1//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interface for the loop memory dependence framework that
11// was originally developed for the Loop Vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
17
18#include "llvm/ADT/EquivalenceClasses.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/AliasSetTracker.h"
23#include "llvm/Analysis/ScalarEvolutionExpressions.h"
24#include "llvm/IR/ValueHandle.h"
25#include "llvm/Pass.h"
26#include "llvm/Support/raw_ostream.h"
27
28namespace llvm {
29
30class Value;
31class DataLayout;
32class AliasAnalysis;
33class ScalarEvolution;
34class Loop;
35class SCEV;
36
37/// Optimization analysis message produced during vectorization. Messages inform
38/// the user why vectorization did not occur.
39class LoopAccessReport {
40  std::string Message;
41  const Instruction *Instr;
42
43protected:
44  LoopAccessReport(const Twine &Message, const Instruction *I)
45      : Message(Message.str()), Instr(I) {}
46
47public:
48  LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
49
50  template <typename A> LoopAccessReport &operator<<(const A &Value) {
51    raw_string_ostream Out(Message);
52    Out << Value;
53    return *this;
54  }
55
56  const Instruction *getInstr() const { return Instr; }
57
58  std::string &str() { return Message; }
59  const std::string &str() const { return Message; }
60  operator Twine() { return Message; }
61
62  /// \brief Emit an analysis note for \p PassName with the debug location from
63  /// the instruction in \p Message if available.  Otherwise use the location of
64  /// \p TheLoop.
65  static void emitAnalysis(const LoopAccessReport &Message,
66                           const Function *TheFunction,
67                           const Loop *TheLoop,
68                           const char *PassName);
69};
70
71/// \brief Collection of parameters shared beetween the Loop Vectorizer and the
72/// Loop Access Analysis.
73struct VectorizerParams {
74  /// \brief Maximum SIMD width.
75  static const unsigned MaxVectorWidth;
76
77  /// \brief VF as overridden by the user.
78  static unsigned VectorizationFactor;
79  /// \brief Interleave factor as overridden by the user.
80  static unsigned VectorizationInterleave;
81  /// \brief True if force-vector-interleave was specified by the user.
82  static bool isInterleaveForced();
83
84  /// \\brief When performing memory disambiguation checks at runtime do not
85  /// make more than this number of comparisons.
86  static unsigned RuntimeMemoryCheckThreshold;
87};
88
89/// \brief Checks memory dependences among accesses to the same underlying
90/// object to determine whether there vectorization is legal or not (and at
91/// which vectorization factor).
92///
93/// Note: This class will compute a conservative dependence for access to
94/// different underlying pointers. Clients, such as the loop vectorizer, will
95/// sometimes deal these potential dependencies by emitting runtime checks.
96///
97/// We use the ScalarEvolution framework to symbolically evalutate access
98/// functions pairs. Since we currently don't restructure the loop we can rely
99/// on the program order of memory accesses to determine their safety.
100/// At the moment we will only deem accesses as safe for:
101///  * A negative constant distance assuming program order.
102///
103///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
104///            a[i] = tmp;                y = a[i];
105///
106///   The latter case is safe because later checks guarantuee that there can't
107///   be a cycle through a phi node (that is, we check that "x" and "y" is not
108///   the same variable: a header phi can only be an induction or a reduction, a
109///   reduction can't have a memory sink, an induction can't have a memory
110///   source). This is important and must not be violated (or we have to
111///   resort to checking for cycles through memory).
112///
113///  * A positive constant distance assuming program order that is bigger
114///    than the biggest memory access.
115///
116///     tmp = a[i]        OR              b[i] = x
117///     a[i+2] = tmp                      y = b[i+2];
118///
119///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
120///
121///  * Zero distances and all accesses have the same size.
122///
123class MemoryDepChecker {
124public:
125  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
126  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
127  /// \brief Set of potential dependent memory accesses.
128  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
129
130  /// \brief Dependece between memory access instructions.
131  struct Dependence {
132    /// \brief The type of the dependence.
133    enum DepType {
134      // No dependence.
135      NoDep,
136      // We couldn't determine the direction or the distance.
137      Unknown,
138      // Lexically forward.
139      Forward,
140      // Forward, but if vectorized, is likely to prevent store-to-load
141      // forwarding.
142      ForwardButPreventsForwarding,
143      // Lexically backward.
144      Backward,
145      // Backward, but the distance allows a vectorization factor of
146      // MaxSafeDepDistBytes.
147      BackwardVectorizable,
148      // Same, but may prevent store-to-load forwarding.
149      BackwardVectorizableButPreventsForwarding
150    };
151
152    /// \brief String version of the types.
153    static const char *DepName[];
154
155    /// \brief Index of the source of the dependence in the InstMap vector.
156    unsigned Source;
157    /// \brief Index of the destination of the dependence in the InstMap vector.
158    unsigned Destination;
159    /// \brief The type of the dependence.
160    DepType Type;
161
162    Dependence(unsigned Source, unsigned Destination, DepType Type)
163        : Source(Source), Destination(Destination), Type(Type) {}
164
165    /// \brief Dependence types that don't prevent vectorization.
166    static bool isSafeForVectorization(DepType Type);
167
168    /// \brief Dependence types that can be queried from the analysis.
169    static bool isInterestingDependence(DepType Type);
170
171    /// \brief Lexically backward dependence types.
172    bool isPossiblyBackward() const;
173
174    /// \brief Print the dependence.  \p Instr is used to map the instruction
175    /// indices to instructions.
176    void print(raw_ostream &OS, unsigned Depth,
177               const SmallVectorImpl<Instruction *> &Instrs) const;
178  };
179
180  MemoryDepChecker(ScalarEvolution *Se, const Loop *L)
181      : SE(Se), InnermostLoop(L), AccessIdx(0),
182        ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
183        RecordInterestingDependences(true) {}
184
185  /// \brief Register the location (instructions are given increasing numbers)
186  /// of a write access.
187  void addAccess(StoreInst *SI) {
188    Value *Ptr = SI->getPointerOperand();
189    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
190    InstMap.push_back(SI);
191    ++AccessIdx;
192  }
193
194  /// \brief Register the location (instructions are given increasing numbers)
195  /// of a write access.
196  void addAccess(LoadInst *LI) {
197    Value *Ptr = LI->getPointerOperand();
198    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
199    InstMap.push_back(LI);
200    ++AccessIdx;
201  }
202
203  /// \brief Check whether the dependencies between the accesses are safe.
204  ///
205  /// Only checks sets with elements in \p CheckDeps.
206  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps,
207                   const ValueToValueMap &Strides);
208
209  /// \brief No memory dependence was encountered that would inhibit
210  /// vectorization.
211  bool isSafeForVectorization() const { return SafeForVectorization; }
212
213  /// \brief The maximum number of bytes of a vector register we can vectorize
214  /// the accesses safely with.
215  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
216
217  /// \brief In same cases when the dependency check fails we can still
218  /// vectorize the loop with a dynamic array access check.
219  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
220
221  /// \brief Returns the interesting dependences.  If null is returned we
222  /// exceeded the MaxInterestingDependence threshold and this information is
223  /// not available.
224  const SmallVectorImpl<Dependence> *getInterestingDependences() const {
225    return RecordInterestingDependences ? &InterestingDependences : nullptr;
226  }
227
228  /// \brief The vector of memory access instructions.  The indices are used as
229  /// instruction identifiers in the Dependence class.
230  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
231    return InstMap;
232  }
233
234  /// \brief Find the set of instructions that read or write via \p Ptr.
235  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
236                                                         bool isWrite) const;
237
238private:
239  ScalarEvolution *SE;
240  const Loop *InnermostLoop;
241
242  /// \brief Maps access locations (ptr, read/write) to program order.
243  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
244
245  /// \brief Memory access instructions in program order.
246  SmallVector<Instruction *, 16> InstMap;
247
248  /// \brief The program order index to be used for the next instruction.
249  unsigned AccessIdx;
250
251  // We can access this many bytes in parallel safely.
252  unsigned MaxSafeDepDistBytes;
253
254  /// \brief If we see a non-constant dependence distance we can still try to
255  /// vectorize this loop with runtime checks.
256  bool ShouldRetryWithRuntimeCheck;
257
258  /// \brief No memory dependence was encountered that would inhibit
259  /// vectorization.
260  bool SafeForVectorization;
261
262  //// \brief True if InterestingDependences reflects the dependences in the
263  //// loop.  If false we exceeded MaxInterestingDependence and
264  //// InterestingDependences is invalid.
265  bool RecordInterestingDependences;
266
267  /// \brief Interesting memory dependences collected during the analysis as
268  /// defined by isInterestingDependence.  Only valid if
269  /// RecordInterestingDependences is true.
270  SmallVector<Dependence, 8> InterestingDependences;
271
272  /// \brief Check whether there is a plausible dependence between the two
273  /// accesses.
274  ///
275  /// Access \p A must happen before \p B in program order. The two indices
276  /// identify the index into the program order map.
277  ///
278  /// This function checks  whether there is a plausible dependence (or the
279  /// absence of such can't be proved) between the two accesses. If there is a
280  /// plausible dependence but the dependence distance is bigger than one
281  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
282  /// distance is smaller than any other distance encountered so far).
283  /// Otherwise, this function returns true signaling a possible dependence.
284  Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
285                                  const MemAccessInfo &B, unsigned BIdx,
286                                  const ValueToValueMap &Strides);
287
288  /// \brief Check whether the data dependence could prevent store-load
289  /// forwarding.
290  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
291};
292
293/// \brief Drive the analysis of memory accesses in the loop
294///
295/// This class is responsible for analyzing the memory accesses of a loop.  It
296/// collects the accesses and then its main helper the AccessAnalysis class
297/// finds and categorizes the dependences in buildDependenceSets.
298///
299/// For memory dependences that can be analyzed at compile time, it determines
300/// whether the dependence is part of cycle inhibiting vectorization.  This work
301/// is delegated to the MemoryDepChecker class.
302///
303/// For memory dependences that cannot be determined at compile time, it
304/// generates run-time checks to prove independence.  This is done by
305/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
306/// RuntimePointerCheck class.
307class LoopAccessInfo {
308public:
309  /// This struct holds information about the memory runtime legality check that
310  /// a group of pointers do not overlap.
311  struct RuntimePointerCheck {
312    RuntimePointerCheck() : Need(false) {}
313
314    /// Reset the state of the pointer runtime information.
315    void reset() {
316      Need = false;
317      Pointers.clear();
318      Starts.clear();
319      Ends.clear();
320      IsWritePtr.clear();
321      DependencySetId.clear();
322      AliasSetId.clear();
323    }
324
325    /// Insert a pointer and calculate the start and end SCEVs.
326    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
327                unsigned DepSetId, unsigned ASId,
328                const ValueToValueMap &Strides);
329
330    /// \brief No run-time memory checking is necessary.
331    bool empty() const { return Pointers.empty(); }
332
333    /// \brief Decide whether we need to issue a run-time check for pointer at
334    /// index \p I and \p J to prove their independence.
335    ///
336    /// If \p PtrPartition is set, it contains the partition number for
337    /// pointers (-1 if the pointer belongs to multiple partitions).  In this
338    /// case omit checks between pointers belonging to the same partition.
339    bool needsChecking(unsigned I, unsigned J,
340                       const SmallVectorImpl<int> *PtrPartition) const;
341
342    /// \brief Return true if any pointer requires run-time checking according
343    /// to needsChecking.
344    bool needsAnyChecking(const SmallVectorImpl<int> *PtrPartition) const;
345
346    /// \brief Print the list run-time memory checks necessary.
347    ///
348    /// If \p PtrPartition is set, it contains the partition number for
349    /// pointers (-1 if the pointer belongs to multiple partitions).  In this
350    /// case omit checks between pointers belonging to the same partition.
351    void print(raw_ostream &OS, unsigned Depth = 0,
352               const SmallVectorImpl<int> *PtrPartition = nullptr) const;
353
354    /// This flag indicates if we need to add the runtime check.
355    bool Need;
356    /// Holds the pointers that we need to check.
357    SmallVector<TrackingVH<Value>, 2> Pointers;
358    /// Holds the pointer value at the beginning of the loop.
359    SmallVector<const SCEV*, 2> Starts;
360    /// Holds the pointer value at the end of the loop.
361    SmallVector<const SCEV*, 2> Ends;
362    /// Holds the information if this pointer is used for writing to memory.
363    SmallVector<bool, 2> IsWritePtr;
364    /// Holds the id of the set of pointers that could be dependent because of a
365    /// shared underlying object.
366    SmallVector<unsigned, 2> DependencySetId;
367    /// Holds the id of the disjoint alias set to which this pointer belongs.
368    SmallVector<unsigned, 2> AliasSetId;
369  };
370
371  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL,
372                 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
373                 DominatorTree *DT, const ValueToValueMap &Strides);
374
375  /// Return true we can analyze the memory accesses in the loop and there are
376  /// no memory dependence cycles.
377  bool canVectorizeMemory() const { return CanVecMem; }
378
379  const RuntimePointerCheck *getRuntimePointerCheck() const {
380    return &PtrRtCheck;
381  }
382
383  /// \brief Number of memchecks required to prove independence of otherwise
384  /// may-alias pointers.
385  unsigned getNumRuntimePointerChecks() const { return NumComparisons; }
386
387  /// Return true if the block BB needs to be predicated in order for the loop
388  /// to be vectorized.
389  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
390                                    DominatorTree *DT);
391
392  /// Returns true if the value V is uniform within the loop.
393  bool isUniform(Value *V) const;
394
395  unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
396  unsigned getNumStores() const { return NumStores; }
397  unsigned getNumLoads() const { return NumLoads;}
398
399  /// \brief Add code that checks at runtime if the accessed arrays overlap.
400  ///
401  /// Returns a pair of instructions where the first element is the first
402  /// instruction generated in possibly a sequence of instructions and the
403  /// second value is the final comparator value or NULL if no check is needed.
404  ///
405  /// If \p PtrPartition is set, it contains the partition number for pointers
406  /// (-1 if the pointer belongs to multiple partitions).  In this case omit
407  /// checks between pointers belonging to the same partition.
408  std::pair<Instruction *, Instruction *>
409  addRuntimeCheck(Instruction *Loc,
410                  const SmallVectorImpl<int> *PtrPartition = nullptr) const;
411
412  /// \brief The diagnostics report generated for the analysis.  E.g. why we
413  /// couldn't analyze the loop.
414  const Optional<LoopAccessReport> &getReport() const { return Report; }
415
416  /// \brief the Memory Dependence Checker which can determine the
417  /// loop-independent and loop-carried dependences between memory accesses.
418  const MemoryDepChecker &getDepChecker() const { return DepChecker; }
419
420  /// \brief Return the list of instructions that use \p Ptr to read or write
421  /// memory.
422  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
423                                                         bool isWrite) const {
424    return DepChecker.getInstructionsForAccess(Ptr, isWrite);
425  }
426
427  /// \brief Print the information about the memory accesses in the loop.
428  void print(raw_ostream &OS, unsigned Depth = 0) const;
429
430  /// \brief Used to ensure that if the analysis was run with speculating the
431  /// value of symbolic strides, the client queries it with the same assumption.
432  /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI.
433  unsigned NumSymbolicStrides;
434
435  /// \brief Checks existence of store to invariant address inside loop.
436  /// If the loop has any store to invariant address, then it returns true,
437  /// else returns false.
438  bool hasStoreToLoopInvariantAddress() const {
439    return StoreToLoopInvariantAddress;
440  }
441
442private:
443  /// \brief Analyze the loop.  Substitute symbolic strides using Strides.
444  void analyzeLoop(const ValueToValueMap &Strides);
445
446  /// \brief Check if the structure of the loop allows it to be analyzed by this
447  /// pass.
448  bool canAnalyzeLoop();
449
450  void emitAnalysis(LoopAccessReport &Message);
451
452  /// We need to check that all of the pointers in this list are disjoint
453  /// at runtime.
454  RuntimePointerCheck PtrRtCheck;
455
456  /// \brief the Memory Dependence Checker which can determine the
457  /// loop-independent and loop-carried dependences between memory accesses.
458  MemoryDepChecker DepChecker;
459
460  /// \brief Number of memchecks required to prove independence of otherwise
461  /// may-alias pointers
462  unsigned NumComparisons;
463
464  Loop *TheLoop;
465  ScalarEvolution *SE;
466  const DataLayout &DL;
467  const TargetLibraryInfo *TLI;
468  AliasAnalysis *AA;
469  DominatorTree *DT;
470
471  unsigned NumLoads;
472  unsigned NumStores;
473
474  unsigned MaxSafeDepDistBytes;
475
476  /// \brief Cache the result of analyzeLoop.
477  bool CanVecMem;
478
479  /// \brief Indicator for storing to uniform addresses.
480  /// If a loop has write to a loop invariant address then it should be true.
481  bool StoreToLoopInvariantAddress;
482
483  /// \brief The diagnostics report generated for the analysis.  E.g. why we
484  /// couldn't analyze the loop.
485  Optional<LoopAccessReport> Report;
486};
487
488Value *stripIntegerCast(Value *V);
489
490///\brief Return the SCEV corresponding to a pointer with the symbolic stride
491///replaced with constant one.
492///
493/// If \p OrigPtr is not null, use it to look up the stride value instead of \p
494/// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
495/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
496const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
497                                      const ValueToValueMap &PtrToStride,
498                                      Value *Ptr, Value *OrigPtr = nullptr);
499
500/// \brief This analysis provides dependence information for the memory accesses
501/// of a loop.
502///
503/// It runs the analysis for a loop on demand.  This can be initiated by
504/// querying the loop access info via LAA::getInfo.  getInfo return a
505/// LoopAccessInfo object.  See this class for the specifics of what information
506/// is provided.
507class LoopAccessAnalysis : public FunctionPass {
508public:
509  static char ID;
510
511  LoopAccessAnalysis() : FunctionPass(ID) {
512    initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
513  }
514
515  bool runOnFunction(Function &F) override;
516
517  void getAnalysisUsage(AnalysisUsage &AU) const override;
518
519  /// \brief Query the result of the loop access information for the loop \p L.
520  ///
521  /// If the client speculates (and then issues run-time checks) for the values
522  /// of symbolic strides, \p Strides provides the mapping (see
523  /// replaceSymbolicStrideSCEV).  If there is no cached result available run
524  /// the analysis.
525  const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides);
526
527  void releaseMemory() override {
528    // Invalidate the cache when the pass is freed.
529    LoopAccessInfoMap.clear();
530  }
531
532  /// \brief Print the result of the analysis when invoked with -analyze.
533  void print(raw_ostream &OS, const Module *M = nullptr) const override;
534
535private:
536  /// \brief The cache.
537  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
538
539  // The used analysis passes.
540  ScalarEvolution *SE;
541  const TargetLibraryInfo *TLI;
542  AliasAnalysis *AA;
543  DominatorTree *DT;
544};
545} // End llvm namespace
546
547#endif
548