1/* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2   data. */
3
4/* By Rod Smith, initial coding January to February, 2009 */
5
6/* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
7  under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8
9#define __STDC_LIMIT_MACROS
10#define __STDC_CONSTANT_MACROS
11
12#include <stdio.h>
13#include <stdlib.h>
14#include <stdint.h>
15#include <fcntl.h>
16#include <string.h>
17#include <math.h>
18#include <time.h>
19#include <sys/stat.h>
20#include <errno.h>
21#include <iostream>
22#include <algorithm>
23#include "crc32.h"
24#include "gpt.h"
25#include "bsd.h"
26#include "support.h"
27#include "parttypes.h"
28#include "attributes.h"
29#include "diskio.h"
30
31using namespace std;
32
33#ifdef __FreeBSD__
34#define log2(x) (log(x) / M_LN2)
35#endif // __FreeBSD__
36
37#ifdef _MSC_VER
38#define log2(x) (log((double) x) / log(2.0))
39#endif // Microsoft Visual C++
40
41#ifdef EFI
42// in UEFI mode MMX registers are not yet available so using the
43// x86_64 ABI to move "double" values around is not an option.
44#ifdef log2
45#undef log2
46#endif
47#define log2(x) log2_32( x )
48static inline uint32_t log2_32(uint32_t v) {
49   int r = -1;
50   while (v >= 1) {
51      r++;
52      v >>= 1;
53   }
54   return r;
55}
56#endif
57
58/****************************************
59 *                                      *
60 * GPTData class and related structures *
61 *                                      *
62 ****************************************/
63
64// Default constructor
65GPTData::GPTData(void) {
66   blockSize = SECTOR_SIZE; // set a default
67   diskSize = 0;
68   partitions = NULL;
69   state = gpt_valid;
70   device = "";
71   justLooking = 0;
72   mainCrcOk = 0;
73   secondCrcOk = 0;
74   mainPartsCrcOk = 0;
75   secondPartsCrcOk = 0;
76   apmFound = 0;
77   bsdFound = 0;
78   sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
79   beQuiet = 0;
80   whichWasUsed = use_new;
81   mainHeader.numParts = 0;
82   numParts = 0;
83   SetGPTSize(NUM_GPT_ENTRIES);
84   // Initialize CRC functions...
85   chksum_crc32gentab();
86} // GPTData default constructor
87
88// The following constructor loads GPT data from a device file
89GPTData::GPTData(string filename) {
90   blockSize = SECTOR_SIZE; // set a default
91   diskSize = 0;
92   partitions = NULL;
93   state = gpt_invalid;
94   device = "";
95   justLooking = 0;
96   mainCrcOk = 0;
97   secondCrcOk = 0;
98   mainPartsCrcOk = 0;
99   secondPartsCrcOk = 0;
100   apmFound = 0;
101   bsdFound = 0;
102   sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
103   beQuiet = 0;
104   whichWasUsed = use_new;
105   mainHeader.numParts = 0;
106   numParts = 0;
107   // Initialize CRC functions...
108   chksum_crc32gentab();
109   if (!LoadPartitions(filename))
110      exit(2);
111} // GPTData(string filename) constructor
112
113// Destructor
114GPTData::~GPTData(void) {
115   delete[] partitions;
116} // GPTData destructor
117
118// Assignment operator
119GPTData & GPTData::operator=(const GPTData & orig) {
120   uint32_t i;
121
122   mainHeader = orig.mainHeader;
123   numParts = orig.numParts;
124   secondHeader = orig.secondHeader;
125   protectiveMBR = orig.protectiveMBR;
126   device = orig.device;
127   blockSize = orig.blockSize;
128   diskSize = orig.diskSize;
129   state = orig.state;
130   justLooking = orig.justLooking;
131   mainCrcOk = orig.mainCrcOk;
132   secondCrcOk = orig.secondCrcOk;
133   mainPartsCrcOk = orig.mainPartsCrcOk;
134   secondPartsCrcOk = orig.secondPartsCrcOk;
135   apmFound = orig.apmFound;
136   bsdFound = orig.bsdFound;
137   sectorAlignment = orig.sectorAlignment;
138   beQuiet = orig.beQuiet;
139   whichWasUsed = orig.whichWasUsed;
140
141   myDisk.OpenForRead(orig.myDisk.GetName());
142
143   delete[] partitions;
144   partitions = new GPTPart [numParts];
145   if (partitions == NULL) {
146      cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
147           << "Terminating!\n";
148      exit(1);
149   } // if
150   for (i = 0; i < numParts; i++) {
151      partitions[i] = orig.partitions[i];
152   } // for
153
154   return *this;
155} // GPTData::operator=()
156
157/*********************************************************************
158 *                                                                   *
159 * Begin functions that verify data, or that adjust the verification *
160 * information (compute CRCs, rebuild headers)                       *
161 *                                                                   *
162 *********************************************************************/
163
164// Perform detailed verification, reporting on any problems found, but
165// do *NOT* recover from these problems. Returns the total number of
166// problems identified.
167int GPTData::Verify(void) {
168   int problems = 0, alignProbs = 0;
169   uint32_t i, numSegments;
170   uint64_t totalFree, largestSegment;
171
172   // First, check for CRC errors in the GPT data....
173   if (!mainCrcOk) {
174      problems++;
175      cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
176           << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
177           << "header ('b' on the recovery & transformation menu). This report may be a false\n"
178           << "alarm if you've already corrected other problems.\n";
179   } // if
180   if (!mainPartsCrcOk) {
181      problems++;
182      cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
183           << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
184           << "transformation menu). This report may be a false alarm if you've already\n"
185           << "corrected other problems.\n";
186   } // if
187   if (!secondCrcOk) {
188      problems++;
189      cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
190           << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
191           << "header ('d' on the recovery & transformation menu). This report may be a false\n"
192           << "alarm if you've already corrected other problems.\n";
193   } // if
194   if (!secondPartsCrcOk) {
195      problems++;
196      cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
197           << "be corrupt. This program will automatically create a new backup partition\n"
198           << "table when you save your partitions.\n";
199   } // if
200
201   // Now check that the main and backup headers both point to themselves....
202   if (mainHeader.currentLBA != 1) {
203      problems++;
204      cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
205           << "is being automatically corrected, but it may be a symptom of more serious\n"
206           << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
207      mainHeader.currentLBA = 1;
208   } // if
209   if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
210      problems++;
211      cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
212           << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
213           << "option on the experts' menu to adjust the secondary header's and partition\n"
214           << "table's locations.\n";
215   } // if
216
217   // Now check that critical main and backup GPT entries match each other
218   if (mainHeader.currentLBA != secondHeader.backupLBA) {
219      problems++;
220      cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
221           << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
222           << secondHeader.backupLBA << ").\n";
223   } // if
224   if (mainHeader.backupLBA != secondHeader.currentLBA) {
225      problems++;
226      cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
227           << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
228           << secondHeader.currentLBA << ").\n"
229           << "The 'e' option on the experts' menu may fix this problem.\n";
230   } // if
231   if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
232      problems++;
233      cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
234           << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
235           << secondHeader.firstUsableLBA << ")\n";
236   } // if
237   if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
238      problems++;
239      cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
240           << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
241           << secondHeader.lastUsableLBA << ")\n"
242           << "The 'e' option on the experts' menu can probably fix this problem.\n";
243   } // if
244   if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
245      problems++;
246      cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
247           << ") doesn't\nmatch the backup GPT header's disk GUID ("
248           << secondHeader.diskGUID << ")\n"
249           << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
250           << "select one or the other header.\n";
251   } // if
252   if (mainHeader.numParts != secondHeader.numParts) {
253      problems++;
254      cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
255           << ") doesn't\nmatch the backup GPT header's number of partitions ("
256           << secondHeader.numParts << ")\n"
257           << "Resizing the partition table ('s' on the experts' menu) may help.\n";
258   } // if
259   if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
260      problems++;
261      cout << "\nProblem: main GPT header's size of partition entries ("
262           << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
263           << "match the backup GPT header's size of partition entries ("
264           << secondHeader.sizeOfPartitionEntries << ")\n"
265           << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
266           << "select one or the other header.\n";
267   } // if
268
269   // Now check for a few other miscellaneous problems...
270   // Check that the disk size will hold the data...
271   if (mainHeader.backupLBA >= diskSize) {
272      problems++;
273      cout << "\nProblem: Disk is too small to hold all the data!\n"
274           << "(Disk size is " << diskSize << " sectors, needs to be "
275           << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
276           << "The 'e' option on the experts' menu may fix this problem.\n";
277   } // if
278
279   if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
280      problems++;
281      cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
282           << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
283           << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
284           << "The 'e' option on the experts' menu will probably fix this problem\n";
285   }
286
287   // Check for overlapping partitions....
288   problems += FindOverlaps();
289
290   // Check for insane partitions (start after end, hugely big, etc.)
291   problems += FindInsanePartitions();
292
293   // Check for mismatched MBR and GPT partitions...
294   problems += FindHybridMismatches();
295
296   // Check for MBR-specific problems....
297   problems += VerifyMBR();
298
299   // Check for a 0xEE protective partition that's marked as active....
300   if (protectiveMBR.IsEEActive()) {
301      cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
302           << "technically a violation of the GPT specification, and can cause some EFIs to\n"
303           << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
304           << "computers. You can clear this flag by creating a fresh protective MBR using\n"
305           << "the 'n' option on the experts' menu.\n";
306   }
307
308   // Verify that partitions don't run into GPT data areas....
309   problems += CheckGPTSize();
310
311   if (!protectiveMBR.DoTheyFit()) {
312      cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
313           << "fresh protective or hybrid MBR is recommended.\n";
314      problems++;
315   }
316
317   // Check that partitions are aligned on proper boundaries (for WD Advanced
318   // Format and similar disks)....
319   for (i = 0; i < numParts; i++) {
320      if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
321         cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
322              << sectorAlignment << "-sector boundary. This may\nresult "
323              << "in degraded performance on some modern (2009 and later) hard disks.\n";
324         alignProbs++;
325      } // if
326   } // for
327   if (alignProbs > 0)
328      cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
329      << "for information on disk alignment.\n";
330
331   // Now compute available space, but only if no problems found, since
332   // problems could affect the results
333   if (problems == 0) {
334      totalFree = FindFreeBlocks(&numSegments, &largestSegment);
335      cout << "\nNo problems found. " << totalFree << " free sectors ("
336           << BytesToIeee(totalFree, blockSize) << ") available in "
337           << numSegments << "\nsegments, the largest of which is "
338           << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
339           << ") in size.\n";
340   } else {
341      cout << "\nIdentified " << problems << " problems!\n";
342   } // if/else
343
344   return (problems);
345} // GPTData::Verify()
346
347// Checks to see if the GPT tables overrun existing partitions; if they
348// do, issues a warning but takes no action. Returns number of problems
349// detected (0 if OK, 1 to 2 if problems).
350int GPTData::CheckGPTSize(void) {
351   uint64_t overlap, firstUsedBlock, lastUsedBlock;
352   uint32_t i;
353   int numProbs = 0;
354
355   // first, locate the first & last used blocks
356   firstUsedBlock = UINT64_MAX;
357   lastUsedBlock = 0;
358   for (i = 0; i < numParts; i++) {
359      if (partitions[i].IsUsed()) {
360         if (partitions[i].GetFirstLBA() < firstUsedBlock)
361            firstUsedBlock = partitions[i].GetFirstLBA();
362         if (partitions[i].GetLastLBA() > lastUsedBlock) {
363            lastUsedBlock = partitions[i].GetLastLBA();
364         } // if
365      } // if
366   } // for
367
368   // If the disk size is 0 (the default), then it means that various
369   // variables aren't yet set, so the below tests will be useless;
370   // therefore we should skip everything
371   if (diskSize != 0) {
372      if (mainHeader.firstUsableLBA > firstUsedBlock) {
373         overlap = mainHeader.firstUsableLBA - firstUsedBlock;
374         cout << "Warning! Main partition table overlaps the first partition by "
375              << overlap << " blocks!\n";
376         if (firstUsedBlock > 2) {
377            cout << "Try reducing the partition table size by " << overlap * 4
378                 << " entries.\n(Use the 's' item on the experts' menu.)\n";
379         } else {
380            cout << "You will need to delete this partition or resize it in another utility.\n";
381         } // if/else
382         numProbs++;
383      } // Problem at start of disk
384      if (mainHeader.lastUsableLBA < lastUsedBlock) {
385         overlap = lastUsedBlock - mainHeader.lastUsableLBA;
386         cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
387              << overlap << " blocks!\n";
388         if (lastUsedBlock > (diskSize - 2)) {
389            cout << "You will need to delete this partition or resize it in another utility.\n";
390         } else {
391            cout << "Try reducing the partition table size by " << overlap * 4
392                 << " entries.\n(Use the 's' item on the experts' menu.)\n";
393         } // if/else
394         numProbs++;
395      } // Problem at end of disk
396   } // if (diskSize != 0)
397   return numProbs;
398} // GPTData::CheckGPTSize()
399
400// Check the validity of the GPT header. Returns 1 if the main header
401// is valid, 2 if the backup header is valid, 3 if both are valid, and
402// 0 if neither is valid. Note that this function checks the GPT signature,
403// revision value, and CRCs in both headers.
404int GPTData::CheckHeaderValidity(void) {
405   int valid = 3;
406
407   cout.setf(ios::uppercase);
408   cout.fill('0');
409
410   // Note: failed GPT signature checks produce no error message because
411   // a message is displayed in the ReversePartitionBytes() function
412   if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
413      valid -= 1;
414   } else if ((mainHeader.revision != 0x00010000) && valid) {
415      valid -= 1;
416      cout << "Unsupported GPT version in main header; read 0x";
417      cout.width(8);
418      cout << hex << mainHeader.revision << ", should be\n0x";
419      cout.width(8);
420      cout << UINT32_C(0x00010000) << dec << "\n";
421   } // if/else/if
422
423   if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
424      valid -= 2;
425   } else if ((secondHeader.revision != 0x00010000) && valid) {
426      valid -= 2;
427      cout << "Unsupported GPT version in backup header; read 0x";
428      cout.width(8);
429      cout << hex << secondHeader.revision << ", should be\n0x";
430      cout.width(8);
431      cout << UINT32_C(0x00010000) << dec << "\n";
432   } // if/else/if
433
434   // Check for an Apple disk signature
435   if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
436        (mainHeader.signature << 32) == APM_SIGNATURE2) {
437      apmFound = 1; // Will display warning message later
438   } // if
439   cout.fill(' ');
440
441   return valid;
442} // GPTData::CheckHeaderValidity()
443
444// Check the header CRC to see if it's OK...
445// Note: Must be called with header in platform-ordered byte order.
446// Returns 1 if header's computed CRC matches the stored value, 0 if the
447// computed and stored values don't match
448int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
449   uint32_t oldCRC, newCRC, hSize;
450   uint8_t *temp;
451
452   // Back up old header CRC and then blank it, since it must be 0 for
453   // computation to be valid
454   oldCRC = header->headerCRC;
455   header->headerCRC = UINT32_C(0);
456
457   hSize = header->headerSize;
458
459   if (IsLittleEndian() == 0)
460      ReverseHeaderBytes(header);
461
462   if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
463      if (warn) {
464         cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
465         cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
466      } // if
467      hSize = HEADER_SIZE;
468   } else if ((hSize > sizeof(GPTHeader)) && warn) {
469      cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
470      cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
471           << "which may result in a CRC false alarm.\n";
472   } // if/elseif
473   temp = new uint8_t[hSize];
474   if (temp != NULL) {
475      memset(temp, 0, hSize);
476      if (hSize < sizeof(GPTHeader))
477         memcpy(temp, header, hSize);
478      else
479         memcpy(temp, header, sizeof(GPTHeader));
480
481      newCRC = chksum_crc32((unsigned char*) temp, hSize);
482      delete[] temp;
483   } else {
484      cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
485      exit(1);
486   }
487   if (IsLittleEndian() == 0)
488      ReverseHeaderBytes(header);
489   header->headerCRC = oldCRC;
490   return (oldCRC == newCRC);
491} // GPTData::CheckHeaderCRC()
492
493// Recompute all the CRCs. Must be called before saving if any changes have
494// been made. Must be called on platform-ordered data (this function reverses
495// byte order and then undoes that reversal.)
496void GPTData::RecomputeCRCs(void) {
497   uint32_t crc, hSize;
498   int littleEndian = 1;
499
500   // If the header size is bigger than the GPT header data structure, reset it;
501   // otherwise, set both header sizes to whatever the main one is....
502   if (mainHeader.headerSize > sizeof(GPTHeader))
503      hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
504   else
505      hSize = secondHeader.headerSize = mainHeader.headerSize;
506
507   if ((littleEndian = IsLittleEndian()) == 0) {
508      ReversePartitionBytes();
509      ReverseHeaderBytes(&mainHeader);
510      ReverseHeaderBytes(&secondHeader);
511   } // if
512
513   // Compute CRC of partition tables & store in main and secondary headers
514   crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
515   mainHeader.partitionEntriesCRC = crc;
516   secondHeader.partitionEntriesCRC = crc;
517   if (littleEndian == 0) {
518      ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
519      ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
520   } // if
521
522   // Zero out GPT headers' own CRCs (required for correct computation)
523   mainHeader.headerCRC = 0;
524   secondHeader.headerCRC = 0;
525
526   crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
527   if (littleEndian == 0)
528      ReverseBytes(&crc, 4);
529   mainHeader.headerCRC = crc;
530   crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
531   if (littleEndian == 0)
532      ReverseBytes(&crc, 4);
533   secondHeader.headerCRC = crc;
534
535   if (littleEndian == 0) {
536      ReverseHeaderBytes(&mainHeader);
537      ReverseHeaderBytes(&secondHeader);
538      ReversePartitionBytes();
539   } // if
540} // GPTData::RecomputeCRCs()
541
542// Rebuild the main GPT header, using the secondary header as a model.
543// Typically called when the main header has been found to be corrupt.
544void GPTData::RebuildMainHeader(void) {
545   mainHeader.signature = GPT_SIGNATURE;
546   mainHeader.revision = secondHeader.revision;
547   mainHeader.headerSize = secondHeader.headerSize;
548   mainHeader.headerCRC = UINT32_C(0);
549   mainHeader.reserved = secondHeader.reserved;
550   mainHeader.currentLBA = secondHeader.backupLBA;
551   mainHeader.backupLBA = secondHeader.currentLBA;
552   mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
553   mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
554   mainHeader.diskGUID = secondHeader.diskGUID;
555   mainHeader.partitionEntriesLBA = UINT64_C(2);
556   mainHeader.numParts = secondHeader.numParts;
557   mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
558   mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
559   memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
560   mainCrcOk = secondCrcOk;
561   SetGPTSize(mainHeader.numParts, 0);
562} // GPTData::RebuildMainHeader()
563
564// Rebuild the secondary GPT header, using the main header as a model.
565void GPTData::RebuildSecondHeader(void) {
566   secondHeader.signature = GPT_SIGNATURE;
567   secondHeader.revision = mainHeader.revision;
568   secondHeader.headerSize = mainHeader.headerSize;
569   secondHeader.headerCRC = UINT32_C(0);
570   secondHeader.reserved = mainHeader.reserved;
571   secondHeader.currentLBA = mainHeader.backupLBA;
572   secondHeader.backupLBA = mainHeader.currentLBA;
573   secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
574   secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
575   secondHeader.diskGUID = mainHeader.diskGUID;
576   secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
577   secondHeader.numParts = mainHeader.numParts;
578   secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
579   secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
580   memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
581   secondCrcOk = mainCrcOk;
582   SetGPTSize(secondHeader.numParts, 0);
583} // GPTData::RebuildSecondHeader()
584
585// Search for hybrid MBR entries that have no corresponding GPT partition.
586// Returns number of such mismatches found
587int GPTData::FindHybridMismatches(void) {
588   int i, found, numFound = 0;
589   uint32_t j;
590   uint64_t mbrFirst, mbrLast;
591
592   for (i = 0; i < 4; i++) {
593      if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
594         j = 0;
595         found = 0;
596         mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
597         mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
598         do {
599            if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
600                (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
601               found = 1;
602            j++;
603         } while ((!found) && (j < numParts));
604         if (!found) {
605            numFound++;
606            cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
607                 << i + 1 << ", of type 0x";
608            cout.fill('0');
609            cout.setf(ios::uppercase);
610            cout.width(2);
611            cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
612                 << "has no corresponding GPT partition! You may continue, but this condition\n"
613                 << "might cause data loss in the future!\a\n" << dec;
614            cout.fill(' ');
615         } // if
616      } // if
617   } // for
618   return numFound;
619} // GPTData::FindHybridMismatches
620
621// Find overlapping partitions and warn user about them. Returns number of
622// overlapping partitions.
623// Returns number of overlapping segments found.
624int GPTData::FindOverlaps(void) {
625   int problems = 0;
626   uint32_t i, j;
627
628   for (i = 1; i < numParts; i++) {
629      for (j = 0; j < i; j++) {
630         if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
631             (partitions[i].DoTheyOverlap(partitions[j]))) {
632            problems++;
633            cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
634            cout << "  Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
635                 << " to " << partitions[i].GetLastLBA() << "\n";
636            cout << "  Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
637                 << " to " << partitions[j].GetLastLBA() << "\n";
638         } // if
639      } // for j...
640   } // for i...
641   return problems;
642} // GPTData::FindOverlaps()
643
644// Find partitions that are insane -- they start after they end or are too
645// big for the disk. (The latter should duplicate detection of overlaps
646// with GPT backup data structures, but better to err on the side of
647// redundant tests than to miss something....)
648// Returns number of problems found.
649int GPTData::FindInsanePartitions(void) {
650   uint32_t i;
651   int problems = 0;
652
653   for (i = 0; i < numParts; i++) {
654      if (partitions[i].IsUsed()) {
655         if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
656            problems++;
657            cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
658         } // if
659         if (partitions[i].GetLastLBA() >= diskSize) {
660            problems++;
661         cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
662         } // if
663      } // if
664   } // for
665   return problems;
666} // GPTData::FindInsanePartitions(void)
667
668
669/******************************************************************
670 *                                                                *
671 * Begin functions that load data from disk or save data to disk. *
672 *                                                                *
673 ******************************************************************/
674
675// Change the filename associated with the GPT. Used for duplicating
676// the partition table to a new disk and saving backups.
677// Returns 1 on success, 0 on failure.
678int GPTData::SetDisk(const string & deviceFilename) {
679   int err, allOK = 1;
680
681   device = deviceFilename;
682   if (allOK && myDisk.OpenForRead(deviceFilename)) {
683      // store disk information....
684      diskSize = myDisk.DiskSize(&err);
685      blockSize = (uint32_t) myDisk.GetBlockSize();
686   } // if
687   protectiveMBR.SetDisk(&myDisk);
688   protectiveMBR.SetDiskSize(diskSize);
689   protectiveMBR.SetBlockSize(blockSize);
690   return allOK;
691} // GPTData::SetDisk()
692
693// Scan for partition data. This function loads the MBR data (regular MBR or
694// protective MBR) and loads BSD disklabel data (which is probably invalid).
695// It also looks for APM data, forces a load of GPT data, and summarizes
696// the results.
697void GPTData::PartitionScan(void) {
698   BSDData bsdDisklabel;
699
700   // Read the MBR & check for BSD disklabel
701   protectiveMBR.ReadMBRData(&myDisk);
702   bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
703
704   // Load the GPT data, whether or not it's valid
705   ForceLoadGPTData();
706
707   // Some tools create a 0xEE partition that's too big. If this is detected,
708   // normalize it....
709   if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
710      if (!beQuiet) {
711         cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
712      } // if
713      protectiveMBR.MakeProtectiveMBR();
714   } // if
715
716   if (!beQuiet) {
717      cout << "Partition table scan:\n";
718      protectiveMBR.ShowState();
719      bsdDisklabel.ShowState();
720      ShowAPMState(); // Show whether there's an Apple Partition Map present
721      ShowGPTState(); // Show GPT status
722      cout << "\n";
723   } // if
724
725   if (apmFound) {
726      cout << "\n*******************************************************************\n"
727           << "This disk appears to contain an Apple-format (APM) partition table!\n";
728      if (!justLooking) {
729         cout << "It will be destroyed if you continue!\n";
730      } // if
731      cout << "*******************************************************************\n\n\a";
732   } // if
733} // GPTData::PartitionScan()
734
735// Read GPT data from a disk.
736int GPTData::LoadPartitions(const string & deviceFilename) {
737   BSDData bsdDisklabel;
738   int err, allOK = 1;
739   MBRValidity mbrState;
740
741   if (myDisk.OpenForRead(deviceFilename)) {
742      err = myDisk.OpenForWrite(deviceFilename);
743      if ((err == 0) && (!justLooking)) {
744         cout << "\aNOTE: Write test failed with error number " << errno
745              << ". It will be impossible to save\nchanges to this disk's partition table!\n";
746#if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
747         cout << "You may be able to enable writes by exiting this program, typing\n"
748              << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
749              << "program.\n";
750#endif
751         cout << "\n";
752      } // if
753      myDisk.Close(); // Close and re-open read-only in case of bugs
754   } else allOK = 0; // if
755
756   if (allOK && myDisk.OpenForRead(deviceFilename)) {
757      // store disk information....
758      diskSize = myDisk.DiskSize(&err);
759      blockSize = (uint32_t) myDisk.GetBlockSize();
760      device = deviceFilename;
761      PartitionScan(); // Check for partition types, load GPT, & print summary
762
763      whichWasUsed = UseWhichPartitions();
764      switch (whichWasUsed) {
765         case use_mbr:
766            XFormPartitions();
767            break;
768         case use_bsd:
769            bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
770//            bsdDisklabel.DisplayBSDData();
771            ClearGPTData();
772            protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
773            XFormDisklabel(&bsdDisklabel);
774            break;
775         case use_gpt:
776            mbrState = protectiveMBR.GetValidity();
777            if ((mbrState == invalid) || (mbrState == mbr))
778               protectiveMBR.MakeProtectiveMBR();
779            break;
780         case use_new:
781            ClearGPTData();
782            protectiveMBR.MakeProtectiveMBR();
783            break;
784         case use_abort:
785            allOK = 0;
786            cerr << "Invalid partition data!\n";
787            break;
788      } // switch
789
790      if (allOK)
791         CheckGPTSize();
792      myDisk.Close();
793      ComputeAlignment();
794   } else {
795      allOK = 0;
796   } // if/else
797   return (allOK);
798} // GPTData::LoadPartitions()
799
800// Loads the GPT, as much as possible. Returns 1 if this seems to have
801// succeeded, 0 if there are obvious problems....
802int GPTData::ForceLoadGPTData(void) {
803   int allOK, validHeaders, loadedTable = 1;
804
805   allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
806
807   if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
808      allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
809   } else {
810      allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
811      if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
812         cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
813              << "secondary header from the last sector of the disk! You should use 'v' to\n"
814              << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
815              << "the disk.\n";
816   } // if/else
817   if (!allOK)
818      state = gpt_invalid;
819
820   // Return valid headers code: 0 = both headers bad; 1 = main header
821   // good, backup bad; 2 = backup header good, main header bad;
822   // 3 = both headers good. Note these codes refer to valid GPT
823   // signatures, version numbers, and CRCs.
824   validHeaders = CheckHeaderValidity();
825
826   // Read partitions (from primary array)
827   if (validHeaders > 0) { // if at least one header is OK....
828      // GPT appears to be valid....
829      state = gpt_valid;
830
831      // We're calling the GPT valid, but there's a possibility that one
832      // of the two headers is corrupt. If so, use the one that seems to
833      // be in better shape to regenerate the bad one
834      if (validHeaders == 1) { // valid main header, invalid backup header
835         cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
836              << "backup header from main header.\n\n";
837         RebuildSecondHeader();
838         state = gpt_corrupt;
839         secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
840      } else if (validHeaders == 2) { // valid backup header, invalid main header
841         cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
842              << "from backup!\n\n";
843         RebuildMainHeader();
844         state = gpt_corrupt;
845         mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
846      } // if/else/if
847
848      // Figure out which partition table to load....
849      // Load the main partition table, since either its header's CRC is OK or the
850      // backup header's CRC is not OK....
851      if (mainCrcOk || !secondCrcOk) {
852         if (LoadMainTable() == 0)
853            allOK = 0;
854      } else { // bad main header CRC and backup header CRC is OK
855         state = gpt_corrupt;
856         if (LoadSecondTableAsMain()) {
857            loadedTable = 2;
858            cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
859         } else { // backup table bad, bad main header CRC, but try main table in desperation....
860            if (LoadMainTable() == 0) {
861               allOK = 0;
862               loadedTable = 0;
863               cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
864            } // if
865         } // if/else (LoadSecondTableAsMain())
866      } // if/else (load partition table)
867
868      if (loadedTable == 1)
869         secondPartsCrcOk = CheckTable(&secondHeader);
870      else if (loadedTable == 2)
871         mainPartsCrcOk = CheckTable(&mainHeader);
872      else
873         mainPartsCrcOk = secondPartsCrcOk = 0;
874
875      // Problem with main partition table; if backup is OK, use it instead....
876      if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
877         state = gpt_corrupt;
878         allOK = allOK && LoadSecondTableAsMain();
879         mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
880         cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
881              << "partition table\ninstead of main partition table!\n\n";
882      } // if */
883
884      // Check for valid CRCs and warn if there are problems
885      if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
886           (secondPartsCrcOk == 0)) {
887         cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
888         state = gpt_corrupt;
889      } // if
890   } else {
891      state = gpt_invalid;
892   } // if/else
893   return allOK;
894} // GPTData::ForceLoadGPTData()
895
896// Loads the partition table pointed to by the main GPT header. The
897// main GPT header in memory MUST be valid for this call to do anything
898// sensible!
899// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
900int GPTData::LoadMainTable(void) {
901   return LoadPartitionTable(mainHeader, myDisk);
902} // GPTData::LoadMainTable()
903
904// Load the second (backup) partition table as the primary partition
905// table. Used in repair functions, and when starting up if the main
906// partition table is damaged.
907// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
908int GPTData::LoadSecondTableAsMain(void) {
909   return LoadPartitionTable(secondHeader, myDisk);
910} // GPTData::LoadSecondTableAsMain()
911
912// Load a single GPT header (main or backup) from the specified disk device and
913// sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
914// value appropriately.
915// Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
916// failure.
917int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
918   int allOK = 1;
919   GPTHeader tempHeader;
920
921   disk.Seek(sector);
922   if (disk.Read(&tempHeader, 512) != 512) {
923      cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
924      allOK = 0;
925   } // if
926
927   // Reverse byte order, if necessary
928   if (IsLittleEndian() == 0) {
929      ReverseHeaderBytes(&tempHeader);
930   } // if
931   *crcOk = CheckHeaderCRC(&tempHeader);
932
933   if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
934      allOK = SetGPTSize(tempHeader.numParts, 0);
935   }
936
937   *header = tempHeader;
938   return allOK;
939} // GPTData::LoadHeader
940
941// Load a partition table (either main or secondary) from the specified disk,
942// using header as a reference for what to load. If sector != 0 (the default
943// is 0), loads from the specified sector; otherwise loads from the sector
944// indicated in header.
945// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
946int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
947   uint32_t sizeOfParts, newCRC;
948   int retval;
949
950   if (disk.OpenForRead()) {
951      if (sector == 0) {
952         retval = disk.Seek(header.partitionEntriesLBA);
953      } else {
954         retval = disk.Seek(sector);
955      } // if/else
956      if (retval == 1)
957         retval = SetGPTSize(header.numParts, 0);
958      if (retval == 1) {
959         sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
960         if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
961            cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
962            retval = 0;
963         } // if
964         newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
965         mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
966         if (IsLittleEndian() == 0)
967            ReversePartitionBytes();
968         if (!mainPartsCrcOk) {
969            cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
970         } // if
971      } else {
972         cerr << "Error! Couldn't seek to partition table!\n";
973      } // if/else
974   } else {
975      cerr << "Error! Couldn't open device " << device
976           << " when reading partition table!\n";
977      retval = 0;
978   } // if/else
979   return retval;
980} // GPTData::LoadPartitionsTable()
981
982// Check the partition table pointed to by header, but don't keep it
983// around.
984// Returns 1 if the CRC is OK & this table matches the one already in memory,
985// 0 if not or if there was a read error.
986int GPTData::CheckTable(struct GPTHeader *header) {
987   uint32_t sizeOfParts, newCRC;
988   GPTPart *partsToCheck;
989   GPTHeader *otherHeader;
990   int allOK = 0;
991
992   // Load partition table into temporary storage to check
993   // its CRC and store the results, then discard this temporary
994   // storage, since we don't use it in any but recovery operations
995   if (myDisk.Seek(header->partitionEntriesLBA)) {
996      partsToCheck = new GPTPart[header->numParts];
997      sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
998      if (partsToCheck == NULL) {
999         cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1000         exit(1);
1001      } // if
1002      if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1003         cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1004      } else {
1005         newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1006         allOK = (newCRC == header->partitionEntriesCRC);
1007         if (header == &mainHeader)
1008            otherHeader = &secondHeader;
1009         else
1010            otherHeader = &mainHeader;
1011         if (newCRC != otherHeader->partitionEntriesCRC) {
1012            cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1013                 << "on the recovery & transformation menu to examine the two tables.\n\n";
1014            allOK = 0;
1015         } // if
1016      } // if/else
1017      delete[] partsToCheck;
1018   } // if
1019   return allOK;
1020} // GPTData::CheckTable()
1021
1022// Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1023// header later on the disk without asking for permission, if necessary, and
1024// doesn't confirm the operation before writing. If quiet==0, asks permission
1025// before moving the second header and asks for final confirmation of any
1026// write.
1027// Returns 1 on successful write, 0 if there was a problem.
1028int GPTData::SaveGPTData(int quiet) {
1029   int allOK = 1, syncIt = 1;
1030   char answer;
1031
1032   // First do some final sanity checks....
1033
1034   // This test should only fail on read-only disks....
1035   if (justLooking) {
1036      cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1037      allOK = 0;
1038   } // if
1039
1040   // Check that disk is really big enough to handle the second header...
1041   if (mainHeader.backupLBA >= diskSize) {
1042      cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1043           << "header, but other problems may occur!\n";
1044      MoveSecondHeaderToEnd();
1045   } // if
1046
1047   // Is there enough space to hold the GPT headers and partition tables,
1048   // given the partition sizes?
1049   if (CheckGPTSize() > 0) {
1050      allOK = 0;
1051   } // if
1052
1053   // Check that second header is properly placed. Warn and ask if this should
1054   // be corrected if the test fails....
1055   if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1056      if (quiet == 0) {
1057         cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1058              << "correct this problem? ";
1059         if (GetYN() == 'Y') {
1060            MoveSecondHeaderToEnd();
1061            cout << "Have moved second header and partition table to correct location.\n";
1062         } else {
1063            cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1064         } // if correction requested
1065      } else { // Go ahead and do correction automatically
1066         MoveSecondHeaderToEnd();
1067      } // if/else quiet
1068   } // if
1069
1070   if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1071      if (quiet == 0) {
1072         cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1073              << "this problem? ";
1074         if (GetYN() == 'Y') {
1075            MoveSecondHeaderToEnd();
1076            cout << "Have adjusted the second header and last usable sector value.\n";
1077         } else {
1078            cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1079         } // if correction requested
1080      } else { // go ahead and do correction automatically
1081         MoveSecondHeaderToEnd();
1082      } // if/else quiet
1083   } // if
1084
1085   // Check for overlapping or insane partitions....
1086   if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1087      allOK = 0;
1088      cerr << "Aborting write operation!\n";
1089   } // if
1090
1091   // Check that protective MBR fits, and warn if it doesn't....
1092   if (!protectiveMBR.DoTheyFit()) {
1093      cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1094           << "fresh protective or hybrid MBR is recommended.\n";
1095   }
1096
1097   // Check for mismatched MBR and GPT data, but let it pass if found
1098   // (function displays warning message)
1099   FindHybridMismatches();
1100
1101   RecomputeCRCs();
1102
1103   if ((allOK) && (!quiet)) {
1104      cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1105           << "PARTITIONS!!\n\nDo you want to proceed? ";
1106      answer = GetYN();
1107      if (answer == 'Y') {
1108         cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1109      } else {
1110         allOK = 0;
1111      } // if/else
1112   } // if
1113
1114   // Do it!
1115   if (allOK) {
1116      if (myDisk.OpenForWrite()) {
1117         // As per UEFI specs, write the secondary table and GPT first....
1118         allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1119         if (!allOK) {
1120            cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1121                 << "menu will resolve this problem.\n";
1122            syncIt = 0;
1123         } // if
1124
1125         // Now write the secondary GPT header...
1126         allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1127
1128         // Now write the main partition tables...
1129         allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1130
1131         // Now write the main GPT header...
1132         allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1133
1134         // To top it off, write the protective MBR...
1135         allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1136
1137         // re-read the partition table
1138         // Note: Done even if some write operations failed, but not if all of them failed.
1139         // Done this way because I've received one problem report from a user one whose
1140         // system the MBR write failed but everything else was OK (on a GPT disk under
1141         // Windows), and the failure to sync therefore caused Windows to restore the
1142         // original partition table from its cache. OTOH, such restoration might be
1143         // desirable if the error occurs later; but that seems unlikely unless the initial
1144         // write fails....
1145         if (syncIt)
1146            myDisk.DiskSync();
1147
1148         if (allOK) { // writes completed OK
1149            cout << "The operation has completed successfully.\n";
1150         } else {
1151            cerr << "Warning! An error was reported when writing the partition table! This error\n"
1152                 << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1153         } // if/else
1154
1155         myDisk.Close();
1156      } else {
1157         cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1158              << errno << "! Aborting write!\n";
1159         allOK = 0;
1160      } // if/else
1161   } else {
1162      cout << "Aborting write of new partition table.\n";
1163   } // if
1164
1165   return (allOK);
1166} // GPTData::SaveGPTData()
1167
1168// Save GPT data to a backup file. This function does much less error
1169// checking than SaveGPTData(). It can therefore preserve many types of
1170// corruption for later analysis; however, it preserves only the MBR,
1171// the main GPT header, the backup GPT header, and the main partition
1172// table; it discards the backup partition table, since it should be
1173// identical to the main partition table on healthy disks.
1174int GPTData::SaveGPTBackup(const string & filename) {
1175   int allOK = 1;
1176   DiskIO backupFile;
1177
1178   if (backupFile.OpenForWrite(filename)) {
1179      // Recomputing the CRCs is likely to alter them, which could be bad
1180      // if the intent is to save a potentially bad GPT for later analysis;
1181      // but if we don't do this, we get bogus errors when we load the
1182      // backup. I'm favoring misses over false alarms....
1183      RecomputeCRCs();
1184
1185      protectiveMBR.WriteMBRData(&backupFile);
1186      protectiveMBR.SetDisk(&myDisk);
1187
1188      if (allOK) {
1189         // MBR write closed disk, so re-open and seek to end....
1190         backupFile.OpenForWrite();
1191         allOK = SaveHeader(&mainHeader, backupFile, 1);
1192      } // if (allOK)
1193
1194      if (allOK)
1195         allOK = SaveHeader(&secondHeader, backupFile, 2);
1196
1197      if (allOK)
1198         allOK = SavePartitionTable(backupFile, 3);
1199
1200      if (allOK) { // writes completed OK
1201         cout << "The operation has completed successfully.\n";
1202      } else {
1203         cerr << "Warning! An error was reported when writing the backup file.\n"
1204              << "It may not be usable!\n";
1205      } // if/else
1206      backupFile.Close();
1207   } else {
1208      cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1209      allOK = 0;
1210   } // if/else
1211   return allOK;
1212} // GPTData::SaveGPTBackup()
1213
1214// Write a GPT header (main or backup) to the specified sector. Used by both
1215// the SaveGPTData() and SaveGPTBackup() functions.
1216// Should be passed an architecture-appropriate header (DO NOT call
1217// ReverseHeaderBytes() on the header before calling this function)
1218// Returns 1 on success, 0 on failure
1219int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1220   int littleEndian, allOK = 1;
1221
1222   littleEndian = IsLittleEndian();
1223   if (!littleEndian)
1224      ReverseHeaderBytes(header);
1225   if (disk.Seek(sector)) {
1226      if (disk.Write(header, 512) == -1)
1227         allOK = 0;
1228   } else allOK = 0; // if (disk.Seek()...)
1229   if (!littleEndian)
1230      ReverseHeaderBytes(header);
1231   return allOK;
1232} // GPTData::SaveHeader()
1233
1234// Save the partitions to the specified sector. Used by both the SaveGPTData()
1235// and SaveGPTBackup() functions.
1236// Should be passed an architecture-appropriate header (DO NOT call
1237// ReverseHeaderBytes() on the header before calling this function)
1238// Returns 1 on success, 0 on failure
1239int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1240   int littleEndian, allOK = 1;
1241
1242   littleEndian = IsLittleEndian();
1243   if (disk.Seek(sector)) {
1244      if (!littleEndian)
1245         ReversePartitionBytes();
1246      if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1247         allOK = 0;
1248      if (!littleEndian)
1249         ReversePartitionBytes();
1250   } else allOK = 0; // if (myDisk.Seek()...)
1251   return allOK;
1252} // GPTData::SavePartitionTable()
1253
1254// Load GPT data from a backup file created by SaveGPTBackup(). This function
1255// does minimal error checking. It returns 1 if it completed successfully,
1256// 0 if there was a problem. In the latter case, it creates a new empty
1257// set of partitions.
1258int GPTData::LoadGPTBackup(const string & filename) {
1259   int allOK = 1, val, err;
1260   int shortBackup = 0;
1261   DiskIO backupFile;
1262
1263   if (backupFile.OpenForRead(filename)) {
1264      // Let the MBRData class load the saved MBR...
1265      protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1266      protectiveMBR.SetDisk(&myDisk);
1267
1268      LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1269
1270      // Check backup file size and rebuild second header if file is right
1271      // size to be direct dd copy of MBR, main header, and main partition
1272      // table; if other size, treat it like a GPT fdisk-generated backup
1273      // file
1274      shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1275                     (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1276      if (shortBackup) {
1277         RebuildSecondHeader();
1278         secondCrcOk = mainCrcOk;
1279      } else {
1280         LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1281      } // if/else
1282
1283      // Return valid headers code: 0 = both headers bad; 1 = main header
1284      // good, backup bad; 2 = backup header good, main header bad;
1285      // 3 = both headers good. Note these codes refer to valid GPT
1286      // signatures and version numbers; more subtle problems will elude
1287      // this check!
1288      if ((val = CheckHeaderValidity()) > 0) {
1289         if (val == 2) { // only backup header seems to be good
1290            SetGPTSize(secondHeader.numParts, 0);
1291         } else { // main header is OK
1292            SetGPTSize(mainHeader.numParts, 0);
1293         } // if/else
1294
1295         if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1296            cout << "Warning! Current disk size doesn't match that of the backup!\n"
1297                 << "Adjusting sizes to match, but subsequent problems are possible!\n";
1298            MoveSecondHeaderToEnd();
1299         } // if
1300
1301         if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1302            cerr << "Warning! Read error " << errno
1303                 << " loading partition table; strange behavior now likely!\n";
1304      } else {
1305         allOK = 0;
1306      } // if/else
1307      // Something went badly wrong, so blank out partitions
1308      if (allOK == 0) {
1309         cerr << "Improper backup file! Clearing all partition data!\n";
1310         ClearGPTData();
1311         protectiveMBR.MakeProtectiveMBR();
1312      } // if
1313   } else {
1314      allOK = 0;
1315      cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1316   } // if/else
1317
1318   return allOK;
1319} // GPTData::LoadGPTBackup()
1320
1321int GPTData::SaveMBR(void) {
1322   return protectiveMBR.WriteMBRData(&myDisk);
1323} // GPTData::SaveMBR()
1324
1325// This function destroys the on-disk GPT structures, but NOT the on-disk
1326// MBR.
1327// Returns 1 if the operation succeeds, 0 if not.
1328int GPTData::DestroyGPT(void) {
1329   int sum, tableSize, allOK = 1;
1330   uint8_t blankSector[512];
1331   uint8_t* emptyTable;
1332
1333   memset(blankSector, 0, sizeof(blankSector));
1334   ClearGPTData();
1335
1336   if (myDisk.OpenForWrite()) {
1337      if (!myDisk.Seek(mainHeader.currentLBA))
1338         allOK = 0;
1339      if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1340         cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1341         allOK = 0;
1342      } // if
1343      if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1344         allOK = 0;
1345      tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1346      emptyTable = new uint8_t[tableSize];
1347      if (emptyTable == NULL) {
1348         cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1349         exit(1);
1350      } // if
1351      memset(emptyTable, 0, tableSize);
1352      if (allOK) {
1353         sum = myDisk.Write(emptyTable, tableSize);
1354         if (sum != tableSize) {
1355            cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1356            allOK = 0;
1357         } // if write failed
1358      } // if
1359      if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1360         allOK = 0;
1361      if (allOK) {
1362         sum = myDisk.Write(emptyTable, tableSize);
1363         if (sum != tableSize) {
1364            cerr << "Warning! GPT backup partition table not overwritten! Error is "
1365                 << errno << "\n";
1366            allOK = 0;
1367         } // if wrong size written
1368      } // if
1369      if (!myDisk.Seek(secondHeader.currentLBA))
1370         allOK = 0;
1371      if (allOK) {
1372         if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1373            cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1374            allOK = 0;
1375         } // if
1376      } // if
1377      myDisk.DiskSync();
1378      myDisk.Close();
1379      cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1380           << "other utilities.\n";
1381      delete[] emptyTable;
1382   } else {
1383      cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1384   } // if/else (fd != -1)
1385   return (allOK);
1386} // GPTDataTextUI::DestroyGPT()
1387
1388// Wipe MBR data from the disk (zero it out completely)
1389// Returns 1 on success, 0 on failure.
1390int GPTData::DestroyMBR(void) {
1391   int allOK;
1392   uint8_t blankSector[512];
1393
1394   memset(blankSector, 0, sizeof(blankSector));
1395
1396   allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1397
1398   if (!allOK)
1399      cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1400   return allOK;
1401} // GPTData::DestroyMBR(void)
1402
1403// Tell user whether Apple Partition Map (APM) was discovered....
1404void GPTData::ShowAPMState(void) {
1405   if (apmFound)
1406      cout << "  APM: present\n";
1407   else
1408      cout << "  APM: not present\n";
1409} // GPTData::ShowAPMState()
1410
1411// Tell user about the state of the GPT data....
1412void GPTData::ShowGPTState(void) {
1413   switch (state) {
1414      case gpt_invalid:
1415         cout << "  GPT: not present\n";
1416         break;
1417      case gpt_valid:
1418         cout << "  GPT: present\n";
1419         break;
1420      case gpt_corrupt:
1421         cout << "  GPT: damaged\n";
1422         break;
1423      default:
1424         cout << "\a  GPT: unknown -- bug!\n";
1425         break;
1426   } // switch
1427} // GPTData::ShowGPTState()
1428
1429// Display the basic GPT data
1430void GPTData::DisplayGPTData(void) {
1431   uint32_t i;
1432   uint64_t temp, totalFree;
1433
1434   cout << "Disk " << device << ": " << diskSize << " sectors, "
1435        << BytesToIeee(diskSize, blockSize) << "\n";
1436   cout << "Logical sector size: " << blockSize << " bytes\n";
1437   cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1438   cout << "Partition table holds up to " << numParts << " entries\n";
1439   cout << "First usable sector is " << mainHeader.firstUsableLBA
1440        << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1441   totalFree = FindFreeBlocks(&i, &temp);
1442   cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1443   cout << "Total free space is " << totalFree << " sectors ("
1444        << BytesToIeee(totalFree, blockSize) << ")\n";
1445   cout << "\nNumber  Start (sector)    End (sector)  Size       Code  Name\n";
1446   for (i = 0; i < numParts; i++) {
1447      partitions[i].ShowSummary(i, blockSize);
1448   } // for
1449} // GPTData::DisplayGPTData()
1450
1451// Show detailed information on the specified partition
1452void GPTData::ShowPartDetails(uint32_t partNum) {
1453   if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1454      partitions[partNum].ShowDetails(blockSize);
1455   } else {
1456      cout << "Partition #" << partNum + 1 << " does not exist.\n";
1457   } // if
1458} // GPTData::ShowPartDetails()
1459
1460/**************************************************************************
1461 *                                                                        *
1462 * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1463 * (some of these functions may require user interaction)                 *
1464 *                                                                        *
1465 **************************************************************************/
1466
1467// Examines the MBR & GPT data to determine which set of data to use: the
1468// MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1469// a new set of partitions (use_new). A return value of use_abort indicates
1470// that this function couldn't determine what to do. Overriding functions
1471// in derived classes may ask users questions in such cases.
1472WhichToUse GPTData::UseWhichPartitions(void) {
1473   WhichToUse which = use_new;
1474   MBRValidity mbrState;
1475
1476   mbrState = protectiveMBR.GetValidity();
1477
1478   if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1479      cout << "\n***************************************************************\n"
1480           << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1481           << "in memory. ";
1482      if (!justLooking) {
1483         cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1484              << "typing 'q' if you don't want to convert your MBR partitions\n"
1485              << "to GPT format!";
1486      } // if
1487      cout << "\n***************************************************************\n\n";
1488      which = use_mbr;
1489   } // if
1490
1491   if ((state == gpt_invalid) && bsdFound) {
1492      cout << "\n**********************************************************************\n"
1493           << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1494           << "to GPT format.";
1495      if ((!justLooking) && (!beQuiet)) {
1496      cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1497           << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1498           << "want to convert your BSD partitions to GPT format!";
1499      } // if
1500      cout << "\n**********************************************************************\n\n";
1501      which = use_bsd;
1502   } // if
1503
1504   if ((state == gpt_valid) && (mbrState == gpt)) {
1505      which = use_gpt;
1506      if (!beQuiet)
1507         cout << "Found valid GPT with protective MBR; using GPT.\n";
1508   } // if
1509   if ((state == gpt_valid) && (mbrState == hybrid)) {
1510      which = use_gpt;
1511      if (!beQuiet)
1512         cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1513   } // if
1514   if ((state == gpt_valid) && (mbrState == invalid)) {
1515      cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1516           << "protective MBR on save.\n";
1517      which = use_gpt;
1518   } // if
1519   if ((state == gpt_valid) && (mbrState == mbr)) {
1520      which = use_abort;
1521   } // if
1522
1523   if (state == gpt_corrupt) {
1524      if (mbrState == gpt) {
1525         cout << "\a\a****************************************************************************\n"
1526              << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1527              << "verification and recovery are STRONGLY recommended.\n"
1528              << "****************************************************************************\n";
1529         which = use_gpt;
1530      } else {
1531         which = use_abort;
1532      } // if/else MBR says disk is GPT
1533   } // if GPT corrupt
1534
1535   if (which == use_new)
1536      cout << "Creating new GPT entries.\n";
1537
1538   return which;
1539} // UseWhichPartitions()
1540
1541// Convert MBR partition table into GPT form.
1542void GPTData::XFormPartitions(void) {
1543   int i, numToConvert;
1544   uint8_t origType;
1545
1546   // Clear out old data & prepare basics....
1547   ClearGPTData();
1548
1549   // Convert the smaller of the # of GPT or MBR partitions
1550   if (numParts > MAX_MBR_PARTS)
1551      numToConvert = MAX_MBR_PARTS;
1552   else
1553      numToConvert = numParts;
1554
1555   for (i = 0; i < numToConvert; i++) {
1556      origType = protectiveMBR.GetType(i);
1557      // don't waste CPU time trying to convert extended, hybrid protective, or
1558      // null (non-existent) partitions
1559      if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1560          (origType != 0x00) && (origType != 0xEE))
1561         partitions[i] = protectiveMBR.AsGPT(i);
1562   } // for
1563
1564   // Convert MBR into protective MBR
1565   protectiveMBR.MakeProtectiveMBR();
1566
1567   // Record that all original CRCs were OK so as not to raise flags
1568   // when doing a disk verification
1569   mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1570} // GPTData::XFormPartitions()
1571
1572// Transforms BSD disklabel on the specified partition (numbered from 0).
1573// If an invalid partition number is given, the program does nothing.
1574// Returns the number of new partitions created.
1575int GPTData::XFormDisklabel(uint32_t partNum) {
1576   uint32_t low, high;
1577   int goOn = 1, numDone = 0;
1578   BSDData disklabel;
1579
1580   if (GetPartRange(&low, &high) == 0) {
1581      goOn = 0;
1582      cout << "No partitions!\n";
1583   } // if
1584   if (partNum > high) {
1585      goOn = 0;
1586      cout << "Specified partition is invalid!\n";
1587   } // if
1588
1589   // If all is OK, read the disklabel and convert it.
1590   if (goOn) {
1591      goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1592                                   partitions[partNum].GetLastLBA());
1593      if ((goOn) && (disklabel.IsDisklabel())) {
1594         numDone = XFormDisklabel(&disklabel);
1595         if (numDone == 1)
1596            cout << "Converted 1 BSD partition.\n";
1597         else
1598            cout << "Converted " << numDone << " BSD partitions.\n";
1599      } else {
1600         cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1601      } // if/else
1602   } // if
1603   if (numDone > 0) { // converted partitions; delete carrier
1604      partitions[partNum].BlankPartition();
1605   } // if
1606   return numDone;
1607} // GPTData::XFormDisklabel(uint32_t i)
1608
1609// Transform the partitions on an already-loaded BSD disklabel...
1610int GPTData::XFormDisklabel(BSDData* disklabel) {
1611   int i, partNum = 0, numDone = 0;
1612
1613   if (disklabel->IsDisklabel()) {
1614      for (i = 0; i < disklabel->GetNumParts(); i++) {
1615         partNum = FindFirstFreePart();
1616         if (partNum >= 0) {
1617            partitions[partNum] = disklabel->AsGPT(i);
1618            if (partitions[partNum].IsUsed())
1619               numDone++;
1620         } // if
1621      } // for
1622      if (partNum == -1)
1623         cerr << "Warning! Too many partitions to convert!\n";
1624   } // if
1625
1626   // Record that all original CRCs were OK so as not to raise flags
1627   // when doing a disk verification
1628   mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1629
1630   return numDone;
1631} // GPTData::XFormDisklabel(BSDData* disklabel)
1632
1633// Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1634// partition has the active/bootable flag UNset and uses the GPT fdisk
1635// type code divided by 0x0100 as the MBR type code.
1636// Returns 1 if operation was 100% successful, 0 if there were ANY
1637// problems.
1638int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1639   int allOK = 1;
1640
1641   if ((mbrPart < 0) || (mbrPart > 3)) {
1642      cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1643      allOK = 0;
1644   } // if
1645   if (gptPart >= numParts) {
1646      cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1647      allOK = 0;
1648   } // if
1649   if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1650      cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1651      allOK = 0;
1652   } // if
1653   if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1654       (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1655      if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1656         cout << "Caution: Partition end point past 32-bit pointer boundary;"
1657              << " some OSes may\nreact strangely.\n";
1658      } // if
1659      protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1660                             (uint32_t) partitions[gptPart].GetLengthLBA(),
1661                             partitions[gptPart].GetHexType() / 256, 0);
1662   } else { // partition out of range
1663      if (allOK) // Display only if "else" triggered by out-of-bounds condition
1664         cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1665              << "partitions, or is\n too big; omitting it.\n";
1666      allOK = 0;
1667   } // if/else
1668   return allOK;
1669} // GPTData::OnePartToMBR()
1670
1671
1672/**********************************************************************
1673 *                                                                    *
1674 * Functions that adjust GPT data structures WITHOUT user interaction *
1675 * (they may display information for the user's benefit, though)      *
1676 *                                                                    *
1677 **********************************************************************/
1678
1679// Resizes GPT to specified number of entries. Creates a new table if
1680// necessary, copies data if it already exists. If fillGPTSectors is 1
1681// (the default), rounds numEntries to fill all the sectors necessary to
1682// hold the GPT.
1683// Returns 1 if all goes well, 0 if an error is encountered.
1684int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1685   GPTPart* newParts;
1686   uint32_t i, high, copyNum, entriesPerSector;
1687   int allOK = 1;
1688
1689   // First, adjust numEntries upward, if necessary, to get a number
1690   // that fills the allocated sectors
1691   entriesPerSector = blockSize / GPT_SIZE;
1692   if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1693      cout << "Adjusting GPT size from " << numEntries << " to ";
1694      numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1695      cout << numEntries << " to fill the sector\n";
1696   } // if
1697
1698   // Do the work only if the # of partitions is changing. Along with being
1699   // efficient, this prevents mucking with the location of the secondary
1700   // partition table, which causes problems when loading data from a RAID
1701   // array that's been expanded because this function is called when loading
1702   // data.
1703   if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1704      newParts = new GPTPart [numEntries];
1705      if (newParts != NULL) {
1706         if (partitions != NULL) { // existing partitions; copy them over
1707            GetPartRange(&i, &high);
1708            if (numEntries < (high + 1)) { // Highest entry too high for new #
1709               cout << "The highest-numbered partition is " << high + 1
1710                    << ", which is greater than the requested\n"
1711                    << "partition table size of " << numEntries
1712                    << "; cannot resize. Perhaps sorting will help.\n";
1713               allOK = 0;
1714               delete[] newParts;
1715            } else { // go ahead with copy
1716               if (numEntries < numParts)
1717                  copyNum = numEntries;
1718               else
1719                  copyNum = numParts;
1720               for (i = 0; i < copyNum; i++) {
1721                  newParts[i] = partitions[i];
1722               } // for
1723               delete[] partitions;
1724               partitions = newParts;
1725            } // if
1726         } else { // No existing partition table; just create it
1727            partitions = newParts;
1728         } // if/else existing partitions
1729         numParts = numEntries;
1730         mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
1731         secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1732         MoveSecondHeaderToEnd();
1733         if (diskSize > 0)
1734            CheckGPTSize();
1735      } else { // Bad memory allocation
1736         cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1737         allOK = 0;
1738      } // if/else
1739   } // if/else
1740   mainHeader.numParts = numParts;
1741   secondHeader.numParts = numParts;
1742   return (allOK);
1743} // GPTData::SetGPTSize()
1744
1745// Blank the partition array
1746void GPTData::BlankPartitions(void) {
1747   uint32_t i;
1748
1749   for (i = 0; i < numParts; i++) {
1750      partitions[i].BlankPartition();
1751   } // for
1752} // GPTData::BlankPartitions()
1753
1754// Delete a partition by number. Returns 1 if successful,
1755// 0 if there was a problem. Returns 1 if partition was in
1756// range, 0 if it was out of range.
1757int GPTData::DeletePartition(uint32_t partNum) {
1758   uint64_t startSector, length;
1759   uint32_t low, high, numUsedParts, retval = 1;;
1760
1761   numUsedParts = GetPartRange(&low, &high);
1762   if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1763      // In case there's a protective MBR, look for & delete matching
1764      // MBR partition....
1765      startSector = partitions[partNum].GetFirstLBA();
1766      length = partitions[partNum].GetLengthLBA();
1767      protectiveMBR.DeleteByLocation(startSector, length);
1768
1769      // Now delete the GPT partition
1770      partitions[partNum].BlankPartition();
1771   } else {
1772      cerr << "Partition number " << partNum + 1 << " out of range!\n";
1773      retval = 0;
1774   } // if/else
1775   return retval;
1776} // GPTData::DeletePartition(uint32_t partNum)
1777
1778// Non-interactively create a partition.
1779// Returns 1 if the operation was successful, 0 if a problem was discovered.
1780uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1781   int retval = 1; // assume there'll be no problems
1782   uint64_t origSector = startSector;
1783
1784   if (IsFreePartNum(partNum)) {
1785      if (Align(&startSector)) {
1786         cout << "Information: Moved requested sector from " << origSector << " to "
1787              << startSector << " in\norder to align on " << sectorAlignment
1788              << "-sector boundaries.\n";
1789      } // if
1790      if (IsFree(startSector) && (startSector <= endSector)) {
1791         if (FindLastInFree(startSector) >= endSector) {
1792            partitions[partNum].SetFirstLBA(startSector);
1793            partitions[partNum].SetLastLBA(endSector);
1794            partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1795            partitions[partNum].RandomizeUniqueGUID();
1796         } else retval = 0; // if free space until endSector
1797      } else retval = 0; // if startSector is free
1798   } else retval = 0; // if legal partition number
1799   return retval;
1800} // GPTData::CreatePartition(partNum, startSector, endSector)
1801
1802// Sort the GPT entries, eliminating gaps and making for a logical
1803// ordering.
1804void GPTData::SortGPT(void) {
1805   if (numParts > 0)
1806      sort(partitions, partitions + numParts);
1807} // GPTData::SortGPT()
1808
1809// Swap the contents of two partitions.
1810// Returns 1 if successful, 0 if either partition is out of range
1811// (that is, not a legal number; either or both can be empty).
1812// Note that if partNum1 = partNum2 and this number is in range,
1813// it will be considered successful.
1814int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1815   GPTPart temp;
1816   int allOK = 1;
1817
1818   if ((partNum1 < numParts) && (partNum2 < numParts)) {
1819      if (partNum1 != partNum2) {
1820         temp = partitions[partNum1];
1821         partitions[partNum1] = partitions[partNum2];
1822         partitions[partNum2] = temp;
1823      } // if
1824   } else allOK = 0; // partition numbers are valid
1825   return allOK;
1826} // GPTData::SwapPartitions()
1827
1828// Set up data structures for entirely new set of partitions on the
1829// specified device. Returns 1 if OK, 0 if there were problems.
1830// Note that this function does NOT clear the protectiveMBR data
1831// structure, since it may hold the original MBR partitions if the
1832// program was launched on an MBR disk, and those may need to be
1833// converted to GPT format.
1834int GPTData::ClearGPTData(void) {
1835   int goOn = 1, i;
1836
1837   // Set up the partition table....
1838   delete[] partitions;
1839   partitions = NULL;
1840   SetGPTSize(NUM_GPT_ENTRIES);
1841
1842   // Now initialize a bunch of stuff that's static....
1843   mainHeader.signature = GPT_SIGNATURE;
1844   mainHeader.revision = 0x00010000;
1845   mainHeader.headerSize = HEADER_SIZE;
1846   mainHeader.reserved = 0;
1847   mainHeader.currentLBA = UINT64_C(1);
1848   mainHeader.partitionEntriesLBA = (uint64_t) 2;
1849   mainHeader.sizeOfPartitionEntries = GPT_SIZE;
1850   for (i = 0; i < GPT_RESERVED; i++) {
1851      mainHeader.reserved2[i] = '\0';
1852   } // for
1853   if (blockSize > 0)
1854      sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
1855   else
1856      sectorAlignment = DEFAULT_ALIGNMENT;
1857
1858   // Now some semi-static items (computed based on end of disk)
1859   mainHeader.backupLBA = diskSize - UINT64_C(1);
1860   mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1861
1862   // Set a unique GUID for the disk, based on random numbers
1863   mainHeader.diskGUID.Randomize();
1864
1865   // Copy main header to backup header
1866   RebuildSecondHeader();
1867
1868   // Blank out the partitions array....
1869   BlankPartitions();
1870
1871   // Flag all CRCs as being OK....
1872   mainCrcOk = 1;
1873   secondCrcOk = 1;
1874   mainPartsCrcOk = 1;
1875   secondPartsCrcOk = 1;
1876
1877   return (goOn);
1878} // GPTData::ClearGPTData()
1879
1880// Set the location of the second GPT header data to the end of the disk.
1881// If the disk size has actually changed, this also adjusts the protective
1882// entry in the MBR, since it's probably no longer correct.
1883// Used internally and called by the 'e' option on the recovery &
1884// transformation menu, to help users of RAID arrays who add disk space
1885// to their arrays or to adjust data structures in restore operations
1886// involving unequal-sized disks.
1887void GPTData::MoveSecondHeaderToEnd() {
1888   mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
1889   if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
1890      if (protectiveMBR.GetValidity() == hybrid) {
1891         protectiveMBR.OptimizeEESize();
1892         RecomputeCHS();
1893      } // if
1894      if (protectiveMBR.GetValidity() == gpt)
1895         MakeProtectiveMBR();
1896   } // if
1897   mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1898   secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
1899} // GPTData::FixSecondHeaderLocation()
1900
1901// Sets the partition's name to the specified UnicodeString without
1902// user interaction.
1903// Returns 1 on success, 0 on failure (invalid partition number).
1904int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
1905   int retval = 1;
1906
1907   if (IsUsedPartNum(partNum))
1908      partitions[partNum].SetName(theName);
1909   else
1910      retval = 0;
1911
1912   return retval;
1913} // GPTData::SetName
1914
1915// Set the disk GUID to the specified value. Note that the header CRCs must
1916// be recomputed after calling this function.
1917void GPTData::SetDiskGUID(GUIDData newGUID) {
1918   mainHeader.diskGUID = newGUID;
1919   secondHeader.diskGUID = newGUID;
1920} // SetDiskGUID()
1921
1922// Set the unique GUID of the specified partition. Returns 1 on
1923// successful completion, 0 if there were problems (invalid
1924// partition number).
1925int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
1926   int retval = 0;
1927
1928   if (pn < numParts) {
1929      if (partitions[pn].IsUsed()) {
1930         partitions[pn].SetUniqueGUID(theGUID);
1931         retval = 1;
1932      } // if
1933   } // if
1934   return retval;
1935} // GPTData::SetPartitionGUID()
1936
1937// Set new random GUIDs for the disk and all partitions. Intended to be used
1938// after disk cloning or similar operations that don't randomize the GUIDs.
1939void GPTData::RandomizeGUIDs(void) {
1940   uint32_t i;
1941
1942   mainHeader.diskGUID.Randomize();
1943   secondHeader.diskGUID = mainHeader.diskGUID;
1944   for (i = 0; i < numParts; i++)
1945      if (partitions[i].IsUsed())
1946         partitions[i].RandomizeUniqueGUID();
1947} // GPTData::RandomizeGUIDs()
1948
1949// Change partition type code non-interactively. Returns 1 if
1950// successful, 0 if not....
1951int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
1952   int retval = 1;
1953
1954   if (!IsFreePartNum(partNum)) {
1955      partitions[partNum].SetType(theGUID);
1956   } else retval = 0;
1957   return retval;
1958} // GPTData::ChangePartType()
1959
1960// Recompute the CHS values of all the MBR partitions. Used to reset
1961// CHS values that some BIOSes require, despite the fact that the
1962// resulting CHS values violate the GPT standard.
1963void GPTData::RecomputeCHS(void) {
1964   int i;
1965
1966   for (i = 0; i < 4; i++)
1967      protectiveMBR.RecomputeCHS(i);
1968} // GPTData::RecomputeCHS()
1969
1970// Adjust sector number so that it falls on a sector boundary that's a
1971// multiple of sectorAlignment. This is done to improve the performance
1972// of Western Digital Advanced Format disks and disks with similar
1973// technology from other companies, which use 4096-byte sectors
1974// internally although they translate to 512-byte sectors for the
1975// benefit of the OS. If partitions aren't properly aligned on these
1976// disks, some filesystem data structures can span multiple physical
1977// sectors, degrading performance. This function should be called
1978// only on the FIRST sector of the partition, not the last!
1979// This function returns 1 if the alignment was altered, 0 if it
1980// was unchanged.
1981int GPTData::Align(uint64_t* sector) {
1982   int retval = 0, sectorOK = 0;
1983   uint64_t earlier, later, testSector;
1984
1985   if ((*sector % sectorAlignment) != 0) {
1986      earlier = (*sector / sectorAlignment) * sectorAlignment;
1987      later = earlier + (uint64_t) sectorAlignment;
1988
1989      // Check to see that every sector between the earlier one and the
1990      // requested one is clear, and that it's not too early....
1991      if (earlier >= mainHeader.firstUsableLBA) {
1992         sectorOK = 1;
1993         testSector = earlier;
1994         do {
1995            sectorOK = IsFree(testSector++);
1996         } while ((sectorOK == 1) && (testSector < *sector));
1997         if (sectorOK == 1) {
1998            *sector = earlier;
1999            retval = 1;
2000         } // if
2001      } // if firstUsableLBA check
2002
2003      // If couldn't move the sector earlier, try to move it later instead....
2004      if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2005         sectorOK = 1;
2006         testSector = later;
2007         do {
2008            sectorOK = IsFree(testSector--);
2009         } while ((sectorOK == 1) && (testSector > *sector));
2010         if (sectorOK == 1) {
2011            *sector = later;
2012            retval = 1;
2013         } // if
2014      } // if
2015   } // if
2016   return retval;
2017} // GPTData::Align()
2018
2019/********************************************************
2020 *                                                      *
2021 * Functions that return data about GPT data structures *
2022 * (most of these are inline in gpt.h)                  *
2023 *                                                      *
2024 ********************************************************/
2025
2026// Find the low and high used partition numbers (numbered from 0).
2027// Return value is the number of partitions found. Note that the
2028// *low and *high values are both set to 0 when no partitions
2029// are found, as well as when a single partition in the first
2030// position exists. Thus, the return value is the only way to
2031// tell when no partitions exist.
2032int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2033   uint32_t i;
2034   int numFound = 0;
2035
2036   *low = numParts + 1; // code for "not found"
2037   *high = 0;
2038   for (i = 0; i < numParts; i++) {
2039      if (partitions[i].IsUsed()) { // it exists
2040         *high = i; // since we're counting up, set the high value
2041         // Set the low value only if it's not yet found...
2042         if (*low == (numParts + 1)) *low = i;
2043            numFound++;
2044      } // if
2045   } // for
2046
2047   // Above will leave *low pointing to its "not found" value if no partitions
2048   // are defined, so reset to 0 if this is the case....
2049   if (*low == (numParts + 1))
2050      *low = 0;
2051   return numFound;
2052} // GPTData::GetPartRange()
2053
2054// Returns the value of the first free partition, or -1 if none is
2055// unused.
2056int GPTData::FindFirstFreePart(void) {
2057   int i = 0;
2058
2059   if (partitions != NULL) {
2060      while ((i < (int) numParts) && (partitions[i].IsUsed()))
2061         i++;
2062      if (i >= (int) numParts)
2063         i = -1;
2064   } else i = -1;
2065   return i;
2066} // GPTData::FindFirstFreePart()
2067
2068// Returns the number of defined partitions.
2069uint32_t GPTData::CountParts(void) {
2070   uint32_t i, counted = 0;
2071
2072   for (i = 0; i < numParts; i++) {
2073      if (partitions[i].IsUsed())
2074         counted++;
2075   } // for
2076   return counted;
2077} // GPTData::CountParts()
2078
2079/****************************************************
2080 *                                                  *
2081 * Functions that return data about disk free space *
2082 *                                                  *
2083 ****************************************************/
2084
2085// Find the first available block after the starting point; returns 0 if
2086// there are no available blocks left
2087uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2088   uint64_t first;
2089   uint32_t i;
2090   int firstMoved = 0;
2091
2092   // Begin from the specified starting point or from the first usable
2093   // LBA, whichever is greater...
2094   if (start < mainHeader.firstUsableLBA)
2095      first = mainHeader.firstUsableLBA;
2096   else
2097      first = start;
2098
2099   // ...now search through all partitions; if first is within an
2100   // existing partition, move it to the next sector after that
2101   // partition and repeat. If first was moved, set firstMoved
2102   // flag; repeat until firstMoved is not set, so as to catch
2103   // cases where partitions are out of sequential order....
2104   do {
2105      firstMoved = 0;
2106      for (i = 0; i < numParts; i++) {
2107         if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2108             (first <= partitions[i].GetLastLBA())) { // in existing part.
2109            first = partitions[i].GetLastLBA() + 1;
2110            firstMoved = 1;
2111         } // if
2112      } // for
2113   } while (firstMoved == 1);
2114   if (first > mainHeader.lastUsableLBA)
2115      first = 0;
2116   return (first);
2117} // GPTData::FindFirstAvailable()
2118
2119// Finds the first available sector in the largest block of unallocated
2120// space on the disk. Returns 0 if there are no available blocks left
2121uint64_t GPTData::FindFirstInLargest(void) {
2122   uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2123
2124   start = 0;
2125   do {
2126      firstBlock = FindFirstAvailable(start);
2127      if (firstBlock != UINT32_C(0)) { // something's free...
2128         lastBlock = FindLastInFree(firstBlock);
2129         segmentSize = lastBlock - firstBlock + UINT32_C(1);
2130         if (segmentSize > selectedSize) {
2131            selectedSize = segmentSize;
2132            selectedSegment = firstBlock;
2133         } // if
2134         start = lastBlock + 1;
2135      } // if
2136   } while (firstBlock != 0);
2137   return selectedSegment;
2138} // GPTData::FindFirstInLargest()
2139
2140// Find the last available block on the disk.
2141// Returns 0 if there are no available sectors
2142uint64_t GPTData::FindLastAvailable(void) {
2143   uint64_t last;
2144   uint32_t i;
2145   int lastMoved = 0;
2146
2147   // Start by assuming the last usable LBA is available....
2148   last = mainHeader.lastUsableLBA;
2149
2150   // ...now, similar to algorithm in FindFirstAvailable(), search
2151   // through all partitions, moving last when it's in an existing
2152   // partition. Set the lastMoved flag so we repeat to catch cases
2153   // where partitions are out of logical order.
2154   do {
2155      lastMoved = 0;
2156      for (i = 0; i < numParts; i++) {
2157         if ((last >= partitions[i].GetFirstLBA()) &&
2158             (last <= partitions[i].GetLastLBA())) { // in existing part.
2159            last = partitions[i].GetFirstLBA() - 1;
2160            lastMoved = 1;
2161         } // if
2162      } // for
2163   } while (lastMoved == 1);
2164   if (last < mainHeader.firstUsableLBA)
2165      last = 0;
2166   return (last);
2167} // GPTData::FindLastAvailable()
2168
2169// Find the last available block in the free space pointed to by start.
2170uint64_t GPTData::FindLastInFree(uint64_t start) {
2171   uint64_t nearestStart;
2172   uint32_t i;
2173
2174   nearestStart = mainHeader.lastUsableLBA;
2175   for (i = 0; i < numParts; i++) {
2176      if ((nearestStart > partitions[i].GetFirstLBA()) &&
2177          (partitions[i].GetFirstLBA() > start)) {
2178         nearestStart = partitions[i].GetFirstLBA() - 1;
2179      } // if
2180   } // for
2181   return (nearestStart);
2182} // GPTData::FindLastInFree()
2183
2184// Finds the total number of free blocks, the number of segments in which
2185// they reside, and the size of the largest of those segments
2186uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2187   uint64_t start = UINT64_C(0); // starting point for each search
2188   uint64_t totalFound = UINT64_C(0); // running total
2189   uint64_t firstBlock; // first block in a segment
2190   uint64_t lastBlock; // last block in a segment
2191   uint64_t segmentSize; // size of segment in blocks
2192   uint32_t num = 0;
2193
2194   *largestSegment = UINT64_C(0);
2195   if (diskSize > 0) {
2196      do {
2197         firstBlock = FindFirstAvailable(start);
2198         if (firstBlock != UINT64_C(0)) { // something's free...
2199            lastBlock = FindLastInFree(firstBlock);
2200            segmentSize = lastBlock - firstBlock + UINT64_C(1);
2201            if (segmentSize > *largestSegment) {
2202               *largestSegment = segmentSize;
2203            } // if
2204            totalFound += segmentSize;
2205            num++;
2206            start = lastBlock + 1;
2207         } // if
2208      } while (firstBlock != 0);
2209   } // if
2210   *numSegments = num;
2211   return totalFound;
2212} // GPTData::FindFreeBlocks()
2213
2214// Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2215// If it's allocated, return the partition number to which it's allocated
2216// in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2217// returned in partNum if the sector is in use by basic GPT data structures.)
2218int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2219   int isFree = 1;
2220   uint32_t i;
2221
2222   for (i = 0; i < numParts; i++) {
2223      if ((sector >= partitions[i].GetFirstLBA()) &&
2224           (sector <= partitions[i].GetLastLBA())) {
2225         isFree = 0;
2226         if (partNum != NULL)
2227            *partNum = i;
2228      } // if
2229   } // for
2230   if ((sector < mainHeader.firstUsableLBA) ||
2231        (sector > mainHeader.lastUsableLBA)) {
2232      isFree = 0;
2233      if (partNum != NULL)
2234         *partNum = UINT32_MAX;
2235   } // if
2236   return (isFree);
2237} // GPTData::IsFree()
2238
2239// Returns 1 if partNum is unused AND if it's a legal value.
2240int GPTData::IsFreePartNum(uint32_t partNum) {
2241   return ((partNum < numParts) && (partitions != NULL) &&
2242           (!partitions[partNum].IsUsed()));
2243} // GPTData::IsFreePartNum()
2244
2245// Returns 1 if partNum is in use.
2246int GPTData::IsUsedPartNum(uint32_t partNum) {
2247   return ((partNum < numParts) && (partitions != NULL) &&
2248           (partitions[partNum].IsUsed()));
2249} // GPTData::IsUsedPartNum()
2250
2251/***********************************************************
2252 *                                                         *
2253 * Change how functions work or return information on them *
2254 *                                                         *
2255 ***********************************************************/
2256
2257// Set partition alignment value; partitions will begin on multiples of
2258// the specified value
2259void GPTData::SetAlignment(uint32_t n) {
2260   if (n > 0)
2261      sectorAlignment = n;
2262   else
2263      cerr << "Attempt to set partition alignment to 0!\n";
2264} // GPTData::SetAlignment()
2265
2266// Compute sector alignment based on the current partitions (if any). Each
2267// partition's starting LBA is examined, and if it's divisible by a power-of-2
2268// value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2269// sector size), but not by the previously-located alignment value, then the
2270// alignment value is adjusted down. If the computed alignment is less than 8
2271// and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2272// is a safety measure for Advanced Format drives. If no partitions are
2273// defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2274// adjustment of that based on the current sector size). The result is that new
2275// drives are aligned to 2048-sector multiples but the program won't complain
2276// about other alignments on existing disks unless a smaller-than-8 alignment
2277// is used on big disks (as safety for Advanced Format drives).
2278// Returns the computed alignment value.
2279uint32_t GPTData::ComputeAlignment(void) {
2280   uint32_t i = 0, found, exponent = 31;
2281   uint32_t align = DEFAULT_ALIGNMENT;
2282
2283   if (blockSize > 0)
2284      align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2285   exponent = (uint32_t) log2(align);
2286   for (i = 0; i < numParts; i++) {
2287      if (partitions[i].IsUsed()) {
2288         found = 0;
2289         while (!found) {
2290            align = UINT64_C(1) << exponent;
2291            if ((partitions[i].GetFirstLBA() % align) == 0) {
2292               found = 1;
2293            } else {
2294               exponent--;
2295            } // if/else
2296         } // while
2297      } // if
2298   } // for
2299   if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2300      align = MIN_AF_ALIGNMENT;
2301   sectorAlignment = align;
2302   return align;
2303} // GPTData::ComputeAlignment()
2304
2305/********************************
2306 *                              *
2307 * Endianness support functions *
2308 *                              *
2309 ********************************/
2310
2311void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2312   ReverseBytes(&header->signature, 8);
2313   ReverseBytes(&header->revision, 4);
2314   ReverseBytes(&header->headerSize, 4);
2315   ReverseBytes(&header->headerCRC, 4);
2316   ReverseBytes(&header->reserved, 4);
2317   ReverseBytes(&header->currentLBA, 8);
2318   ReverseBytes(&header->backupLBA, 8);
2319   ReverseBytes(&header->firstUsableLBA, 8);
2320   ReverseBytes(&header->lastUsableLBA, 8);
2321   ReverseBytes(&header->partitionEntriesLBA, 8);
2322   ReverseBytes(&header->numParts, 4);
2323   ReverseBytes(&header->sizeOfPartitionEntries, 4);
2324   ReverseBytes(&header->partitionEntriesCRC, 4);
2325   ReverseBytes(header->reserved2, GPT_RESERVED);
2326} // GPTData::ReverseHeaderBytes()
2327
2328// Reverse byte order for all partitions.
2329void GPTData::ReversePartitionBytes() {
2330   uint32_t i;
2331
2332   for (i = 0; i < numParts; i++) {
2333      partitions[i].ReversePartBytes();
2334   } // for
2335} // GPTData::ReversePartitionBytes()
2336
2337// Validate partition number
2338bool GPTData::ValidPartNum (const uint32_t partNum) {
2339   if (partNum >= numParts) {
2340      cerr << "Partition number out of range: " << partNum << "\n";
2341      return false;
2342   } // if
2343   return true;
2344} // GPTData::ValidPartNum
2345
2346// Return a single partition for inspection (not modification!) by other
2347// functions.
2348const GPTPart & GPTData::operator[](uint32_t partNum) const {
2349   if (partNum >= numParts) {
2350      cerr << "Partition number out of range (" << partNum << " requested, but only "
2351           << numParts << " available)\n";
2352      exit(1);
2353   } // if
2354   if (partitions == NULL) {
2355      cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2356      exit(1);
2357   } // if
2358   return partitions[partNum];
2359} // operator[]
2360
2361// Return (not for modification!) the disk's GUID value
2362const GUIDData & GPTData::GetDiskGUID(void) const {
2363   return mainHeader.diskGUID;
2364} // GPTData::GetDiskGUID()
2365
2366// Manage attributes for a partition, based on commands passed to this function.
2367// (Function is non-interactive.)
2368// Returns 1 if a modification command succeeded, 0 if the command should not have
2369// modified data, and -1 if a modification command failed.
2370int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2371   int retval = 0;
2372   Attributes theAttr;
2373
2374   if (partNum >= (int) numParts) {
2375      cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2376      retval = -1;
2377   } else {
2378      if (command == "show") {
2379         ShowAttributes(partNum);
2380      } else if (command == "get") {
2381         GetAttribute(partNum, bits);
2382      } else {
2383         theAttr = partitions[partNum].GetAttributes();
2384         if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2385            partitions[partNum].SetAttributes(theAttr.GetAttributes());
2386            retval = 1;
2387         } else {
2388            retval = -1;
2389         } // if/else
2390      } // if/elseif/else
2391   } // if/else invalid partition #
2392
2393   return retval;
2394} // GPTData::ManageAttributes()
2395
2396// Show all attributes for a specified partition....
2397void GPTData::ShowAttributes(const uint32_t partNum) {
2398   if ((partNum < numParts) && partitions[partNum].IsUsed())
2399      partitions[partNum].ShowAttributes(partNum);
2400} // GPTData::ShowAttributes
2401
2402// Show whether a single attribute bit is set (terse output)...
2403void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2404   if (partNum < numParts)
2405      partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2406} // GPTData::GetAttribute
2407
2408
2409/******************************************
2410 *                                        *
2411 * Additional non-class support functions *
2412 *                                        *
2413 ******************************************/
2414
2415// Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2416// never fail these tests, but the struct types may fail depending on compile options.
2417// Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2418// sizes.
2419int SizesOK(void) {
2420   int allOK = 1;
2421
2422   if (sizeof(uint8_t) != 1) {
2423      cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2424      allOK = 0;
2425   } // if
2426   if (sizeof(uint16_t) != 2) {
2427      cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2428      allOK = 0;
2429   } // if
2430   if (sizeof(uint32_t) != 4) {
2431      cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2432      allOK = 0;
2433   } // if
2434   if (sizeof(uint64_t) != 8) {
2435      cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2436      allOK = 0;
2437   } // if
2438   if (sizeof(struct MBRRecord) != 16) {
2439      cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2440      allOK = 0;
2441   } // if
2442   if (sizeof(struct TempMBR) != 512) {
2443      cerr << "TempMBR is " <<  sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2444      allOK = 0;
2445   } // if
2446   if (sizeof(struct GPTHeader) != 512) {
2447      cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2448      allOK = 0;
2449   } // if
2450   if (sizeof(GPTPart) != 128) {
2451      cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2452      allOK = 0;
2453   } // if
2454   if (sizeof(GUIDData) != 16) {
2455      cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2456      allOK = 0;
2457   } // if
2458   if (sizeof(PartType) != 16) {
2459      cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2460      allOK = 0;
2461   } // if
2462   return (allOK);
2463} // SizesOK()
2464
2465