Check for type equality (top-level cv-qualifiers are ignored).
2648  if (Context.hasSameUnqualifiedType(A, DeducedA))
2649    return false;
2650
2651  // Strip off references on the argument types; they aren't needed for
2652  // the following checks.
2653  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2654    DeducedA = DeducedARef->getPointeeType();
2655  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2656    A = ARef->getPointeeType();
2657
2658  // C++ [temp.deduct.call]p4:
2659  //   [...] However, there are three cases that allow a difference:
2660  //     - If the original P is a reference type, the deduced A (i.e., the
2661  //       type referred to by the reference) can be more cv-qualified than
2662  //       the transformed A.
2663  if (const ReferenceType *OriginalParamRef
2664      = OriginalParamType->getAs<ReferenceType>()) {
2665    // We don't want to keep the reference around any more.
2666    OriginalParamType = OriginalParamRef->getPointeeType();
2667
2668    Qualifiers AQuals = A.getQualifiers();
2669    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2670
2671    // Under Objective-C++ ARC, the deduced type may have implicitly
2672    // been given strong or (when dealing with a const reference)
2673    // unsafe_unretained lifetime. If so, update the original
2674    // qualifiers to include this lifetime.
2675    if (S.getLangOpts().ObjCAutoRefCount &&
2676        ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2677          AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
2678         (DeducedAQuals.hasConst() &&
2679          DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
2680      AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
2681    }
2682
2683    if (AQuals == DeducedAQuals) {
2684      // Qualifiers match; there's nothing to do.
2685    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2686      return true;
2687    } else {
2688      // Qualifiers are compatible, so have the argument type adopt the
2689      // deduced argument type's qualifiers as if we had performed the
2690      // qualification conversion.
2691      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2692    }
2693  }
2694
2695  //    - The transformed A can be another pointer or pointer to member
2696  //      type that can be converted to the deduced A via a qualification
2697  //      conversion.
2698  //
2699  // Also allow conversions which merely strip [[noreturn]] from function types
2700  // (recursively) as an extension.
2701  // FIXME: Currently, this doesn't play nicely with qualification conversions.
2702  bool ObjCLifetimeConversion = false;
2703  QualType ResultTy;
2704  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2705      (S.IsQualificationConversion(A, DeducedA, false,
2706                                   ObjCLifetimeConversion) ||
2707       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2708    return false;
2709
2710
2711  //    - If P is a class and P has the form simple-template-id, then the
2712  //      transformed A can be a derived class of the deduced A. [...]
2713  //     [...] Likewise, if P is a pointer to a class of the form
2714  //      simple-template-id, the transformed A can be a pointer to a
2715  //      derived class pointed to by the deduced A.
2716  if (const PointerType *OriginalParamPtr
2717      = OriginalParamType->getAs<PointerType>()) {
2718    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2719      if (const PointerType *APtr = A->getAs<PointerType>()) {
2720        if (A->getPointeeType()->isRecordType()) {
2721          OriginalParamType = OriginalParamPtr->getPointeeType();
2722          DeducedA = DeducedAPtr->getPointeeType();
2723          A = APtr->getPointeeType();
2724        }
2725      }
2726    }
2727  }
2728
2729  if (Context.hasSameUnqualifiedType(A, DeducedA))
2730    return false;
2731
2732  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2733      S.IsDerivedFrom(A, DeducedA))
2734    return false;
2735
2736  return true;
2737}
2738
2739/// \brief Finish template argument deduction for a function template,
2740/// checking the deduced template arguments for completeness and forming
2741/// the function template specialization.
2742///
2743/// \param OriginalCallArgs If non-NULL, the original call arguments against
2744/// which the deduced argument types should be compared.
2745Sema::TemplateDeductionResult
2746Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2747                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2748                                      unsigned NumExplicitlySpecified,
2749                                      FunctionDecl *&Specialization,
2750                                      TemplateDeductionInfo &Info,
2751        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
2752                                      bool PartialOverloading) {
2753  TemplateParameterList *TemplateParams
2754    = FunctionTemplate->getTemplateParameters();
2755
2756  // Unevaluated SFINAE context.
2757  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2758  SFINAETrap Trap(*this);
2759
2760  // Enter a new template instantiation context while we instantiate the
2761  // actual function declaration.
2762  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2763  InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
2764                             DeducedArgs,
2765              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2766                             Info);
2767  if (Inst.isInvalid())
2768    return TDK_InstantiationDepth;
2769
2770  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2771
2772  // C++ [temp.deduct.type]p2:
2773  //   [...] or if any template argument remains neither deduced nor
2774  //   explicitly specified, template argument deduction fails.
2775  SmallVector<TemplateArgument, 4> Builder;
2776  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2777    NamedDecl *Param = TemplateParams->getParam(I);
2778
2779    if (!Deduced[I].isNull()) {
2780      if (I < NumExplicitlySpecified) {
2781        // We have already fully type-checked and converted this
2782        // argument, because it was explicitly-specified. Just record the
2783        // presence of this argument.
2784        Builder.push_back(Deduced[I]);
2785        // We may have had explicitly-specified template arguments for a
2786        // template parameter pack (that may or may not have been extended
2787        // via additional deduced arguments).
2788        if (Param->isParameterPack() && CurrentInstantiationScope) {
2789          if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
2790              Param) {
2791            // Forget the partially-substituted pack; its substitution is now
2792            // complete.
2793            CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2794          }
2795        }
2796        continue;
2797      }
2798      // We have deduced this argument, so it still needs to be
2799      // checked and converted.
2800
2801      // First, for a non-type template parameter type that is
2802      // initialized by a declaration, we need the type of the
2803      // corresponding non-type template parameter.
2804      QualType NTTPType;
2805      if (NonTypeTemplateParmDecl *NTTP
2806                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2807        NTTPType = NTTP->getType();
2808        if (NTTPType->isDependentType()) {
2809          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2810                                            Builder.data(), Builder.size());
2811          NTTPType = SubstType(NTTPType,
2812                               MultiLevelTemplateArgumentList(TemplateArgs),
2813                               NTTP->getLocation(),
2814                               NTTP->getDeclName());
2815          if (NTTPType.isNull()) {
2816            Info.Param = makeTemplateParameter(Param);
2817            // FIXME: These template arguments are temporary. Free them!
2818            Info.reset(TemplateArgumentList::CreateCopy(Context,
2819                                                        Builder.data(),
2820                                                        Builder.size()));
2821            return TDK_SubstitutionFailure;
2822          }
2823        }
2824      }
2825
2826      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2827                                         FunctionTemplate, NTTPType, 0, Info,
2828                                         true, Builder)) {
2829        Info.Param = makeTemplateParameter(Param);
2830        // FIXME: These template arguments are temporary. Free them!
2831        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2832                                                    Builder.size()));
2833        return TDK_SubstitutionFailure;
2834      }
2835
2836      continue;
2837    }
2838
2839    // C++0x [temp.arg.explicit]p3:
2840    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2841    //    be deduced to an empty sequence of template arguments.
2842    // FIXME: Where did the word "trailing" come from?
2843    if (Param->isTemplateParameterPack()) {
2844      // We may have had explicitly-specified template arguments for this
2845      // template parameter pack. If so, our empty deduction extends the
2846      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2847      const TemplateArgument *ExplicitArgs;
2848      unsigned NumExplicitArgs;
2849      if (CurrentInstantiationScope &&
2850          CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2851                                                             &NumExplicitArgs)
2852            == Param) {
2853        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2854
2855        // Forget the partially-substituted pack; it's substitution is now
2856        // complete.
2857        CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2858      } else {
2859        Builder.push_back(TemplateArgument::getEmptyPack());
2860      }
2861      continue;
2862    }
2863
2864    // Substitute into the default template argument, if available.
2865    bool HasDefaultArg = false;
2866    TemplateArgumentLoc DefArg
2867      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2868                                              FunctionTemplate->getLocation(),
2869                                  FunctionTemplate->getSourceRange().getEnd(),
2870                                                Param,
2871                                                Builder, HasDefaultArg);
2872
2873    // If there was no default argument, deduction is incomplete.
2874    if (DefArg.getArgument().isNull()) {
2875      Info.Param = makeTemplateParameter(
2876                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2877      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2878                                                  Builder.size()));
2879      if (PartialOverloading) break;
2880
2881      return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2882    }
2883
2884    // Check whether we can actually use the default argument.
2885    if (CheckTemplateArgument(Param, DefArg,
2886                              FunctionTemplate,
2887                              FunctionTemplate->getLocation(),
2888                              FunctionTemplate->getSourceRange().getEnd(),
2889                              0, Builder,
2890                              CTAK_Specified)) {
2891      Info.Param = makeTemplateParameter(
2892                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2893      // FIXME: These template arguments are temporary. Free them!
2894      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2895                                                  Builder.size()));
2896      return TDK_SubstitutionFailure;
2897    }
2898
2899    // If we get here, we successfully used the default template argument.
2900  }
2901
2902  // Form the template argument list from the deduced template arguments.
2903  TemplateArgumentList *DeducedArgumentList
2904    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2905  Info.reset(DeducedArgumentList);
2906
2907  // Substitute the deduced template arguments into the function template
2908  // declaration to produce the function template specialization.
2909  DeclContext *Owner = FunctionTemplate->getDeclContext();
2910  if (FunctionTemplate->getFriendObjectKind())
2911    Owner = FunctionTemplate->getLexicalDeclContext();
2912  Specialization = cast_or_null<FunctionDecl>(
2913                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2914                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2915  if (!Specialization || Specialization->isInvalidDecl())
2916    return TDK_SubstitutionFailure;
2917
2918  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2919         FunctionTemplate->getCanonicalDecl());
2920
2921  // If the template argument list is owned by the function template
2922  // specialization, release it.
2923  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2924      !Trap.hasErrorOccurred())
2925    Info.take();
2926
2927  // There may have been an error that did not prevent us from constructing a
2928  // declaration. Mark the declaration invalid and return with a substitution
2929  // failure.
2930  if (Trap.hasErrorOccurred()) {
2931    Specialization->setInvalidDecl(true);
2932    return TDK_SubstitutionFailure;
2933  }
2934
2935  if (OriginalCallArgs) {
2936    // C++ [temp.deduct.call]p4:
2937    //   In general, the deduction process attempts to find template argument
2938    //   values that will make the deduced A identical to A (after the type A
2939    //   is transformed as described above). [...]
2940    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2941      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2942      unsigned ParamIdx = OriginalArg.ArgIdx;
2943
2944      if (ParamIdx >= Specialization->getNumParams())
2945        continue;
2946
2947      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2948      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2949        return Sema::TDK_SubstitutionFailure;
2950    }
2951  }
2952
2953  // If we suppressed any diagnostics while performing template argument
2954  // deduction, and if we haven't already instantiated this declaration,
2955  // keep track of these diagnostics. They'll be emitted if this specialization
2956  // is actually used.
2957  if (Info.diag_begin() != Info.diag_end()) {
2958    SuppressedDiagnosticsMap::iterator
2959      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2960    if (Pos == SuppressedDiagnostics.end())
2961        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2962          .append(Info.diag_begin(), Info.diag_end());
2963  }
2964
2965  return TDK_Success;
2966}
2967
2968/// Gets the type of a function for template-argument-deducton
2969/// purposes when it's considered as part of an overload set.
2970static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
2971                                  FunctionDecl *Fn) {
2972  // We may need to deduce the return type of the function now.
2973  if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
2974      S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
2975    return QualType();
2976
2977  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2978    if (Method->isInstance()) {
2979      // An instance method that's referenced in a form that doesn't
2980      // look like a member pointer is just invalid.
2981      if (!R.HasFormOfMemberPointer) return QualType();
2982
2983      return S.Context.getMemberPointerType(Fn->getType(),
2984               S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
2985    }
2986
2987  if (!R.IsAddressOfOperand) return Fn->getType();
2988  return S.Context.getPointerType(Fn->getType());
2989}
2990
2991/// Apply the deduction rules for overload sets.
2992///
2993/// \return the null type if this argument should be treated as an
2994/// undeduced context
2995static QualType
2996ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2997                            Expr *Arg, QualType ParamType,
2998                            bool ParamWasReference) {
2999
3000  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3001
3002  OverloadExpr *Ovl = R.Expression;
3003
3004  // C++0x [temp.deduct.call]p4
3005  unsigned TDF = 0;
3006  if (ParamWasReference)
3007    TDF |= TDF_ParamWithReferenceType;
3008  if (R.IsAddressOfOperand)
3009    TDF |= TDF_IgnoreQualifiers;
3010
3011  // C++0x [temp.deduct.call]p6:
3012  //   When P is a function type, pointer to function type, or pointer
3013  //   to member function type:
3014
3015  if (!ParamType->isFunctionType() &&
3016      !ParamType->isFunctionPointerType() &&
3017      !ParamType->isMemberFunctionPointerType()) {
3018    if (Ovl->hasExplicitTemplateArgs()) {
3019      // But we can still look for an explicit specialization.
3020      if (FunctionDecl *ExplicitSpec
3021            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3022        return GetTypeOfFunction(S, R, ExplicitSpec);
3023    }
3024
3025    return QualType();
3026  }
3027
3028  // Gather the explicit template arguments, if any.
3029  TemplateArgumentListInfo ExplicitTemplateArgs;
3030  if (Ovl->hasExplicitTemplateArgs())
3031    Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
3032  QualType Match;
3033  for (UnresolvedSetIterator I = Ovl->decls_begin(),
3034         E = Ovl->decls_end(); I != E; ++I) {
3035    NamedDecl *D = (*I)->getUnderlyingDecl();
3036
3037    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3038      //   - If the argument is an overload set containing one or more
3039      //     function templates, the parameter is treated as a
3040      //     non-deduced context.
3041      if (!Ovl->hasExplicitTemplateArgs())
3042        return QualType();
3043
3044      // Otherwise, see if we can resolve a function type
3045      FunctionDecl *Specialization = nullptr;
3046      TemplateDeductionInfo Info(Ovl->getNameLoc());
3047      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3048                                    Specialization, Info))
3049        continue;
3050
3051      D = Specialization;
3052    }
3053
3054    FunctionDecl *Fn = cast<FunctionDecl>(D);
3055    QualType ArgType = GetTypeOfFunction(S, R, Fn);
3056    if (ArgType.isNull()) continue;
3057
3058    // Function-to-pointer conversion.
3059    if (!ParamWasReference && ParamType->isPointerType() &&
3060        ArgType->isFunctionType())
3061      ArgType = S.Context.getPointerType(ArgType);
3062
3063    //   - If the argument is an overload set (not containing function
3064    //     templates), trial argument deduction is attempted using each
3065    //     of the members of the set. If deduction succeeds for only one
3066    //     of the overload set members, that member is used as the
3067    //     argument value for the deduction. If deduction succeeds for
3068    //     more than one member of the overload set the parameter is
3069    //     treated as a non-deduced context.
3070
3071    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3072    //   Type deduction is done independently for each P/A pair, and
3073    //   the deduced template argument values are then combined.
3074    // So we do not reject deductions which were made elsewhere.
3075    SmallVector<DeducedTemplateArgument, 8>
3076      Deduced(TemplateParams->size());
3077    TemplateDeductionInfo Info(Ovl->getNameLoc());
3078    Sema::TemplateDeductionResult Result
3079      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3080                                           ArgType, Info, Deduced, TDF);
3081    if (Result) continue;
3082    if (!Match.isNull()) return QualType();
3083    Match = ArgType;
3084  }
3085
3086  return Match;
3087}
3088
3089/// \brief Perform the adjustments to the parameter and argument types
3090/// described in C++ [temp.deduct.call].
3091///
3092/// \returns true if the caller should not attempt to perform any template
3093/// argument deduction based on this P/A pair because the argument is an
3094/// overloaded function set that could not be resolved.
3095static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
3096                                          TemplateParameterList *TemplateParams,
3097                                                      QualType &ParamType,
3098                                                      QualType &ArgType,
3099                                                      Expr *Arg,
3100                                                      unsigned &TDF) {
3101  // C++0x [temp.deduct.call]p3:
3102  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3103  //   are ignored for type deduction.
3104  if (ParamType.hasQualifiers())
3105    ParamType = ParamType.getUnqualifiedType();
3106
3107  //   [...] If P is a reference type, the type referred to by P is
3108  //   used for type deduction.
3109  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3110  if (ParamRefType)
3111    ParamType = ParamRefType->getPointeeType();
3112
3113  // Overload sets usually make this parameter an undeduced context,
3114  // but there are sometimes special circumstances.  Typically
3115  // involving a template-id-expr.
3116  if (ArgType == S.Context.OverloadTy) {
3117    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3118                                          Arg, ParamType,
3119                                          ParamRefType != nullptr);
3120    if (ArgType.isNull())
3121      return true;
3122  }
3123
3124  if (ParamRefType) {
3125    // If the argument has incomplete array type, try to complete its type.
3126    if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
3127      ArgType = Arg->getType();
3128
3129    // C++0x [temp.deduct.call]p3:
3130    //   If P is an rvalue reference to a cv-unqualified template
3131    //   parameter and the argument is an lvalue, the type "lvalue
3132    //   reference to A" is used in place of A for type deduction.
3133    if (ParamRefType->isRValueReferenceType() &&
3134        !ParamType.getQualifiers() &&
3135        isa<TemplateTypeParmType>(ParamType) &&
3136        Arg->isLValue())
3137      ArgType = S.Context.getLValueReferenceType(ArgType);
3138  } else {
3139    // C++ [temp.deduct.call]p2:
3140    //   If P is not a reference type:
3141    //   - If A is an array type, the pointer type produced by the
3142    //     array-to-pointer standard conversion (4.2) is used in place of
3143    //     A for type deduction; otherwise,
3144    if (ArgType->isArrayType())
3145      ArgType = S.Context.getArrayDecayedType(ArgType);
3146    //   - If A is a function type, the pointer type produced by the
3147    //     function-to-pointer standard conversion (4.3) is used in place
3148    //     of A for type deduction; otherwise,
3149    else if (ArgType->isFunctionType())
3150      ArgType = S.Context.getPointerType(ArgType);
3151    else {
3152      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3153      //   type are ignored for type deduction.
3154      ArgType = ArgType.getUnqualifiedType();
3155    }
3156  }
3157
3158  // C++0x [temp.deduct.call]p4:
3159  //   In general, the deduction process attempts to find template argument
3160  //   values that will make the deduced A identical to A (after the type A
3161  //   is transformed as described above). [...]
3162  TDF = TDF_SkipNonDependent;
3163
3164  //     - If the original P is a reference type, the deduced A (i.e., the
3165  //       type referred to by the reference) can be more cv-qualified than
3166  //       the transformed A.
3167  if (ParamRefType)
3168    TDF |= TDF_ParamWithReferenceType;
3169  //     - The transformed A can be another pointer or pointer to member
3170  //       type that can be converted to the deduced A via a qualification
3171  //       conversion (4.4).
3172  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3173      ArgType->isObjCObjectPointerType())
3174    TDF |= TDF_IgnoreQualifiers;
3175  //     - If P is a class and P has the form simple-template-id, then the
3176  //       transformed A can be a derived class of the deduced A. Likewise,
3177  //       if P is a pointer to a class of the form simple-template-id, the
3178  //       transformed A can be a pointer to a derived class pointed to by
3179  //       the deduced A.
3180  if (isSimpleTemplateIdType(ParamType) ||
3181      (isa<PointerType>(ParamType) &&
3182       isSimpleTemplateIdType(
3183                              ParamType->getAs<PointerType>()->getPointeeType())))
3184    TDF |= TDF_DerivedClass;
3185
3186  return false;
3187}
3188
3189static bool
3190hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3191                               QualType T);
3192
3193/// \brief Perform template argument deduction by matching a parameter type
3194///        against a single expression, where the expression is an element of
3195///        an initializer list that was originally matched against a parameter
3196///        of type \c initializer_list\<ParamType\>.
3197static Sema::TemplateDeductionResult
3198DeduceTemplateArgumentByListElement(Sema &S,
3199                                    TemplateParameterList *TemplateParams,
3200                                    QualType ParamType, Expr *Arg,
3201                                    TemplateDeductionInfo &Info,
3202                              SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3203                                    unsigned TDF) {
3204  // Handle the case where an init list contains another init list as the
3205  // element.
3206  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3207    QualType X;
3208    if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
3209      return Sema::TDK_Success; // Just ignore this expression.
3210
3211    // Recurse down into the init list.
3212    for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3213      if (Sema::TemplateDeductionResult Result =
3214            DeduceTemplateArgumentByListElement(S, TemplateParams, X,
3215                                                 ILE->getInit(i),
3216                                                 Info, Deduced, TDF))
3217        return Result;
3218    }
3219    return Sema::TDK_Success;
3220  }
3221
3222  // For all other cases, just match by type.
3223  QualType ArgType = Arg->getType();
3224  if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3225                                                ArgType, Arg, TDF)) {
3226    Info.Expression = Arg;
3227    return Sema::TDK_FailedOverloadResolution;
3228  }
3229  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3230                                            ArgType, Info, Deduced, TDF);
3231}
3232
3233/// \brief Perform template argument deduction from a function call
3234/// (C++ [temp.deduct.call]).
3235///
3236/// \param FunctionTemplate the function template for which we are performing
3237/// template argument deduction.
3238///
3239/// \param ExplicitTemplateArgs the explicit template arguments provided
3240/// for this call.
3241///
3242/// \param Args the function call arguments
3243///
3244/// \param Specialization if template argument deduction was successful,
3245/// this will be set to the function template specialization produced by
3246/// template argument deduction.
3247///
3248/// \param Info the argument will be updated to provide additional information
3249/// about template argument deduction.
3250///
3251/// \returns the result of template argument deduction.
3252Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3253    FunctionTemplateDecl *FunctionTemplate,
3254    TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3255    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
3256    bool PartialOverloading) {
3257  if (FunctionTemplate->isInvalidDecl())
3258    return TDK_Invalid;
3259
3260  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3261  unsigned NumParams = Function->getNumParams();
3262
3263  // C++ [temp.deduct.call]p1:
3264  //   Template argument deduction is done by comparing each function template
3265  //   parameter type (call it P) with the type of the corresponding argument
3266  //   of the call (call it A) as described below.
3267  unsigned CheckArgs = Args.size();
3268  if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
3269    return TDK_TooFewArguments;
3270  else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
3271    const FunctionProtoType *Proto
3272      = Function->getType()->getAs<FunctionProtoType>();
3273    if (Proto->isTemplateVariadic())
3274      /* Do nothing */;
3275    else if (Proto->isVariadic())
3276      CheckArgs = NumParams;
3277    else
3278      return TDK_TooManyArguments;
3279  }
3280
3281  // The types of the parameters from which we will perform template argument
3282  // deduction.
3283  LocalInstantiationScope InstScope(*this);
3284  TemplateParameterList *TemplateParams
3285    = FunctionTemplate->getTemplateParameters();
3286  SmallVector<DeducedTemplateArgument, 4> Deduced;
3287  SmallVector<QualType, 4> ParamTypes;
3288  unsigned NumExplicitlySpecified = 0;
3289  if (ExplicitTemplateArgs) {
3290    TemplateDeductionResult Result =
3291      SubstituteExplicitTemplateArguments(FunctionTemplate,
3292                                          *ExplicitTemplateArgs,
3293                                          Deduced,
3294                                          ParamTypes,
3295                                          nullptr,
3296                                          Info);
3297    if (Result)
3298      return Result;
3299
3300    NumExplicitlySpecified = Deduced.size();
3301  } else {
3302    // Just fill in the parameter types from the function declaration.
3303    for (unsigned I = 0; I != NumParams; ++I)
3304      ParamTypes.push_back(Function->getParamDecl(I)->getType());
3305  }
3306
3307  // Deduce template arguments from the function parameters.
3308  Deduced.resize(TemplateParams->size());
3309  unsigned ArgIdx = 0;
3310  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3311  for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size();
3312       ParamIdx != NumParamTypes; ++ParamIdx) {
3313    QualType OrigParamType = ParamTypes[ParamIdx];
3314    QualType ParamType = OrigParamType;
3315
3316    const PackExpansionType *ParamExpansion
3317      = dyn_cast<PackExpansionType>(ParamType);
3318    if (!ParamExpansion) {
3319      // Simple case: matching a function parameter to a function argument.
3320      if (ArgIdx >= CheckArgs)
3321        break;
3322
3323      Expr *Arg = Args[ArgIdx++];
3324      QualType ArgType = Arg->getType();
3325
3326      unsigned TDF = 0;
3327      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3328                                                    ParamType, ArgType, Arg,
3329                                                    TDF))
3330        continue;
3331
3332      // If we have nothing to deduce, we're done.
3333      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3334        continue;
3335
3336      // If the argument is an initializer list ...
3337      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3338        // ... then the parameter is an undeduced context, unless the parameter
3339        // type is (reference to cv) std::initializer_list<P'>, in which case
3340        // deduction is done for each element of the initializer list, and the
3341        // result is the deduced type if it's the same for all elements.
3342        QualType X;
3343        // Removing references was already done.
3344        if (!isStdInitializerList(ParamType, &X))
3345          continue;
3346
3347        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3348          if (TemplateDeductionResult Result =
3349                DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3350                                                     ILE->getInit(i),
3351                                                     Info, Deduced, TDF))
3352            return Result;
3353        }
3354        // Don't track the argument type, since an initializer list has none.
3355        continue;
3356      }
3357
3358      // Keep track of the argument type and corresponding parameter index,
3359      // so we can check for compatibility between the deduced A and A.
3360      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3361                                                 ArgType));
3362
3363      if (TemplateDeductionResult Result
3364            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3365                                                 ParamType, ArgType,
3366                                                 Info, Deduced, TDF))
3367        return Result;
3368
3369      continue;
3370    }
3371
3372    // C++0x [temp.deduct.call]p1:
3373    //   For a function parameter pack that occurs at the end of the
3374    //   parameter-declaration-list, the type A of each remaining argument of
3375    //   the call is compared with the type P of the declarator-id of the
3376    //   function parameter pack. Each comparison deduces template arguments
3377    //   for subsequent positions in the template parameter packs expanded by
3378    //   the function parameter pack. For a function parameter pack that does
3379    //   not occur at the end of the parameter-declaration-list, the type of
3380    //   the parameter pack is a non-deduced context.
3381    if (ParamIdx + 1 < NumParamTypes)
3382      break;
3383
3384    QualType ParamPattern = ParamExpansion->getPattern();
3385    PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3386                                 ParamPattern);
3387
3388    bool HasAnyArguments = false;
3389    for (; ArgIdx < Args.size(); ++ArgIdx) {
3390      HasAnyArguments = true;
3391
3392      QualType OrigParamType = ParamPattern;
3393      ParamType = OrigParamType;
3394      Expr *Arg = Args[ArgIdx];
3395      QualType ArgType = Arg->getType();
3396
3397      unsigned TDF = 0;
3398      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3399                                                    ParamType, ArgType, Arg,
3400                                                    TDF)) {
3401        // We can't actually perform any deduction for this argument, so stop
3402        // deduction at this point.
3403        ++ArgIdx;
3404        break;
3405      }
3406
3407      // As above, initializer lists need special handling.
3408      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3409        QualType X;
3410        if (!isStdInitializerList(ParamType, &X)) {
3411          ++ArgIdx;
3412          break;
3413        }
3414
3415        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3416          if (TemplateDeductionResult Result =
3417                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3418                                                   ILE->getInit(i)->getType(),
3419                                                   Info, Deduced, TDF))
3420            return Result;
3421        }
3422      } else {
3423
3424        // Keep track of the argument type and corresponding argument index,
3425        // so we can check for compatibility between the deduced A and A.
3426        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3427          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3428                                                     ArgType));
3429
3430        if (TemplateDeductionResult Result
3431            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3432                                                 ParamType, ArgType, Info,
3433                                                 Deduced, TDF))
3434          return Result;
3435      }
3436
3437      PackScope.nextPackElement();
3438    }
3439
3440    // Build argument packs for each of the parameter packs expanded by this
3441    // pack expansion.
3442    if (auto Result = PackScope.finish(HasAnyArguments))
3443      return Result;
3444
3445    // After we've matching against a parameter pack, we're done.
3446    break;
3447  }
3448
3449  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3450                                         NumExplicitlySpecified, Specialization,
3451                                         Info, &OriginalCallArgs,
3452                                         PartialOverloading);
3453}
3454
3455QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
3456                                   QualType FunctionType) {
3457  if (ArgFunctionType.isNull())
3458    return ArgFunctionType;
3459
3460  const FunctionProtoType *FunctionTypeP =
3461      FunctionType->castAs<FunctionProtoType>();
3462  CallingConv CC = FunctionTypeP->getCallConv();
3463  bool NoReturn = FunctionTypeP->getNoReturnAttr();
3464  const FunctionProtoType *ArgFunctionTypeP =
3465      ArgFunctionType->getAs<FunctionProtoType>();
3466  if (ArgFunctionTypeP->getCallConv() == CC &&
3467      ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
3468    return ArgFunctionType;
3469
3470  FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
3471  EI = EI.withNoReturn(NoReturn);
3472  ArgFunctionTypeP =
3473      cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
3474  return QualType(ArgFunctionTypeP, 0);
3475}
3476
3477/// \brief Deduce template arguments when taking the address of a function
3478/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3479/// a template.
3480///
3481/// \param FunctionTemplate the function template for which we are performing
3482/// template argument deduction.
3483///
3484/// \param ExplicitTemplateArgs the explicitly-specified template
3485/// arguments.
3486///
3487/// \param ArgFunctionType the function type that will be used as the
3488/// "argument" type (A) when performing template argument deduction from the
3489/// function template's function type. This type may be NULL, if there is no
3490/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3491///
3492/// \param Specialization if template argument deduction was successful,
3493/// this will be set to the function template specialization produced by
3494/// template argument deduction.
3495///
3496/// \param Info the argument will be updated to provide additional information
3497/// about template argument deduction.
3498///
3499/// \returns the result of template argument deduction.
3500Sema::TemplateDeductionResult
3501Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3502                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3503                              QualType ArgFunctionType,
3504                              FunctionDecl *&Specialization,
3505                              TemplateDeductionInfo &Info,
3506                              bool InOverloadResolution) {
3507  if (FunctionTemplate->isInvalidDecl())
3508    return TDK_Invalid;
3509
3510  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3511  TemplateParameterList *TemplateParams
3512    = FunctionTemplate->getTemplateParameters();
3513  QualType FunctionType = Function->getType();
3514  if (!InOverloadResolution)
3515    ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
3516
3517  // Substitute any explicit template arguments.
3518  LocalInstantiationScope InstScope(*this);
3519  SmallVector<DeducedTemplateArgument, 4> Deduced;
3520  unsigned NumExplicitlySpecified = 0;
3521  SmallVector<QualType, 4> ParamTypes;
3522  if (ExplicitTemplateArgs) {
3523    if (TemplateDeductionResult Result
3524          = SubstituteExplicitTemplateArguments(FunctionTemplate,
3525                                                *ExplicitTemplateArgs,
3526                                                Deduced, ParamTypes,
3527                                                &FunctionType, Info))
3528      return Result;
3529
3530    NumExplicitlySpecified = Deduced.size();
3531  }
3532
3533  // Unevaluated SFINAE context.
3534  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3535  SFINAETrap Trap(*this);
3536
3537  Deduced.resize(TemplateParams->size());
3538
3539  // If the function has a deduced return type, substitute it for a dependent
3540  // type so that we treat it as a non-deduced context in what follows.
3541  bool HasDeducedReturnType = false;
3542  if (getLangOpts().CPlusPlus14 && InOverloadResolution &&
3543      Function->getReturnType()->getContainedAutoType()) {
3544    FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3545    HasDeducedReturnType = true;
3546  }
3547
3548  if (!ArgFunctionType.isNull()) {
3549    unsigned TDF = TDF_TopLevelParameterTypeList;
3550    if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3551    // Deduce template arguments from the function type.
3552    if (TemplateDeductionResult Result
3553          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3554                                               FunctionType, ArgFunctionType,
3555                                               Info, Deduced, TDF))
3556      return Result;
3557  }
3558
3559  if (TemplateDeductionResult Result
3560        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3561                                          NumExplicitlySpecified,
3562                                          Specialization, Info))
3563    return Result;
3564
3565  // If the function has a deduced return type, deduce it now, so we can check
3566  // that the deduced function type matches the requested type.
3567  if (HasDeducedReturnType &&
3568      Specialization->getReturnType()->isUndeducedType() &&
3569      DeduceReturnType(Specialization, Info.getLocation(), false))
3570    return TDK_MiscellaneousDeductionFailure;
3571
3572  // If the requested function type does not match the actual type of the
3573  // specialization with respect to arguments of compatible pointer to function
3574  // types, template argument deduction fails.
3575  if (!ArgFunctionType.isNull()) {
3576    if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3577                           Context.getCanonicalType(Specialization->getType()),
3578                           Context.getCanonicalType(ArgFunctionType)))
3579      return TDK_MiscellaneousDeductionFailure;
3580    else if(!InOverloadResolution &&
3581            !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3582      return TDK_MiscellaneousDeductionFailure;
3583  }
3584
3585  return TDK_Success;
3586}
3587
3588/// \brief Given a function declaration (e.g. a generic lambda conversion
3589///  function) that contains an 'auto' in its result type, substitute it
3590///  with TypeToReplaceAutoWith.  Be careful to pass in the type you want
3591///  to replace 'auto' with and not the actual result type you want
3592///  to set the function to.
3593static inline void
3594SubstAutoWithinFunctionReturnType(FunctionDecl *F,
3595                                    QualType TypeToReplaceAutoWith, Sema &S) {
3596  assert(!TypeToReplaceAutoWith->getContainedAutoType());
3597  QualType AutoResultType = F->getReturnType();
3598  assert(AutoResultType->getContainedAutoType());
3599  QualType DeducedResultType = S.SubstAutoType(AutoResultType,
3600                                               TypeToReplaceAutoWith);
3601  S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
3602}
3603
3604/// \brief Given a specialized conversion operator of a generic lambda
3605/// create the corresponding specializations of the call operator and
3606/// the static-invoker. If the return type of the call operator is auto,
3607/// deduce its return type and check if that matches the
3608/// return type of the destination function ptr.
3609
3610static inline Sema::TemplateDeductionResult
3611SpecializeCorrespondingLambdaCallOperatorAndInvoker(
3612    CXXConversionDecl *ConversionSpecialized,
3613    SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
3614    QualType ReturnTypeOfDestFunctionPtr,
3615    TemplateDeductionInfo &TDInfo,
3616    Sema &S) {
3617
3618  CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
3619  assert(LambdaClass && LambdaClass->isGenericLambda());
3620
3621  CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
3622  QualType CallOpResultType = CallOpGeneric->getReturnType();
3623  const bool GenericLambdaCallOperatorHasDeducedReturnType =
3624      CallOpResultType->getContainedAutoType();
3625
3626  FunctionTemplateDecl *CallOpTemplate =
3627      CallOpGeneric->getDescribedFunctionTemplate();
3628
3629  FunctionDecl *CallOpSpecialized = nullptr;
3630  // Use the deduced arguments of the conversion function, to specialize our
3631  // generic lambda's call operator.
3632  if (Sema::TemplateDeductionResult Result
3633      = S.FinishTemplateArgumentDeduction(CallOpTemplate,
3634                                          DeducedArguments,
3635                                          0, CallOpSpecialized, TDInfo))
3636    return Result;
3637
3638  // If we need to deduce the return type, do so (instantiates the callop).
3639  if (GenericLambdaCallOperatorHasDeducedReturnType &&
3640      CallOpSpecialized->getReturnType()->isUndeducedType())
3641    S.DeduceReturnType(CallOpSpecialized,
3642                       CallOpSpecialized->getPointOfInstantiation(),
3643                       /*Diagnose*/ true);
3644
3645  // Check to see if the return type of the destination ptr-to-function
3646  // matches the return type of the call operator.
3647  if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
3648                             ReturnTypeOfDestFunctionPtr))
3649    return Sema::TDK_NonDeducedMismatch;
3650  // Since we have succeeded in matching the source and destination
3651  // ptr-to-functions (now including return type), and have successfully
3652  // specialized our corresponding call operator, we are ready to
3653  // specialize the static invoker with the deduced arguments of our
3654  // ptr-to-function.
3655  FunctionDecl *InvokerSpecialized = nullptr;
3656  FunctionTemplateDecl *InvokerTemplate = LambdaClass->
3657                  getLambdaStaticInvoker()->getDescribedFunctionTemplate();
3658
3659  Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result
3660    = S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
3661          InvokerSpecialized, TDInfo);
3662  assert(Result == Sema::TDK_Success &&
3663    "If the call operator succeeded so should the invoker!");
3664  // Set the result type to match the corresponding call operator
3665  // specialization's result type.
3666  if (GenericLambdaCallOperatorHasDeducedReturnType &&
3667      InvokerSpecialized->getReturnType()->isUndeducedType()) {
3668    // Be sure to get the type to replace 'auto' with and not
3669    // the full result type of the call op specialization
3670    // to substitute into the 'auto' of the invoker and conversion
3671    // function.
3672    // For e.g.
3673    //  int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
3674    // We don't want to subst 'int*' into 'auto' to get int**.
3675
3676    QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
3677                                         ->getContainedAutoType()
3678                                         ->getDeducedType();
3679    SubstAutoWithinFunctionReturnType(InvokerSpecialized,
3680        TypeToReplaceAutoWith, S);
3681    SubstAutoWithinFunctionReturnType(ConversionSpecialized,
3682        TypeToReplaceAutoWith, S);
3683  }
3684
3685  // Ensure that static invoker doesn't have a const qualifier.
3686  // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
3687  // do not use the CallOperator's TypeSourceInfo which allows
3688  // the const qualifier to leak through.
3689  const FunctionProtoType *InvokerFPT = InvokerSpecialized->
3690                  getType().getTypePtr()->castAs<FunctionProtoType>();
3691  FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
3692  EPI.TypeQuals = 0;
3693  InvokerSpecialized->setType(S.Context.getFunctionType(
3694      InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
3695  return Sema::TDK_Success;
3696}
3697/// \brief Deduce template arguments for a templated conversion
3698/// function (C++ [temp.deduct.conv]) and, if successful, produce a
3699/// conversion function template specialization.
3700Sema::TemplateDeductionResult
3701Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
3702                              QualType ToType,
3703                              CXXConversionDecl *&Specialization,
3704                              TemplateDeductionInfo &Info) {
3705  if (ConversionTemplate->isInvalidDecl())
3706    return TDK_Invalid;
3707
3708  CXXConversionDecl *ConversionGeneric
3709    = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
3710
3711  QualType FromType = ConversionGeneric->getConversionType();
3712
3713  // Canonicalize the types for deduction.
3714  QualType P = Context.getCanonicalType(FromType);
3715  QualType A = Context.getCanonicalType(ToType);
3716
3717  // C++0x [temp.deduct.conv]p2:
3718  //   If P is a reference type, the type referred to by P is used for
3719  //   type deduction.
3720  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3721    P = PRef->getPointeeType();
3722
3723  // C++0x [temp.deduct.conv]p4:
3724  //   [...] If A is a reference type, the type referred to by A is used
3725  //   for type deduction.
3726  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3727    A = ARef->getPointeeType().getUnqualifiedType();
3728  // C++ [temp.deduct.conv]p3:
3729  //
3730  //   If A is not a reference type:
3731  else {
3732    assert(!A->isReferenceType() && "Reference types were handled above");
3733
3734    //   - If P is an array type, the pointer type produced by the
3735    //     array-to-pointer standard conversion (4.2) is used in place
3736    //     of P for type deduction; otherwise,
3737    if (P->isArrayType())
3738      P = Context.getArrayDecayedType(P);
3739    //   - If P is a function type, the pointer type produced by the
3740    //     function-to-pointer standard conversion (4.3) is used in
3741    //     place of P for type deduction; otherwise,
3742    else if (P->isFunctionType())
3743      P = Context.getPointerType(P);
3744    //   - If P is a cv-qualified type, the top level cv-qualifiers of
3745    //     P's type are ignored for type deduction.
3746    else
3747      P = P.getUnqualifiedType();
3748
3749    // C++0x [temp.deduct.conv]p4:
3750    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3751    //   type are ignored for type deduction. If A is a reference type, the type
3752    //   referred to by A is used for type deduction.
3753    A = A.getUnqualifiedType();
3754  }
3755
3756  // Unevaluated SFINAE context.
3757  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3758  SFINAETrap Trap(*this);
3759
3760  // C++ [temp.deduct.conv]p1:
3761  //   Template argument deduction is done by comparing the return
3762  //   type of the template conversion function (call it P) with the
3763  //   type that is required as the result of the conversion (call it
3764  //   A) as described in 14.8.2.4.
3765  TemplateParameterList *TemplateParams
3766    = ConversionTemplate->getTemplateParameters();
3767  SmallVector<DeducedTemplateArgument, 4> Deduced;
3768  Deduced.resize(TemplateParams->size());
3769
3770  // C++0x [temp.deduct.conv]p4:
3771  //   In general, the deduction process attempts to find template
3772  //   argument values that will make the deduced A identical to
3773  //   A. However, there are two cases that allow a difference:
3774  unsigned TDF = 0;
3775  //     - If the original A is a reference type, A can be more
3776  //       cv-qualified than the deduced A (i.e., the type referred to
3777  //       by the reference)
3778  if (ToType->isReferenceType())
3779    TDF |= TDF_ParamWithReferenceType;
3780  //     - The deduced A can be another pointer or pointer to member
3781  //       type that can be converted to A via a qualification
3782  //       conversion.
3783  //
3784  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3785  // both P and A are pointers or member pointers. In this case, we
3786  // just ignore cv-qualifiers completely).
3787  if ((P->isPointerType() && A->isPointerType()) ||
3788      (P->isMemberPointerType() && A->isMemberPointerType()))
3789    TDF |= TDF_IgnoreQualifiers;
3790  if (TemplateDeductionResult Result
3791        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3792                                             P, A, Info, Deduced, TDF))
3793    return Result;
3794
3795  // Create an Instantiation Scope for finalizing the operator.
3796  LocalInstantiationScope InstScope(*this);
3797  // Finish template argument deduction.
3798  FunctionDecl *ConversionSpecialized = nullptr;
3799  TemplateDeductionResult Result
3800      = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
3801                                        ConversionSpecialized, Info);
3802  Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
3803
3804  // If the conversion operator is being invoked on a lambda closure to convert
3805  // to a ptr-to-function, use the deduced arguments from the conversion
3806  // function to specialize the corresponding call operator.
3807  //   e.g., int (*fp)(int) = [](auto a) { return a; };
3808  if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
3809
3810    // Get the return type of the destination ptr-to-function we are converting
3811    // to.  This is necessary for matching the lambda call operator's return
3812    // type to that of the destination ptr-to-function's return type.
3813    assert(A->isPointerType() &&
3814        "Can only convert from lambda to ptr-to-function");
3815    const FunctionType *ToFunType =
3816        A->getPointeeType().getTypePtr()->getAs<FunctionType>();
3817    const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
3818
3819    // Create the corresponding specializations of the call operator and
3820    // the static-invoker; and if the return type is auto,
3821    // deduce the return type and check if it matches the
3822    // DestFunctionPtrReturnType.
3823    // For instance:
3824    //   auto L = [](auto a) { return f(a); };
3825    //   int (*fp)(int) = L;
3826    //   char (*fp2)(int) = L; <-- Not OK.
3827
3828    Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
3829        Specialization, Deduced, DestFunctionPtrReturnType,
3830        Info, *this);
3831  }
3832  return Result;
3833}
3834
3835/// \brief Deduce template arguments for a function template when there is
3836/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3837///
3838/// \param FunctionTemplate the function template for which we are performing
3839/// template argument deduction.
3840///
3841/// \param ExplicitTemplateArgs the explicitly-specified template
3842/// arguments.
3843///
3844/// \param Specialization if template argument deduction was successful,
3845/// this will be set to the function template specialization produced by
3846/// template argument deduction.
3847///
3848/// \param Info the argument will be updated to provide additional information
3849/// about template argument deduction.
3850///
3851/// \returns the result of template argument deduction.
3852Sema::TemplateDeductionResult
3853Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3854                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3855                              FunctionDecl *&Specialization,
3856                              TemplateDeductionInfo &Info,
3857                              bool InOverloadResolution) {
3858  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3859                                 QualType(), Specialization, Info,
3860                                 InOverloadResolution);
3861}
3862
3863namespace {
3864  /// Substitute the 'auto' type specifier within a type for a given replacement
3865  /// type.
3866  class SubstituteAutoTransform :
3867    public TreeTransform<SubstituteAutoTransform> {
3868    QualType Replacement;
3869  public:
3870    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement)
3871        : TreeTransform<SubstituteAutoTransform>(SemaRef),
3872          Replacement(Replacement) {}
3873
3874    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3875      // If we're building the type pattern to deduce against, don't wrap the
3876      // substituted type in an AutoType. Certain template deduction rules
3877      // apply only when a template type parameter appears directly (and not if
3878      // the parameter is found through desugaring). For instance:
3879      //   auto &&lref = lvalue;
3880      // must transform into "rvalue reference to T" not "rvalue reference to
3881      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3882      if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3883        QualType Result = Replacement;
3884        TemplateTypeParmTypeLoc NewTL =
3885          TLB.push<TemplateTypeParmTypeLoc>(Result);
3886        NewTL.setNameLoc(TL.getNameLoc());
3887        return Result;
3888      } else {
3889        bool Dependent =
3890          !Replacement.isNull() && Replacement->isDependentType();
3891        QualType Result =
3892          SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3893                                      TL.getTypePtr()->isDecltypeAuto(),
3894                                      Dependent);
3895        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3896        NewTL.setNameLoc(TL.getNameLoc());
3897        return Result;
3898      }
3899    }
3900
3901    ExprResult TransformLambdaExpr(LambdaExpr *E) {
3902      // Lambdas never need to be transformed.
3903      return E;
3904    }
3905
3906    QualType Apply(TypeLoc TL) {
3907      // Create some scratch storage for the transformed type locations.
3908      // FIXME: We're just going to throw this information away. Don't build it.
3909      TypeLocBuilder TLB;
3910      TLB.reserve(TL.getFullDataSize());
3911      return TransformType(TLB, TL);
3912    }
3913  };
3914}
3915
3916Sema::DeduceAutoResult
3917Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3918  return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3919}
3920
3921/// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3922///
3923/// \param Type the type pattern using the auto type-specifier.
3924/// \param Init the initializer for the variable whose type is to be deduced.
3925/// \param Result if type deduction was successful, this will be set to the
3926///        deduced type.
3927Sema::DeduceAutoResult
3928Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3929  if (Init->getType()->isNonOverloadPlaceholderType()) {
3930    ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3931    if (NonPlaceholder.isInvalid())
3932      return DAR_FailedAlreadyDiagnosed;
3933    Init = NonPlaceholder.get();
3934  }
3935
3936  if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
3937    Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
3938    assert(!Result.isNull() && "substituting DependentTy can't fail");
3939    return DAR_Succeeded;
3940  }
3941
3942  // If this is a 'decltype(auto)' specifier, do the decltype dance.
3943  // Since 'decltype(auto)' can only occur at the top of the type, we
3944  // don't need to go digging for it.
3945  if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
3946    if (AT->isDecltypeAuto()) {
3947      if (isa<InitListExpr>(Init)) {
3948        Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
3949        return DAR_FailedAlreadyDiagnosed;
3950      }
3951
3952      QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false);
3953      // FIXME: Support a non-canonical deduced type for 'auto'.
3954      Deduced = Context.getCanonicalType(Deduced);
3955      Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
3956      if (Result.isNull())
3957        return DAR_FailedAlreadyDiagnosed;
3958      return DAR_Succeeded;
3959    }
3960  }
3961
3962  SourceLocation Loc = Init->getExprLoc();
3963
3964  LocalInstantiationScope InstScope(*this);
3965
3966  // Build template<class TemplParam> void Func(FuncParam);
3967  TemplateTypeParmDecl *TemplParam =
3968    TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
3969                                 nullptr, false, false);
3970  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3971  NamedDecl *TemplParamPtr = TemplParam;
3972  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3973                                                   Loc);
3974
3975  QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
3976  assert(!FuncParam.isNull() &&
3977         "substituting template parameter for 'auto' failed");
3978
3979  // Deduce type of TemplParam in Func(Init)
3980  SmallVector<DeducedTemplateArgument, 1> Deduced;
3981  Deduced.resize(1);
3982  QualType InitType = Init->getType();
3983  unsigned TDF = 0;
3984
3985  TemplateDeductionInfo Info(Loc);
3986
3987  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3988  if (InitList) {
3989    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3990      if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3991                                              TemplArg,
3992                                              InitList->getInit(i),
3993                                              Info, Deduced, TDF))
3994        return DAR_Failed;
3995    }
3996  } else {
3997    if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3998                                                  FuncParam, InitType, Init,
3999                                                  TDF))
4000      return DAR_Failed;
4001
4002    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
4003                                           InitType, Info, Deduced, TDF))
4004      return DAR_Failed;
4005  }
4006
4007  if (Deduced[0].getKind() != TemplateArgument::Type)
4008    return DAR_Failed;
4009
4010  QualType DeducedType = Deduced[0].getAsType();
4011
4012  if (InitList) {
4013    DeducedType = BuildStdInitializerList(DeducedType, Loc);
4014    if (DeducedType.isNull())
4015      return DAR_FailedAlreadyDiagnosed;
4016  }
4017
4018  Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
4019  if (Result.isNull())
4020   return DAR_FailedAlreadyDiagnosed;
4021
4022  // Check that the deduced argument type is compatible with the original
4023  // argument type per C++ [temp.deduct.call]p4.
4024  if (!InitList && !Result.isNull() &&
4025      CheckOriginalCallArgDeduction(*this,
4026                                    Sema::OriginalCallArg(FuncParam,0,InitType),
4027                                    Result)) {
4028    Result = QualType();
4029    return DAR_Failed;
4030  }
4031
4032  return DAR_Succeeded;
4033}
4034
4035QualType Sema::SubstAutoType(QualType TypeWithAuto,
4036                             QualType TypeToReplaceAuto) {
4037  return SubstituteAutoTransform(*this, TypeToReplaceAuto).
4038               TransformType(TypeWithAuto);
4039}
4040
4041TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4042                             QualType TypeToReplaceAuto) {
4043    return SubstituteAutoTransform(*this, TypeToReplaceAuto).
4044               TransformType(TypeWithAuto);
4045}
4046
4047void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4048  if (isa<InitListExpr>(Init))
4049    Diag(VDecl->getLocation(),
4050         VDecl->isInitCapture()
4051             ? diag::err_init_capture_deduction_failure_from_init_list
4052             : diag::err_auto_var_deduction_failure_from_init_list)
4053      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4054  else
4055    Diag(VDecl->getLocation(),
4056         VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4057                                : diag::err_auto_var_deduction_failure)
4058      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4059      << Init->getSourceRange();
4060}
4061
4062bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4063                            bool Diagnose) {
4064  assert(FD->getReturnType()->isUndeducedType());
4065
4066  if (FD->getTemplateInstantiationPattern())
4067    InstantiateFunctionDefinition(Loc, FD);
4068
4069  bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4070  if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4071    Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4072    Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4073  }
4074
4075  return StillUndeduced;
4076}
4077
4078static void
4079MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4080                           bool OnlyDeduced,
4081                           unsigned Level,
4082                           llvm::SmallBitVector &Deduced);
4083
4084/// \brief If this is a non-static member function,
4085static void
4086AddImplicitObjectParameterType(ASTContext &Context,
4087                               CXXMethodDecl *Method,
4088                               SmallVectorImpl<QualType> &ArgTypes) {
4089  // C++11 [temp.func.order]p3:
4090  //   [...] The new parameter is of type "reference to cv A," where cv are
4091  //   the cv-qualifiers of the function template (if any) and A is
4092  //   the class of which the function template is a member.
4093  //
4094  // The standard doesn't say explicitly, but we pick the appropriate kind of
4095  // reference type based on [over.match.funcs]p4.
4096  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4097  ArgTy = Context.getQualifiedType(ArgTy,
4098                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
4099  if (Method->getRefQualifier() == RQ_RValue)
4100    ArgTy = Context.getRValueReferenceType(ArgTy);
4101  else
4102    ArgTy = Context.getLValueReferenceType(ArgTy);
4103  ArgTypes.push_back(ArgTy);
4104}
4105
4106/// \brief Determine whether the function template \p FT1 is at least as
4107/// specialized as \p FT2.
4108static bool isAtLeastAsSpecializedAs(Sema &S,
4109                                     SourceLocation Loc,
4110                                     FunctionTemplateDecl *FT1,
4111                                     FunctionTemplateDecl *FT2,
4112                                     TemplatePartialOrderingContext TPOC,
4113                                     unsigned NumCallArguments1) {
4114  FunctionDecl *FD1 = FT1->getTemplatedDecl();
4115  FunctionDecl *FD2 = FT2->getTemplatedDecl();
4116  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4117  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4118
4119  assert(Proto1 && Proto2 && "Function templates must have prototypes");
4120  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4121  SmallVector<DeducedTemplateArgument, 4> Deduced;
4122  Deduced.resize(TemplateParams->size());
4123
4124  // C++0x [temp.deduct.partial]p3:
4125  //   The types used to determine the ordering depend on the context in which
4126  //   the partial ordering is done:
4127  TemplateDeductionInfo Info(Loc);
4128  SmallVector<QualType, 4> Args2;
4129  switch (TPOC) {
4130  case TPOC_Call: {
4131    //   - In the context of a function call, the function parameter types are
4132    //     used.
4133    CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4134    CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4135
4136    // C++11 [temp.func.order]p3:
4137    //   [...] If only one of the function templates is a non-static
4138    //   member, that function template is considered to have a new
4139    //   first parameter inserted in its function parameter list. The
4140    //   new parameter is of type "reference to cv A," where cv are
4141    //   the cv-qualifiers of the function template (if any) and A is
4142    //   the class of which the function template is a member.
4143    //
4144    // Note that we interpret this to mean "if one of the function
4145    // templates is a non-static member and the other is a non-member";
4146    // otherwise, the ordering rules for static functions against non-static
4147    // functions don't make any sense.
4148    //
4149    // C++98/03 doesn't have this provision but we've extended DR532 to cover
4150    // it as wording was broken prior to it.
4151    SmallVector<QualType, 4> Args1;
4152
4153    unsigned NumComparedArguments = NumCallArguments1;
4154
4155    if (!Method2 && Method1 && !Method1->isStatic()) {
4156      // Compare 'this' from Method1 against first parameter from Method2.
4157      AddImplicitObjectParameterType(S.Context, Method1, Args1);
4158      ++NumComparedArguments;
4159    } else if (!Method1 && Method2 && !Method2->isStatic()) {
4160      // Compare 'this' from Method2 against first parameter from Method1.
4161      AddImplicitObjectParameterType(S.Context, Method2, Args2);
4162    }
4163
4164    Args1.insert(Args1.end(), Proto1->param_type_begin(),
4165                 Proto1->param_type_end());
4166    Args2.insert(Args2.end(), Proto2->param_type_begin(),
4167                 Proto2->param_type_end());
4168
4169    // C++ [temp.func.order]p5:
4170    //   The presence of unused ellipsis and default arguments has no effect on
4171    //   the partial ordering of function templates.
4172    if (Args1.size() > NumComparedArguments)
4173      Args1.resize(NumComparedArguments);
4174    if (Args2.size() > NumComparedArguments)
4175      Args2.resize(NumComparedArguments);
4176    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4177                                Args1.data(), Args1.size(), Info, Deduced,
4178                                TDF_None, /*PartialOrdering=*/true))
4179      return false;
4180
4181    break;
4182  }
4183
4184  case TPOC_Conversion:
4185    //   - In the context of a call to a conversion operator, the return types
4186    //     of the conversion function templates are used.
4187    if (DeduceTemplateArgumentsByTypeMatch(
4188            S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4189            Info, Deduced, TDF_None,
4190            /*PartialOrdering=*/true))
4191      return false;
4192    break;
4193
4194  case TPOC_Other:
4195    //   - In other contexts (14.6.6.2) the function template's function type
4196    //     is used.
4197    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4198                                           FD2->getType(), FD1->getType(),
4199                                           Info, Deduced, TDF_None,
4200                                           /*PartialOrdering=*/true))
4201      return false;
4202    break;
4203  }
4204
4205  // C++0x [temp.deduct.partial]p11:
4206  //   In most cases, all template parameters must have values in order for
4207  //   deduction to succeed, but for partial ordering purposes a template
4208  //   parameter may remain without a value provided it is not used in the
4209  //   types being used for partial ordering. [ Note: a template parameter used
4210  //   in a non-deduced context is considered used. -end note]
4211  unsigned ArgIdx = 0, NumArgs = Deduced.size();
4212  for (; ArgIdx != NumArgs; ++ArgIdx)
4213    if (Deduced[ArgIdx].isNull())
4214      break;
4215
4216  if (ArgIdx == NumArgs) {
4217    // All template arguments were deduced. FT1 is at least as specialized
4218    // as FT2.
4219    return true;
4220  }
4221
4222  // Figure out which template parameters were used.
4223  llvm::SmallBitVector UsedParameters(TemplateParams->size());
4224  switch (TPOC) {
4225  case TPOC_Call:
4226    for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4227      ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4228                                   TemplateParams->getDepth(),
4229                                   UsedParameters);
4230    break;
4231
4232  case TPOC_Conversion:
4233    ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4234                                 TemplateParams->getDepth(), UsedParameters);
4235    break;
4236
4237  case TPOC_Other:
4238    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4239                                 TemplateParams->getDepth(),
4240                                 UsedParameters);
4241    break;
4242  }
4243
4244  for (; ArgIdx != NumArgs; ++ArgIdx)
4245    // If this argument had no value deduced but was used in one of the types
4246    // used for partial ordering, then deduction fails.
4247    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
4248      return false;
4249
4250  return true;
4251}
4252
4253/// \brief Determine whether this a function template whose parameter-type-list
4254/// ends with a function parameter pack.
4255static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
4256  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
4257  unsigned NumParams = Function->getNumParams();
4258  if (NumParams == 0)
4259    return false;
4260
4261  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
4262  if (!Last->isParameterPack())
4263    return false;
4264
4265  // Make sure that no previous parameter is a parameter pack.
4266  while (--NumParams > 0) {
4267    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
4268      return false;
4269  }
4270
4271  return true;
4272}
4273
4274/// \brief Returns the more specialized function template according
4275/// to the rules of function template partial ordering (C++ [temp.func.order]).
4276///
4277/// \param FT1 the first function template
4278///
4279/// \param FT2 the second function template
4280///
4281/// \param TPOC the context in which we are performing partial ordering of
4282/// function templates.
4283///
4284/// \param NumCallArguments1 The number of arguments in the call to FT1, used
4285/// only when \c TPOC is \c TPOC_Call.
4286///
4287/// \param NumCallArguments2 The number of arguments in the call to FT2, used
4288/// only when \c TPOC is \c TPOC_Call.
4289///
4290/// \returns the more specialized function template. If neither
4291/// template is more specialized, returns NULL.
4292FunctionTemplateDecl *
4293Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4294                                 FunctionTemplateDecl *FT2,
4295                                 SourceLocation Loc,
4296                                 TemplatePartialOrderingContext TPOC,
4297                                 unsigned NumCallArguments1,
4298                                 unsigned NumCallArguments2) {
4299  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4300                                          NumCallArguments1);
4301  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4302                                          NumCallArguments2);
4303
4304  if (Better1 != Better2) // We have a clear winner
4305    return Better1 ? FT1 : FT2;
4306
4307  if (!Better1 && !Better2) // Neither is better than the other
4308    return nullptr;
4309
4310  // FIXME: This mimics what GCC implements, but doesn't match up with the
4311  // proposed resolution for core issue 692. This area needs to be sorted out,
4312  // but for now we attempt to maintain compatibility.
4313  bool Variadic1 = isVariadicFunctionTemplate(FT1);
4314  bool Variadic2 = isVariadicFunctionTemplate(FT2);
4315  if (Variadic1 != Variadic2)
4316    return Variadic1? FT2 : FT1;
4317
4318  return nullptr;
4319}
4320
4321/// \brief Determine if the two templates are equivalent.
4322static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4323  if (T1 == T2)
4324    return true;
4325
4326  if (!T1 || !T2)
4327    return false;
4328
4329  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4330}
4331
4332/// \brief Retrieve the most specialized of the given function template
4333/// specializations.
4334///
4335/// \param SpecBegin the start iterator of the function template
4336/// specializations that we will be comparing.
4337///
4338/// \param SpecEnd the end iterator of the function template
4339/// specializations, paired with \p SpecBegin.
4340///
4341/// \param Loc the location where the ambiguity or no-specializations
4342/// diagnostic should occur.
4343///
4344/// \param NoneDiag partial diagnostic used to diagnose cases where there are
4345/// no matching candidates.
4346///
4347/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4348/// occurs.
4349///
4350/// \param CandidateDiag partial diagnostic used for each function template
4351/// specialization that is a candidate in the ambiguous ordering. One parameter
4352/// in this diagnostic should be unbound, which will correspond to the string
4353/// describing the template arguments for the function template specialization.
4354///
4355/// \returns the most specialized function template specialization, if
4356/// found. Otherwise, returns SpecEnd.
4357UnresolvedSetIterator Sema::getMostSpecialized(
4358    UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4359    TemplateSpecCandidateSet &FailedCandidates,
4360    SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4361    const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4362    bool Complain, QualType TargetType) {
4363  if (SpecBegin == SpecEnd) {
4364    if (Complain) {
4365      Diag(Loc, NoneDiag);
4366      FailedCandidates.NoteCandidates(*this, Loc);
4367    }
4368    return SpecEnd;
4369  }
4370
4371  if (SpecBegin + 1 == SpecEnd)
4372    return SpecBegin;
4373
4374  // Find the function template that is better than all of the templates it
4375  // has been compared to.
4376  UnresolvedSetIterator Best = SpecBegin;
4377  FunctionTemplateDecl *BestTemplate
4378    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4379  assert(BestTemplate && "Not a function template specialization?");
4380  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4381    FunctionTemplateDecl *Challenger
4382      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4383    assert(Challenger && "Not a function template specialization?");
4384    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4385                                                  Loc, TPOC_Other, 0, 0),
4386                       Challenger)) {
4387      Best = I;
4388      BestTemplate = Challenger;
4389    }
4390  }
4391
4392  // Make sure that the "best" function template is more specialized than all
4393  // of the others.
4394  bool Ambiguous = false;
4395  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4396    FunctionTemplateDecl *Challenger
4397      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4398    if (I != Best &&
4399        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4400                                                   Loc, TPOC_Other, 0, 0),
4401                        BestTemplate)) {
4402      Ambiguous = true;
4403      break;
4404    }
4405  }
4406
4407  if (!Ambiguous) {
4408    // We found an answer. Return it.
4409    return Best;
4410  }
4411
4412  // Diagnose the ambiguity.
4413  if (Complain) {
4414    Diag(Loc, AmbigDiag);
4415
4416    // FIXME: Can we order the candidates in some sane way?
4417    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4418      PartialDiagnostic PD = CandidateDiag;
4419      PD << getTemplateArgumentBindingsText(
4420          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4421                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4422      if (!TargetType.isNull())
4423        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4424                                   TargetType);
4425      Diag((*I)->getLocation(), PD);
4426    }
4427  }
4428
4429  return SpecEnd;
4430}
4431
4432/// \brief Returns the more specialized class template partial specialization
4433/// according to the rules of partial ordering of class template partial
4434/// specializations (C++ [temp.class.order]).
4435///
4436/// \param PS1 the first class template partial specialization
4437///
4438/// \param PS2 the second class template partial specialization
4439///
4440/// \returns the more specialized class template partial specialization. If
4441/// neither partial specialization is more specialized, returns NULL.
4442ClassTemplatePartialSpecializationDecl *
4443Sema::getMoreSpecializedPartialSpecialization(
4444                                  ClassTemplatePartialSpecializationDecl *PS1,
4445                                  ClassTemplatePartialSpecializationDecl *PS2,
4446                                              SourceLocation Loc) {
4447  // C++ [temp.class.order]p1:
4448  //   For two class template partial specializations, the first is at least as
4449  //   specialized as the second if, given the following rewrite to two
4450  //   function templates, the first function template is at least as
4451  //   specialized as the second according to the ordering rules for function
4452  //   templates (14.6.6.2):
4453  //     - the first function template has the same template parameters as the
4454  //       first partial specialization and has a single function parameter
4455  //       whose type is a class template specialization with the template
4456  //       arguments of the first partial specialization, and
4457  //     - the second function template has the same template parameters as the
4458  //       second partial specialization and has a single function parameter
4459  //       whose type is a class template specialization with the template
4460  //       arguments of the second partial specialization.
4461  //
4462  // Rather than synthesize function templates, we merely perform the
4463  // equivalent partial ordering by performing deduction directly on
4464  // the template arguments of the class template partial
4465  // specializations. This computation is slightly simpler than the
4466  // general problem of function template partial ordering, because
4467  // class template partial specializations are more constrained. We
4468  // know that every template parameter is deducible from the class
4469  // template partial specialization's template arguments, for
4470  // example.
4471  SmallVector<DeducedTemplateArgument, 4> Deduced;
4472  TemplateDeductionInfo Info(Loc);
4473
4474  QualType PT1 = PS1->getInjectedSpecializationType();
4475  QualType PT2 = PS2->getInjectedSpecializationType();
4476
4477  // Determine whether PS1 is at least as specialized as PS2
4478  Deduced.resize(PS2->getTemplateParameters()->size());
4479  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4480                                            PS2->getTemplateParameters(),
4481                                            PT2, PT1, Info, Deduced, TDF_None,
4482                                            /*PartialOrdering=*/true);
4483  if (Better1) {
4484    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4485    InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
4486    Better1 = !::FinishTemplateArgumentDeduction(
4487        *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
4488  }
4489
4490  // Determine whether PS2 is at least as specialized as PS1
4491  Deduced.clear();
4492  Deduced.resize(PS1->getTemplateParameters()->size());
4493  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
4494      *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
4495      /*PartialOrdering=*/true);
4496  if (Better2) {
4497    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4498                                                 Deduced.end());
4499    InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
4500    Better2 = !::FinishTemplateArgumentDeduction(
4501        *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
4502  }
4503
4504  if (Better1 == Better2)
4505    return nullptr;
4506
4507  return Better1 ? PS1 : PS2;
4508}
4509
4510/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
4511///       May require unifying ClassTemplate(Partial)SpecializationDecl and
4512///        VarTemplate(Partial)SpecializationDecl with a new data
4513///        structure Template(Partial)SpecializationDecl, and
4514///        using Template(Partial)SpecializationDecl as input type.
4515VarTemplatePartialSpecializationDecl *
4516Sema::getMoreSpecializedPartialSpecialization(
4517    VarTemplatePartialSpecializationDecl *PS1,
4518    VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
4519  SmallVector<DeducedTemplateArgument, 4> Deduced;
4520  TemplateDeductionInfo Info(Loc);
4521
4522  assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
4523         "the partial specializations being compared should specialize"
4524         " the same template.");
4525  TemplateName Name(PS1->getSpecializedTemplate());
4526  TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4527  QualType PT1 = Context.getTemplateSpecializationType(
4528      CanonTemplate, PS1->getTemplateArgs().data(),
4529      PS1->getTemplateArgs().size());
4530  QualType PT2 = Context.getTemplateSpecializationType(
4531      CanonTemplate, PS2->getTemplateArgs().data(),
4532      PS2->getTemplateArgs().size());
4533
4534  // Determine whether PS1 is at least as specialized as PS2
4535  Deduced.resize(PS2->getTemplateParameters()->size());
4536  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
4537      *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
4538      /*PartialOrdering=*/true);
4539  if (Better1) {
4540    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
4541                                                 Deduced.end());
4542    InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
4543    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4544                                                 PS1->getTemplateArgs(),
4545                                                 Deduced, Info);
4546  }
4547
4548  // Determine whether PS2 is at least as specialized as PS1
4549  Deduced.clear();
4550  Deduced.resize(PS1->getTemplateParameters()->size());
4551  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4552                                            PS1->getTemplateParameters(),
4553                                            PT1, PT2, Info, Deduced, TDF_None,
4554                                            /*PartialOrdering=*/true);
4555  if (Better2) {
4556    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4557    InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
4558    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4559                                                 PS2->getTemplateArgs(),
4560                                                 Deduced, Info);
4561  }
4562
4563  if (Better1 == Better2)
4564    return nullptr;
4565
4566  return Better1? PS1 : PS2;
4567}
4568
4569static void
4570MarkUsedTemplateParameters(ASTContext &Ctx,
4571                           const TemplateArgument &TemplateArg,
4572                           bool OnlyDeduced,
4573                           unsigned Depth,
4574                           llvm::SmallBitVector &Used);
4575
4576/// \brief Mark the template parameters that are used by the given
4577/// expression.
4578static void
4579MarkUsedTemplateParameters(ASTContext &Ctx,
4580                           const Expr *E,
4581                           bool OnlyDeduced,
4582                           unsigned Depth,
4583                           llvm::SmallBitVector &Used) {
4584  // We can deduce from a pack expansion.
4585  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4586    E = Expansion->getPattern();
4587
4588  // Skip through any implicit casts we added while type-checking, and any
4589  // substitutions performed by template alias expansion.
4590  while (1) {
4591    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4592      E = ICE->getSubExpr();
4593    else if (const SubstNonTypeTemplateParmExpr *Subst =
4594               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4595      E = Subst->getReplacement();
4596    else
4597      break;
4598  }
4599
4600  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4601  // find other occurrences of template parameters.
4602  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4603  if (!DRE)
4604    return;
4605
4606  const NonTypeTemplateParmDecl *NTTP
4607    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4608  if (!NTTP)
4609    return;
4610
4611  if (NTTP->getDepth() == Depth)
4612    Used[NTTP->getIndex()] = true;
4613}
4614
4615/// \brief Mark the template parameters that are used by the given
4616/// nested name specifier.
4617static void
4618MarkUsedTemplateParameters(ASTContext &Ctx,
4619                           NestedNameSpecifier *NNS,
4620                           bool OnlyDeduced,
4621                           unsigned Depth,
4622                           llvm::SmallBitVector &Used) {
4623  if (!NNS)
4624    return;
4625
4626  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4627                             Used);
4628  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4629                             OnlyDeduced, Depth, Used);
4630}
4631
4632/// \brief Mark the template parameters that are used by the given
4633/// template name.
4634static void
4635MarkUsedTemplateParameters(ASTContext &Ctx,
4636                           TemplateName Name,
4637                           bool OnlyDeduced,
4638                           unsigned Depth,
4639                           llvm::SmallBitVector &Used) {
4640  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4641    if (TemplateTemplateParmDecl *TTP
4642          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4643      if (TTP->getDepth() == Depth)
4644        Used[TTP->getIndex()] = true;
4645    }
4646    return;
4647  }
4648
4649  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4650    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4651                               Depth, Used);
4652  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4653    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4654                               Depth, Used);
4655}
4656
4657/// \brief Mark the template parameters that are used by the given
4658/// type.
4659static void
4660MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4661                           bool OnlyDeduced,
4662                           unsigned Depth,
4663                           llvm::SmallBitVector &Used) {
4664  if (T.isNull())
4665    return;
4666
4667  // Non-dependent types have nothing deducible
4668  if (!T->isDependentType())
4669    return;
4670
4671  T = Ctx.getCanonicalType(T);
4672  switch (T->getTypeClass()) {
4673  case Type::Pointer:
4674    MarkUsedTemplateParameters(Ctx,
4675                               cast<PointerType>(T)->getPointeeType(),
4676                               OnlyDeduced,
4677                               Depth,
4678                               Used);
4679    break;
4680
4681  case Type::BlockPointer:
4682    MarkUsedTemplateParameters(Ctx,
4683                               cast<BlockPointerType>(T)->getPointeeType(),
4684                               OnlyDeduced,
4685                               Depth,
4686                               Used);
4687    break;
4688
4689  case Type::LValueReference:
4690  case Type::RValueReference:
4691    MarkUsedTemplateParameters(Ctx,
4692                               cast<ReferenceType>(T)->getPointeeType(),
4693                               OnlyDeduced,
4694                               Depth,
4695                               Used);
4696    break;
4697
4698  case Type::MemberPointer: {
4699    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4700    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4701                               Depth, Used);
4702    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4703                               OnlyDeduced, Depth, Used);
4704    break;
4705  }
4706
4707  case Type::DependentSizedArray:
4708    MarkUsedTemplateParameters(Ctx,
4709                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
4710                               OnlyDeduced, Depth, Used);
4711    // Fall through to check the element type
4712
4713  case Type::ConstantArray:
4714  case Type::IncompleteArray:
4715    MarkUsedTemplateParameters(Ctx,
4716                               cast<ArrayType>(T)->getElementType(),
4717                               OnlyDeduced, Depth, Used);
4718    break;
4719
4720  case Type::Vector:
4721  case Type::ExtVector:
4722    MarkUsedTemplateParameters(Ctx,
4723                               cast<VectorType>(T)->getElementType(),
4724                               OnlyDeduced, Depth, Used);
4725    break;
4726
4727  case Type::DependentSizedExtVector: {
4728    const DependentSizedExtVectorType *VecType
4729      = cast<DependentSizedExtVectorType>(T);
4730    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4731                               Depth, Used);
4732    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4733                               Depth, Used);
4734    break;
4735  }
4736
4737  case Type::FunctionProto: {
4738    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4739    MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
4740                               Used);
4741    for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
4742      MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
4743                                 Depth, Used);
4744    break;
4745  }
4746
4747  case Type::TemplateTypeParm: {
4748    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4749    if (TTP->getDepth() == Depth)
4750      Used[TTP->getIndex()] = true;
4751    break;
4752  }
4753
4754  case Type::SubstTemplateTypeParmPack: {
4755    const SubstTemplateTypeParmPackType *Subst
4756      = cast<SubstTemplateTypeParmPackType>(T);
4757    MarkUsedTemplateParameters(Ctx,
4758                               QualType(Subst->getReplacedParameter(), 0),
4759                               OnlyDeduced, Depth, Used);
4760    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4761                               OnlyDeduced, Depth, Used);
4762    break;
4763  }
4764
4765  case Type::InjectedClassName:
4766    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4767    // fall through
4768
4769  case Type::TemplateSpecialization: {
4770    const TemplateSpecializationType *Spec
4771      = cast<TemplateSpecializationType>(T);
4772    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4773                               Depth, Used);
4774
4775    // C++0x [temp.deduct.type]p9:
4776    //   If the template argument list of P contains a pack expansion that is
4777    //   not the last template argument, the entire template argument list is a
4778    //   non-deduced context.
4779    if (OnlyDeduced &&
4780        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4781      break;
4782
4783    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4784      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4785                                 Used);
4786    break;
4787  }
4788
4789  case Type::Complex:
4790    if (!OnlyDeduced)
4791      MarkUsedTemplateParameters(Ctx,
4792                                 cast<ComplexType>(T)->getElementType(),
4793                                 OnlyDeduced, Depth, Used);
4794    break;
4795
4796  case Type::Atomic:
4797    if (!OnlyDeduced)
4798      MarkUsedTemplateParameters(Ctx,
4799                                 cast<AtomicType>(T)->getValueType(),
4800                                 OnlyDeduced, Depth, Used);
4801    break;
4802
4803  case Type::DependentName:
4804    if (!OnlyDeduced)
4805      MarkUsedTemplateParameters(Ctx,
4806                                 cast<DependentNameType>(T)->getQualifier(),
4807                                 OnlyDeduced, Depth, Used);
4808    break;
4809
4810  case Type::DependentTemplateSpecialization: {
4811    const DependentTemplateSpecializationType *Spec
4812      = cast<DependentTemplateSpecializationType>(T);
4813    if (!OnlyDeduced)
4814      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4815                                 OnlyDeduced, Depth, Used);
4816
4817    // C++0x [temp.deduct.type]p9:
4818    //   If the template argument list of P contains a pack expansion that is not
4819    //   the last template argument, the entire template argument list is a
4820    //   non-deduced context.
4821    if (OnlyDeduced &&
4822        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4823      break;
4824
4825    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4826      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4827                                 Used);
4828    break;
4829  }
4830
4831  case Type::TypeOf:
4832    if (!OnlyDeduced)
4833      MarkUsedTemplateParameters(Ctx,
4834                                 cast<TypeOfType>(T)->getUnderlyingType(),
4835                                 OnlyDeduced, Depth, Used);
4836    break;
4837
4838  case Type::TypeOfExpr:
4839    if (!OnlyDeduced)
4840      MarkUsedTemplateParameters(Ctx,
4841                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4842                                 OnlyDeduced, Depth, Used);
4843    break;
4844
4845  case Type::Decltype:
4846    if (!OnlyDeduced)
4847      MarkUsedTemplateParameters(Ctx,
4848                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
4849                                 OnlyDeduced, Depth, Used);
4850    break;
4851
4852  case Type::UnaryTransform:
4853    if (!OnlyDeduced)
4854      MarkUsedTemplateParameters(Ctx,
4855                               cast<UnaryTransformType>(T)->getUnderlyingType(),
4856                                 OnlyDeduced, Depth, Used);
4857    break;
4858
4859  case Type::PackExpansion:
4860    MarkUsedTemplateParameters(Ctx,
4861                               cast<PackExpansionType>(T)->getPattern(),
4862                               OnlyDeduced, Depth, Used);
4863    break;
4864
4865  case Type::Auto:
4866    MarkUsedTemplateParameters(Ctx,
4867                               cast<AutoType>(T)->getDeducedType(),
4868                               OnlyDeduced, Depth, Used);
4869
4870  // None of these types have any template parameters in them.
4871  case Type::Builtin:
4872  case Type::VariableArray:
4873  case Type::FunctionNoProto:
4874  case Type::Record:
4875  case Type::Enum:
4876  case Type::ObjCInterface:
4877  case Type::ObjCObject:
4878  case Type::ObjCObjectPointer:
4879  case Type::UnresolvedUsing:
4880#define TYPE(Class, Base)
4881#define ABSTRACT_TYPE(Class, Base)
4882#define DEPENDENT_TYPE(Class, Base)
4883#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4884#include "clang/AST/TypeNodes.def"
4885    break;
4886  }
4887}
4888
4889/// \brief Mark the template parameters that are used by this
4890/// template argument.
4891static void
4892MarkUsedTemplateParameters(ASTContext &Ctx,
4893                           const TemplateArgument &TemplateArg,
4894                           bool OnlyDeduced,
4895                           unsigned Depth,
4896                           llvm::SmallBitVector &Used) {
4897  switch (TemplateArg.getKind()) {
4898  case TemplateArgument::Null:
4899  case TemplateArgument::Integral:
4900  case TemplateArgument::Declaration:
4901    break;
4902
4903  case TemplateArgument::NullPtr:
4904    MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
4905                               Depth, Used);
4906    break;
4907
4908  case TemplateArgument::Type:
4909    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4910                               Depth, Used);
4911    break;
4912
4913  case TemplateArgument::Template:
4914  case TemplateArgument::TemplateExpansion:
4915    MarkUsedTemplateParameters(Ctx,
4916                               TemplateArg.getAsTemplateOrTemplatePattern(),
4917                               OnlyDeduced, Depth, Used);
4918    break;
4919
4920  case TemplateArgument::Expression:
4921    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4922                               Depth, Used);
4923    break;
4924
4925  case TemplateArgument::Pack:
4926    for (const auto &P : TemplateArg.pack_elements())
4927      MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
4928    break;
4929  }
4930}
4931
4932/// \brief Mark which template parameters can be deduced from a given
4933/// template argument list.
4934///
4935/// \param TemplateArgs the template argument list from which template
4936/// parameters will be deduced.
4937///
4938/// \param Used a bit vector whose elements will be set to \c true
4939/// to indicate when the corresponding template parameter will be
4940/// deduced.
4941void
4942Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4943                                 bool OnlyDeduced, unsigned Depth,
4944                                 llvm::SmallBitVector &Used) {
4945  // C++0x [temp.deduct.type]p9:
4946  //   If the template argument list of P contains a pack expansion that is not
4947  //   the last template argument, the entire template argument list is a
4948  //   non-deduced context.
4949  if (OnlyDeduced &&
4950      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4951    return;
4952
4953  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4954    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4955                                 Depth, Used);
4956}
4957
4958/// \brief Marks all of the template parameters that will be deduced by a
4959/// call to the given function template.
4960void Sema::MarkDeducedTemplateParameters(
4961    ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
4962    llvm::SmallBitVector &Deduced) {
4963  TemplateParameterList *TemplateParams
4964    = FunctionTemplate->getTemplateParameters();
4965  Deduced.clear();
4966  Deduced.resize(TemplateParams->size());
4967
4968  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4969  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4970    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4971                                 true, TemplateParams->getDepth(), Deduced);
4972}
4973
4974bool hasDeducibleTemplateParameters(Sema &S,
4975                                    FunctionTemplateDecl *FunctionTemplate,
4976                                    QualType T) {
4977  if (!T->isDependentType())
4978    return false;
4979
4980  TemplateParameterList *TemplateParams
4981    = FunctionTemplate->getTemplateParameters();
4982  llvm::SmallBitVector Deduced(TemplateParams->size());
4983  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4984                               Deduced);
4985
4986  return Deduced.any();
4987}
4988