1/*
2 * numa.c
3 *
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
6
7#include "../perf.h"
8#include "../builtin.h"
9#include "../util/util.h"
10#include "../util/parse-options.h"
11
12#include "bench.h"
13
14#include <errno.h>
15#include <sched.h>
16#include <stdio.h>
17#include <assert.h>
18#include <malloc.h>
19#include <signal.h>
20#include <stdlib.h>
21#include <string.h>
22#include <unistd.h>
23#include <pthread.h>
24#include <sys/mman.h>
25#include <sys/time.h>
26#include <sys/wait.h>
27#include <sys/prctl.h>
28#include <sys/types.h>
29
30#include <numa.h>
31#include <numaif.h>
32
33/*
34 * Regular printout to the terminal, supressed if -q is specified:
35 */
36#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37
38/*
39 * Debug printf:
40 */
41#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42
43struct thread_data {
44	int			curr_cpu;
45	cpu_set_t		bind_cpumask;
46	int			bind_node;
47	u8			*process_data;
48	int			process_nr;
49	int			thread_nr;
50	int			task_nr;
51	unsigned int		loops_done;
52	u64			val;
53	u64			runtime_ns;
54	pthread_mutex_t		*process_lock;
55};
56
57/* Parameters set by options: */
58
59struct params {
60	/* Startup synchronization: */
61	bool			serialize_startup;
62
63	/* Task hierarchy: */
64	int			nr_proc;
65	int			nr_threads;
66
67	/* Working set sizes: */
68	const char		*mb_global_str;
69	const char		*mb_proc_str;
70	const char		*mb_proc_locked_str;
71	const char		*mb_thread_str;
72
73	double			mb_global;
74	double			mb_proc;
75	double			mb_proc_locked;
76	double			mb_thread;
77
78	/* Access patterns to the working set: */
79	bool			data_reads;
80	bool			data_writes;
81	bool			data_backwards;
82	bool			data_zero_memset;
83	bool			data_rand_walk;
84	u32			nr_loops;
85	u32			nr_secs;
86	u32			sleep_usecs;
87
88	/* Working set initialization: */
89	bool			init_zero;
90	bool			init_random;
91	bool			init_cpu0;
92
93	/* Misc options: */
94	int			show_details;
95	int			run_all;
96	int			thp;
97
98	long			bytes_global;
99	long			bytes_process;
100	long			bytes_process_locked;
101	long			bytes_thread;
102
103	int			nr_tasks;
104	bool			show_quiet;
105
106	bool			show_convergence;
107	bool			measure_convergence;
108
109	int			perturb_secs;
110	int			nr_cpus;
111	int			nr_nodes;
112
113	/* Affinity options -C and -N: */
114	char			*cpu_list_str;
115	char			*node_list_str;
116};
117
118
119/* Global, read-writable area, accessible to all processes and threads: */
120
121struct global_info {
122	u8			*data;
123
124	pthread_mutex_t		startup_mutex;
125	int			nr_tasks_started;
126
127	pthread_mutex_t		startup_done_mutex;
128
129	pthread_mutex_t		start_work_mutex;
130	int			nr_tasks_working;
131
132	pthread_mutex_t		stop_work_mutex;
133	u64			bytes_done;
134
135	struct thread_data	*threads;
136
137	/* Convergence latency measurement: */
138	bool			all_converged;
139	bool			stop_work;
140
141	int			print_once;
142
143	struct params		p;
144};
145
146static struct global_info	*g = NULL;
147
148static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150
151struct params p0;
152
153static const struct option options[] = {
154	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
155	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
156
157	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
158	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
159	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
161
162	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
163	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
164	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
165
166	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
167	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
168	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
169	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
171
172
173	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
174	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
175	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
176	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
177
178	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
179	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
180	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
183	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
184	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185
186	/* Special option string parsing callbacks: */
187        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188			"bind the first N tasks to these specific cpus (the rest is unbound)",
189			parse_cpus_opt),
190        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
192			parse_nodes_opt),
193	OPT_END()
194};
195
196static const char * const bench_numa_usage[] = {
197	"perf bench numa <options>",
198	NULL
199};
200
201static const char * const numa_usage[] = {
202	"perf bench numa mem [<options>]",
203	NULL
204};
205
206static cpu_set_t bind_to_cpu(int target_cpu)
207{
208	cpu_set_t orig_mask, mask;
209	int ret;
210
211	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212	BUG_ON(ret);
213
214	CPU_ZERO(&mask);
215
216	if (target_cpu == -1) {
217		int cpu;
218
219		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220			CPU_SET(cpu, &mask);
221	} else {
222		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223		CPU_SET(target_cpu, &mask);
224	}
225
226	ret = sched_setaffinity(0, sizeof(mask), &mask);
227	BUG_ON(ret);
228
229	return orig_mask;
230}
231
232static cpu_set_t bind_to_node(int target_node)
233{
234	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235	cpu_set_t orig_mask, mask;
236	int cpu;
237	int ret;
238
239	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240	BUG_ON(!cpus_per_node);
241
242	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243	BUG_ON(ret);
244
245	CPU_ZERO(&mask);
246
247	if (target_node == -1) {
248		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249			CPU_SET(cpu, &mask);
250	} else {
251		int cpu_start = (target_node + 0) * cpus_per_node;
252		int cpu_stop  = (target_node + 1) * cpus_per_node;
253
254		BUG_ON(cpu_stop > g->p.nr_cpus);
255
256		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257			CPU_SET(cpu, &mask);
258	}
259
260	ret = sched_setaffinity(0, sizeof(mask), &mask);
261	BUG_ON(ret);
262
263	return orig_mask;
264}
265
266static void bind_to_cpumask(cpu_set_t mask)
267{
268	int ret;
269
270	ret = sched_setaffinity(0, sizeof(mask), &mask);
271	BUG_ON(ret);
272}
273
274static void mempol_restore(void)
275{
276	int ret;
277
278	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279
280	BUG_ON(ret);
281}
282
283static void bind_to_memnode(int node)
284{
285	unsigned long nodemask;
286	int ret;
287
288	if (node == -1)
289		return;
290
291	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292	nodemask = 1L << node;
293
294	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296
297	BUG_ON(ret);
298}
299
300#define HPSIZE (2*1024*1024)
301
302#define set_taskname(fmt...)				\
303do {							\
304	char name[20];					\
305							\
306	snprintf(name, 20, fmt);			\
307	prctl(PR_SET_NAME, name);			\
308} while (0)
309
310static u8 *alloc_data(ssize_t bytes0, int map_flags,
311		      int init_zero, int init_cpu0, int thp, int init_random)
312{
313	cpu_set_t orig_mask;
314	ssize_t bytes;
315	u8 *buf;
316	int ret;
317
318	if (!bytes0)
319		return NULL;
320
321	/* Allocate and initialize all memory on CPU#0: */
322	if (init_cpu0) {
323		orig_mask = bind_to_node(0);
324		bind_to_memnode(0);
325	}
326
327	bytes = bytes0 + HPSIZE;
328
329	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330	BUG_ON(buf == (void *)-1);
331
332	if (map_flags == MAP_PRIVATE) {
333		if (thp > 0) {
334			ret = madvise(buf, bytes, MADV_HUGEPAGE);
335			if (ret && !g->print_once) {
336				g->print_once = 1;
337				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338			}
339		}
340		if (thp < 0) {
341			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342			if (ret && !g->print_once) {
343				g->print_once = 1;
344				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345			}
346		}
347	}
348
349	if (init_zero) {
350		bzero(buf, bytes);
351	} else {
352		/* Initialize random contents, different in each word: */
353		if (init_random) {
354			u64 *wbuf = (void *)buf;
355			long off = rand();
356			long i;
357
358			for (i = 0; i < bytes/8; i++)
359				wbuf[i] = i + off;
360		}
361	}
362
363	/* Align to 2MB boundary: */
364	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365
366	/* Restore affinity: */
367	if (init_cpu0) {
368		bind_to_cpumask(orig_mask);
369		mempol_restore();
370	}
371
372	return buf;
373}
374
375static void free_data(void *data, ssize_t bytes)
376{
377	int ret;
378
379	if (!data)
380		return;
381
382	ret = munmap(data, bytes);
383	BUG_ON(ret);
384}
385
386/*
387 * Create a shared memory buffer that can be shared between processes, zeroed:
388 */
389static void * zalloc_shared_data(ssize_t bytes)
390{
391	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
392}
393
394/*
395 * Create a shared memory buffer that can be shared between processes:
396 */
397static void * setup_shared_data(ssize_t bytes)
398{
399	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400}
401
402/*
403 * Allocate process-local memory - this will either be shared between
404 * threads of this process, or only be accessed by this thread:
405 */
406static void * setup_private_data(ssize_t bytes)
407{
408	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409}
410
411/*
412 * Return a process-shared (global) mutex:
413 */
414static void init_global_mutex(pthread_mutex_t *mutex)
415{
416	pthread_mutexattr_t attr;
417
418	pthread_mutexattr_init(&attr);
419	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420	pthread_mutex_init(mutex, &attr);
421}
422
423static int parse_cpu_list(const char *arg)
424{
425	p0.cpu_list_str = strdup(arg);
426
427	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428
429	return 0;
430}
431
432static void parse_setup_cpu_list(void)
433{
434	struct thread_data *td;
435	char *str0, *str;
436	int t;
437
438	if (!g->p.cpu_list_str)
439		return;
440
441	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442
443	str0 = str = strdup(g->p.cpu_list_str);
444	t = 0;
445
446	BUG_ON(!str);
447
448	tprintf("# binding tasks to CPUs:\n");
449	tprintf("#  ");
450
451	while (true) {
452		int bind_cpu, bind_cpu_0, bind_cpu_1;
453		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454		int bind_len;
455		int step;
456		int mul;
457
458		tok = strsep(&str, ",");
459		if (!tok)
460			break;
461
462		tok_end = strstr(tok, "-");
463
464		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465		if (!tok_end) {
466			/* Single CPU specified: */
467			bind_cpu_0 = bind_cpu_1 = atol(tok);
468		} else {
469			/* CPU range specified (for example: "5-11"): */
470			bind_cpu_0 = atol(tok);
471			bind_cpu_1 = atol(tok_end + 1);
472		}
473
474		step = 1;
475		tok_step = strstr(tok, "#");
476		if (tok_step) {
477			step = atol(tok_step + 1);
478			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479		}
480
481		/*
482		 * Mask length.
483		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484		 * where the _4 means the next 4 CPUs are allowed.
485		 */
486		bind_len = 1;
487		tok_len = strstr(tok, "_");
488		if (tok_len) {
489			bind_len = atol(tok_len + 1);
490			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491		}
492
493		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494		mul = 1;
495		tok_mul = strstr(tok, "x");
496		if (tok_mul) {
497			mul = atol(tok_mul + 1);
498			BUG_ON(mul <= 0);
499		}
500
501		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502
503		BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus);
504		BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus);
505		BUG_ON(bind_cpu_0 > bind_cpu_1);
506
507		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
508			int i;
509
510			for (i = 0; i < mul; i++) {
511				int cpu;
512
513				if (t >= g->p.nr_tasks) {
514					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
515					goto out;
516				}
517				td = g->threads + t;
518
519				if (t)
520					tprintf(",");
521				if (bind_len > 1) {
522					tprintf("%2d/%d", bind_cpu, bind_len);
523				} else {
524					tprintf("%2d", bind_cpu);
525				}
526
527				CPU_ZERO(&td->bind_cpumask);
528				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
529					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
530					CPU_SET(cpu, &td->bind_cpumask);
531				}
532				t++;
533			}
534		}
535	}
536out:
537
538	tprintf("\n");
539
540	if (t < g->p.nr_tasks)
541		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
542
543	free(str0);
544}
545
546static int parse_cpus_opt(const struct option *opt __maybe_unused,
547			  const char *arg, int unset __maybe_unused)
548{
549	if (!arg)
550		return -1;
551
552	return parse_cpu_list(arg);
553}
554
555static int parse_node_list(const char *arg)
556{
557	p0.node_list_str = strdup(arg);
558
559	dprintf("got NODE list: {%s}\n", p0.node_list_str);
560
561	return 0;
562}
563
564static void parse_setup_node_list(void)
565{
566	struct thread_data *td;
567	char *str0, *str;
568	int t;
569
570	if (!g->p.node_list_str)
571		return;
572
573	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
574
575	str0 = str = strdup(g->p.node_list_str);
576	t = 0;
577
578	BUG_ON(!str);
579
580	tprintf("# binding tasks to NODEs:\n");
581	tprintf("# ");
582
583	while (true) {
584		int bind_node, bind_node_0, bind_node_1;
585		char *tok, *tok_end, *tok_step, *tok_mul;
586		int step;
587		int mul;
588
589		tok = strsep(&str, ",");
590		if (!tok)
591			break;
592
593		tok_end = strstr(tok, "-");
594
595		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
596		if (!tok_end) {
597			/* Single NODE specified: */
598			bind_node_0 = bind_node_1 = atol(tok);
599		} else {
600			/* NODE range specified (for example: "5-11"): */
601			bind_node_0 = atol(tok);
602			bind_node_1 = atol(tok_end + 1);
603		}
604
605		step = 1;
606		tok_step = strstr(tok, "#");
607		if (tok_step) {
608			step = atol(tok_step + 1);
609			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
610		}
611
612		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
613		mul = 1;
614		tok_mul = strstr(tok, "x");
615		if (tok_mul) {
616			mul = atol(tok_mul + 1);
617			BUG_ON(mul <= 0);
618		}
619
620		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
621
622		BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes);
623		BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes);
624		BUG_ON(bind_node_0 > bind_node_1);
625
626		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
627			int i;
628
629			for (i = 0; i < mul; i++) {
630				if (t >= g->p.nr_tasks) {
631					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
632					goto out;
633				}
634				td = g->threads + t;
635
636				if (!t)
637					tprintf(" %2d", bind_node);
638				else
639					tprintf(",%2d", bind_node);
640
641				td->bind_node = bind_node;
642				t++;
643			}
644		}
645	}
646out:
647
648	tprintf("\n");
649
650	if (t < g->p.nr_tasks)
651		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
652
653	free(str0);
654}
655
656static int parse_nodes_opt(const struct option *opt __maybe_unused,
657			  const char *arg, int unset __maybe_unused)
658{
659	if (!arg)
660		return -1;
661
662	return parse_node_list(arg);
663
664	return 0;
665}
666
667#define BIT(x) (1ul << x)
668
669static inline uint32_t lfsr_32(uint32_t lfsr)
670{
671	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
672	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
673}
674
675/*
676 * Make sure there's real data dependency to RAM (when read
677 * accesses are enabled), so the compiler, the CPU and the
678 * kernel (KSM, zero page, etc.) cannot optimize away RAM
679 * accesses:
680 */
681static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
682{
683	if (g->p.data_reads)
684		val += *data;
685	if (g->p.data_writes)
686		*data = val + 1;
687	return val;
688}
689
690/*
691 * The worker process does two types of work, a forwards going
692 * loop and a backwards going loop.
693 *
694 * We do this so that on multiprocessor systems we do not create
695 * a 'train' of processing, with highly synchronized processes,
696 * skewing the whole benchmark.
697 */
698static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
699{
700	long words = bytes/sizeof(u64);
701	u64 *data = (void *)__data;
702	long chunk_0, chunk_1;
703	u64 *d0, *d, *d1;
704	long off;
705	long i;
706
707	BUG_ON(!data && words);
708	BUG_ON(data && !words);
709
710	if (!data)
711		return val;
712
713	/* Very simple memset() work variant: */
714	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
715		bzero(data, bytes);
716		return val;
717	}
718
719	/* Spread out by PID/TID nr and by loop nr: */
720	chunk_0 = words/nr_max;
721	chunk_1 = words/g->p.nr_loops;
722	off = nr*chunk_0 + loop*chunk_1;
723
724	while (off >= words)
725		off -= words;
726
727	if (g->p.data_rand_walk) {
728		u32 lfsr = nr + loop + val;
729		int j;
730
731		for (i = 0; i < words/1024; i++) {
732			long start, end;
733
734			lfsr = lfsr_32(lfsr);
735
736			start = lfsr % words;
737			end = min(start + 1024, words-1);
738
739			if (g->p.data_zero_memset) {
740				bzero(data + start, (end-start) * sizeof(u64));
741			} else {
742				for (j = start; j < end; j++)
743					val = access_data(data + j, val);
744			}
745		}
746	} else if (!g->p.data_backwards || (nr + loop) & 1) {
747
748		d0 = data + off;
749		d  = data + off + 1;
750		d1 = data + words;
751
752		/* Process data forwards: */
753		for (;;) {
754			if (unlikely(d >= d1))
755				d = data;
756			if (unlikely(d == d0))
757				break;
758
759			val = access_data(d, val);
760
761			d++;
762		}
763	} else {
764		/* Process data backwards: */
765
766		d0 = data + off;
767		d  = data + off - 1;
768		d1 = data + words;
769
770		/* Process data forwards: */
771		for (;;) {
772			if (unlikely(d < data))
773				d = data + words-1;
774			if (unlikely(d == d0))
775				break;
776
777			val = access_data(d, val);
778
779			d--;
780		}
781	}
782
783	return val;
784}
785
786static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
787{
788	unsigned int cpu;
789
790	cpu = sched_getcpu();
791
792	g->threads[task_nr].curr_cpu = cpu;
793	prctl(0, bytes_worked);
794}
795
796#define MAX_NR_NODES	64
797
798/*
799 * Count the number of nodes a process's threads
800 * are spread out on.
801 *
802 * A count of 1 means that the process is compressed
803 * to a single node. A count of g->p.nr_nodes means it's
804 * spread out on the whole system.
805 */
806static int count_process_nodes(int process_nr)
807{
808	char node_present[MAX_NR_NODES] = { 0, };
809	int nodes;
810	int n, t;
811
812	for (t = 0; t < g->p.nr_threads; t++) {
813		struct thread_data *td;
814		int task_nr;
815		int node;
816
817		task_nr = process_nr*g->p.nr_threads + t;
818		td = g->threads + task_nr;
819
820		node = numa_node_of_cpu(td->curr_cpu);
821		node_present[node] = 1;
822	}
823
824	nodes = 0;
825
826	for (n = 0; n < MAX_NR_NODES; n++)
827		nodes += node_present[n];
828
829	return nodes;
830}
831
832/*
833 * Count the number of distinct process-threads a node contains.
834 *
835 * A count of 1 means that the node contains only a single
836 * process. If all nodes on the system contain at most one
837 * process then we are well-converged.
838 */
839static int count_node_processes(int node)
840{
841	int processes = 0;
842	int t, p;
843
844	for (p = 0; p < g->p.nr_proc; p++) {
845		for (t = 0; t < g->p.nr_threads; t++) {
846			struct thread_data *td;
847			int task_nr;
848			int n;
849
850			task_nr = p*g->p.nr_threads + t;
851			td = g->threads + task_nr;
852
853			n = numa_node_of_cpu(td->curr_cpu);
854			if (n == node) {
855				processes++;
856				break;
857			}
858		}
859	}
860
861	return processes;
862}
863
864static void calc_convergence_compression(int *strong)
865{
866	unsigned int nodes_min, nodes_max;
867	int p;
868
869	nodes_min = -1;
870	nodes_max =  0;
871
872	for (p = 0; p < g->p.nr_proc; p++) {
873		unsigned int nodes = count_process_nodes(p);
874
875		nodes_min = min(nodes, nodes_min);
876		nodes_max = max(nodes, nodes_max);
877	}
878
879	/* Strong convergence: all threads compress on a single node: */
880	if (nodes_min == 1 && nodes_max == 1) {
881		*strong = 1;
882	} else {
883		*strong = 0;
884		tprintf(" {%d-%d}", nodes_min, nodes_max);
885	}
886}
887
888static void calc_convergence(double runtime_ns_max, double *convergence)
889{
890	unsigned int loops_done_min, loops_done_max;
891	int process_groups;
892	int nodes[MAX_NR_NODES];
893	int distance;
894	int nr_min;
895	int nr_max;
896	int strong;
897	int sum;
898	int nr;
899	int node;
900	int cpu;
901	int t;
902
903	if (!g->p.show_convergence && !g->p.measure_convergence)
904		return;
905
906	for (node = 0; node < g->p.nr_nodes; node++)
907		nodes[node] = 0;
908
909	loops_done_min = -1;
910	loops_done_max = 0;
911
912	for (t = 0; t < g->p.nr_tasks; t++) {
913		struct thread_data *td = g->threads + t;
914		unsigned int loops_done;
915
916		cpu = td->curr_cpu;
917
918		/* Not all threads have written it yet: */
919		if (cpu < 0)
920			continue;
921
922		node = numa_node_of_cpu(cpu);
923
924		nodes[node]++;
925
926		loops_done = td->loops_done;
927		loops_done_min = min(loops_done, loops_done_min);
928		loops_done_max = max(loops_done, loops_done_max);
929	}
930
931	nr_max = 0;
932	nr_min = g->p.nr_tasks;
933	sum = 0;
934
935	for (node = 0; node < g->p.nr_nodes; node++) {
936		nr = nodes[node];
937		nr_min = min(nr, nr_min);
938		nr_max = max(nr, nr_max);
939		sum += nr;
940	}
941	BUG_ON(nr_min > nr_max);
942
943	BUG_ON(sum > g->p.nr_tasks);
944
945	if (0 && (sum < g->p.nr_tasks))
946		return;
947
948	/*
949	 * Count the number of distinct process groups present
950	 * on nodes - when we are converged this will decrease
951	 * to g->p.nr_proc:
952	 */
953	process_groups = 0;
954
955	for (node = 0; node < g->p.nr_nodes; node++) {
956		int processes = count_node_processes(node);
957
958		nr = nodes[node];
959		tprintf(" %2d/%-2d", nr, processes);
960
961		process_groups += processes;
962	}
963
964	distance = nr_max - nr_min;
965
966	tprintf(" [%2d/%-2d]", distance, process_groups);
967
968	tprintf(" l:%3d-%-3d (%3d)",
969		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
970
971	if (loops_done_min && loops_done_max) {
972		double skew = 1.0 - (double)loops_done_min/loops_done_max;
973
974		tprintf(" [%4.1f%%]", skew * 100.0);
975	}
976
977	calc_convergence_compression(&strong);
978
979	if (strong && process_groups == g->p.nr_proc) {
980		if (!*convergence) {
981			*convergence = runtime_ns_max;
982			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
983			if (g->p.measure_convergence) {
984				g->all_converged = true;
985				g->stop_work = true;
986			}
987		}
988	} else {
989		if (*convergence) {
990			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
991			*convergence = 0;
992		}
993		tprintf("\n");
994	}
995}
996
997static void show_summary(double runtime_ns_max, int l, double *convergence)
998{
999	tprintf("\r #  %5.1f%%  [%.1f mins]",
1000		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1001
1002	calc_convergence(runtime_ns_max, convergence);
1003
1004	if (g->p.show_details >= 0)
1005		fflush(stdout);
1006}
1007
1008static void *worker_thread(void *__tdata)
1009{
1010	struct thread_data *td = __tdata;
1011	struct timeval start0, start, stop, diff;
1012	int process_nr = td->process_nr;
1013	int thread_nr = td->thread_nr;
1014	unsigned long last_perturbance;
1015	int task_nr = td->task_nr;
1016	int details = g->p.show_details;
1017	int first_task, last_task;
1018	double convergence = 0;
1019	u64 val = td->val;
1020	double runtime_ns_max;
1021	u8 *global_data;
1022	u8 *process_data;
1023	u8 *thread_data;
1024	u64 bytes_done;
1025	long work_done;
1026	u32 l;
1027
1028	bind_to_cpumask(td->bind_cpumask);
1029	bind_to_memnode(td->bind_node);
1030
1031	set_taskname("thread %d/%d", process_nr, thread_nr);
1032
1033	global_data = g->data;
1034	process_data = td->process_data;
1035	thread_data = setup_private_data(g->p.bytes_thread);
1036
1037	bytes_done = 0;
1038
1039	last_task = 0;
1040	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1041		last_task = 1;
1042
1043	first_task = 0;
1044	if (process_nr == 0 && thread_nr == 0)
1045		first_task = 1;
1046
1047	if (details >= 2) {
1048		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1049			process_nr, thread_nr, global_data, process_data, thread_data);
1050	}
1051
1052	if (g->p.serialize_startup) {
1053		pthread_mutex_lock(&g->startup_mutex);
1054		g->nr_tasks_started++;
1055		pthread_mutex_unlock(&g->startup_mutex);
1056
1057		/* Here we will wait for the main process to start us all at once: */
1058		pthread_mutex_lock(&g->start_work_mutex);
1059		g->nr_tasks_working++;
1060
1061		/* Last one wake the main process: */
1062		if (g->nr_tasks_working == g->p.nr_tasks)
1063			pthread_mutex_unlock(&g->startup_done_mutex);
1064
1065		pthread_mutex_unlock(&g->start_work_mutex);
1066	}
1067
1068	gettimeofday(&start0, NULL);
1069
1070	start = stop = start0;
1071	last_perturbance = start.tv_sec;
1072
1073	for (l = 0; l < g->p.nr_loops; l++) {
1074		start = stop;
1075
1076		if (g->stop_work)
1077			break;
1078
1079		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1080		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1081		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1082
1083		if (g->p.sleep_usecs) {
1084			pthread_mutex_lock(td->process_lock);
1085			usleep(g->p.sleep_usecs);
1086			pthread_mutex_unlock(td->process_lock);
1087		}
1088		/*
1089		 * Amount of work to be done under a process-global lock:
1090		 */
1091		if (g->p.bytes_process_locked) {
1092			pthread_mutex_lock(td->process_lock);
1093			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1094			pthread_mutex_unlock(td->process_lock);
1095		}
1096
1097		work_done = g->p.bytes_global + g->p.bytes_process +
1098			    g->p.bytes_process_locked + g->p.bytes_thread;
1099
1100		update_curr_cpu(task_nr, work_done);
1101		bytes_done += work_done;
1102
1103		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1104			continue;
1105
1106		td->loops_done = l;
1107
1108		gettimeofday(&stop, NULL);
1109
1110		/* Check whether our max runtime timed out: */
1111		if (g->p.nr_secs) {
1112			timersub(&stop, &start0, &diff);
1113			if (diff.tv_sec >= g->p.nr_secs) {
1114				g->stop_work = true;
1115				break;
1116			}
1117		}
1118
1119		/* Update the summary at most once per second: */
1120		if (start.tv_sec == stop.tv_sec)
1121			continue;
1122
1123		/*
1124		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1125		 * by migrating to CPU#0:
1126		 */
1127		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1128			cpu_set_t orig_mask;
1129			int target_cpu;
1130			int this_cpu;
1131
1132			last_perturbance = stop.tv_sec;
1133
1134			/*
1135			 * Depending on where we are running, move into
1136			 * the other half of the system, to create some
1137			 * real disturbance:
1138			 */
1139			this_cpu = g->threads[task_nr].curr_cpu;
1140			if (this_cpu < g->p.nr_cpus/2)
1141				target_cpu = g->p.nr_cpus-1;
1142			else
1143				target_cpu = 0;
1144
1145			orig_mask = bind_to_cpu(target_cpu);
1146
1147			/* Here we are running on the target CPU already */
1148			if (details >= 1)
1149				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1150
1151			bind_to_cpumask(orig_mask);
1152		}
1153
1154		if (details >= 3) {
1155			timersub(&stop, &start, &diff);
1156			runtime_ns_max = diff.tv_sec * 1000000000;
1157			runtime_ns_max += diff.tv_usec * 1000;
1158
1159			if (details >= 0) {
1160				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n",
1161					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1162			}
1163			fflush(stdout);
1164		}
1165		if (!last_task)
1166			continue;
1167
1168		timersub(&stop, &start0, &diff);
1169		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1170		runtime_ns_max += diff.tv_usec * 1000ULL;
1171
1172		show_summary(runtime_ns_max, l, &convergence);
1173	}
1174
1175	gettimeofday(&stop, NULL);
1176	timersub(&stop, &start0, &diff);
1177	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1178	td->runtime_ns += diff.tv_usec * 1000ULL;
1179
1180	free_data(thread_data, g->p.bytes_thread);
1181
1182	pthread_mutex_lock(&g->stop_work_mutex);
1183	g->bytes_done += bytes_done;
1184	pthread_mutex_unlock(&g->stop_work_mutex);
1185
1186	return NULL;
1187}
1188
1189/*
1190 * A worker process starts a couple of threads:
1191 */
1192static void worker_process(int process_nr)
1193{
1194	pthread_mutex_t process_lock;
1195	struct thread_data *td;
1196	pthread_t *pthreads;
1197	u8 *process_data;
1198	int task_nr;
1199	int ret;
1200	int t;
1201
1202	pthread_mutex_init(&process_lock, NULL);
1203	set_taskname("process %d", process_nr);
1204
1205	/*
1206	 * Pick up the memory policy and the CPU binding of our first thread,
1207	 * so that we initialize memory accordingly:
1208	 */
1209	task_nr = process_nr*g->p.nr_threads;
1210	td = g->threads + task_nr;
1211
1212	bind_to_memnode(td->bind_node);
1213	bind_to_cpumask(td->bind_cpumask);
1214
1215	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1216	process_data = setup_private_data(g->p.bytes_process);
1217
1218	if (g->p.show_details >= 3) {
1219		printf(" # process %2d global mem: %p, process mem: %p\n",
1220			process_nr, g->data, process_data);
1221	}
1222
1223	for (t = 0; t < g->p.nr_threads; t++) {
1224		task_nr = process_nr*g->p.nr_threads + t;
1225		td = g->threads + task_nr;
1226
1227		td->process_data = process_data;
1228		td->process_nr   = process_nr;
1229		td->thread_nr    = t;
1230		td->task_nr	 = task_nr;
1231		td->val          = rand();
1232		td->curr_cpu	 = -1;
1233		td->process_lock = &process_lock;
1234
1235		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1236		BUG_ON(ret);
1237	}
1238
1239	for (t = 0; t < g->p.nr_threads; t++) {
1240                ret = pthread_join(pthreads[t], NULL);
1241		BUG_ON(ret);
1242	}
1243
1244	free_data(process_data, g->p.bytes_process);
1245	free(pthreads);
1246}
1247
1248static void print_summary(void)
1249{
1250	if (g->p.show_details < 0)
1251		return;
1252
1253	printf("\n ###\n");
1254	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1255		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1256	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1257			g->p.nr_loops, g->p.bytes_global/1024/1024);
1258	printf(" #      %5dx %5ldMB process shared mem operations\n",
1259			g->p.nr_loops, g->p.bytes_process/1024/1024);
1260	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1261			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1262
1263	printf(" ###\n");
1264
1265	printf("\n ###\n"); fflush(stdout);
1266}
1267
1268static void init_thread_data(void)
1269{
1270	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1271	int t;
1272
1273	g->threads = zalloc_shared_data(size);
1274
1275	for (t = 0; t < g->p.nr_tasks; t++) {
1276		struct thread_data *td = g->threads + t;
1277		int cpu;
1278
1279		/* Allow all nodes by default: */
1280		td->bind_node = -1;
1281
1282		/* Allow all CPUs by default: */
1283		CPU_ZERO(&td->bind_cpumask);
1284		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1285			CPU_SET(cpu, &td->bind_cpumask);
1286	}
1287}
1288
1289static void deinit_thread_data(void)
1290{
1291	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1292
1293	free_data(g->threads, size);
1294}
1295
1296static int init(void)
1297{
1298	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1299
1300	/* Copy over options: */
1301	g->p = p0;
1302
1303	g->p.nr_cpus = numa_num_configured_cpus();
1304
1305	g->p.nr_nodes = numa_max_node() + 1;
1306
1307	/* char array in count_process_nodes(): */
1308	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1309
1310	if (g->p.show_quiet && !g->p.show_details)
1311		g->p.show_details = -1;
1312
1313	/* Some memory should be specified: */
1314	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1315		return -1;
1316
1317	if (g->p.mb_global_str) {
1318		g->p.mb_global = atof(g->p.mb_global_str);
1319		BUG_ON(g->p.mb_global < 0);
1320	}
1321
1322	if (g->p.mb_proc_str) {
1323		g->p.mb_proc = atof(g->p.mb_proc_str);
1324		BUG_ON(g->p.mb_proc < 0);
1325	}
1326
1327	if (g->p.mb_proc_locked_str) {
1328		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1329		BUG_ON(g->p.mb_proc_locked < 0);
1330		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1331	}
1332
1333	if (g->p.mb_thread_str) {
1334		g->p.mb_thread = atof(g->p.mb_thread_str);
1335		BUG_ON(g->p.mb_thread < 0);
1336	}
1337
1338	BUG_ON(g->p.nr_threads <= 0);
1339	BUG_ON(g->p.nr_proc <= 0);
1340
1341	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1342
1343	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1344	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1345	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1346	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1347
1348	g->data = setup_shared_data(g->p.bytes_global);
1349
1350	/* Startup serialization: */
1351	init_global_mutex(&g->start_work_mutex);
1352	init_global_mutex(&g->startup_mutex);
1353	init_global_mutex(&g->startup_done_mutex);
1354	init_global_mutex(&g->stop_work_mutex);
1355
1356	init_thread_data();
1357
1358	tprintf("#\n");
1359	parse_setup_cpu_list();
1360	parse_setup_node_list();
1361	tprintf("#\n");
1362
1363	print_summary();
1364
1365	return 0;
1366}
1367
1368static void deinit(void)
1369{
1370	free_data(g->data, g->p.bytes_global);
1371	g->data = NULL;
1372
1373	deinit_thread_data();
1374
1375	free_data(g, sizeof(*g));
1376	g = NULL;
1377}
1378
1379/*
1380 * Print a short or long result, depending on the verbosity setting:
1381 */
1382static void print_res(const char *name, double val,
1383		      const char *txt_unit, const char *txt_short, const char *txt_long)
1384{
1385	if (!name)
1386		name = "main,";
1387
1388	if (g->p.show_quiet)
1389		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1390	else
1391		printf(" %14.3f %s\n", val, txt_long);
1392}
1393
1394static int __bench_numa(const char *name)
1395{
1396	struct timeval start, stop, diff;
1397	u64 runtime_ns_min, runtime_ns_sum;
1398	pid_t *pids, pid, wpid;
1399	double delta_runtime;
1400	double runtime_avg;
1401	double runtime_sec_max;
1402	double runtime_sec_min;
1403	int wait_stat;
1404	double bytes;
1405	int i, t;
1406
1407	if (init())
1408		return -1;
1409
1410	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1411	pid = -1;
1412
1413	/* All threads try to acquire it, this way we can wait for them to start up: */
1414	pthread_mutex_lock(&g->start_work_mutex);
1415
1416	if (g->p.serialize_startup) {
1417		tprintf(" #\n");
1418		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1419	}
1420
1421	gettimeofday(&start, NULL);
1422
1423	for (i = 0; i < g->p.nr_proc; i++) {
1424		pid = fork();
1425		dprintf(" # process %2d: PID %d\n", i, pid);
1426
1427		BUG_ON(pid < 0);
1428		if (!pid) {
1429			/* Child process: */
1430			worker_process(i);
1431
1432			exit(0);
1433		}
1434		pids[i] = pid;
1435
1436	}
1437	/* Wait for all the threads to start up: */
1438	while (g->nr_tasks_started != g->p.nr_tasks)
1439		usleep(1000);
1440
1441	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1442
1443	if (g->p.serialize_startup) {
1444		double startup_sec;
1445
1446		pthread_mutex_lock(&g->startup_done_mutex);
1447
1448		/* This will start all threads: */
1449		pthread_mutex_unlock(&g->start_work_mutex);
1450
1451		/* This mutex is locked - the last started thread will wake us: */
1452		pthread_mutex_lock(&g->startup_done_mutex);
1453
1454		gettimeofday(&stop, NULL);
1455
1456		timersub(&stop, &start, &diff);
1457
1458		startup_sec = diff.tv_sec * 1000000000.0;
1459		startup_sec += diff.tv_usec * 1000.0;
1460		startup_sec /= 1e9;
1461
1462		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1463		tprintf(" #\n");
1464
1465		start = stop;
1466		pthread_mutex_unlock(&g->startup_done_mutex);
1467	} else {
1468		gettimeofday(&start, NULL);
1469	}
1470
1471	/* Parent process: */
1472
1473
1474	for (i = 0; i < g->p.nr_proc; i++) {
1475		wpid = waitpid(pids[i], &wait_stat, 0);
1476		BUG_ON(wpid < 0);
1477		BUG_ON(!WIFEXITED(wait_stat));
1478
1479	}
1480
1481	runtime_ns_sum = 0;
1482	runtime_ns_min = -1LL;
1483
1484	for (t = 0; t < g->p.nr_tasks; t++) {
1485		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1486
1487		runtime_ns_sum += thread_runtime_ns;
1488		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1489	}
1490
1491	gettimeofday(&stop, NULL);
1492	timersub(&stop, &start, &diff);
1493
1494	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1495
1496	tprintf("\n ###\n");
1497	tprintf("\n");
1498
1499	runtime_sec_max = diff.tv_sec * 1000000000.0;
1500	runtime_sec_max += diff.tv_usec * 1000.0;
1501	runtime_sec_max /= 1e9;
1502
1503	runtime_sec_min = runtime_ns_min/1e9;
1504
1505	bytes = g->bytes_done;
1506	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1507
1508	if (g->p.measure_convergence) {
1509		print_res(name, runtime_sec_max,
1510			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1511	}
1512
1513	print_res(name, runtime_sec_max,
1514		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1515
1516	print_res(name, runtime_sec_min,
1517		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1518
1519	print_res(name, runtime_avg,
1520		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1521
1522	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1523	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1524		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1525
1526	print_res(name, bytes / g->p.nr_tasks / 1e9,
1527		"GB,", "data/thread",		"GB data processed, per thread");
1528
1529	print_res(name, bytes / 1e9,
1530		"GB,", "data-total",		"GB data processed, total");
1531
1532	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1533		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1534
1535	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1536		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1537
1538	print_res(name, bytes / runtime_sec_max / 1e9,
1539		"GB/sec,", "total-speed",	"GB/sec total speed");
1540
1541	free(pids);
1542
1543	deinit();
1544
1545	return 0;
1546}
1547
1548#define MAX_ARGS 50
1549
1550static int command_size(const char **argv)
1551{
1552	int size = 0;
1553
1554	while (*argv) {
1555		size++;
1556		argv++;
1557	}
1558
1559	BUG_ON(size >= MAX_ARGS);
1560
1561	return size;
1562}
1563
1564static void init_params(struct params *p, const char *name, int argc, const char **argv)
1565{
1566	int i;
1567
1568	printf("\n # Running %s \"perf bench numa", name);
1569
1570	for (i = 0; i < argc; i++)
1571		printf(" %s", argv[i]);
1572
1573	printf("\"\n");
1574
1575	memset(p, 0, sizeof(*p));
1576
1577	/* Initialize nonzero defaults: */
1578
1579	p->serialize_startup		= 1;
1580	p->data_reads			= true;
1581	p->data_writes			= true;
1582	p->data_backwards		= true;
1583	p->data_rand_walk		= true;
1584	p->nr_loops			= -1;
1585	p->init_random			= true;
1586}
1587
1588static int run_bench_numa(const char *name, const char **argv)
1589{
1590	int argc = command_size(argv);
1591
1592	init_params(&p0, name, argc, argv);
1593	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1594	if (argc)
1595		goto err;
1596
1597	if (__bench_numa(name))
1598		goto err;
1599
1600	return 0;
1601
1602err:
1603	usage_with_options(numa_usage, options);
1604	return -1;
1605}
1606
1607#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1608#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1609
1610#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1611#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1612
1613#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1614#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1615
1616/*
1617 * The built-in test-suite executed by "perf bench numa -a".
1618 *
1619 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1620 */
1621static const char *tests[][MAX_ARGS] = {
1622   /* Basic single-stream NUMA bandwidth measurements: */
1623   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1624			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1625   { "RAM-bw-local-NOTHP,",
1626			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1627			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1628   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1629			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1630
1631   /* 2-stream NUMA bandwidth measurements: */
1632   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1633			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1634   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1635		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1636
1637   /* Cross-stream NUMA bandwidth measurement: */
1638   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1639		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1640
1641   /* Convergence latency measurements: */
1642   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1643   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1644   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1645   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1646   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1647   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1648   { " 4x4-convergence-NOTHP,",
1649			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1650   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1651   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1652   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1653   { " 8x4-convergence-NOTHP,",
1654			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1655   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1656   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1657   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1658   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1659   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1660
1661   /* Various NUMA process/thread layout bandwidth measurements: */
1662   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1663   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1664   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1665   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1666   { " 8x1-bw-process-NOTHP,",
1667			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1668   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1669
1670   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1671   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1672   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1673   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1674
1675   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1676   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1677   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1678   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1679   { " 4x8-bw-thread-NOTHP,",
1680			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1681   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1682   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1683
1684   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1685   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1686
1687   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1688   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1689   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1690   { "numa01-bw-thread-NOTHP,",
1691			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1692};
1693
1694static int bench_all(void)
1695{
1696	int nr = ARRAY_SIZE(tests);
1697	int ret;
1698	int i;
1699
1700	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1701	BUG_ON(ret < 0);
1702
1703	for (i = 0; i < nr; i++) {
1704		if (run_bench_numa(tests[i][0], tests[i] + 1))
1705			return -1;
1706	}
1707
1708	printf("\n");
1709
1710	return 0;
1711}
1712
1713int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1714{
1715	init_params(&p0, "main,", argc, argv);
1716	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1717	if (argc)
1718		goto err;
1719
1720	if (p0.run_all)
1721		return bench_all();
1722
1723	if (__bench_numa(NULL))
1724		goto err;
1725
1726	return 0;
1727
1728err:
1729	usage_with_options(numa_usage, options);
1730	return -1;
1731}
1732