1/*
2 * Copyright (c) 2009-2010 jMonkeyEngine
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 *
9 * * Redistributions of source code must retain the above copyright
10 *   notice, this list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 *   notice, this list of conditions and the following disclaimer in the
14 *   documentation and/or other materials provided with the distribution.
15 *
16 * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
17 *   may be used to endorse or promote products derived from this software
18 *   without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33package com.jme3.math;
34
35import com.jme3.export.*;
36import java.io.IOException;
37import java.util.logging.Logger;
38
39/*
40 * -- Added *Local methods to cut down on object creation - JS
41 */
42
43/**
44 * <code>Vector3f</code> defines a Vector for a three float value tuple.
45 * <code>Vector3f</code> can represent any three dimensional value, such as a
46 * vertex, a normal, etc. Utility methods are also included to aid in
47 * mathematical calculations.
48 *
49 * @author Mark Powell
50 * @author Joshua Slack
51 */
52public final class Vector3f implements Savable, Cloneable, java.io.Serializable {
53
54    static final long serialVersionUID = 1;
55
56    private static final Logger logger = Logger.getLogger(Vector3f.class.getName());
57
58    public final static Vector3f ZERO = new Vector3f(0, 0, 0);
59    public final static Vector3f NAN = new Vector3f(Float.NaN, Float.NaN, Float.NaN);
60    public final static Vector3f UNIT_X = new Vector3f(1, 0, 0);
61    public final static Vector3f UNIT_Y = new Vector3f(0, 1, 0);
62    public final static Vector3f UNIT_Z = new Vector3f(0, 0, 1);
63    public final static Vector3f UNIT_XYZ = new Vector3f(1, 1, 1);
64    public final static Vector3f POSITIVE_INFINITY = new Vector3f(
65            Float.POSITIVE_INFINITY,
66            Float.POSITIVE_INFINITY,
67            Float.POSITIVE_INFINITY);
68    public final static Vector3f NEGATIVE_INFINITY = new Vector3f(
69            Float.NEGATIVE_INFINITY,
70            Float.NEGATIVE_INFINITY,
71            Float.NEGATIVE_INFINITY);
72
73
74	/**
75     * the x value of the vector.
76     */
77    public float x;
78
79    /**
80     * the y value of the vector.
81     */
82    public float y;
83
84    /**
85     * the z value of the vector.
86     */
87    public float z;
88
89    /**
90     * Constructor instantiates a new <code>Vector3f</code> with default
91     * values of (0,0,0).
92     *
93     */
94    public Vector3f() {
95        x = y = z = 0;
96    }
97
98    /**
99     * Constructor instantiates a new <code>Vector3f</code> with provides
100     * values.
101     *
102     * @param x
103     *            the x value of the vector.
104     * @param y
105     *            the y value of the vector.
106     * @param z
107     *            the z value of the vector.
108     */
109    public Vector3f(float x, float y, float z) {
110        this.x = x;
111        this.y = y;
112        this.z = z;
113    }
114
115    /**
116     * Constructor instantiates a new <code>Vector3f</code> that is a copy
117     * of the provided vector
118     * @param copy The Vector3f to copy
119     */
120    public Vector3f(Vector3f copy) {
121        this.set(copy);
122    }
123
124    /**
125     * <code>set</code> sets the x,y,z values of the vector based on passed
126     * parameters.
127     *
128     * @param x
129     *            the x value of the vector.
130     * @param y
131     *            the y value of the vector.
132     * @param z
133     *            the z value of the vector.
134     * @return this vector
135     */
136    public Vector3f set(float x, float y, float z) {
137        this.x = x;
138        this.y = y;
139        this.z = z;
140        return this;
141    }
142
143    /**
144     * <code>set</code> sets the x,y,z values of the vector by copying the
145     * supplied vector.
146     *
147     * @param vect
148     *            the vector to copy.
149     * @return this vector
150     */
151    public Vector3f set(Vector3f vect) {
152        this.x = vect.x;
153        this.y = vect.y;
154        this.z = vect.z;
155        return this;
156    }
157
158    /**
159     *
160     * <code>add</code> adds a provided vector to this vector creating a
161     * resultant vector which is returned. If the provided vector is null, null
162     * is returned.
163     *
164     * @param vec
165     *            the vector to add to this.
166     * @return the resultant vector.
167     */
168    public Vector3f add(Vector3f vec) {
169        if (null == vec) {
170            logger.warning("Provided vector is null, null returned.");
171            return null;
172        }
173        return new Vector3f(x + vec.x, y + vec.y, z + vec.z);
174    }
175
176    /**
177     *
178     * <code>add</code> adds the values of a provided vector storing the
179     * values in the supplied vector.
180     *
181     * @param vec
182     *            the vector to add to this
183     * @param result
184     *            the vector to store the result in
185     * @return result returns the supplied result vector.
186     */
187    public Vector3f add(Vector3f vec, Vector3f result) {
188        result.x = x + vec.x;
189        result.y = y + vec.y;
190        result.z = z + vec.z;
191        return result;
192    }
193
194    /**
195     * <code>addLocal</code> adds a provided vector to this vector internally,
196     * and returns a handle to this vector for easy chaining of calls. If the
197     * provided vector is null, null is returned.
198     *
199     * @param vec
200     *            the vector to add to this vector.
201     * @return this
202     */
203    public Vector3f addLocal(Vector3f vec) {
204        if (null == vec) {
205            logger.warning("Provided vector is null, null returned.");
206            return null;
207        }
208        x += vec.x;
209        y += vec.y;
210        z += vec.z;
211        return this;
212    }
213
214    /**
215     *
216     * <code>add</code> adds the provided values to this vector, creating a
217     * new vector that is then returned.
218     *
219     * @param addX
220     *            the x value to add.
221     * @param addY
222     *            the y value to add.
223     * @param addZ
224     *            the z value to add.
225     * @return the result vector.
226     */
227    public Vector3f add(float addX, float addY, float addZ) {
228        return new Vector3f(x + addX, y + addY, z + addZ);
229    }
230
231    /**
232     * <code>addLocal</code> adds the provided values to this vector
233     * internally, and returns a handle to this vector for easy chaining of
234     * calls.
235     *
236     * @param addX
237     *            value to add to x
238     * @param addY
239     *            value to add to y
240     * @param addZ
241     *            value to add to z
242     * @return this
243     */
244    public Vector3f addLocal(float addX, float addY, float addZ) {
245        x += addX;
246        y += addY;
247        z += addZ;
248        return this;
249    }
250
251    /**
252     *
253     * <code>scaleAdd</code> multiplies this vector by a scalar then adds the
254     * given Vector3f.
255     *
256     * @param scalar
257     *            the value to multiply this vector by.
258     * @param add
259     *            the value to add
260     */
261    public Vector3f scaleAdd(float scalar, Vector3f add) {
262        x = x * scalar + add.x;
263        y = y * scalar + add.y;
264        z = z * scalar + add.z;
265        return this;
266    }
267
268    /**
269     *
270     * <code>scaleAdd</code> multiplies the given vector by a scalar then adds
271     * the given vector.
272     *
273     * @param scalar
274     *            the value to multiply this vector by.
275     * @param mult
276     *            the value to multiply the scalar by
277     * @param add
278     *            the value to add
279     */
280    public Vector3f scaleAdd(float scalar, Vector3f mult, Vector3f add) {
281        this.x = mult.x * scalar + add.x;
282        this.y = mult.y * scalar + add.y;
283        this.z = mult.z * scalar + add.z;
284        return this;
285    }
286
287    /**
288     *
289     * <code>dot</code> calculates the dot product of this vector with a
290     * provided vector. If the provided vector is null, 0 is returned.
291     *
292     * @param vec
293     *            the vector to dot with this vector.
294     * @return the resultant dot product of this vector and a given vector.
295     */
296    public float dot(Vector3f vec) {
297        if (null == vec) {
298            logger.warning("Provided vector is null, 0 returned.");
299            return 0;
300        }
301        return x * vec.x + y * vec.y + z * vec.z;
302    }
303
304    /**
305     * <code>cross</code> calculates the cross product of this vector with a
306     * parameter vector v.
307     *
308     * @param v
309     *            the vector to take the cross product of with this.
310     * @return the cross product vector.
311     */
312    public Vector3f cross(Vector3f v) {
313        return cross(v, null);
314    }
315
316    /**
317     * <code>cross</code> calculates the cross product of this vector with a
318     * parameter vector v.  The result is stored in <code>result</code>
319     *
320     * @param v
321     *            the vector to take the cross product of with this.
322     * @param result
323     *            the vector to store the cross product result.
324     * @return result, after recieving the cross product vector.
325     */
326    public Vector3f cross(Vector3f v,Vector3f result) {
327        return cross(v.x, v.y, v.z, result);
328    }
329
330    /**
331     * <code>cross</code> calculates the cross product of this vector with a
332     * parameter vector v.  The result is stored in <code>result</code>
333     *
334     * @param otherX
335     *            x component of the vector to take the cross product of with this.
336     * @param otherY
337     *            y component of the vector to take the cross product of with this.
338     * @param otherZ
339     *            z component of the vector to take the cross product of with this.
340     * @param result
341     *            the vector to store the cross product result.
342     * @return result, after recieving the cross product vector.
343     */
344    public Vector3f cross(float otherX, float otherY, float otherZ, Vector3f result) {
345        if (result == null) result = new Vector3f();
346        float resX = ((y * otherZ) - (z * otherY));
347        float resY = ((z * otherX) - (x * otherZ));
348        float resZ = ((x * otherY) - (y * otherX));
349        result.set(resX, resY, resZ);
350        return result;
351    }
352
353    /**
354     * <code>crossLocal</code> calculates the cross product of this vector
355     * with a parameter vector v.
356     *
357     * @param v
358     *            the vector to take the cross product of with this.
359     * @return this.
360     */
361    public Vector3f crossLocal(Vector3f v) {
362        return crossLocal(v.x, v.y, v.z);
363    }
364
365    /**
366     * <code>crossLocal</code> calculates the cross product of this vector
367     * with a parameter vector v.
368     *
369     * @param otherX
370     *            x component of the vector to take the cross product of with this.
371     * @param otherY
372     *            y component of the vector to take the cross product of with this.
373     * @param otherZ
374     *            z component of the vector to take the cross product of with this.
375     * @return this.
376     */
377    public Vector3f crossLocal(float otherX, float otherY, float otherZ) {
378        float tempx = ( y * otherZ ) - ( z * otherY );
379        float tempy = ( z * otherX ) - ( x * otherZ );
380        z = (x * otherY) - (y * otherX);
381        x = tempx;
382        y = tempy;
383        return this;
384    }
385
386    public Vector3f project(Vector3f other){
387        float n = this.dot(other); // A . B
388        float d = other.lengthSquared(); // |B|^2
389        return new Vector3f(other).normalizeLocal().multLocal(n/d);
390    }
391
392    /**
393     * Returns true if this vector is a unit vector (length() ~= 1),
394     * returns false otherwise.
395     *
396     * @return true if this vector is a unit vector (length() ~= 1),
397     * or false otherwise.
398     */
399    public boolean isUnitVector(){
400        float len = length();
401        return 0.99f < len && len < 1.01f;
402    }
403
404    /**
405     * <code>length</code> calculates the magnitude of this vector.
406     *
407     * @return the length or magnitude of the vector.
408     */
409    public float length() {
410        return FastMath.sqrt(lengthSquared());
411    }
412
413    /**
414     * <code>lengthSquared</code> calculates the squared value of the
415     * magnitude of the vector.
416     *
417     * @return the magnitude squared of the vector.
418     */
419    public float lengthSquared() {
420        return x * x + y * y + z * z;
421    }
422
423    /**
424     * <code>distanceSquared</code> calculates the distance squared between
425     * this vector and vector v.
426     *
427     * @param v the second vector to determine the distance squared.
428     * @return the distance squared between the two vectors.
429     */
430    public float distanceSquared(Vector3f v) {
431        double dx = x - v.x;
432        double dy = y - v.y;
433        double dz = z - v.z;
434        return (float) (dx * dx + dy * dy + dz * dz);
435    }
436
437    /**
438     * <code>distance</code> calculates the distance between this vector and
439     * vector v.
440     *
441     * @param v the second vector to determine the distance.
442     * @return the distance between the two vectors.
443     */
444    public float distance(Vector3f v) {
445        return FastMath.sqrt(distanceSquared(v));
446    }
447
448    /**
449     *
450     * <code>mult</code> multiplies this vector by a scalar. The resultant
451     * vector is returned.
452     *
453     * @param scalar
454     *            the value to multiply this vector by.
455     * @return the new vector.
456     */
457    public Vector3f mult(float scalar) {
458        return new Vector3f(x * scalar, y * scalar, z * scalar);
459    }
460
461    /**
462     *
463     * <code>mult</code> multiplies this vector by a scalar. The resultant
464     * vector is supplied as the second parameter and returned.
465     *
466     * @param scalar the scalar to multiply this vector by.
467     * @param product the product to store the result in.
468     * @return product
469     */
470    public Vector3f mult(float scalar, Vector3f product) {
471        if (null == product) {
472            product = new Vector3f();
473        }
474
475        product.x = x * scalar;
476        product.y = y * scalar;
477        product.z = z * scalar;
478        return product;
479    }
480
481    /**
482     * <code>multLocal</code> multiplies this vector by a scalar internally,
483     * and returns a handle to this vector for easy chaining of calls.
484     *
485     * @param scalar
486     *            the value to multiply this vector by.
487     * @return this
488     */
489    public Vector3f multLocal(float scalar) {
490        x *= scalar;
491        y *= scalar;
492        z *= scalar;
493        return this;
494    }
495
496    /**
497     * <code>multLocal</code> multiplies a provided vector to this vector
498     * internally, and returns a handle to this vector for easy chaining of
499     * calls. If the provided vector is null, null is returned.
500     *
501     * @param vec
502     *            the vector to mult to this vector.
503     * @return this
504     */
505    public Vector3f multLocal(Vector3f vec) {
506        if (null == vec) {
507            logger.warning("Provided vector is null, null returned.");
508            return null;
509        }
510        x *= vec.x;
511        y *= vec.y;
512        z *= vec.z;
513        return this;
514    }
515
516    /**
517     * <code>multLocal</code> multiplies this vector by 3 scalars
518     * internally, and returns a handle to this vector for easy chaining of
519     * calls.
520     *
521     * @param x
522     * @param y
523     * @param z
524     * @return this
525     */
526    public Vector3f multLocal(float x, float y, float z) {
527        this.x *= x;
528        this.y *= y;
529        this.z *= z;
530        return this;
531    }
532
533    /**
534     * <code>multLocal</code> multiplies a provided vector to this vector
535     * internally, and returns a handle to this vector for easy chaining of
536     * calls. If the provided vector is null, null is returned.
537     *
538     * @param vec
539     *            the vector to mult to this vector.
540     * @return this
541     */
542    public Vector3f mult(Vector3f vec) {
543        if (null == vec) {
544            logger.warning("Provided vector is null, null returned.");
545            return null;
546        }
547        return mult(vec, null);
548    }
549
550    /**
551     * <code>multLocal</code> multiplies a provided vector to this vector
552     * internally, and returns a handle to this vector for easy chaining of
553     * calls. If the provided vector is null, null is returned.
554     *
555     * @param vec
556     *            the vector to mult to this vector.
557     * @param store result vector (null to create a new vector)
558     * @return this
559     */
560    public Vector3f mult(Vector3f vec, Vector3f store) {
561        if (null == vec) {
562            logger.warning("Provided vector is null, null returned.");
563            return null;
564        }
565        if (store == null) store = new Vector3f();
566        return store.set(x * vec.x, y * vec.y, z * vec.z);
567    }
568
569
570    /**
571     * <code>divide</code> divides the values of this vector by a scalar and
572     * returns the result. The values of this vector remain untouched.
573     *
574     * @param scalar
575     *            the value to divide this vectors attributes by.
576     * @return the result <code>Vector</code>.
577     */
578    public Vector3f divide(float scalar) {
579        scalar = 1f/scalar;
580        return new Vector3f(x * scalar, y * scalar, z * scalar);
581    }
582
583    /**
584     * <code>divideLocal</code> divides this vector by a scalar internally,
585     * and returns a handle to this vector for easy chaining of calls. Dividing
586     * by zero will result in an exception.
587     *
588     * @param scalar
589     *            the value to divides this vector by.
590     * @return this
591     */
592    public Vector3f divideLocal(float scalar) {
593        scalar = 1f/scalar;
594        x *= scalar;
595        y *= scalar;
596        z *= scalar;
597        return this;
598    }
599
600
601    /**
602     * <code>divide</code> divides the values of this vector by a scalar and
603     * returns the result. The values of this vector remain untouched.
604     *
605     * @param scalar
606     *            the value to divide this vectors attributes by.
607     * @return the result <code>Vector</code>.
608     */
609    public Vector3f divide(Vector3f scalar) {
610        return new Vector3f(x / scalar.x, y / scalar.y, z / scalar.z);
611    }
612
613    /**
614     * <code>divideLocal</code> divides this vector by a scalar internally,
615     * and returns a handle to this vector for easy chaining of calls. Dividing
616     * by zero will result in an exception.
617     *
618     * @param scalar
619     *            the value to divides this vector by.
620     * @return this
621     */
622    public Vector3f divideLocal(Vector3f scalar) {
623        x /= scalar.x;
624        y /= scalar.y;
625        z /= scalar.z;
626        return this;
627    }
628
629    /**
630     *
631     * <code>negate</code> returns the negative of this vector. All values are
632     * negated and set to a new vector.
633     *
634     * @return the negated vector.
635     */
636    public Vector3f negate() {
637        return new Vector3f(-x, -y, -z);
638    }
639
640    /**
641     *
642     * <code>negateLocal</code> negates the internal values of this vector.
643     *
644     * @return this.
645     */
646    public Vector3f negateLocal() {
647        x = -x;
648        y = -y;
649        z = -z;
650        return this;
651    }
652
653    /**
654     *
655     * <code>subtract</code> subtracts the values of a given vector from those
656     * of this vector creating a new vector object. If the provided vector is
657     * null, null is returned.
658     *
659     * @param vec
660     *            the vector to subtract from this vector.
661     * @return the result vector.
662     */
663    public Vector3f subtract(Vector3f vec) {
664        return new Vector3f(x - vec.x, y - vec.y, z - vec.z);
665    }
666
667    /**
668     * <code>subtractLocal</code> subtracts a provided vector to this vector
669     * internally, and returns a handle to this vector for easy chaining of
670     * calls. If the provided vector is null, null is returned.
671     *
672     * @param vec
673     *            the vector to subtract
674     * @return this
675     */
676    public Vector3f subtractLocal(Vector3f vec) {
677        if (null == vec) {
678            logger.warning("Provided vector is null, null returned.");
679            return null;
680        }
681        x -= vec.x;
682        y -= vec.y;
683        z -= vec.z;
684        return this;
685    }
686
687    /**
688     *
689     * <code>subtract</code>
690     *
691     * @param vec
692     *            the vector to subtract from this
693     * @param result
694     *            the vector to store the result in
695     * @return result
696     */
697    public Vector3f subtract(Vector3f vec, Vector3f result) {
698        if(result == null) {
699            result = new Vector3f();
700        }
701        result.x = x - vec.x;
702        result.y = y - vec.y;
703        result.z = z - vec.z;
704        return result;
705    }
706
707    /**
708     *
709     * <code>subtract</code> subtracts the provided values from this vector,
710     * creating a new vector that is then returned.
711     *
712     * @param subtractX
713     *            the x value to subtract.
714     * @param subtractY
715     *            the y value to subtract.
716     * @param subtractZ
717     *            the z value to subtract.
718     * @return the result vector.
719     */
720    public Vector3f subtract(float subtractX, float subtractY, float subtractZ) {
721        return new Vector3f(x - subtractX, y - subtractY, z - subtractZ);
722    }
723
724    /**
725     * <code>subtractLocal</code> subtracts the provided values from this vector
726     * internally, and returns a handle to this vector for easy chaining of
727     * calls.
728     *
729     * @param subtractX
730     *            the x value to subtract.
731     * @param subtractY
732     *            the y value to subtract.
733     * @param subtractZ
734     *            the z value to subtract.
735     * @return this
736     */
737    public Vector3f subtractLocal(float subtractX, float subtractY, float subtractZ) {
738        x -= subtractX;
739        y -= subtractY;
740        z -= subtractZ;
741        return this;
742    }
743
744    /**
745     * <code>normalize</code> returns the unit vector of this vector.
746     *
747     * @return unit vector of this vector.
748     */
749    public Vector3f normalize() {
750//        float length = length();
751//        if (length != 0) {
752//            return divide(length);
753//        }
754//
755//        return divide(1);
756        float length = x * x + y * y + z * z;
757        if (length != 1f && length != 0f){
758            length = 1.0f / FastMath.sqrt(length);
759            return new Vector3f(x * length, y * length, z * length);
760        }
761        return clone();
762    }
763
764    /**
765     * <code>normalizeLocal</code> makes this vector into a unit vector of
766     * itself.
767     *
768     * @return this.
769     */
770    public Vector3f normalizeLocal() {
771        // NOTE: this implementation is more optimized
772        // than the old jme normalize as this method
773        // is commonly used.
774        float length = x * x + y * y + z * z;
775        if (length != 1f && length != 0f){
776            length = 1.0f / FastMath.sqrt(length);
777            x *= length;
778            y *= length;
779            z *= length;
780        }
781        return this;
782    }
783
784    /**
785     * <code>maxLocal</code> computes the maximum value for each
786     * component in this and <code>other</code> vector. The result is stored
787     * in this vector.
788     * @param other
789     */
790    public void maxLocal(Vector3f other){
791        x = other.x > x ? other.x : x;
792        y = other.y > y ? other.y : y;
793        z = other.z > z ? other.z : z;
794    }
795
796    /**
797     * <code>minLocal</code> computes the minimum value for each
798     * component in this and <code>other</code> vector. The result is stored
799     * in this vector.
800     * @param other
801     */
802    public void minLocal(Vector3f other){
803        x = other.x < x ? other.x : x;
804        y = other.y < y ? other.y : y;
805        z = other.z < z ? other.z : z;
806    }
807
808    /**
809     * <code>zero</code> resets this vector's data to zero internally.
810     */
811    public Vector3f zero() {
812        x = y = z = 0;
813        return this;
814    }
815
816    /**
817     * <code>angleBetween</code> returns (in radians) the angle between two vectors.
818     * It is assumed that both this vector and the given vector are unit vectors (iow, normalized).
819     *
820     * @param otherVector a unit vector to find the angle against
821     * @return the angle in radians.
822     */
823    public float angleBetween(Vector3f otherVector) {
824        float dotProduct = dot(otherVector);
825        float angle = FastMath.acos(dotProduct);
826        return angle;
827    }
828
829    /**
830     * Sets this vector to the interpolation by changeAmnt from this to the finalVec
831     * this=(1-changeAmnt)*this + changeAmnt * finalVec
832     * @param finalVec The final vector to interpolate towards
833     * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage
834     *  change from this towards finalVec
835     */
836    public Vector3f interpolate(Vector3f finalVec, float changeAmnt) {
837        this.x=(1-changeAmnt)*this.x + changeAmnt*finalVec.x;
838        this.y=(1-changeAmnt)*this.y + changeAmnt*finalVec.y;
839        this.z=(1-changeAmnt)*this.z + changeAmnt*finalVec.z;
840        return this;
841    }
842
843    /**
844     * Sets this vector to the interpolation by changeAmnt from beginVec to finalVec
845     * this=(1-changeAmnt)*beginVec + changeAmnt * finalVec
846     * @param beginVec the beging vector (changeAmnt=0)
847     * @param finalVec The final vector to interpolate towards
848     * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage
849     *  change from beginVec towards finalVec
850     */
851    public Vector3f interpolate(Vector3f beginVec,Vector3f finalVec, float changeAmnt) {
852        this.x=(1-changeAmnt)*beginVec.x + changeAmnt*finalVec.x;
853        this.y=(1-changeAmnt)*beginVec.y + changeAmnt*finalVec.y;
854        this.z=(1-changeAmnt)*beginVec.z + changeAmnt*finalVec.z;
855        return this;
856    }
857
858    /**
859     * Check a vector... if it is null or its floats are NaN or infinite,
860     * return false.  Else return true.
861     * @param vector the vector to check
862     * @return true or false as stated above.
863     */
864    public static boolean isValidVector(Vector3f vector) {
865      if (vector == null) return false;
866      if (Float.isNaN(vector.x) ||
867          Float.isNaN(vector.y) ||
868          Float.isNaN(vector.z)) return false;
869      if (Float.isInfinite(vector.x) ||
870          Float.isInfinite(vector.y) ||
871          Float.isInfinite(vector.z)) return false;
872      return true;
873    }
874
875    public static void generateOrthonormalBasis(Vector3f u, Vector3f v, Vector3f w) {
876        w.normalizeLocal();
877        generateComplementBasis(u, v, w);
878    }
879
880    public static void generateComplementBasis(Vector3f u, Vector3f v,
881            Vector3f w) {
882        float fInvLength;
883
884        if (FastMath.abs(w.x) >= FastMath.abs(w.y)) {
885            // w.x or w.z is the largest magnitude component, swap them
886            fInvLength = FastMath.invSqrt(w.x * w.x + w.z * w.z);
887            u.x = -w.z * fInvLength;
888            u.y = 0.0f;
889            u.z = +w.x * fInvLength;
890            v.x = w.y * u.z;
891            v.y = w.z * u.x - w.x * u.z;
892            v.z = -w.y * u.x;
893        } else {
894            // w.y or w.z is the largest magnitude component, swap them
895            fInvLength = FastMath.invSqrt(w.y * w.y + w.z * w.z);
896            u.x = 0.0f;
897            u.y = +w.z * fInvLength;
898            u.z = -w.y * fInvLength;
899            v.x = w.y * u.z - w.z * u.y;
900            v.y = -w.x * u.z;
901            v.z = w.x * u.y;
902        }
903    }
904
905    @Override
906    public Vector3f clone() {
907        try {
908            return (Vector3f) super.clone();
909        } catch (CloneNotSupportedException e) {
910            throw new AssertionError(); // can not happen
911        }
912    }
913
914    /**
915     * Saves this Vector3f into the given float[] object.
916     *
917     * @param floats
918     *            The float[] to take this Vector3f. If null, a new float[3] is
919     *            created.
920     * @return The array, with X, Y, Z float values in that order
921     */
922    public float[] toArray(float[] floats) {
923        if (floats == null) {
924            floats = new float[3];
925        }
926        floats[0] = x;
927        floats[1] = y;
928        floats[2] = z;
929        return floats;
930    }
931
932    /**
933     * are these two vectors the same? they are is they both have the same x,y,
934     * and z values.
935     *
936     * @param o
937     *            the object to compare for equality
938     * @return true if they are equal
939     */
940    public boolean equals(Object o) {
941        if (!(o instanceof Vector3f)) { return false; }
942
943        if (this == o) { return true; }
944
945        Vector3f comp = (Vector3f) o;
946        if (Float.compare(x,comp.x) != 0) return false;
947        if (Float.compare(y,comp.y) != 0) return false;
948        if (Float.compare(z,comp.z) != 0) return false;
949        return true;
950    }
951
952    /**
953     * <code>hashCode</code> returns a unique code for this vector object based
954     * on it's values. If two vectors are logically equivalent, they will return
955     * the same hash code value.
956     * @return the hash code value of this vector.
957     */
958    public int hashCode() {
959        int hash = 37;
960        hash += 37 * hash + Float.floatToIntBits(x);
961        hash += 37 * hash + Float.floatToIntBits(y);
962        hash += 37 * hash + Float.floatToIntBits(z);
963        return hash;
964    }
965
966    /**
967     * <code>toString</code> returns the string representation of this vector.
968     * The format is:
969     *
970     * org.jme.math.Vector3f [X=XX.XXXX, Y=YY.YYYY, Z=ZZ.ZZZZ]
971     *
972     * @return the string representation of this vector.
973     */
974    public String toString() {
975        return "(" + x + ", " + y + ", " + z + ")";
976    }
977
978    public void write(JmeExporter e) throws IOException {
979        OutputCapsule capsule = e.getCapsule(this);
980        capsule.write(x, "x", 0);
981        capsule.write(y, "y", 0);
982        capsule.write(z, "z", 0);
983    }
984
985    public void read(JmeImporter e) throws IOException {
986        InputCapsule capsule = e.getCapsule(this);
987        x = capsule.readFloat("x", 0);
988        y = capsule.readFloat("y", 0);
989        z = capsule.readFloat("z", 0);
990    }
991
992    public float getX() {
993        return x;
994    }
995
996    public Vector3f setX(float x) {
997        this.x = x;
998        return this;
999    }
1000
1001    public float getY() {
1002        return y;
1003    }
1004
1005    public Vector3f setY(float y) {
1006        this.y = y;
1007        return this;
1008    }
1009
1010    public float getZ() {
1011        return z;
1012    }
1013
1014    public Vector3f setZ(float z) {
1015        this.z = z;
1016        return this;
1017    }
1018
1019    /**
1020     * @param index
1021     * @return x value if index == 0, y value if index == 1 or z value if index ==
1022     *         2
1023     * @throws IllegalArgumentException
1024     *             if index is not one of 0, 1, 2.
1025     */
1026    public float get(int index) {
1027        switch (index) {
1028            case 0:
1029                return x;
1030            case 1:
1031                return y;
1032            case 2:
1033                return z;
1034        }
1035        throw new IllegalArgumentException("index must be either 0, 1 or 2");
1036    }
1037
1038    /**
1039     * @param index
1040     *            which field index in this vector to set.
1041     * @param value
1042     *            to set to one of x, y or z.
1043     * @throws IllegalArgumentException
1044     *             if index is not one of 0, 1, 2.
1045     */
1046    public void set(int index, float value) {
1047        switch (index) {
1048            case 0:
1049                x = value;
1050                return;
1051            case 1:
1052                y = value;
1053                return;
1054            case 2:
1055                z = value;
1056                return;
1057        }
1058        throw new IllegalArgumentException("index must be either 0, 1 or 2");
1059    }
1060
1061}
1062