1//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/Optional.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/AssumptionCache.h"
67#include "llvm/Analysis/ConstantFolding.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/TargetLibraryInfo.h"
72#include "llvm/Analysis/ValueTracking.h"
73#include "llvm/IR/ConstantRange.h"
74#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/GetElementPtrTypeIterator.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
81#include "llvm/IR/InstIterator.h"
82#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Operator.h"
86#include "llvm/Support/CommandLine.h"
87#include "llvm/Support/Debug.h"
88#include "llvm/Support/ErrorHandling.h"
89#include "llvm/Support/MathExtras.h"
90#include "llvm/Support/raw_ostream.h"
91#include <algorithm>
92using namespace llvm;
93
94#define DEBUG_TYPE "scalar-evolution"
95
96STATISTIC(NumArrayLenItCounts,
97          "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99          "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101          "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103          "Number of loops with trip counts computed by force");
104
105static cl::opt<unsigned>
106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107                        cl::desc("Maximum number of iterations SCEV will "
108                                 "symbolically execute a constant "
109                                 "derived loop"),
110                        cl::init(100));
111
112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115           cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118                "Scalar Evolution Analysis", false, true)
119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
124                "Scalar Evolution Analysis", false, true)
125char ScalarEvolution::ID = 0;
126
127//===----------------------------------------------------------------------===//
128//                           SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
134
135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136void SCEV::dump() const {
137  print(dbgs());
138  dbgs() << '\n';
139}
140#endif
141
142void SCEV::print(raw_ostream &OS) const {
143  switch (static_cast<SCEVTypes>(getSCEVType())) {
144  case scConstant:
145    cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
146    return;
147  case scTruncate: {
148    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149    const SCEV *Op = Trunc->getOperand();
150    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151       << *Trunc->getType() << ")";
152    return;
153  }
154  case scZeroExtend: {
155    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156    const SCEV *Op = ZExt->getOperand();
157    OS << "(zext " << *Op->getType() << " " << *Op << " to "
158       << *ZExt->getType() << ")";
159    return;
160  }
161  case scSignExtend: {
162    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163    const SCEV *Op = SExt->getOperand();
164    OS << "(sext " << *Op->getType() << " " << *Op << " to "
165       << *SExt->getType() << ")";
166    return;
167  }
168  case scAddRecExpr: {
169    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170    OS << "{" << *AR->getOperand(0);
171    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172      OS << ",+," << *AR->getOperand(i);
173    OS << "}<";
174    if (AR->getNoWrapFlags(FlagNUW))
175      OS << "nuw><";
176    if (AR->getNoWrapFlags(FlagNSW))
177      OS << "nsw><";
178    if (AR->getNoWrapFlags(FlagNW) &&
179        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180      OS << "nw><";
181    AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
182    OS << ">";
183    return;
184  }
185  case scAddExpr:
186  case scMulExpr:
187  case scUMaxExpr:
188  case scSMaxExpr: {
189    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
190    const char *OpStr = nullptr;
191    switch (NAry->getSCEVType()) {
192    case scAddExpr: OpStr = " + "; break;
193    case scMulExpr: OpStr = " * "; break;
194    case scUMaxExpr: OpStr = " umax "; break;
195    case scSMaxExpr: OpStr = " smax "; break;
196    }
197    OS << "(";
198    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199         I != E; ++I) {
200      OS << **I;
201      if (std::next(I) != E)
202        OS << OpStr;
203    }
204    OS << ")";
205    switch (NAry->getSCEVType()) {
206    case scAddExpr:
207    case scMulExpr:
208      if (NAry->getNoWrapFlags(FlagNUW))
209        OS << "<nuw>";
210      if (NAry->getNoWrapFlags(FlagNSW))
211        OS << "<nsw>";
212    }
213    return;
214  }
215  case scUDivExpr: {
216    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218    return;
219  }
220  case scUnknown: {
221    const SCEVUnknown *U = cast<SCEVUnknown>(this);
222    Type *AllocTy;
223    if (U->isSizeOf(AllocTy)) {
224      OS << "sizeof(" << *AllocTy << ")";
225      return;
226    }
227    if (U->isAlignOf(AllocTy)) {
228      OS << "alignof(" << *AllocTy << ")";
229      return;
230    }
231
232    Type *CTy;
233    Constant *FieldNo;
234    if (U->isOffsetOf(CTy, FieldNo)) {
235      OS << "offsetof(" << *CTy << ", ";
236      FieldNo->printAsOperand(OS, false);
237      OS << ")";
238      return;
239    }
240
241    // Otherwise just print it normally.
242    U->getValue()->printAsOperand(OS, false);
243    return;
244  }
245  case scCouldNotCompute:
246    OS << "***COULDNOTCOMPUTE***";
247    return;
248  }
249  llvm_unreachable("Unknown SCEV kind!");
250}
251
252Type *SCEV::getType() const {
253  switch (static_cast<SCEVTypes>(getSCEVType())) {
254  case scConstant:
255    return cast<SCEVConstant>(this)->getType();
256  case scTruncate:
257  case scZeroExtend:
258  case scSignExtend:
259    return cast<SCEVCastExpr>(this)->getType();
260  case scAddRecExpr:
261  case scMulExpr:
262  case scUMaxExpr:
263  case scSMaxExpr:
264    return cast<SCEVNAryExpr>(this)->getType();
265  case scAddExpr:
266    return cast<SCEVAddExpr>(this)->getType();
267  case scUDivExpr:
268    return cast<SCEVUDivExpr>(this)->getType();
269  case scUnknown:
270    return cast<SCEVUnknown>(this)->getType();
271  case scCouldNotCompute:
272    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
273  }
274  llvm_unreachable("Unknown SCEV kind!");
275}
276
277bool SCEV::isZero() const {
278  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279    return SC->getValue()->isZero();
280  return false;
281}
282
283bool SCEV::isOne() const {
284  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285    return SC->getValue()->isOne();
286  return false;
287}
288
289bool SCEV::isAllOnesValue() const {
290  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291    return SC->getValue()->isAllOnesValue();
292  return false;
293}
294
295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299  if (!Mul) return false;
300
301  // If there is a constant factor, it will be first.
302  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303  if (!SC) return false;
304
305  // Return true if the value is negative, this matches things like (-42 * V).
306  return SC->getValue()->getValue().isNegative();
307}
308
309SCEVCouldNotCompute::SCEVCouldNotCompute() :
310  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
311
312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313  return S->getSCEVType() == scCouldNotCompute;
314}
315
316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
317  FoldingSetNodeID ID;
318  ID.AddInteger(scConstant);
319  ID.AddPointer(V);
320  void *IP = nullptr;
321  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
322  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
323  UniqueSCEVs.InsertNode(S, IP);
324  return S;
325}
326
327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
328  return getConstant(ConstantInt::get(getContext(), Val));
329}
330
331const SCEV *
332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
334  return getConstant(ConstantInt::get(ITy, V, isSigned));
335}
336
337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
338                           unsigned SCEVTy, const SCEV *op, Type *ty)
339  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
340
341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
342                                   const SCEV *op, Type *ty)
343  : SCEVCastExpr(ID, scTruncate, op, ty) {
344  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346         "Cannot truncate non-integer value!");
347}
348
349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
350                                       const SCEV *op, Type *ty)
351  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
352  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354         "Cannot zero extend non-integer value!");
355}
356
357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
358                                       const SCEV *op, Type *ty)
359  : SCEVCastExpr(ID, scSignExtend, op, ty) {
360  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
362         "Cannot sign extend non-integer value!");
363}
364
365void SCEVUnknown::deleted() {
366  // Clear this SCEVUnknown from various maps.
367  SE->forgetMemoizedResults(this);
368
369  // Remove this SCEVUnknown from the uniquing map.
370  SE->UniqueSCEVs.RemoveNode(this);
371
372  // Release the value.
373  setValPtr(nullptr);
374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
377  // Clear this SCEVUnknown from various maps.
378  SE->forgetMemoizedResults(this);
379
380  // Remove this SCEVUnknown from the uniquing map.
381  SE->UniqueSCEVs.RemoveNode(this);
382
383  // Update this SCEVUnknown to point to the new value. This is needed
384  // because there may still be outstanding SCEVs which still point to
385  // this SCEVUnknown.
386  setValPtr(New);
387}
388
389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
390  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
391    if (VCE->getOpcode() == Instruction::PtrToInt)
392      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
393        if (CE->getOpcode() == Instruction::GetElementPtr &&
394            CE->getOperand(0)->isNullValue() &&
395            CE->getNumOperands() == 2)
396          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397            if (CI->isOne()) {
398              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399                                 ->getElementType();
400              return true;
401            }
402
403  return false;
404}
405
406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
407  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
408    if (VCE->getOpcode() == Instruction::PtrToInt)
409      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410        if (CE->getOpcode() == Instruction::GetElementPtr &&
411            CE->getOperand(0)->isNullValue()) {
412          Type *Ty =
413            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
414          if (StructType *STy = dyn_cast<StructType>(Ty))
415            if (!STy->isPacked() &&
416                CE->getNumOperands() == 3 &&
417                CE->getOperand(1)->isNullValue()) {
418              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419                if (CI->isOne() &&
420                    STy->getNumElements() == 2 &&
421                    STy->getElementType(0)->isIntegerTy(1)) {
422                  AllocTy = STy->getElementType(1);
423                  return true;
424                }
425            }
426        }
427
428  return false;
429}
430
431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
432  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
433    if (VCE->getOpcode() == Instruction::PtrToInt)
434      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435        if (CE->getOpcode() == Instruction::GetElementPtr &&
436            CE->getNumOperands() == 3 &&
437            CE->getOperand(0)->isNullValue() &&
438            CE->getOperand(1)->isNullValue()) {
439          Type *Ty =
440            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441          // Ignore vector types here so that ScalarEvolutionExpander doesn't
442          // emit getelementptrs that index into vectors.
443          if (Ty->isStructTy() || Ty->isArrayTy()) {
444            CTy = Ty;
445            FieldNo = CE->getOperand(2);
446            return true;
447          }
448        }
449
450  return false;
451}
452
453//===----------------------------------------------------------------------===//
454//                               SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459  /// than the complexity of the RHS.  This comparator is used to canonicalize
460  /// expressions.
461  class SCEVComplexityCompare {
462    const LoopInfo *const LI;
463  public:
464    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
465
466    // Return true or false if LHS is less than, or at least RHS, respectively.
467    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
468      return compare(LHS, RHS) < 0;
469    }
470
471    // Return negative, zero, or positive, if LHS is less than, equal to, or
472    // greater than RHS, respectively. A three-way result allows recursive
473    // comparisons to be more efficient.
474    int compare(const SCEV *LHS, const SCEV *RHS) const {
475      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476      if (LHS == RHS)
477        return 0;
478
479      // Primarily, sort the SCEVs by their getSCEVType().
480      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481      if (LType != RType)
482        return (int)LType - (int)RType;
483
484      // Aside from the getSCEVType() ordering, the particular ordering
485      // isn't very important except that it's beneficial to be consistent,
486      // so that (a + b) and (b + a) don't end up as different expressions.
487      switch (static_cast<SCEVTypes>(LType)) {
488      case scUnknown: {
489        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
490        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
491
492        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493        // not as complete as it could be.
494        const Value *LV = LU->getValue(), *RV = RU->getValue();
495
496        // Order pointer values after integer values. This helps SCEVExpander
497        // form GEPs.
498        bool LIsPointer = LV->getType()->isPointerTy(),
499             RIsPointer = RV->getType()->isPointerTy();
500        if (LIsPointer != RIsPointer)
501          return (int)LIsPointer - (int)RIsPointer;
502
503        // Compare getValueID values.
504        unsigned LID = LV->getValueID(),
505                 RID = RV->getValueID();
506        if (LID != RID)
507          return (int)LID - (int)RID;
508
509        // Sort arguments by their position.
510        if (const Argument *LA = dyn_cast<Argument>(LV)) {
511          const Argument *RA = cast<Argument>(RV);
512          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513          return (int)LArgNo - (int)RArgNo;
514        }
515
516        // For instructions, compare their loop depth, and their operand
517        // count.  This is pretty loose.
518        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519          const Instruction *RInst = cast<Instruction>(RV);
520
521          // Compare loop depths.
522          const BasicBlock *LParent = LInst->getParent(),
523                           *RParent = RInst->getParent();
524          if (LParent != RParent) {
525            unsigned LDepth = LI->getLoopDepth(LParent),
526                     RDepth = LI->getLoopDepth(RParent);
527            if (LDepth != RDepth)
528              return (int)LDepth - (int)RDepth;
529          }
530
531          // Compare the number of operands.
532          unsigned LNumOps = LInst->getNumOperands(),
533                   RNumOps = RInst->getNumOperands();
534          return (int)LNumOps - (int)RNumOps;
535        }
536
537        return 0;
538      }
539
540      case scConstant: {
541        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
542        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
543
544        // Compare constant values.
545        const APInt &LA = LC->getValue()->getValue();
546        const APInt &RA = RC->getValue()->getValue();
547        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
548        if (LBitWidth != RBitWidth)
549          return (int)LBitWidth - (int)RBitWidth;
550        return LA.ult(RA) ? -1 : 1;
551      }
552
553      case scAddRecExpr: {
554        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
555        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
556
557        // Compare addrec loop depths.
558        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559        if (LLoop != RLoop) {
560          unsigned LDepth = LLoop->getLoopDepth(),
561                   RDepth = RLoop->getLoopDepth();
562          if (LDepth != RDepth)
563            return (int)LDepth - (int)RDepth;
564        }
565
566        // Addrec complexity grows with operand count.
567        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568        if (LNumOps != RNumOps)
569          return (int)LNumOps - (int)RNumOps;
570
571        // Lexicographically compare.
572        for (unsigned i = 0; i != LNumOps; ++i) {
573          long X = compare(LA->getOperand(i), RA->getOperand(i));
574          if (X != 0)
575            return X;
576        }
577
578        return 0;
579      }
580
581      case scAddExpr:
582      case scMulExpr:
583      case scSMaxExpr:
584      case scUMaxExpr: {
585        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
586        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
587
588        // Lexicographically compare n-ary expressions.
589        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
590        if (LNumOps != RNumOps)
591          return (int)LNumOps - (int)RNumOps;
592
593        for (unsigned i = 0; i != LNumOps; ++i) {
594          if (i >= RNumOps)
595            return 1;
596          long X = compare(LC->getOperand(i), RC->getOperand(i));
597          if (X != 0)
598            return X;
599        }
600        return (int)LNumOps - (int)RNumOps;
601      }
602
603      case scUDivExpr: {
604        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
605        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
606
607        // Lexicographically compare udiv expressions.
608        long X = compare(LC->getLHS(), RC->getLHS());
609        if (X != 0)
610          return X;
611        return compare(LC->getRHS(), RC->getRHS());
612      }
613
614      case scTruncate:
615      case scZeroExtend:
616      case scSignExtend: {
617        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
618        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
619
620        // Compare cast expressions by operand.
621        return compare(LC->getOperand(), RC->getOperand());
622      }
623
624      case scCouldNotCompute:
625        llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
626      }
627      llvm_unreachable("Unknown SCEV kind!");
628    }
629  };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
637/// Note that we go take special precautions to ensure that we get deterministic
638/// results from this routine.  In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
643                              LoopInfo *LI) {
644  if (Ops.size() < 2) return;  // Noop
645  if (Ops.size() == 2) {
646    // This is the common case, which also happens to be trivially simple.
647    // Special case it.
648    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649    if (SCEVComplexityCompare(LI)(RHS, LHS))
650      std::swap(LHS, RHS);
651    return;
652  }
653
654  // Do the rough sort by complexity.
655  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657  // Now that we are sorted by complexity, group elements of the same
658  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
659  // be extremely short in practice.  Note that we take this approach because we
660  // do not want to depend on the addresses of the objects we are grouping.
661  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662    const SCEV *S = Ops[i];
663    unsigned Complexity = S->getSCEVType();
664
665    // If there are any objects of the same complexity and same value as this
666    // one, group them.
667    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668      if (Ops[j] == S) { // Found a duplicate.
669        // Move it to immediately after i'th element.
670        std::swap(Ops[i+1], Ops[j]);
671        ++i;   // no need to rescan it.
672        if (i == e-2) return;  // Done!
673      }
674    }
675  }
676}
677
678namespace {
679struct FindSCEVSize {
680  int Size;
681  FindSCEVSize() : Size(0) {}
682
683  bool follow(const SCEV *S) {
684    ++Size;
685    // Keep looking at all operands of S.
686    return true;
687  }
688  bool isDone() const {
689    return false;
690  }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696  FindSCEVSize F;
697  SCEVTraversal<FindSCEVSize> ST(F);
698  ST.visitAll(S);
699  return F.Size;
700}
701
702namespace {
703
704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
705public:
706  // Computes the Quotient and Remainder of the division of Numerator by
707  // Denominator.
708  static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709                     const SCEV *Denominator, const SCEV **Quotient,
710                     const SCEV **Remainder) {
711    assert(Numerator && Denominator && "Uninitialized SCEV");
712
713    SCEVDivision D(SE, Numerator, Denominator);
714
715    // Check for the trivial case here to avoid having to check for it in the
716    // rest of the code.
717    if (Numerator == Denominator) {
718      *Quotient = D.One;
719      *Remainder = D.Zero;
720      return;
721    }
722
723    if (Numerator->isZero()) {
724      *Quotient = D.Zero;
725      *Remainder = D.Zero;
726      return;
727    }
728
729    // Split the Denominator when it is a product.
730    if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731      const SCEV *Q, *R;
732      *Quotient = Numerator;
733      for (const SCEV *Op : T->operands()) {
734        divide(SE, *Quotient, Op, &Q, &R);
735        *Quotient = Q;
736
737        // Bail out when the Numerator is not divisible by one of the terms of
738        // the Denominator.
739        if (!R->isZero()) {
740          *Quotient = D.Zero;
741          *Remainder = Numerator;
742          return;
743        }
744      }
745      *Remainder = D.Zero;
746      return;
747    }
748
749    D.visit(Numerator);
750    *Quotient = D.Quotient;
751    *Remainder = D.Remainder;
752  }
753
754  // Except in the trivial case described above, we do not know how to divide
755  // Expr by Denominator for the following functions with empty implementation.
756  void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757  void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758  void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759  void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760  void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761  void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762  void visitUnknown(const SCEVUnknown *Numerator) {}
763  void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
765  void visitConstant(const SCEVConstant *Numerator) {
766    if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767      APInt NumeratorVal = Numerator->getValue()->getValue();
768      APInt DenominatorVal = D->getValue()->getValue();
769      uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770      uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772      if (NumeratorBW > DenominatorBW)
773        DenominatorVal = DenominatorVal.sext(NumeratorBW);
774      else if (NumeratorBW < DenominatorBW)
775        NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777      APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778      APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779      APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780      Quotient = SE.getConstant(QuotientVal);
781      Remainder = SE.getConstant(RemainderVal);
782      return;
783    }
784  }
785
786  void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787    const SCEV *StartQ, *StartR, *StepQ, *StepR;
788    assert(Numerator->isAffine() && "Numerator should be affine");
789    divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790    divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791    Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792                                Numerator->getNoWrapFlags());
793    Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794                                 Numerator->getNoWrapFlags());
795  }
796
797  void visitAddExpr(const SCEVAddExpr *Numerator) {
798    SmallVector<const SCEV *, 2> Qs, Rs;
799    Type *Ty = Denominator->getType();
800
801    for (const SCEV *Op : Numerator->operands()) {
802      const SCEV *Q, *R;
803      divide(SE, Op, Denominator, &Q, &R);
804
805      // Bail out if types do not match.
806      if (Ty != Q->getType() || Ty != R->getType()) {
807        Quotient = Zero;
808        Remainder = Numerator;
809        return;
810      }
811
812      Qs.push_back(Q);
813      Rs.push_back(R);
814    }
815
816    if (Qs.size() == 1) {
817      Quotient = Qs[0];
818      Remainder = Rs[0];
819      return;
820    }
821
822    Quotient = SE.getAddExpr(Qs);
823    Remainder = SE.getAddExpr(Rs);
824  }
825
826  void visitMulExpr(const SCEVMulExpr *Numerator) {
827    SmallVector<const SCEV *, 2> Qs;
828    Type *Ty = Denominator->getType();
829
830    bool FoundDenominatorTerm = false;
831    for (const SCEV *Op : Numerator->operands()) {
832      // Bail out if types do not match.
833      if (Ty != Op->getType()) {
834        Quotient = Zero;
835        Remainder = Numerator;
836        return;
837      }
838
839      if (FoundDenominatorTerm) {
840        Qs.push_back(Op);
841        continue;
842      }
843
844      // Check whether Denominator divides one of the product operands.
845      const SCEV *Q, *R;
846      divide(SE, Op, Denominator, &Q, &R);
847      if (!R->isZero()) {
848        Qs.push_back(Op);
849        continue;
850      }
851
852      // Bail out if types do not match.
853      if (Ty != Q->getType()) {
854        Quotient = Zero;
855        Remainder = Numerator;
856        return;
857      }
858
859      FoundDenominatorTerm = true;
860      Qs.push_back(Q);
861    }
862
863    if (FoundDenominatorTerm) {
864      Remainder = Zero;
865      if (Qs.size() == 1)
866        Quotient = Qs[0];
867      else
868        Quotient = SE.getMulExpr(Qs);
869      return;
870    }
871
872    if (!isa<SCEVUnknown>(Denominator)) {
873      Quotient = Zero;
874      Remainder = Numerator;
875      return;
876    }
877
878    // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879    ValueToValueMap RewriteMap;
880    RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881        cast<SCEVConstant>(Zero)->getValue();
882    Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884    if (Remainder->isZero()) {
885      // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886      RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887          cast<SCEVConstant>(One)->getValue();
888      Quotient =
889          SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890      return;
891    }
892
893    // Quotient is (Numerator - Remainder) divided by Denominator.
894    const SCEV *Q, *R;
895    const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896    if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897      // This SCEV does not seem to simplify: fail the division here.
898      Quotient = Zero;
899      Remainder = Numerator;
900      return;
901    }
902    divide(SE, Diff, Denominator, &Q, &R);
903    assert(R == Zero &&
904           "(Numerator - Remainder) should evenly divide Denominator");
905    Quotient = Q;
906  }
907
908private:
909  SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910               const SCEV *Denominator)
911      : SE(S), Denominator(Denominator) {
912    Zero = SE.getConstant(Denominator->getType(), 0);
913    One = SE.getConstant(Denominator->getType(), 1);
914
915    // By default, we don't know how to divide Expr by Denominator.
916    // Providing the default here simplifies the rest of the code.
917    Quotient = Zero;
918    Remainder = Numerator;
919  }
920
921  ScalarEvolution &SE;
922  const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
923};
924
925}
926
927//===----------------------------------------------------------------------===//
928//                      Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
931/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
932/// Assume, K > 0.
933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
934                                       ScalarEvolution &SE,
935                                       Type *ResultTy) {
936  // Handle the simplest case efficiently.
937  if (K == 1)
938    return SE.getTruncateOrZeroExtend(It, ResultTy);
939
940  // We are using the following formula for BC(It, K):
941  //
942  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943  //
944  // Suppose, W is the bitwidth of the return value.  We must be prepared for
945  // overflow.  Hence, we must assure that the result of our computation is
946  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
947  // safe in modular arithmetic.
948  //
949  // However, this code doesn't use exactly that formula; the formula it uses
950  // is something like the following, where T is the number of factors of 2 in
951  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952  // exponentiation:
953  //
954  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
955  //
956  // This formula is trivially equivalent to the previous formula.  However,
957  // this formula can be implemented much more efficiently.  The trick is that
958  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959  // arithmetic.  To do exact division in modular arithmetic, all we have
960  // to do is multiply by the inverse.  Therefore, this step can be done at
961  // width W.
962  //
963  // The next issue is how to safely do the division by 2^T.  The way this
964  // is done is by doing the multiplication step at a width of at least W + T
965  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
966  // when we perform the division by 2^T (which is equivalent to a right shift
967  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
968  // truncated out after the division by 2^T.
969  //
970  // In comparison to just directly using the first formula, this technique
971  // is much more efficient; using the first formula requires W * K bits,
972  // but this formula less than W + K bits. Also, the first formula requires
973  // a division step, whereas this formula only requires multiplies and shifts.
974  //
975  // It doesn't matter whether the subtraction step is done in the calculation
976  // width or the input iteration count's width; if the subtraction overflows,
977  // the result must be zero anyway.  We prefer here to do it in the width of
978  // the induction variable because it helps a lot for certain cases; CodeGen
979  // isn't smart enough to ignore the overflow, which leads to much less
980  // efficient code if the width of the subtraction is wider than the native
981  // register width.
982  //
983  // (It's possible to not widen at all by pulling out factors of 2 before
984  // the multiplication; for example, K=2 can be calculated as
985  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986  // extra arithmetic, so it's not an obvious win, and it gets
987  // much more complicated for K > 3.)
988
989  // Protection from insane SCEVs; this bound is conservative,
990  // but it probably doesn't matter.
991  if (K > 1000)
992    return SE.getCouldNotCompute();
993
994  unsigned W = SE.getTypeSizeInBits(ResultTy);
995
996  // Calculate K! / 2^T and T; we divide out the factors of two before
997  // multiplying for calculating K! / 2^T to avoid overflow.
998  // Other overflow doesn't matter because we only care about the bottom
999  // W bits of the result.
1000  APInt OddFactorial(W, 1);
1001  unsigned T = 1;
1002  for (unsigned i = 3; i <= K; ++i) {
1003    APInt Mult(W, i);
1004    unsigned TwoFactors = Mult.countTrailingZeros();
1005    T += TwoFactors;
1006    Mult = Mult.lshr(TwoFactors);
1007    OddFactorial *= Mult;
1008  }
1009
1010  // We need at least W + T bits for the multiplication step
1011  unsigned CalculationBits = W + T;
1012
1013  // Calculate 2^T, at width T+W.
1014  APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1015
1016  // Calculate the multiplicative inverse of K! / 2^T;
1017  // this multiplication factor will perform the exact division by
1018  // K! / 2^T.
1019  APInt Mod = APInt::getSignedMinValue(W+1);
1020  APInt MultiplyFactor = OddFactorial.zext(W+1);
1021  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022  MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024  // Calculate the product, at width T+W
1025  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1026                                                      CalculationBits);
1027  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1028  for (unsigned i = 1; i != K; ++i) {
1029    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1030    Dividend = SE.getMulExpr(Dividend,
1031                             SE.getTruncateOrZeroExtend(S, CalculationTy));
1032  }
1033
1034  // Divide by 2^T
1035  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1036
1037  // Truncate the result, and divide by K! / 2^T.
1038
1039  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1041}
1042
1043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number.  We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
1048///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1049///
1050/// where BC(It, k) stands for binomial coefficient.
1051///
1052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1053                                                ScalarEvolution &SE) const {
1054  const SCEV *Result = getStart();
1055  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1056    // The computation is correct in the face of overflow provided that the
1057    // multiplication is performed _after_ the evaluation of the binomial
1058    // coefficient.
1059    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1060    if (isa<SCEVCouldNotCompute>(Coeff))
1061      return Coeff;
1062
1063    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1064  }
1065  return Result;
1066}
1067
1068//===----------------------------------------------------------------------===//
1069//                    SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
1072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1073                                             Type *Ty) {
1074  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1075         "This is not a truncating conversion!");
1076  assert(isSCEVable(Ty) &&
1077         "This is not a conversion to a SCEVable type!");
1078  Ty = getEffectiveSCEVType(Ty);
1079
1080  FoldingSetNodeID ID;
1081  ID.AddInteger(scTruncate);
1082  ID.AddPointer(Op);
1083  ID.AddPointer(Ty);
1084  void *IP = nullptr;
1085  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
1087  // Fold if the operand is constant.
1088  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1089    return getConstant(
1090      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1091
1092  // trunc(trunc(x)) --> trunc(x)
1093  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1094    return getTruncateExpr(ST->getOperand(), Ty);
1095
1096  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1097  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1098    return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1101  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1102    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
1104  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105  // eliminate all the truncates, or we replace other casts with truncates.
1106  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107    SmallVector<const SCEV *, 4> Operands;
1108    bool hasTrunc = false;
1109    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111      if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1112        hasTrunc = isa<SCEVTruncateExpr>(S);
1113      Operands.push_back(S);
1114    }
1115    if (!hasTrunc)
1116      return getAddExpr(Operands);
1117    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1118  }
1119
1120  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1121  // eliminate all the truncates, or we replace other casts with truncates.
1122  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1123    SmallVector<const SCEV *, 4> Operands;
1124    bool hasTrunc = false;
1125    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1126      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1127      if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1128        hasTrunc = isa<SCEVTruncateExpr>(S);
1129      Operands.push_back(S);
1130    }
1131    if (!hasTrunc)
1132      return getMulExpr(Operands);
1133    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1134  }
1135
1136  // If the input value is a chrec scev, truncate the chrec's operands.
1137  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1138    SmallVector<const SCEV *, 4> Operands;
1139    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1140      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
1141    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1142  }
1143
1144  // The cast wasn't folded; create an explicit cast node. We can reuse
1145  // the existing insert position since if we get here, we won't have
1146  // made any changes which would invalidate it.
1147  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1148                                                 Op, Ty);
1149  UniqueSCEVs.InsertNode(S, IP);
1150  return S;
1151}
1152
1153// Get the limit of a recurrence such that incrementing by Step cannot cause
1154// signed overflow as long as the value of the recurrence within the
1155// loop does not exceed this limit before incrementing.
1156static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1157                                                 ICmpInst::Predicate *Pred,
1158                                                 ScalarEvolution *SE) {
1159  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1160  if (SE->isKnownPositive(Step)) {
1161    *Pred = ICmpInst::ICMP_SLT;
1162    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1163                           SE->getSignedRange(Step).getSignedMax());
1164  }
1165  if (SE->isKnownNegative(Step)) {
1166    *Pred = ICmpInst::ICMP_SGT;
1167    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1168                           SE->getSignedRange(Step).getSignedMin());
1169  }
1170  return nullptr;
1171}
1172
1173// Get the limit of a recurrence such that incrementing by Step cannot cause
1174// unsigned overflow as long as the value of the recurrence within the loop does
1175// not exceed this limit before incrementing.
1176static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1177                                                   ICmpInst::Predicate *Pred,
1178                                                   ScalarEvolution *SE) {
1179  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1180  *Pred = ICmpInst::ICMP_ULT;
1181
1182  return SE->getConstant(APInt::getMinValue(BitWidth) -
1183                         SE->getUnsignedRange(Step).getUnsignedMax());
1184}
1185
1186namespace {
1187
1188struct ExtendOpTraitsBase {
1189  typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1190};
1191
1192// Used to make code generic over signed and unsigned overflow.
1193template <typename ExtendOp> struct ExtendOpTraits {
1194  // Members present:
1195  //
1196  // static const SCEV::NoWrapFlags WrapType;
1197  //
1198  // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1199  //
1200  // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1201  //                                           ICmpInst::Predicate *Pred,
1202  //                                           ScalarEvolution *SE);
1203};
1204
1205template <>
1206struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1207  static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1208
1209  static const GetExtendExprTy GetExtendExpr;
1210
1211  static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1212                                             ICmpInst::Predicate *Pred,
1213                                             ScalarEvolution *SE) {
1214    return getSignedOverflowLimitForStep(Step, Pred, SE);
1215  }
1216};
1217
1218const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1219    SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1220
1221template <>
1222struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1223  static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1224
1225  static const GetExtendExprTy GetExtendExpr;
1226
1227  static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1228                                             ICmpInst::Predicate *Pred,
1229                                             ScalarEvolution *SE) {
1230    return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1231  }
1232};
1233
1234const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1235    SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1236}
1237
1238// The recurrence AR has been shown to have no signed/unsigned wrap or something
1239// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1240// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1241// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1242// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1243// expression "Step + sext/zext(PreIncAR)" is congruent with
1244// "sext/zext(PostIncAR)"
1245template <typename ExtendOpTy>
1246static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1247                                        ScalarEvolution *SE) {
1248  auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1249  auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1250
1251  const Loop *L = AR->getLoop();
1252  const SCEV *Start = AR->getStart();
1253  const SCEV *Step = AR->getStepRecurrence(*SE);
1254
1255  // Check for a simple looking step prior to loop entry.
1256  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1257  if (!SA)
1258    return nullptr;
1259
1260  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1261  // subtraction is expensive. For this purpose, perform a quick and dirty
1262  // difference, by checking for Step in the operand list.
1263  SmallVector<const SCEV *, 4> DiffOps;
1264  for (const SCEV *Op : SA->operands())
1265    if (Op != Step)
1266      DiffOps.push_back(Op);
1267
1268  if (DiffOps.size() == SA->getNumOperands())
1269    return nullptr;
1270
1271  // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1272  // `Step`:
1273
1274  // 1. NSW/NUW flags on the step increment.
1275  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1276  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277      SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
1279  // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280  // "S+X does not sign/unsign-overflow".
1281  //
1282
1283  const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284  if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285      !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286    return PreStart;
1287
1288  // 2. Direct overflow check on the step operation's expression.
1289  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291  const SCEV *OperandExtendedStart =
1292      SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                     (SE->*GetExtendExpr)(Step, WideTy));
1294  if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295    if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296      // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297      // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298      // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300    }
1301    return PreStart;
1302  }
1303
1304  // 3. Loop precondition.
1305  ICmpInst::Predicate Pred;
1306  const SCEV *OverflowLimit =
1307      ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309  if (OverflowLimit &&
1310      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1311    return PreStart;
1312  }
1313  return nullptr;
1314}
1315
1316// Get the normalized zero or sign extended expression for this AddRec's Start.
1317template <typename ExtendOpTy>
1318static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                        ScalarEvolution *SE) {
1320  auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322  const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323  if (!PreStart)
1324    return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326  return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                        (SE->*GetExtendExpr)(PreStart, Ty));
1328}
1329
1330// Try to prove away overflow by looking at "nearby" add recurrences.  A
1331// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333//
1334// Formally:
1335//
1336//     {S,+,X} == {S-T,+,X} + T
1337//  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338//
1339// If ({S-T,+,X} + T) does not overflow  ... (1)
1340//
1341//  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342//
1343// If {S-T,+,X} does not overflow  ... (2)
1344//
1345//  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346//      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347//
1348// If (S-T)+T does not overflow  ... (3)
1349//
1350//  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351//      == {Ext(S),+,Ext(X)} == LHS
1352//
1353// Thus, if (1), (2) and (3) are true for some T, then
1354//   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355//
1356// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357// does not overflow" restricted to the 0th iteration.  Therefore we only need
1358// to check for (1) and (2).
1359//
1360// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361// is `Delta` (defined below).
1362//
1363template <typename ExtendOpTy>
1364bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                const SCEV *Step,
1366                                                const Loop *L) {
1367  auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369  // We restrict `Start` to a constant to prevent SCEV from spending too much
1370  // time here.  It is correct (but more expensive) to continue with a
1371  // non-constant `Start` and do a general SCEV subtraction to compute
1372  // `PreStart` below.
1373  //
1374  const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375  if (!StartC)
1376    return false;
1377
1378  APInt StartAI = StartC->getValue()->getValue();
1379
1380  for (unsigned Delta : {-2, -1, 1, 2}) {
1381    const SCEV *PreStart = getConstant(StartAI - Delta);
1382
1383    // Give up if we don't already have the add recurrence we need because
1384    // actually constructing an add recurrence is relatively expensive.
1385    const SCEVAddRecExpr *PreAR = [&]() {
1386      FoldingSetNodeID ID;
1387      ID.AddInteger(scAddRecExpr);
1388      ID.AddPointer(PreStart);
1389      ID.AddPointer(Step);
1390      ID.AddPointer(L);
1391      void *IP = nullptr;
1392      return static_cast<SCEVAddRecExpr *>(
1393          this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1394    }();
1395
1396    if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1397      const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1398      ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1399      const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1400          DeltaS, &Pred, this);
1401      if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1402        return true;
1403    }
1404  }
1405
1406  return false;
1407}
1408
1409const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1410                                               Type *Ty) {
1411  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1412         "This is not an extending conversion!");
1413  assert(isSCEVable(Ty) &&
1414         "This is not a conversion to a SCEVable type!");
1415  Ty = getEffectiveSCEVType(Ty);
1416
1417  // Fold if the operand is constant.
1418  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1419    return getConstant(
1420      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1421
1422  // zext(zext(x)) --> zext(x)
1423  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1424    return getZeroExtendExpr(SZ->getOperand(), Ty);
1425
1426  // Before doing any expensive analysis, check to see if we've already
1427  // computed a SCEV for this Op and Ty.
1428  FoldingSetNodeID ID;
1429  ID.AddInteger(scZeroExtend);
1430  ID.AddPointer(Op);
1431  ID.AddPointer(Ty);
1432  void *IP = nullptr;
1433  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1434
1435  // zext(trunc(x)) --> zext(x) or x or trunc(x)
1436  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1437    // It's possible the bits taken off by the truncate were all zero bits. If
1438    // so, we should be able to simplify this further.
1439    const SCEV *X = ST->getOperand();
1440    ConstantRange CR = getUnsignedRange(X);
1441    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1442    unsigned NewBits = getTypeSizeInBits(Ty);
1443    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1444            CR.zextOrTrunc(NewBits)))
1445      return getTruncateOrZeroExtend(X, Ty);
1446  }
1447
1448  // If the input value is a chrec scev, and we can prove that the value
1449  // did not overflow the old, smaller, value, we can zero extend all of the
1450  // operands (often constants).  This allows analysis of something like
1451  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1452  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1453    if (AR->isAffine()) {
1454      const SCEV *Start = AR->getStart();
1455      const SCEV *Step = AR->getStepRecurrence(*this);
1456      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1457      const Loop *L = AR->getLoop();
1458
1459      // If we have special knowledge that this addrec won't overflow,
1460      // we don't need to do any further analysis.
1461      if (AR->getNoWrapFlags(SCEV::FlagNUW))
1462        return getAddRecExpr(
1463            getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464            getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465
1466      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467      // Note that this serves two purposes: It filters out loops that are
1468      // simply not analyzable, and it covers the case where this code is
1469      // being called from within backedge-taken count analysis, such that
1470      // attempting to ask for the backedge-taken count would likely result
1471      // in infinite recursion. In the later case, the analysis code will
1472      // cope with a conservative value, and it will take care to purge
1473      // that value once it has finished.
1474      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476        // Manually compute the final value for AR, checking for
1477        // overflow.
1478
1479        // Check whether the backedge-taken count can be losslessly casted to
1480        // the addrec's type. The count is always unsigned.
1481        const SCEV *CastedMaxBECount =
1482          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483        const SCEV *RecastedMaxBECount =
1484          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485        if (MaxBECount == RecastedMaxBECount) {
1486          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491          const SCEV *WideMaxBECount =
1492            getZeroExtendExpr(CastedMaxBECount, WideTy);
1493          const SCEV *OperandExtendedAdd =
1494            getAddExpr(WideStart,
1495                       getMulExpr(WideMaxBECount,
1496                                  getZeroExtendExpr(Step, WideTy)));
1497          if (ZAdd == OperandExtendedAdd) {
1498            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500            // Return the expression with the addrec on the outside.
1501            return getAddRecExpr(
1502                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503                getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504          }
1505          // Similar to above, only this time treat the step value as signed.
1506          // This covers loops that count down.
1507          OperandExtendedAdd =
1508            getAddExpr(WideStart,
1509                       getMulExpr(WideMaxBECount,
1510                                  getSignExtendExpr(Step, WideTy)));
1511          if (ZAdd == OperandExtendedAdd) {
1512            // Cache knowledge of AR NW, which is propagated to this AddRec.
1513            // Negative step causes unsigned wrap, but it still can't self-wrap.
1514            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515            // Return the expression with the addrec on the outside.
1516            return getAddRecExpr(
1517                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518                getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519          }
1520        }
1521
1522        // If the backedge is guarded by a comparison with the pre-inc value
1523        // the addrec is safe. Also, if the entry is guarded by a comparison
1524        // with the start value and the backedge is guarded by a comparison
1525        // with the post-inc value, the addrec is safe.
1526        if (isKnownPositive(Step)) {
1527          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1528                                      getUnsignedRange(Step).getUnsignedMax());
1529          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1530              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1531               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1532                                           AR->getPostIncExpr(*this), N))) {
1533            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1534            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1535            // Return the expression with the addrec on the outside.
1536            return getAddRecExpr(
1537                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1538                getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1539          }
1540        } else if (isKnownNegative(Step)) {
1541          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1542                                      getSignedRange(Step).getSignedMin());
1543          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1544              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1545               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1546                                           AR->getPostIncExpr(*this), N))) {
1547            // Cache knowledge of AR NW, which is propagated to this AddRec.
1548            // Negative step causes unsigned wrap, but it still can't self-wrap.
1549            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1550            // Return the expression with the addrec on the outside.
1551            return getAddRecExpr(
1552                getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1553                getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1554          }
1555        }
1556      }
1557
1558      if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1559        const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1560        return getAddRecExpr(
1561            getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1562            getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1563      }
1564    }
1565
1566  // The cast wasn't folded; create an explicit cast node.
1567  // Recompute the insert position, as it may have been invalidated.
1568  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1569  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1570                                                   Op, Ty);
1571  UniqueSCEVs.InsertNode(S, IP);
1572  return S;
1573}
1574
1575const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1576                                               Type *Ty) {
1577  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1578         "This is not an extending conversion!");
1579  assert(isSCEVable(Ty) &&
1580         "This is not a conversion to a SCEVable type!");
1581  Ty = getEffectiveSCEVType(Ty);
1582
1583  // Fold if the operand is constant.
1584  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1585    return getConstant(
1586      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1587
1588  // sext(sext(x)) --> sext(x)
1589  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1590    return getSignExtendExpr(SS->getOperand(), Ty);
1591
1592  // sext(zext(x)) --> zext(x)
1593  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1594    return getZeroExtendExpr(SZ->getOperand(), Ty);
1595
1596  // Before doing any expensive analysis, check to see if we've already
1597  // computed a SCEV for this Op and Ty.
1598  FoldingSetNodeID ID;
1599  ID.AddInteger(scSignExtend);
1600  ID.AddPointer(Op);
1601  ID.AddPointer(Ty);
1602  void *IP = nullptr;
1603  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1604
1605  // If the input value is provably positive, build a zext instead.
1606  if (isKnownNonNegative(Op))
1607    return getZeroExtendExpr(Op, Ty);
1608
1609  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1610  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1611    // It's possible the bits taken off by the truncate were all sign bits. If
1612    // so, we should be able to simplify this further.
1613    const SCEV *X = ST->getOperand();
1614    ConstantRange CR = getSignedRange(X);
1615    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1616    unsigned NewBits = getTypeSizeInBits(Ty);
1617    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1618            CR.sextOrTrunc(NewBits)))
1619      return getTruncateOrSignExtend(X, Ty);
1620  }
1621
1622  // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1623  if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1624    if (SA->getNumOperands() == 2) {
1625      auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1626      auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1627      if (SMul && SC1) {
1628        if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1629          const APInt &C1 = SC1->getValue()->getValue();
1630          const APInt &C2 = SC2->getValue()->getValue();
1631          if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1632              C2.ugt(C1) && C2.isPowerOf2())
1633            return getAddExpr(getSignExtendExpr(SC1, Ty),
1634                              getSignExtendExpr(SMul, Ty));
1635        }
1636      }
1637    }
1638  }
1639  // If the input value is a chrec scev, and we can prove that the value
1640  // did not overflow the old, smaller, value, we can sign extend all of the
1641  // operands (often constants).  This allows analysis of something like
1642  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1643  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1644    if (AR->isAffine()) {
1645      const SCEV *Start = AR->getStart();
1646      const SCEV *Step = AR->getStepRecurrence(*this);
1647      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1648      const Loop *L = AR->getLoop();
1649
1650      // If we have special knowledge that this addrec won't overflow,
1651      // we don't need to do any further analysis.
1652      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1653        return getAddRecExpr(
1654            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1655            getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1656
1657      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1658      // Note that this serves two purposes: It filters out loops that are
1659      // simply not analyzable, and it covers the case where this code is
1660      // being called from within backedge-taken count analysis, such that
1661      // attempting to ask for the backedge-taken count would likely result
1662      // in infinite recursion. In the later case, the analysis code will
1663      // cope with a conservative value, and it will take care to purge
1664      // that value once it has finished.
1665      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1666      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1667        // Manually compute the final value for AR, checking for
1668        // overflow.
1669
1670        // Check whether the backedge-taken count can be losslessly casted to
1671        // the addrec's type. The count is always unsigned.
1672        const SCEV *CastedMaxBECount =
1673          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1674        const SCEV *RecastedMaxBECount =
1675          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1676        if (MaxBECount == RecastedMaxBECount) {
1677          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1678          // Check whether Start+Step*MaxBECount has no signed overflow.
1679          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1680          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1681          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1682          const SCEV *WideMaxBECount =
1683            getZeroExtendExpr(CastedMaxBECount, WideTy);
1684          const SCEV *OperandExtendedAdd =
1685            getAddExpr(WideStart,
1686                       getMulExpr(WideMaxBECount,
1687                                  getSignExtendExpr(Step, WideTy)));
1688          if (SAdd == OperandExtendedAdd) {
1689            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1690            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1691            // Return the expression with the addrec on the outside.
1692            return getAddRecExpr(
1693                getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1694                getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1695          }
1696          // Similar to above, only this time treat the step value as unsigned.
1697          // This covers loops that count up with an unsigned step.
1698          OperandExtendedAdd =
1699            getAddExpr(WideStart,
1700                       getMulExpr(WideMaxBECount,
1701                                  getZeroExtendExpr(Step, WideTy)));
1702          if (SAdd == OperandExtendedAdd) {
1703            // If AR wraps around then
1704            //
1705            //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1706            // => SAdd != OperandExtendedAdd
1707            //
1708            // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1709            // (SAdd == OperandExtendedAdd => AR is NW)
1710
1711            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1712
1713            // Return the expression with the addrec on the outside.
1714            return getAddRecExpr(
1715                getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1716                getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1717          }
1718        }
1719
1720        // If the backedge is guarded by a comparison with the pre-inc value
1721        // the addrec is safe. Also, if the entry is guarded by a comparison
1722        // with the start value and the backedge is guarded by a comparison
1723        // with the post-inc value, the addrec is safe.
1724        ICmpInst::Predicate Pred;
1725        const SCEV *OverflowLimit =
1726            getSignedOverflowLimitForStep(Step, &Pred, this);
1727        if (OverflowLimit &&
1728            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1729             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1730              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1731                                          OverflowLimit)))) {
1732          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1733          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1734          return getAddRecExpr(
1735              getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736              getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1737        }
1738      }
1739      // If Start and Step are constants, check if we can apply this
1740      // transformation:
1741      // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1742      auto SC1 = dyn_cast<SCEVConstant>(Start);
1743      auto SC2 = dyn_cast<SCEVConstant>(Step);
1744      if (SC1 && SC2) {
1745        const APInt &C1 = SC1->getValue()->getValue();
1746        const APInt &C2 = SC2->getValue()->getValue();
1747        if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1748            C2.isPowerOf2()) {
1749          Start = getSignExtendExpr(Start, Ty);
1750          const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1751                                            L, AR->getNoWrapFlags());
1752          return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1753        }
1754      }
1755
1756      if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1757        const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1758        return getAddRecExpr(
1759            getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1760            getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1761      }
1762    }
1763
1764  // The cast wasn't folded; create an explicit cast node.
1765  // Recompute the insert position, as it may have been invalidated.
1766  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1767  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1768                                                   Op, Ty);
1769  UniqueSCEVs.InsertNode(S, IP);
1770  return S;
1771}
1772
1773/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1774/// unspecified bits out to the given type.
1775///
1776const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1777                                              Type *Ty) {
1778  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1779         "This is not an extending conversion!");
1780  assert(isSCEVable(Ty) &&
1781         "This is not a conversion to a SCEVable type!");
1782  Ty = getEffectiveSCEVType(Ty);
1783
1784  // Sign-extend negative constants.
1785  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1786    if (SC->getValue()->getValue().isNegative())
1787      return getSignExtendExpr(Op, Ty);
1788
1789  // Peel off a truncate cast.
1790  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1791    const SCEV *NewOp = T->getOperand();
1792    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1793      return getAnyExtendExpr(NewOp, Ty);
1794    return getTruncateOrNoop(NewOp, Ty);
1795  }
1796
1797  // Next try a zext cast. If the cast is folded, use it.
1798  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1799  if (!isa<SCEVZeroExtendExpr>(ZExt))
1800    return ZExt;
1801
1802  // Next try a sext cast. If the cast is folded, use it.
1803  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1804  if (!isa<SCEVSignExtendExpr>(SExt))
1805    return SExt;
1806
1807  // Force the cast to be folded into the operands of an addrec.
1808  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1809    SmallVector<const SCEV *, 4> Ops;
1810    for (const SCEV *Op : AR->operands())
1811      Ops.push_back(getAnyExtendExpr(Op, Ty));
1812    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1813  }
1814
1815  // If the expression is obviously signed, use the sext cast value.
1816  if (isa<SCEVSMaxExpr>(Op))
1817    return SExt;
1818
1819  // Absent any other information, use the zext cast value.
1820  return ZExt;
1821}
1822
1823/// CollectAddOperandsWithScales - Process the given Ops list, which is
1824/// a list of operands to be added under the given scale, update the given
1825/// map. This is a helper function for getAddRecExpr. As an example of
1826/// what it does, given a sequence of operands that would form an add
1827/// expression like this:
1828///
1829///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1830///
1831/// where A and B are constants, update the map with these values:
1832///
1833///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1834///
1835/// and add 13 + A*B*29 to AccumulatedConstant.
1836/// This will allow getAddRecExpr to produce this:
1837///
1838///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1839///
1840/// This form often exposes folding opportunities that are hidden in
1841/// the original operand list.
1842///
1843/// Return true iff it appears that any interesting folding opportunities
1844/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1845/// the common case where no interesting opportunities are present, and
1846/// is also used as a check to avoid infinite recursion.
1847///
1848static bool
1849CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1850                             SmallVectorImpl<const SCEV *> &NewOps,
1851                             APInt &AccumulatedConstant,
1852                             const SCEV *const *Ops, size_t NumOperands,
1853                             const APInt &Scale,
1854                             ScalarEvolution &SE) {
1855  bool Interesting = false;
1856
1857  // Iterate over the add operands. They are sorted, with constants first.
1858  unsigned i = 0;
1859  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1860    ++i;
1861    // Pull a buried constant out to the outside.
1862    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1863      Interesting = true;
1864    AccumulatedConstant += Scale * C->getValue()->getValue();
1865  }
1866
1867  // Next comes everything else. We're especially interested in multiplies
1868  // here, but they're in the middle, so just visit the rest with one loop.
1869  for (; i != NumOperands; ++i) {
1870    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1871    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1872      APInt NewScale =
1873        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1874      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1875        // A multiplication of a constant with another add; recurse.
1876        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1877        Interesting |=
1878          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1879                                       Add->op_begin(), Add->getNumOperands(),
1880                                       NewScale, SE);
1881      } else {
1882        // A multiplication of a constant with some other value. Update
1883        // the map.
1884        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1885        const SCEV *Key = SE.getMulExpr(MulOps);
1886        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1887          M.insert(std::make_pair(Key, NewScale));
1888        if (Pair.second) {
1889          NewOps.push_back(Pair.first->first);
1890        } else {
1891          Pair.first->second += NewScale;
1892          // The map already had an entry for this value, which may indicate
1893          // a folding opportunity.
1894          Interesting = true;
1895        }
1896      }
1897    } else {
1898      // An ordinary operand. Update the map.
1899      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1900        M.insert(std::make_pair(Ops[i], Scale));
1901      if (Pair.second) {
1902        NewOps.push_back(Pair.first->first);
1903      } else {
1904        Pair.first->second += Scale;
1905        // The map already had an entry for this value, which may indicate
1906        // a folding opportunity.
1907        Interesting = true;
1908      }
1909    }
1910  }
1911
1912  return Interesting;
1913}
1914
1915namespace {
1916  struct APIntCompare {
1917    bool operator()(const APInt &LHS, const APInt &RHS) const {
1918      return LHS.ult(RHS);
1919    }
1920  };
1921}
1922
1923// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1924// `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1925// can't-overflow flags for the operation if possible.
1926static SCEV::NoWrapFlags
1927StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1928                      const SmallVectorImpl<const SCEV *> &Ops,
1929                      SCEV::NoWrapFlags OldFlags) {
1930  using namespace std::placeholders;
1931
1932  bool CanAnalyze =
1933      Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1934  (void)CanAnalyze;
1935  assert(CanAnalyze && "don't call from other places!");
1936
1937  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1938  SCEV::NoWrapFlags SignOrUnsignWrap =
1939      ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1940
1941  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1942  auto IsKnownNonNegative =
1943    std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1944
1945  if (SignOrUnsignWrap == SCEV::FlagNSW &&
1946      std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1947    return ScalarEvolution::setFlags(OldFlags,
1948                                     (SCEV::NoWrapFlags)SignOrUnsignMask);
1949
1950  return OldFlags;
1951}
1952
1953/// getAddExpr - Get a canonical add expression, or something simpler if
1954/// possible.
1955const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1956                                        SCEV::NoWrapFlags Flags) {
1957  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1958         "only nuw or nsw allowed");
1959  assert(!Ops.empty() && "Cannot get empty add!");
1960  if (Ops.size() == 1) return Ops[0];
1961#ifndef NDEBUG
1962  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1963  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1964    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1965           "SCEVAddExpr operand types don't match!");
1966#endif
1967
1968  Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
1969
1970  // Sort by complexity, this groups all similar expression types together.
1971  GroupByComplexity(Ops, LI);
1972
1973  // If there are any constants, fold them together.
1974  unsigned Idx = 0;
1975  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1976    ++Idx;
1977    assert(Idx < Ops.size());
1978    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1979      // We found two constants, fold them together!
1980      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1981                           RHSC->getValue()->getValue());
1982      if (Ops.size() == 2) return Ops[0];
1983      Ops.erase(Ops.begin()+1);  // Erase the folded element
1984      LHSC = cast<SCEVConstant>(Ops[0]);
1985    }
1986
1987    // If we are left with a constant zero being added, strip it off.
1988    if (LHSC->getValue()->isZero()) {
1989      Ops.erase(Ops.begin());
1990      --Idx;
1991    }
1992
1993    if (Ops.size() == 1) return Ops[0];
1994  }
1995
1996  // Okay, check to see if the same value occurs in the operand list more than
1997  // once.  If so, merge them together into an multiply expression.  Since we
1998  // sorted the list, these values are required to be adjacent.
1999  Type *Ty = Ops[0]->getType();
2000  bool FoundMatch = false;
2001  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2002    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2003      // Scan ahead to count how many equal operands there are.
2004      unsigned Count = 2;
2005      while (i+Count != e && Ops[i+Count] == Ops[i])
2006        ++Count;
2007      // Merge the values into a multiply.
2008      const SCEV *Scale = getConstant(Ty, Count);
2009      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2010      if (Ops.size() == Count)
2011        return Mul;
2012      Ops[i] = Mul;
2013      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2014      --i; e -= Count - 1;
2015      FoundMatch = true;
2016    }
2017  if (FoundMatch)
2018    return getAddExpr(Ops, Flags);
2019
2020  // Check for truncates. If all the operands are truncated from the same
2021  // type, see if factoring out the truncate would permit the result to be
2022  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2023  // if the contents of the resulting outer trunc fold to something simple.
2024  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2025    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2026    Type *DstType = Trunc->getType();
2027    Type *SrcType = Trunc->getOperand()->getType();
2028    SmallVector<const SCEV *, 8> LargeOps;
2029    bool Ok = true;
2030    // Check all the operands to see if they can be represented in the
2031    // source type of the truncate.
2032    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2033      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2034        if (T->getOperand()->getType() != SrcType) {
2035          Ok = false;
2036          break;
2037        }
2038        LargeOps.push_back(T->getOperand());
2039      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2040        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2041      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2042        SmallVector<const SCEV *, 8> LargeMulOps;
2043        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2044          if (const SCEVTruncateExpr *T =
2045                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2046            if (T->getOperand()->getType() != SrcType) {
2047              Ok = false;
2048              break;
2049            }
2050            LargeMulOps.push_back(T->getOperand());
2051          } else if (const SCEVConstant *C =
2052                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
2053            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2054          } else {
2055            Ok = false;
2056            break;
2057          }
2058        }
2059        if (Ok)
2060          LargeOps.push_back(getMulExpr(LargeMulOps));
2061      } else {
2062        Ok = false;
2063        break;
2064      }
2065    }
2066    if (Ok) {
2067      // Evaluate the expression in the larger type.
2068      const SCEV *Fold = getAddExpr(LargeOps, Flags);
2069      // If it folds to something simple, use it. Otherwise, don't.
2070      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2071        return getTruncateExpr(Fold, DstType);
2072    }
2073  }
2074
2075  // Skip past any other cast SCEVs.
2076  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2077    ++Idx;
2078
2079  // If there are add operands they would be next.
2080  if (Idx < Ops.size()) {
2081    bool DeletedAdd = false;
2082    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2083      // If we have an add, expand the add operands onto the end of the operands
2084      // list.
2085      Ops.erase(Ops.begin()+Idx);
2086      Ops.append(Add->op_begin(), Add->op_end());
2087      DeletedAdd = true;
2088    }
2089
2090    // If we deleted at least one add, we added operands to the end of the list,
2091    // and they are not necessarily sorted.  Recurse to resort and resimplify
2092    // any operands we just acquired.
2093    if (DeletedAdd)
2094      return getAddExpr(Ops);
2095  }
2096
2097  // Skip over the add expression until we get to a multiply.
2098  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2099    ++Idx;
2100
2101  // Check to see if there are any folding opportunities present with
2102  // operands multiplied by constant values.
2103  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2104    uint64_t BitWidth = getTypeSizeInBits(Ty);
2105    DenseMap<const SCEV *, APInt> M;
2106    SmallVector<const SCEV *, 8> NewOps;
2107    APInt AccumulatedConstant(BitWidth, 0);
2108    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2109                                     Ops.data(), Ops.size(),
2110                                     APInt(BitWidth, 1), *this)) {
2111      // Some interesting folding opportunity is present, so its worthwhile to
2112      // re-generate the operands list. Group the operands by constant scale,
2113      // to avoid multiplying by the same constant scale multiple times.
2114      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2115      for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
2116           E = NewOps.end(); I != E; ++I)
2117        MulOpLists[M.find(*I)->second].push_back(*I);
2118      // Re-generate the operands list.
2119      Ops.clear();
2120      if (AccumulatedConstant != 0)
2121        Ops.push_back(getConstant(AccumulatedConstant));
2122      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2123           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
2124        if (I->first != 0)
2125          Ops.push_back(getMulExpr(getConstant(I->first),
2126                                   getAddExpr(I->second)));
2127      if (Ops.empty())
2128        return getConstant(Ty, 0);
2129      if (Ops.size() == 1)
2130        return Ops[0];
2131      return getAddExpr(Ops);
2132    }
2133  }
2134
2135  // If we are adding something to a multiply expression, make sure the
2136  // something is not already an operand of the multiply.  If so, merge it into
2137  // the multiply.
2138  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2139    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2140    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2141      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2142      if (isa<SCEVConstant>(MulOpSCEV))
2143        continue;
2144      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2145        if (MulOpSCEV == Ops[AddOp]) {
2146          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2147          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2148          if (Mul->getNumOperands() != 2) {
2149            // If the multiply has more than two operands, we must get the
2150            // Y*Z term.
2151            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2152                                                Mul->op_begin()+MulOp);
2153            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2154            InnerMul = getMulExpr(MulOps);
2155          }
2156          const SCEV *One = getConstant(Ty, 1);
2157          const SCEV *AddOne = getAddExpr(One, InnerMul);
2158          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2159          if (Ops.size() == 2) return OuterMul;
2160          if (AddOp < Idx) {
2161            Ops.erase(Ops.begin()+AddOp);
2162            Ops.erase(Ops.begin()+Idx-1);
2163          } else {
2164            Ops.erase(Ops.begin()+Idx);
2165            Ops.erase(Ops.begin()+AddOp-1);
2166          }
2167          Ops.push_back(OuterMul);
2168          return getAddExpr(Ops);
2169        }
2170
2171      // Check this multiply against other multiplies being added together.
2172      for (unsigned OtherMulIdx = Idx+1;
2173           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2174           ++OtherMulIdx) {
2175        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2176        // If MulOp occurs in OtherMul, we can fold the two multiplies
2177        // together.
2178        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2179             OMulOp != e; ++OMulOp)
2180          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2181            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2182            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2183            if (Mul->getNumOperands() != 2) {
2184              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2185                                                  Mul->op_begin()+MulOp);
2186              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2187              InnerMul1 = getMulExpr(MulOps);
2188            }
2189            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2190            if (OtherMul->getNumOperands() != 2) {
2191              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2192                                                  OtherMul->op_begin()+OMulOp);
2193              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2194              InnerMul2 = getMulExpr(MulOps);
2195            }
2196            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2197            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2198            if (Ops.size() == 2) return OuterMul;
2199            Ops.erase(Ops.begin()+Idx);
2200            Ops.erase(Ops.begin()+OtherMulIdx-1);
2201            Ops.push_back(OuterMul);
2202            return getAddExpr(Ops);
2203          }
2204      }
2205    }
2206  }
2207
2208  // If there are any add recurrences in the operands list, see if any other
2209  // added values are loop invariant.  If so, we can fold them into the
2210  // recurrence.
2211  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2212    ++Idx;
2213
2214  // Scan over all recurrences, trying to fold loop invariants into them.
2215  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2216    // Scan all of the other operands to this add and add them to the vector if
2217    // they are loop invariant w.r.t. the recurrence.
2218    SmallVector<const SCEV *, 8> LIOps;
2219    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2220    const Loop *AddRecLoop = AddRec->getLoop();
2221    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2222      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2223        LIOps.push_back(Ops[i]);
2224        Ops.erase(Ops.begin()+i);
2225        --i; --e;
2226      }
2227
2228    // If we found some loop invariants, fold them into the recurrence.
2229    if (!LIOps.empty()) {
2230      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2231      LIOps.push_back(AddRec->getStart());
2232
2233      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2234                                             AddRec->op_end());
2235      AddRecOps[0] = getAddExpr(LIOps);
2236
2237      // Build the new addrec. Propagate the NUW and NSW flags if both the
2238      // outer add and the inner addrec are guaranteed to have no overflow.
2239      // Always propagate NW.
2240      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2241      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2242
2243      // If all of the other operands were loop invariant, we are done.
2244      if (Ops.size() == 1) return NewRec;
2245
2246      // Otherwise, add the folded AddRec by the non-invariant parts.
2247      for (unsigned i = 0;; ++i)
2248        if (Ops[i] == AddRec) {
2249          Ops[i] = NewRec;
2250          break;
2251        }
2252      return getAddExpr(Ops);
2253    }
2254
2255    // Okay, if there weren't any loop invariants to be folded, check to see if
2256    // there are multiple AddRec's with the same loop induction variable being
2257    // added together.  If so, we can fold them.
2258    for (unsigned OtherIdx = Idx+1;
2259         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2260         ++OtherIdx)
2261      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2262        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2263        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2264                                               AddRec->op_end());
2265        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2266             ++OtherIdx)
2267          if (const SCEVAddRecExpr *OtherAddRec =
2268                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2269            if (OtherAddRec->getLoop() == AddRecLoop) {
2270              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2271                   i != e; ++i) {
2272                if (i >= AddRecOps.size()) {
2273                  AddRecOps.append(OtherAddRec->op_begin()+i,
2274                                   OtherAddRec->op_end());
2275                  break;
2276                }
2277                AddRecOps[i] = getAddExpr(AddRecOps[i],
2278                                          OtherAddRec->getOperand(i));
2279              }
2280              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2281            }
2282        // Step size has changed, so we cannot guarantee no self-wraparound.
2283        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2284        return getAddExpr(Ops);
2285      }
2286
2287    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2288    // next one.
2289  }
2290
2291  // Okay, it looks like we really DO need an add expr.  Check to see if we
2292  // already have one, otherwise create a new one.
2293  FoldingSetNodeID ID;
2294  ID.AddInteger(scAddExpr);
2295  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2296    ID.AddPointer(Ops[i]);
2297  void *IP = nullptr;
2298  SCEVAddExpr *S =
2299    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2300  if (!S) {
2301    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2302    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2303    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2304                                        O, Ops.size());
2305    UniqueSCEVs.InsertNode(S, IP);
2306  }
2307  S->setNoWrapFlags(Flags);
2308  return S;
2309}
2310
2311static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2312  uint64_t k = i*j;
2313  if (j > 1 && k / j != i) Overflow = true;
2314  return k;
2315}
2316
2317/// Compute the result of "n choose k", the binomial coefficient.  If an
2318/// intermediate computation overflows, Overflow will be set and the return will
2319/// be garbage. Overflow is not cleared on absence of overflow.
2320static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2321  // We use the multiplicative formula:
2322  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2323  // At each iteration, we take the n-th term of the numeral and divide by the
2324  // (k-n)th term of the denominator.  This division will always produce an
2325  // integral result, and helps reduce the chance of overflow in the
2326  // intermediate computations. However, we can still overflow even when the
2327  // final result would fit.
2328
2329  if (n == 0 || n == k) return 1;
2330  if (k > n) return 0;
2331
2332  if (k > n/2)
2333    k = n-k;
2334
2335  uint64_t r = 1;
2336  for (uint64_t i = 1; i <= k; ++i) {
2337    r = umul_ov(r, n-(i-1), Overflow);
2338    r /= i;
2339  }
2340  return r;
2341}
2342
2343/// Determine if any of the operands in this SCEV are a constant or if
2344/// any of the add or multiply expressions in this SCEV contain a constant.
2345static bool containsConstantSomewhere(const SCEV *StartExpr) {
2346  SmallVector<const SCEV *, 4> Ops;
2347  Ops.push_back(StartExpr);
2348  while (!Ops.empty()) {
2349    const SCEV *CurrentExpr = Ops.pop_back_val();
2350    if (isa<SCEVConstant>(*CurrentExpr))
2351      return true;
2352
2353    if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2354      const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2355      Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2356    }
2357  }
2358  return false;
2359}
2360
2361/// getMulExpr - Get a canonical multiply expression, or something simpler if
2362/// possible.
2363const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2364                                        SCEV::NoWrapFlags Flags) {
2365  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2366         "only nuw or nsw allowed");
2367  assert(!Ops.empty() && "Cannot get empty mul!");
2368  if (Ops.size() == 1) return Ops[0];
2369#ifndef NDEBUG
2370  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2371  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2372    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2373           "SCEVMulExpr operand types don't match!");
2374#endif
2375
2376  Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2377
2378  // Sort by complexity, this groups all similar expression types together.
2379  GroupByComplexity(Ops, LI);
2380
2381  // If there are any constants, fold them together.
2382  unsigned Idx = 0;
2383  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2384
2385    // C1*(C2+V) -> C1*C2 + C1*V
2386    if (Ops.size() == 2)
2387        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2388          // If any of Add's ops are Adds or Muls with a constant,
2389          // apply this transformation as well.
2390          if (Add->getNumOperands() == 2)
2391            if (containsConstantSomewhere(Add))
2392              return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2393                                getMulExpr(LHSC, Add->getOperand(1)));
2394
2395    ++Idx;
2396    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2397      // We found two constants, fold them together!
2398      ConstantInt *Fold = ConstantInt::get(getContext(),
2399                                           LHSC->getValue()->getValue() *
2400                                           RHSC->getValue()->getValue());
2401      Ops[0] = getConstant(Fold);
2402      Ops.erase(Ops.begin()+1);  // Erase the folded element
2403      if (Ops.size() == 1) return Ops[0];
2404      LHSC = cast<SCEVConstant>(Ops[0]);
2405    }
2406
2407    // If we are left with a constant one being multiplied, strip it off.
2408    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2409      Ops.erase(Ops.begin());
2410      --Idx;
2411    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2412      // If we have a multiply of zero, it will always be zero.
2413      return Ops[0];
2414    } else if (Ops[0]->isAllOnesValue()) {
2415      // If we have a mul by -1 of an add, try distributing the -1 among the
2416      // add operands.
2417      if (Ops.size() == 2) {
2418        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2419          SmallVector<const SCEV *, 4> NewOps;
2420          bool AnyFolded = false;
2421          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2422                 E = Add->op_end(); I != E; ++I) {
2423            const SCEV *Mul = getMulExpr(Ops[0], *I);
2424            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2425            NewOps.push_back(Mul);
2426          }
2427          if (AnyFolded)
2428            return getAddExpr(NewOps);
2429        }
2430        else if (const SCEVAddRecExpr *
2431                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2432          // Negation preserves a recurrence's no self-wrap property.
2433          SmallVector<const SCEV *, 4> Operands;
2434          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2435                 E = AddRec->op_end(); I != E; ++I) {
2436            Operands.push_back(getMulExpr(Ops[0], *I));
2437          }
2438          return getAddRecExpr(Operands, AddRec->getLoop(),
2439                               AddRec->getNoWrapFlags(SCEV::FlagNW));
2440        }
2441      }
2442    }
2443
2444    if (Ops.size() == 1)
2445      return Ops[0];
2446  }
2447
2448  // Skip over the add expression until we get to a multiply.
2449  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2450    ++Idx;
2451
2452  // If there are mul operands inline them all into this expression.
2453  if (Idx < Ops.size()) {
2454    bool DeletedMul = false;
2455    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2456      // If we have an mul, expand the mul operands onto the end of the operands
2457      // list.
2458      Ops.erase(Ops.begin()+Idx);
2459      Ops.append(Mul->op_begin(), Mul->op_end());
2460      DeletedMul = true;
2461    }
2462
2463    // If we deleted at least one mul, we added operands to the end of the list,
2464    // and they are not necessarily sorted.  Recurse to resort and resimplify
2465    // any operands we just acquired.
2466    if (DeletedMul)
2467      return getMulExpr(Ops);
2468  }
2469
2470  // If there are any add recurrences in the operands list, see if any other
2471  // added values are loop invariant.  If so, we can fold them into the
2472  // recurrence.
2473  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2474    ++Idx;
2475
2476  // Scan over all recurrences, trying to fold loop invariants into them.
2477  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2478    // Scan all of the other operands to this mul and add them to the vector if
2479    // they are loop invariant w.r.t. the recurrence.
2480    SmallVector<const SCEV *, 8> LIOps;
2481    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2482    const Loop *AddRecLoop = AddRec->getLoop();
2483    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2484      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2485        LIOps.push_back(Ops[i]);
2486        Ops.erase(Ops.begin()+i);
2487        --i; --e;
2488      }
2489
2490    // If we found some loop invariants, fold them into the recurrence.
2491    if (!LIOps.empty()) {
2492      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2493      SmallVector<const SCEV *, 4> NewOps;
2494      NewOps.reserve(AddRec->getNumOperands());
2495      const SCEV *Scale = getMulExpr(LIOps);
2496      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2497        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2498
2499      // Build the new addrec. Propagate the NUW and NSW flags if both the
2500      // outer mul and the inner addrec are guaranteed to have no overflow.
2501      //
2502      // No self-wrap cannot be guaranteed after changing the step size, but
2503      // will be inferred if either NUW or NSW is true.
2504      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2505      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2506
2507      // If all of the other operands were loop invariant, we are done.
2508      if (Ops.size() == 1) return NewRec;
2509
2510      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2511      for (unsigned i = 0;; ++i)
2512        if (Ops[i] == AddRec) {
2513          Ops[i] = NewRec;
2514          break;
2515        }
2516      return getMulExpr(Ops);
2517    }
2518
2519    // Okay, if there weren't any loop invariants to be folded, check to see if
2520    // there are multiple AddRec's with the same loop induction variable being
2521    // multiplied together.  If so, we can fold them.
2522
2523    // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2524    // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2525    //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2526    //   ]]],+,...up to x=2n}.
2527    // Note that the arguments to choose() are always integers with values
2528    // known at compile time, never SCEV objects.
2529    //
2530    // The implementation avoids pointless extra computations when the two
2531    // addrec's are of different length (mathematically, it's equivalent to
2532    // an infinite stream of zeros on the right).
2533    bool OpsModified = false;
2534    for (unsigned OtherIdx = Idx+1;
2535         OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2536         ++OtherIdx) {
2537      const SCEVAddRecExpr *OtherAddRec =
2538        dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2539      if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2540        continue;
2541
2542      bool Overflow = false;
2543      Type *Ty = AddRec->getType();
2544      bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2545      SmallVector<const SCEV*, 7> AddRecOps;
2546      for (int x = 0, xe = AddRec->getNumOperands() +
2547             OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2548        const SCEV *Term = getConstant(Ty, 0);
2549        for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2550          uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2551          for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2552                 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2553               z < ze && !Overflow; ++z) {
2554            uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2555            uint64_t Coeff;
2556            if (LargerThan64Bits)
2557              Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2558            else
2559              Coeff = Coeff1*Coeff2;
2560            const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2561            const SCEV *Term1 = AddRec->getOperand(y-z);
2562            const SCEV *Term2 = OtherAddRec->getOperand(z);
2563            Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2564          }
2565        }
2566        AddRecOps.push_back(Term);
2567      }
2568      if (!Overflow) {
2569        const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2570                                              SCEV::FlagAnyWrap);
2571        if (Ops.size() == 2) return NewAddRec;
2572        Ops[Idx] = NewAddRec;
2573        Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2574        OpsModified = true;
2575        AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2576        if (!AddRec)
2577          break;
2578      }
2579    }
2580    if (OpsModified)
2581      return getMulExpr(Ops);
2582
2583    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2584    // next one.
2585  }
2586
2587  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2588  // already have one, otherwise create a new one.
2589  FoldingSetNodeID ID;
2590  ID.AddInteger(scMulExpr);
2591  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2592    ID.AddPointer(Ops[i]);
2593  void *IP = nullptr;
2594  SCEVMulExpr *S =
2595    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2596  if (!S) {
2597    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2598    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2599    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2600                                        O, Ops.size());
2601    UniqueSCEVs.InsertNode(S, IP);
2602  }
2603  S->setNoWrapFlags(Flags);
2604  return S;
2605}
2606
2607/// getUDivExpr - Get a canonical unsigned division expression, or something
2608/// simpler if possible.
2609const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2610                                         const SCEV *RHS) {
2611  assert(getEffectiveSCEVType(LHS->getType()) ==
2612         getEffectiveSCEVType(RHS->getType()) &&
2613         "SCEVUDivExpr operand types don't match!");
2614
2615  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2616    if (RHSC->getValue()->equalsInt(1))
2617      return LHS;                               // X udiv 1 --> x
2618    // If the denominator is zero, the result of the udiv is undefined. Don't
2619    // try to analyze it, because the resolution chosen here may differ from
2620    // the resolution chosen in other parts of the compiler.
2621    if (!RHSC->getValue()->isZero()) {
2622      // Determine if the division can be folded into the operands of
2623      // its operands.
2624      // TODO: Generalize this to non-constants by using known-bits information.
2625      Type *Ty = LHS->getType();
2626      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2627      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2628      // For non-power-of-two values, effectively round the value up to the
2629      // nearest power of two.
2630      if (!RHSC->getValue()->getValue().isPowerOf2())
2631        ++MaxShiftAmt;
2632      IntegerType *ExtTy =
2633        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2634      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2635        if (const SCEVConstant *Step =
2636            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2637          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2638          const APInt &StepInt = Step->getValue()->getValue();
2639          const APInt &DivInt = RHSC->getValue()->getValue();
2640          if (!StepInt.urem(DivInt) &&
2641              getZeroExtendExpr(AR, ExtTy) ==
2642              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2643                            getZeroExtendExpr(Step, ExtTy),
2644                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2645            SmallVector<const SCEV *, 4> Operands;
2646            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2647              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2648            return getAddRecExpr(Operands, AR->getLoop(),
2649                                 SCEV::FlagNW);
2650          }
2651          /// Get a canonical UDivExpr for a recurrence.
2652          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2653          // We can currently only fold X%N if X is constant.
2654          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2655          if (StartC && !DivInt.urem(StepInt) &&
2656              getZeroExtendExpr(AR, ExtTy) ==
2657              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2658                            getZeroExtendExpr(Step, ExtTy),
2659                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2660            const APInt &StartInt = StartC->getValue()->getValue();
2661            const APInt &StartRem = StartInt.urem(StepInt);
2662            if (StartRem != 0)
2663              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2664                                  AR->getLoop(), SCEV::FlagNW);
2665          }
2666        }
2667      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2668      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2669        SmallVector<const SCEV *, 4> Operands;
2670        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2671          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2672        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2673          // Find an operand that's safely divisible.
2674          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2675            const SCEV *Op = M->getOperand(i);
2676            const SCEV *Div = getUDivExpr(Op, RHSC);
2677            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2678              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2679                                                      M->op_end());
2680              Operands[i] = Div;
2681              return getMulExpr(Operands);
2682            }
2683          }
2684      }
2685      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2686      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2687        SmallVector<const SCEV *, 4> Operands;
2688        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2689          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2690        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2691          Operands.clear();
2692          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2693            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2694            if (isa<SCEVUDivExpr>(Op) ||
2695                getMulExpr(Op, RHS) != A->getOperand(i))
2696              break;
2697            Operands.push_back(Op);
2698          }
2699          if (Operands.size() == A->getNumOperands())
2700            return getAddExpr(Operands);
2701        }
2702      }
2703
2704      // Fold if both operands are constant.
2705      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2706        Constant *LHSCV = LHSC->getValue();
2707        Constant *RHSCV = RHSC->getValue();
2708        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2709                                                                   RHSCV)));
2710      }
2711    }
2712  }
2713
2714  FoldingSetNodeID ID;
2715  ID.AddInteger(scUDivExpr);
2716  ID.AddPointer(LHS);
2717  ID.AddPointer(RHS);
2718  void *IP = nullptr;
2719  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2720  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2721                                             LHS, RHS);
2722  UniqueSCEVs.InsertNode(S, IP);
2723  return S;
2724}
2725
2726static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2727  APInt A = C1->getValue()->getValue().abs();
2728  APInt B = C2->getValue()->getValue().abs();
2729  uint32_t ABW = A.getBitWidth();
2730  uint32_t BBW = B.getBitWidth();
2731
2732  if (ABW > BBW)
2733    B = B.zext(ABW);
2734  else if (ABW < BBW)
2735    A = A.zext(BBW);
2736
2737  return APIntOps::GreatestCommonDivisor(A, B);
2738}
2739
2740/// getUDivExactExpr - Get a canonical unsigned division expression, or
2741/// something simpler if possible. There is no representation for an exact udiv
2742/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2743/// We can't do this when it's not exact because the udiv may be clearing bits.
2744const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2745                                              const SCEV *RHS) {
2746  // TODO: we could try to find factors in all sorts of things, but for now we
2747  // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2748  // end of this file for inspiration.
2749
2750  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2751  if (!Mul)
2752    return getUDivExpr(LHS, RHS);
2753
2754  if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2755    // If the mulexpr multiplies by a constant, then that constant must be the
2756    // first element of the mulexpr.
2757    if (const SCEVConstant *LHSCst =
2758            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2759      if (LHSCst == RHSCst) {
2760        SmallVector<const SCEV *, 2> Operands;
2761        Operands.append(Mul->op_begin() + 1, Mul->op_end());
2762        return getMulExpr(Operands);
2763      }
2764
2765      // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2766      // that there's a factor provided by one of the other terms. We need to
2767      // check.
2768      APInt Factor = gcd(LHSCst, RHSCst);
2769      if (!Factor.isIntN(1)) {
2770        LHSCst = cast<SCEVConstant>(
2771            getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2772        RHSCst = cast<SCEVConstant>(
2773            getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2774        SmallVector<const SCEV *, 2> Operands;
2775        Operands.push_back(LHSCst);
2776        Operands.append(Mul->op_begin() + 1, Mul->op_end());
2777        LHS = getMulExpr(Operands);
2778        RHS = RHSCst;
2779        Mul = dyn_cast<SCEVMulExpr>(LHS);
2780        if (!Mul)
2781          return getUDivExactExpr(LHS, RHS);
2782      }
2783    }
2784  }
2785
2786  for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2787    if (Mul->getOperand(i) == RHS) {
2788      SmallVector<const SCEV *, 2> Operands;
2789      Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2790      Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2791      return getMulExpr(Operands);
2792    }
2793  }
2794
2795  return getUDivExpr(LHS, RHS);
2796}
2797
2798/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2799/// Simplify the expression as much as possible.
2800const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2801                                           const Loop *L,
2802                                           SCEV::NoWrapFlags Flags) {
2803  SmallVector<const SCEV *, 4> Operands;
2804  Operands.push_back(Start);
2805  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2806    if (StepChrec->getLoop() == L) {
2807      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2808      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2809    }
2810
2811  Operands.push_back(Step);
2812  return getAddRecExpr(Operands, L, Flags);
2813}
2814
2815/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2816/// Simplify the expression as much as possible.
2817const SCEV *
2818ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2819                               const Loop *L, SCEV::NoWrapFlags Flags) {
2820  if (Operands.size() == 1) return Operands[0];
2821#ifndef NDEBUG
2822  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2823  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2824    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2825           "SCEVAddRecExpr operand types don't match!");
2826  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2827    assert(isLoopInvariant(Operands[i], L) &&
2828           "SCEVAddRecExpr operand is not loop-invariant!");
2829#endif
2830
2831  if (Operands.back()->isZero()) {
2832    Operands.pop_back();
2833    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2834  }
2835
2836  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2837  // use that information to infer NUW and NSW flags. However, computing a
2838  // BE count requires calling getAddRecExpr, so we may not yet have a
2839  // meaningful BE count at this point (and if we don't, we'd be stuck
2840  // with a SCEVCouldNotCompute as the cached BE count).
2841
2842  Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2843
2844  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2845  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2846    const Loop *NestedLoop = NestedAR->getLoop();
2847    if (L->contains(NestedLoop) ?
2848        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2849        (!NestedLoop->contains(L) &&
2850         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2851      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2852                                                  NestedAR->op_end());
2853      Operands[0] = NestedAR->getStart();
2854      // AddRecs require their operands be loop-invariant with respect to their
2855      // loops. Don't perform this transformation if it would break this
2856      // requirement.
2857      bool AllInvariant = true;
2858      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2859        if (!isLoopInvariant(Operands[i], L)) {
2860          AllInvariant = false;
2861          break;
2862        }
2863      if (AllInvariant) {
2864        // Create a recurrence for the outer loop with the same step size.
2865        //
2866        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2867        // inner recurrence has the same property.
2868        SCEV::NoWrapFlags OuterFlags =
2869          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2870
2871        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2872        AllInvariant = true;
2873        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2874          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2875            AllInvariant = false;
2876            break;
2877          }
2878        if (AllInvariant) {
2879          // Ok, both add recurrences are valid after the transformation.
2880          //
2881          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2882          // the outer recurrence has the same property.
2883          SCEV::NoWrapFlags InnerFlags =
2884            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2885          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2886        }
2887      }
2888      // Reset Operands to its original state.
2889      Operands[0] = NestedAR;
2890    }
2891  }
2892
2893  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2894  // already have one, otherwise create a new one.
2895  FoldingSetNodeID ID;
2896  ID.AddInteger(scAddRecExpr);
2897  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2898    ID.AddPointer(Operands[i]);
2899  ID.AddPointer(L);
2900  void *IP = nullptr;
2901  SCEVAddRecExpr *S =
2902    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2903  if (!S) {
2904    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2905    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2906    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2907                                           O, Operands.size(), L);
2908    UniqueSCEVs.InsertNode(S, IP);
2909  }
2910  S->setNoWrapFlags(Flags);
2911  return S;
2912}
2913
2914const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2915                                         const SCEV *RHS) {
2916  SmallVector<const SCEV *, 2> Ops;
2917  Ops.push_back(LHS);
2918  Ops.push_back(RHS);
2919  return getSMaxExpr(Ops);
2920}
2921
2922const SCEV *
2923ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2924  assert(!Ops.empty() && "Cannot get empty smax!");
2925  if (Ops.size() == 1) return Ops[0];
2926#ifndef NDEBUG
2927  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2928  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2929    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2930           "SCEVSMaxExpr operand types don't match!");
2931#endif
2932
2933  // Sort by complexity, this groups all similar expression types together.
2934  GroupByComplexity(Ops, LI);
2935
2936  // If there are any constants, fold them together.
2937  unsigned Idx = 0;
2938  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2939    ++Idx;
2940    assert(Idx < Ops.size());
2941    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2942      // We found two constants, fold them together!
2943      ConstantInt *Fold = ConstantInt::get(getContext(),
2944                              APIntOps::smax(LHSC->getValue()->getValue(),
2945                                             RHSC->getValue()->getValue()));
2946      Ops[0] = getConstant(Fold);
2947      Ops.erase(Ops.begin()+1);  // Erase the folded element
2948      if (Ops.size() == 1) return Ops[0];
2949      LHSC = cast<SCEVConstant>(Ops[0]);
2950    }
2951
2952    // If we are left with a constant minimum-int, strip it off.
2953    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2954      Ops.erase(Ops.begin());
2955      --Idx;
2956    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2957      // If we have an smax with a constant maximum-int, it will always be
2958      // maximum-int.
2959      return Ops[0];
2960    }
2961
2962    if (Ops.size() == 1) return Ops[0];
2963  }
2964
2965  // Find the first SMax
2966  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2967    ++Idx;
2968
2969  // Check to see if one of the operands is an SMax. If so, expand its operands
2970  // onto our operand list, and recurse to simplify.
2971  if (Idx < Ops.size()) {
2972    bool DeletedSMax = false;
2973    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2974      Ops.erase(Ops.begin()+Idx);
2975      Ops.append(SMax->op_begin(), SMax->op_end());
2976      DeletedSMax = true;
2977    }
2978
2979    if (DeletedSMax)
2980      return getSMaxExpr(Ops);
2981  }
2982
2983  // Okay, check to see if the same value occurs in the operand list twice.  If
2984  // so, delete one.  Since we sorted the list, these values are required to
2985  // be adjacent.
2986  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2987    //  X smax Y smax Y  -->  X smax Y
2988    //  X smax Y         -->  X, if X is always greater than Y
2989    if (Ops[i] == Ops[i+1] ||
2990        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2991      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2992      --i; --e;
2993    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2994      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2995      --i; --e;
2996    }
2997
2998  if (Ops.size() == 1) return Ops[0];
2999
3000  assert(!Ops.empty() && "Reduced smax down to nothing!");
3001
3002  // Okay, it looks like we really DO need an smax expr.  Check to see if we
3003  // already have one, otherwise create a new one.
3004  FoldingSetNodeID ID;
3005  ID.AddInteger(scSMaxExpr);
3006  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3007    ID.AddPointer(Ops[i]);
3008  void *IP = nullptr;
3009  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3010  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3011  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3012  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3013                                             O, Ops.size());
3014  UniqueSCEVs.InsertNode(S, IP);
3015  return S;
3016}
3017
3018const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3019                                         const SCEV *RHS) {
3020  SmallVector<const SCEV *, 2> Ops;
3021  Ops.push_back(LHS);
3022  Ops.push_back(RHS);
3023  return getUMaxExpr(Ops);
3024}
3025
3026const SCEV *
3027ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3028  assert(!Ops.empty() && "Cannot get empty umax!");
3029  if (Ops.size() == 1) return Ops[0];
3030#ifndef NDEBUG
3031  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3032  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3033    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3034           "SCEVUMaxExpr operand types don't match!");
3035#endif
3036
3037  // Sort by complexity, this groups all similar expression types together.
3038  GroupByComplexity(Ops, LI);
3039
3040  // If there are any constants, fold them together.
3041  unsigned Idx = 0;
3042  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3043    ++Idx;
3044    assert(Idx < Ops.size());
3045    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3046      // We found two constants, fold them together!
3047      ConstantInt *Fold = ConstantInt::get(getContext(),
3048                              APIntOps::umax(LHSC->getValue()->getValue(),
3049                                             RHSC->getValue()->getValue()));
3050      Ops[0] = getConstant(Fold);
3051      Ops.erase(Ops.begin()+1);  // Erase the folded element
3052      if (Ops.size() == 1) return Ops[0];
3053      LHSC = cast<SCEVConstant>(Ops[0]);
3054    }
3055
3056    // If we are left with a constant minimum-int, strip it off.
3057    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3058      Ops.erase(Ops.begin());
3059      --Idx;
3060    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3061      // If we have an umax with a constant maximum-int, it will always be
3062      // maximum-int.
3063      return Ops[0];
3064    }
3065
3066    if (Ops.size() == 1) return Ops[0];
3067  }
3068
3069  // Find the first UMax
3070  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3071    ++Idx;
3072
3073  // Check to see if one of the operands is a UMax. If so, expand its operands
3074  // onto our operand list, and recurse to simplify.
3075  if (Idx < Ops.size()) {
3076    bool DeletedUMax = false;
3077    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3078      Ops.erase(Ops.begin()+Idx);
3079      Ops.append(UMax->op_begin(), UMax->op_end());
3080      DeletedUMax = true;
3081    }
3082
3083    if (DeletedUMax)
3084      return getUMaxExpr(Ops);
3085  }
3086
3087  // Okay, check to see if the same value occurs in the operand list twice.  If
3088  // so, delete one.  Since we sorted the list, these values are required to
3089  // be adjacent.
3090  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3091    //  X umax Y umax Y  -->  X umax Y
3092    //  X umax Y         -->  X, if X is always greater than Y
3093    if (Ops[i] == Ops[i+1] ||
3094        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3095      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3096      --i; --e;
3097    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3098      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3099      --i; --e;
3100    }
3101
3102  if (Ops.size() == 1) return Ops[0];
3103
3104  assert(!Ops.empty() && "Reduced umax down to nothing!");
3105
3106  // Okay, it looks like we really DO need a umax expr.  Check to see if we
3107  // already have one, otherwise create a new one.
3108  FoldingSetNodeID ID;
3109  ID.AddInteger(scUMaxExpr);
3110  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3111    ID.AddPointer(Ops[i]);
3112  void *IP = nullptr;
3113  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3114  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3115  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3116  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3117                                             O, Ops.size());
3118  UniqueSCEVs.InsertNode(S, IP);
3119  return S;
3120}
3121
3122const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3123                                         const SCEV *RHS) {
3124  // ~smax(~x, ~y) == smin(x, y).
3125  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3126}
3127
3128const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3129                                         const SCEV *RHS) {
3130  // ~umax(~x, ~y) == umin(x, y)
3131  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3132}
3133
3134const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3135  // We can bypass creating a target-independent
3136  // constant expression and then folding it back into a ConstantInt.
3137  // This is just a compile-time optimization.
3138  return getConstant(IntTy,
3139                     F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
3140}
3141
3142const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3143                                             StructType *STy,
3144                                             unsigned FieldNo) {
3145  // We can bypass creating a target-independent
3146  // constant expression and then folding it back into a ConstantInt.
3147  // This is just a compile-time optimization.
3148  return getConstant(
3149      IntTy,
3150      F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
3151          FieldNo));
3152}
3153
3154const SCEV *ScalarEvolution::getUnknown(Value *V) {
3155  // Don't attempt to do anything other than create a SCEVUnknown object
3156  // here.  createSCEV only calls getUnknown after checking for all other
3157  // interesting possibilities, and any other code that calls getUnknown
3158  // is doing so in order to hide a value from SCEV canonicalization.
3159
3160  FoldingSetNodeID ID;
3161  ID.AddInteger(scUnknown);
3162  ID.AddPointer(V);
3163  void *IP = nullptr;
3164  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3165    assert(cast<SCEVUnknown>(S)->getValue() == V &&
3166           "Stale SCEVUnknown in uniquing map!");
3167    return S;
3168  }
3169  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3170                                            FirstUnknown);
3171  FirstUnknown = cast<SCEVUnknown>(S);
3172  UniqueSCEVs.InsertNode(S, IP);
3173  return S;
3174}
3175
3176//===----------------------------------------------------------------------===//
3177//            Basic SCEV Analysis and PHI Idiom Recognition Code
3178//
3179
3180/// isSCEVable - Test if values of the given type are analyzable within
3181/// the SCEV framework. This primarily includes integer types, and it
3182/// can optionally include pointer types if the ScalarEvolution class
3183/// has access to target-specific information.
3184bool ScalarEvolution::isSCEVable(Type *Ty) const {
3185  // Integers and pointers are always SCEVable.
3186  return Ty->isIntegerTy() || Ty->isPointerTy();
3187}
3188
3189/// getTypeSizeInBits - Return the size in bits of the specified type,
3190/// for which isSCEVable must return true.
3191uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3192  assert(isSCEVable(Ty) && "Type is not SCEVable!");
3193  return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
3194}
3195
3196/// getEffectiveSCEVType - Return a type with the same bitwidth as
3197/// the given type and which represents how SCEV will treat the given
3198/// type, for which isSCEVable must return true. For pointer types,
3199/// this is the pointer-sized integer type.
3200Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3201  assert(isSCEVable(Ty) && "Type is not SCEVable!");
3202
3203  if (Ty->isIntegerTy()) {
3204    return Ty;
3205  }
3206
3207  // The only other support type is pointer.
3208  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3209  return F->getParent()->getDataLayout().getIntPtrType(Ty);
3210}
3211
3212const SCEV *ScalarEvolution::getCouldNotCompute() {
3213  return &CouldNotCompute;
3214}
3215
3216namespace {
3217  // Helper class working with SCEVTraversal to figure out if a SCEV contains
3218  // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3219  // is set iff if find such SCEVUnknown.
3220  //
3221  struct FindInvalidSCEVUnknown {
3222    bool FindOne;
3223    FindInvalidSCEVUnknown() { FindOne = false; }
3224    bool follow(const SCEV *S) {
3225      switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3226      case scConstant:
3227        return false;
3228      case scUnknown:
3229        if (!cast<SCEVUnknown>(S)->getValue())
3230          FindOne = true;
3231        return false;
3232      default:
3233        return true;
3234      }
3235    }
3236    bool isDone() const { return FindOne; }
3237  };
3238}
3239
3240bool ScalarEvolution::checkValidity(const SCEV *S) const {
3241  FindInvalidSCEVUnknown F;
3242  SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3243  ST.visitAll(S);
3244
3245  return !F.FindOne;
3246}
3247
3248/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3249/// expression and create a new one.
3250const SCEV *ScalarEvolution::getSCEV(Value *V) {
3251  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3252
3253  ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3254  if (I != ValueExprMap.end()) {
3255    const SCEV *S = I->second;
3256    if (checkValidity(S))
3257      return S;
3258    else
3259      ValueExprMap.erase(I);
3260  }
3261  const SCEV *S = createSCEV(V);
3262
3263  // The process of creating a SCEV for V may have caused other SCEVs
3264  // to have been created, so it's necessary to insert the new entry
3265  // from scratch, rather than trying to remember the insert position
3266  // above.
3267  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3268  return S;
3269}
3270
3271/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3272///
3273const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
3274  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3275    return getConstant(
3276               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3277
3278  Type *Ty = V->getType();
3279  Ty = getEffectiveSCEVType(Ty);
3280  return getMulExpr(V,
3281                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
3282}
3283
3284/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3285const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3286  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3287    return getConstant(
3288                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3289
3290  Type *Ty = V->getType();
3291  Ty = getEffectiveSCEVType(Ty);
3292  const SCEV *AllOnes =
3293                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3294  return getMinusSCEV(AllOnes, V);
3295}
3296
3297/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3298const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3299                                          SCEV::NoWrapFlags Flags) {
3300  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3301
3302  // Fast path: X - X --> 0.
3303  if (LHS == RHS)
3304    return getConstant(LHS->getType(), 0);
3305
3306  // X - Y --> X + -Y.
3307  // X -(nsw || nuw) Y --> X + -Y.
3308  return getAddExpr(LHS, getNegativeSCEV(RHS));
3309}
3310
3311/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3312/// input value to the specified type.  If the type must be extended, it is zero
3313/// extended.
3314const SCEV *
3315ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3316  Type *SrcTy = V->getType();
3317  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3318         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3319         "Cannot truncate or zero extend with non-integer arguments!");
3320  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3321    return V;  // No conversion
3322  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3323    return getTruncateExpr(V, Ty);
3324  return getZeroExtendExpr(V, Ty);
3325}
3326
3327/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3328/// input value to the specified type.  If the type must be extended, it is sign
3329/// extended.
3330const SCEV *
3331ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3332                                         Type *Ty) {
3333  Type *SrcTy = V->getType();
3334  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3335         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3336         "Cannot truncate or zero extend with non-integer arguments!");
3337  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3338    return V;  // No conversion
3339  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3340    return getTruncateExpr(V, Ty);
3341  return getSignExtendExpr(V, Ty);
3342}
3343
3344/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3345/// input value to the specified type.  If the type must be extended, it is zero
3346/// extended.  The conversion must not be narrowing.
3347const SCEV *
3348ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3349  Type *SrcTy = V->getType();
3350  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3351         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3352         "Cannot noop or zero extend with non-integer arguments!");
3353  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3354         "getNoopOrZeroExtend cannot truncate!");
3355  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3356    return V;  // No conversion
3357  return getZeroExtendExpr(V, Ty);
3358}
3359
3360/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3361/// input value to the specified type.  If the type must be extended, it is sign
3362/// extended.  The conversion must not be narrowing.
3363const SCEV *
3364ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3365  Type *SrcTy = V->getType();
3366  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3367         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3368         "Cannot noop or sign extend with non-integer arguments!");
3369  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3370         "getNoopOrSignExtend cannot truncate!");
3371  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3372    return V;  // No conversion
3373  return getSignExtendExpr(V, Ty);
3374}
3375
3376/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3377/// the input value to the specified type. If the type must be extended,
3378/// it is extended with unspecified bits. The conversion must not be
3379/// narrowing.
3380const SCEV *
3381ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3382  Type *SrcTy = V->getType();
3383  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3384         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3385         "Cannot noop or any extend with non-integer arguments!");
3386  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3387         "getNoopOrAnyExtend cannot truncate!");
3388  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3389    return V;  // No conversion
3390  return getAnyExtendExpr(V, Ty);
3391}
3392
3393/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3394/// input value to the specified type.  The conversion must not be widening.
3395const SCEV *
3396ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3397  Type *SrcTy = V->getType();
3398  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3399         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3400         "Cannot truncate or noop with non-integer arguments!");
3401  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3402         "getTruncateOrNoop cannot extend!");
3403  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3404    return V;  // No conversion
3405  return getTruncateExpr(V, Ty);
3406}
3407
3408/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3409/// the types using zero-extension, and then perform a umax operation
3410/// with them.
3411const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3412                                                        const SCEV *RHS) {
3413  const SCEV *PromotedLHS = LHS;
3414  const SCEV *PromotedRHS = RHS;
3415
3416  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3417    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3418  else
3419    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3420
3421  return getUMaxExpr(PromotedLHS, PromotedRHS);
3422}
3423
3424/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3425/// the types using zero-extension, and then perform a umin operation
3426/// with them.
3427const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3428                                                        const SCEV *RHS) {
3429  const SCEV *PromotedLHS = LHS;
3430  const SCEV *PromotedRHS = RHS;
3431
3432  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3433    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3434  else
3435    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3436
3437  return getUMinExpr(PromotedLHS, PromotedRHS);
3438}
3439
3440/// getPointerBase - Transitively follow the chain of pointer-type operands
3441/// until reaching a SCEV that does not have a single pointer operand. This
3442/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3443/// but corner cases do exist.
3444const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3445  // A pointer operand may evaluate to a nonpointer expression, such as null.
3446  if (!V->getType()->isPointerTy())
3447    return V;
3448
3449  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3450    return getPointerBase(Cast->getOperand());
3451  }
3452  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3453    const SCEV *PtrOp = nullptr;
3454    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3455         I != E; ++I) {
3456      if ((*I)->getType()->isPointerTy()) {
3457        // Cannot find the base of an expression with multiple pointer operands.
3458        if (PtrOp)
3459          return V;
3460        PtrOp = *I;
3461      }
3462    }
3463    if (!PtrOp)
3464      return V;
3465    return getPointerBase(PtrOp);
3466  }
3467  return V;
3468}
3469
3470/// PushDefUseChildren - Push users of the given Instruction
3471/// onto the given Worklist.
3472static void
3473PushDefUseChildren(Instruction *I,
3474                   SmallVectorImpl<Instruction *> &Worklist) {
3475  // Push the def-use children onto the Worklist stack.
3476  for (User *U : I->users())
3477    Worklist.push_back(cast<Instruction>(U));
3478}
3479
3480/// ForgetSymbolicValue - This looks up computed SCEV values for all
3481/// instructions that depend on the given instruction and removes them from
3482/// the ValueExprMapType map if they reference SymName. This is used during PHI
3483/// resolution.
3484void
3485ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3486  SmallVector<Instruction *, 16> Worklist;
3487  PushDefUseChildren(PN, Worklist);
3488
3489  SmallPtrSet<Instruction *, 8> Visited;
3490  Visited.insert(PN);
3491  while (!Worklist.empty()) {
3492    Instruction *I = Worklist.pop_back_val();
3493    if (!Visited.insert(I).second)
3494      continue;
3495
3496    ValueExprMapType::iterator It =
3497      ValueExprMap.find_as(static_cast<Value *>(I));
3498    if (It != ValueExprMap.end()) {
3499      const SCEV *Old = It->second;
3500
3501      // Short-circuit the def-use traversal if the symbolic name
3502      // ceases to appear in expressions.
3503      if (Old != SymName && !hasOperand(Old, SymName))
3504        continue;
3505
3506      // SCEVUnknown for a PHI either means that it has an unrecognized
3507      // structure, it's a PHI that's in the progress of being computed
3508      // by createNodeForPHI, or it's a single-value PHI. In the first case,
3509      // additional loop trip count information isn't going to change anything.
3510      // In the second case, createNodeForPHI will perform the necessary
3511      // updates on its own when it gets to that point. In the third, we do
3512      // want to forget the SCEVUnknown.
3513      if (!isa<PHINode>(I) ||
3514          !isa<SCEVUnknown>(Old) ||
3515          (I != PN && Old == SymName)) {
3516        forgetMemoizedResults(Old);
3517        ValueExprMap.erase(It);
3518      }
3519    }
3520
3521    PushDefUseChildren(I, Worklist);
3522  }
3523}
3524
3525/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
3526/// a loop header, making it a potential recurrence, or it doesn't.
3527///
3528const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3529  if (const Loop *L = LI->getLoopFor(PN->getParent()))
3530    if (L->getHeader() == PN->getParent()) {
3531      // The loop may have multiple entrances or multiple exits; we can analyze
3532      // this phi as an addrec if it has a unique entry value and a unique
3533      // backedge value.
3534      Value *BEValueV = nullptr, *StartValueV = nullptr;
3535      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3536        Value *V = PN->getIncomingValue(i);
3537        if (L->contains(PN->getIncomingBlock(i))) {
3538          if (!BEValueV) {
3539            BEValueV = V;
3540          } else if (BEValueV != V) {
3541            BEValueV = nullptr;
3542            break;
3543          }
3544        } else if (!StartValueV) {
3545          StartValueV = V;
3546        } else if (StartValueV != V) {
3547          StartValueV = nullptr;
3548          break;
3549        }
3550      }
3551      if (BEValueV && StartValueV) {
3552        // While we are analyzing this PHI node, handle its value symbolically.
3553        const SCEV *SymbolicName = getUnknown(PN);
3554        assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3555               "PHI node already processed?");
3556        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3557
3558        // Using this symbolic name for the PHI, analyze the value coming around
3559        // the back-edge.
3560        const SCEV *BEValue = getSCEV(BEValueV);
3561
3562        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3563        // has a special value for the first iteration of the loop.
3564
3565        // If the value coming around the backedge is an add with the symbolic
3566        // value we just inserted, then we found a simple induction variable!
3567        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3568          // If there is a single occurrence of the symbolic value, replace it
3569          // with a recurrence.
3570          unsigned FoundIndex = Add->getNumOperands();
3571          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3572            if (Add->getOperand(i) == SymbolicName)
3573              if (FoundIndex == e) {
3574                FoundIndex = i;
3575                break;
3576              }
3577
3578          if (FoundIndex != Add->getNumOperands()) {
3579            // Create an add with everything but the specified operand.
3580            SmallVector<const SCEV *, 8> Ops;
3581            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3582              if (i != FoundIndex)
3583                Ops.push_back(Add->getOperand(i));
3584            const SCEV *Accum = getAddExpr(Ops);
3585
3586            // This is not a valid addrec if the step amount is varying each
3587            // loop iteration, but is not itself an addrec in this loop.
3588            if (isLoopInvariant(Accum, L) ||
3589                (isa<SCEVAddRecExpr>(Accum) &&
3590                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3591              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3592
3593              // If the increment doesn't overflow, then neither the addrec nor
3594              // the post-increment will overflow.
3595              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3596                if (OBO->getOperand(0) == PN) {
3597                  if (OBO->hasNoUnsignedWrap())
3598                    Flags = setFlags(Flags, SCEV::FlagNUW);
3599                  if (OBO->hasNoSignedWrap())
3600                    Flags = setFlags(Flags, SCEV::FlagNSW);
3601                }
3602              } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3603                // If the increment is an inbounds GEP, then we know the address
3604                // space cannot be wrapped around. We cannot make any guarantee
3605                // about signed or unsigned overflow because pointers are
3606                // unsigned but we may have a negative index from the base
3607                // pointer. We can guarantee that no unsigned wrap occurs if the
3608                // indices form a positive value.
3609                if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3610                  Flags = setFlags(Flags, SCEV::FlagNW);
3611
3612                  const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3613                  if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3614                    Flags = setFlags(Flags, SCEV::FlagNUW);
3615                }
3616
3617                // We cannot transfer nuw and nsw flags from subtraction
3618                // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3619                // for instance.
3620              }
3621
3622              const SCEV *StartVal = getSCEV(StartValueV);
3623              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3624
3625              // Since the no-wrap flags are on the increment, they apply to the
3626              // post-incremented value as well.
3627              if (isLoopInvariant(Accum, L))
3628                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3629                                    Accum, L, Flags);
3630
3631              // Okay, for the entire analysis of this edge we assumed the PHI
3632              // to be symbolic.  We now need to go back and purge all of the
3633              // entries for the scalars that use the symbolic expression.
3634              ForgetSymbolicName(PN, SymbolicName);
3635              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3636              return PHISCEV;
3637            }
3638          }
3639        } else if (const SCEVAddRecExpr *AddRec =
3640                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3641          // Otherwise, this could be a loop like this:
3642          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3643          // In this case, j = {1,+,1}  and BEValue is j.
3644          // Because the other in-value of i (0) fits the evolution of BEValue
3645          // i really is an addrec evolution.
3646          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3647            const SCEV *StartVal = getSCEV(StartValueV);
3648
3649            // If StartVal = j.start - j.stride, we can use StartVal as the
3650            // initial step of the addrec evolution.
3651            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3652                                         AddRec->getOperand(1))) {
3653              // FIXME: For constant StartVal, we should be able to infer
3654              // no-wrap flags.
3655              const SCEV *PHISCEV =
3656                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3657                              SCEV::FlagAnyWrap);
3658
3659              // Okay, for the entire analysis of this edge we assumed the PHI
3660              // to be symbolic.  We now need to go back and purge all of the
3661              // entries for the scalars that use the symbolic expression.
3662              ForgetSymbolicName(PN, SymbolicName);
3663              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3664              return PHISCEV;
3665            }
3666          }
3667        }
3668      }
3669    }
3670
3671  // If the PHI has a single incoming value, follow that value, unless the
3672  // PHI's incoming blocks are in a different loop, in which case doing so
3673  // risks breaking LCSSA form. Instcombine would normally zap these, but
3674  // it doesn't have DominatorTree information, so it may miss cases.
3675  if (Value *V =
3676          SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
3677    if (LI->replacementPreservesLCSSAForm(PN, V))
3678      return getSCEV(V);
3679
3680  // If it's not a loop phi, we can't handle it yet.
3681  return getUnknown(PN);
3682}
3683
3684/// createNodeForGEP - Expand GEP instructions into add and multiply
3685/// operations. This allows them to be analyzed by regular SCEV code.
3686///
3687const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3688  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3689  Value *Base = GEP->getOperand(0);
3690  // Don't attempt to analyze GEPs over unsized objects.
3691  if (!Base->getType()->getPointerElementType()->isSized())
3692    return getUnknown(GEP);
3693
3694  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3695  // Add expression, because the Instruction may be guarded by control flow
3696  // and the no-overflow bits may not be valid for the expression in any
3697  // context.
3698  SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3699
3700  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3701  gep_type_iterator GTI = gep_type_begin(GEP);
3702  for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3703                                      E = GEP->op_end();
3704       I != E; ++I) {
3705    Value *Index = *I;
3706    // Compute the (potentially symbolic) offset in bytes for this index.
3707    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3708      // For a struct, add the member offset.
3709      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3710      const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3711
3712      // Add the field offset to the running total offset.
3713      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3714    } else {
3715      // For an array, add the element offset, explicitly scaled.
3716      const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3717      const SCEV *IndexS = getSCEV(Index);
3718      // Getelementptr indices are signed.
3719      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3720
3721      // Multiply the index by the element size to compute the element offset.
3722      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3723
3724      // Add the element offset to the running total offset.
3725      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3726    }
3727  }
3728
3729  // Get the SCEV for the GEP base.
3730  const SCEV *BaseS = getSCEV(Base);
3731
3732  // Add the total offset from all the GEP indices to the base.
3733  return getAddExpr(BaseS, TotalOffset, Wrap);
3734}
3735
3736/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3737/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3738/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3739/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3740uint32_t
3741ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3742  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3743    return C->getValue()->getValue().countTrailingZeros();
3744
3745  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3746    return std::min(GetMinTrailingZeros(T->getOperand()),
3747                    (uint32_t)getTypeSizeInBits(T->getType()));
3748
3749  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3750    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3751    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3752             getTypeSizeInBits(E->getType()) : OpRes;
3753  }
3754
3755  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3756    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3757    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3758             getTypeSizeInBits(E->getType()) : OpRes;
3759  }
3760
3761  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3762    // The result is the min of all operands results.
3763    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3764    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3765      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3766    return MinOpRes;
3767  }
3768
3769  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3770    // The result is the sum of all operands results.
3771    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3772    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3773    for (unsigned i = 1, e = M->getNumOperands();
3774         SumOpRes != BitWidth && i != e; ++i)
3775      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3776                          BitWidth);
3777    return SumOpRes;
3778  }
3779
3780  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3781    // The result is the min of all operands results.
3782    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3783    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3784      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3785    return MinOpRes;
3786  }
3787
3788  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3789    // The result is the min of all operands results.
3790    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3791    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3792      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3793    return MinOpRes;
3794  }
3795
3796  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3797    // The result is the min of all operands results.
3798    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3799    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3800      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3801    return MinOpRes;
3802  }
3803
3804  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3805    // For a SCEVUnknown, ask ValueTracking.
3806    unsigned BitWidth = getTypeSizeInBits(U->getType());
3807    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3808    computeKnownBits(U->getValue(), Zeros, Ones,
3809                     F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
3810    return Zeros.countTrailingOnes();
3811  }
3812
3813  // SCEVUDivExpr
3814  return 0;
3815}
3816
3817/// GetRangeFromMetadata - Helper method to assign a range to V from
3818/// metadata present in the IR.
3819static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3820  if (Instruction *I = dyn_cast<Instruction>(V)) {
3821    if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
3822      ConstantRange TotalRange(
3823          cast<IntegerType>(I->getType())->getBitWidth(), false);
3824
3825      unsigned NumRanges = MD->getNumOperands() / 2;
3826      assert(NumRanges >= 1);
3827
3828      for (unsigned i = 0; i < NumRanges; ++i) {
3829        ConstantInt *Lower =
3830            mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3831        ConstantInt *Upper =
3832            mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
3833        ConstantRange Range(Lower->getValue(), Upper->getValue());
3834        TotalRange = TotalRange.unionWith(Range);
3835      }
3836
3837      return TotalRange;
3838    }
3839  }
3840
3841  return None;
3842}
3843
3844/// getRange - Determine the range for a particular SCEV.  If SignHint is
3845/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3846/// with a "cleaner" unsigned (resp. signed) representation.
3847///
3848ConstantRange
3849ScalarEvolution::getRange(const SCEV *S,
3850                          ScalarEvolution::RangeSignHint SignHint) {
3851  DenseMap<const SCEV *, ConstantRange> &Cache =
3852      SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3853                                                       : SignedRanges;
3854
3855  // See if we've computed this range already.
3856  DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3857  if (I != Cache.end())
3858    return I->second;
3859
3860  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3861    return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
3862
3863  unsigned BitWidth = getTypeSizeInBits(S->getType());
3864  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3865
3866  // If the value has known zeros, the maximum value will have those known zeros
3867  // as well.
3868  uint32_t TZ = GetMinTrailingZeros(S);
3869  if (TZ != 0) {
3870    if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3871      ConservativeResult =
3872          ConstantRange(APInt::getMinValue(BitWidth),
3873                        APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3874    else
3875      ConservativeResult = ConstantRange(
3876          APInt::getSignedMinValue(BitWidth),
3877          APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3878  }
3879
3880  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3881    ConstantRange X = getRange(Add->getOperand(0), SignHint);
3882    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3883      X = X.add(getRange(Add->getOperand(i), SignHint));
3884    return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
3885  }
3886
3887  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3888    ConstantRange X = getRange(Mul->getOperand(0), SignHint);
3889    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3890      X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3891    return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
3892  }
3893
3894  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3895    ConstantRange X = getRange(SMax->getOperand(0), SignHint);
3896    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3897      X = X.smax(getRange(SMax->getOperand(i), SignHint));
3898    return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
3899  }
3900
3901  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3902    ConstantRange X = getRange(UMax->getOperand(0), SignHint);
3903    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3904      X = X.umax(getRange(UMax->getOperand(i), SignHint));
3905    return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
3906  }
3907
3908  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3909    ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3910    ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3911    return setRange(UDiv, SignHint,
3912                    ConservativeResult.intersectWith(X.udiv(Y)));
3913  }
3914
3915  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3916    ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3917    return setRange(ZExt, SignHint,
3918                    ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3919  }
3920
3921  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3922    ConstantRange X = getRange(SExt->getOperand(), SignHint);
3923    return setRange(SExt, SignHint,
3924                    ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3925  }
3926
3927  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3928    ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3929    return setRange(Trunc, SignHint,
3930                    ConservativeResult.intersectWith(X.truncate(BitWidth)));
3931  }
3932
3933  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3934    // If there's no unsigned wrap, the value will never be less than its
3935    // initial value.
3936    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3937      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3938        if (!C->getValue()->isZero())
3939          ConservativeResult =
3940            ConservativeResult.intersectWith(
3941              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3942
3943    // If there's no signed wrap, and all the operands have the same sign or
3944    // zero, the value won't ever change sign.
3945    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3946      bool AllNonNeg = true;
3947      bool AllNonPos = true;
3948      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3949        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3950        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3951      }
3952      if (AllNonNeg)
3953        ConservativeResult = ConservativeResult.intersectWith(
3954          ConstantRange(APInt(BitWidth, 0),
3955                        APInt::getSignedMinValue(BitWidth)));
3956      else if (AllNonPos)
3957        ConservativeResult = ConservativeResult.intersectWith(
3958          ConstantRange(APInt::getSignedMinValue(BitWidth),
3959                        APInt(BitWidth, 1)));
3960    }
3961
3962    // TODO: non-affine addrec
3963    if (AddRec->isAffine()) {
3964      Type *Ty = AddRec->getType();
3965      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3966      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3967          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3968
3969        // Check for overflow.  This must be done with ConstantRange arithmetic
3970        // because we could be called from within the ScalarEvolution overflow
3971        // checking code.
3972
3973        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3974        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3975        ConstantRange ZExtMaxBECountRange =
3976            MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
3977
3978        const SCEV *Start = AddRec->getStart();
3979        const SCEV *Step = AddRec->getStepRecurrence(*this);
3980        ConstantRange StepSRange = getSignedRange(Step);
3981        ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
3982
3983        ConstantRange StartURange = getUnsignedRange(Start);
3984        ConstantRange EndURange =
3985            StartURange.add(MaxBECountRange.multiply(StepSRange));
3986
3987        // Check for unsigned overflow.
3988        ConstantRange ZExtStartURange =
3989            StartURange.zextOrTrunc(BitWidth * 2 + 1);
3990        ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
3991        if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
3992            ZExtEndURange) {
3993          APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
3994                                     EndURange.getUnsignedMin());
3995          APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
3996                                     EndURange.getUnsignedMax());
3997          bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
3998          if (!IsFullRange)
3999            ConservativeResult =
4000                ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4001        }
4002
4003        ConstantRange StartSRange = getSignedRange(Start);
4004        ConstantRange EndSRange =
4005            StartSRange.add(MaxBECountRange.multiply(StepSRange));
4006
4007        // Check for signed overflow. This must be done with ConstantRange
4008        // arithmetic because we could be called from within the ScalarEvolution
4009        // overflow checking code.
4010        ConstantRange SExtStartSRange =
4011            StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4012        ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4013        if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4014            SExtEndSRange) {
4015          APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4016                                     EndSRange.getSignedMin());
4017          APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4018                                     EndSRange.getSignedMax());
4019          bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4020          if (!IsFullRange)
4021            ConservativeResult =
4022                ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4023        }
4024      }
4025    }
4026
4027    return setRange(AddRec, SignHint, ConservativeResult);
4028  }
4029
4030  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4031    // Check if the IR explicitly contains !range metadata.
4032    Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4033    if (MDRange.hasValue())
4034      ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4035
4036    // Split here to avoid paying the compile-time cost of calling both
4037    // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4038    // if needed.
4039    const DataLayout &DL = F->getParent()->getDataLayout();
4040    if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4041      // For a SCEVUnknown, ask ValueTracking.
4042      APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4043      computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
4044      if (Ones != ~Zeros + 1)
4045        ConservativeResult =
4046            ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4047    } else {
4048      assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4049             "generalize as needed!");
4050      unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
4051      if (NS > 1)
4052        ConservativeResult = ConservativeResult.intersectWith(
4053            ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4054                          APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4055    }
4056
4057    return setRange(U, SignHint, ConservativeResult);
4058  }
4059
4060  return setRange(S, SignHint, ConservativeResult);
4061}
4062
4063/// createSCEV - We know that there is no SCEV for the specified value.
4064/// Analyze the expression.
4065///
4066const SCEV *ScalarEvolution::createSCEV(Value *V) {
4067  if (!isSCEVable(V->getType()))
4068    return getUnknown(V);
4069
4070  unsigned Opcode = Instruction::UserOp1;
4071  if (Instruction *I = dyn_cast<Instruction>(V)) {
4072    Opcode = I->getOpcode();
4073
4074    // Don't attempt to analyze instructions in blocks that aren't
4075    // reachable. Such instructions don't matter, and they aren't required
4076    // to obey basic rules for definitions dominating uses which this
4077    // analysis depends on.
4078    if (!DT->isReachableFromEntry(I->getParent()))
4079      return getUnknown(V);
4080  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4081    Opcode = CE->getOpcode();
4082  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4083    return getConstant(CI);
4084  else if (isa<ConstantPointerNull>(V))
4085    return getConstant(V->getType(), 0);
4086  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4087    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4088  else
4089    return getUnknown(V);
4090
4091  Operator *U = cast<Operator>(V);
4092  switch (Opcode) {
4093  case Instruction::Add: {
4094    // The simple thing to do would be to just call getSCEV on both operands
4095    // and call getAddExpr with the result. However if we're looking at a
4096    // bunch of things all added together, this can be quite inefficient,
4097    // because it leads to N-1 getAddExpr calls for N ultimate operands.
4098    // Instead, gather up all the operands and make a single getAddExpr call.
4099    // LLVM IR canonical form means we need only traverse the left operands.
4100    //
4101    // Don't apply this instruction's NSW or NUW flags to the new
4102    // expression. The instruction may be guarded by control flow that the
4103    // no-wrap behavior depends on. Non-control-equivalent instructions can be
4104    // mapped to the same SCEV expression, and it would be incorrect to transfer
4105    // NSW/NUW semantics to those operations.
4106    SmallVector<const SCEV *, 4> AddOps;
4107    AddOps.push_back(getSCEV(U->getOperand(1)));
4108    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4109      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4110      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4111        break;
4112      U = cast<Operator>(Op);
4113      const SCEV *Op1 = getSCEV(U->getOperand(1));
4114      if (Opcode == Instruction::Sub)
4115        AddOps.push_back(getNegativeSCEV(Op1));
4116      else
4117        AddOps.push_back(Op1);
4118    }
4119    AddOps.push_back(getSCEV(U->getOperand(0)));
4120    return getAddExpr(AddOps);
4121  }
4122  case Instruction::Mul: {
4123    // Don't transfer NSW/NUW for the same reason as AddExpr.
4124    SmallVector<const SCEV *, 4> MulOps;
4125    MulOps.push_back(getSCEV(U->getOperand(1)));
4126    for (Value *Op = U->getOperand(0);
4127         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
4128         Op = U->getOperand(0)) {
4129      U = cast<Operator>(Op);
4130      MulOps.push_back(getSCEV(U->getOperand(1)));
4131    }
4132    MulOps.push_back(getSCEV(U->getOperand(0)));
4133    return getMulExpr(MulOps);
4134  }
4135  case Instruction::UDiv:
4136    return getUDivExpr(getSCEV(U->getOperand(0)),
4137                       getSCEV(U->getOperand(1)));
4138  case Instruction::Sub:
4139    return getMinusSCEV(getSCEV(U->getOperand(0)),
4140                        getSCEV(U->getOperand(1)));
4141  case Instruction::And:
4142    // For an expression like x&255 that merely masks off the high bits,
4143    // use zext(trunc(x)) as the SCEV expression.
4144    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4145      if (CI->isNullValue())
4146        return getSCEV(U->getOperand(1));
4147      if (CI->isAllOnesValue())
4148        return getSCEV(U->getOperand(0));
4149      const APInt &A = CI->getValue();
4150
4151      // Instcombine's ShrinkDemandedConstant may strip bits out of
4152      // constants, obscuring what would otherwise be a low-bits mask.
4153      // Use computeKnownBits to compute what ShrinkDemandedConstant
4154      // knew about to reconstruct a low-bits mask value.
4155      unsigned LZ = A.countLeadingZeros();
4156      unsigned TZ = A.countTrailingZeros();
4157      unsigned BitWidth = A.getBitWidth();
4158      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4159      computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
4160                       F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
4161
4162      APInt EffectiveMask =
4163          APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4164      if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4165        const SCEV *MulCount = getConstant(
4166            ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4167        return getMulExpr(
4168            getZeroExtendExpr(
4169                getTruncateExpr(
4170                    getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4171                    IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4172                U->getType()),
4173            MulCount);
4174      }
4175    }
4176    break;
4177
4178  case Instruction::Or:
4179    // If the RHS of the Or is a constant, we may have something like:
4180    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4181    // optimizations will transparently handle this case.
4182    //
4183    // In order for this transformation to be safe, the LHS must be of the
4184    // form X*(2^n) and the Or constant must be less than 2^n.
4185    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4186      const SCEV *LHS = getSCEV(U->getOperand(0));
4187      const APInt &CIVal = CI->getValue();
4188      if (GetMinTrailingZeros(LHS) >=
4189          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4190        // Build a plain add SCEV.
4191        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4192        // If the LHS of the add was an addrec and it has no-wrap flags,
4193        // transfer the no-wrap flags, since an or won't introduce a wrap.
4194        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4195          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4196          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4197            OldAR->getNoWrapFlags());
4198        }
4199        return S;
4200      }
4201    }
4202    break;
4203  case Instruction::Xor:
4204    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4205      // If the RHS of the xor is a signbit, then this is just an add.
4206      // Instcombine turns add of signbit into xor as a strength reduction step.
4207      if (CI->getValue().isSignBit())
4208        return getAddExpr(getSCEV(U->getOperand(0)),
4209                          getSCEV(U->getOperand(1)));
4210
4211      // If the RHS of xor is -1, then this is a not operation.
4212      if (CI->isAllOnesValue())
4213        return getNotSCEV(getSCEV(U->getOperand(0)));
4214
4215      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4216      // This is a variant of the check for xor with -1, and it handles
4217      // the case where instcombine has trimmed non-demanded bits out
4218      // of an xor with -1.
4219      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4220        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4221          if (BO->getOpcode() == Instruction::And &&
4222              LCI->getValue() == CI->getValue())
4223            if (const SCEVZeroExtendExpr *Z =
4224                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4225              Type *UTy = U->getType();
4226              const SCEV *Z0 = Z->getOperand();
4227              Type *Z0Ty = Z0->getType();
4228              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4229
4230              // If C is a low-bits mask, the zero extend is serving to
4231              // mask off the high bits. Complement the operand and
4232              // re-apply the zext.
4233              if (APIntOps::isMask(Z0TySize, CI->getValue()))
4234                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4235
4236              // If C is a single bit, it may be in the sign-bit position
4237              // before the zero-extend. In this case, represent the xor
4238              // using an add, which is equivalent, and re-apply the zext.
4239              APInt Trunc = CI->getValue().trunc(Z0TySize);
4240              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4241                  Trunc.isSignBit())
4242                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4243                                         UTy);
4244            }
4245    }
4246    break;
4247
4248  case Instruction::Shl:
4249    // Turn shift left of a constant amount into a multiply.
4250    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4251      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4252
4253      // If the shift count is not less than the bitwidth, the result of
4254      // the shift is undefined. Don't try to analyze it, because the
4255      // resolution chosen here may differ from the resolution chosen in
4256      // other parts of the compiler.
4257      if (SA->getValue().uge(BitWidth))
4258        break;
4259
4260      Constant *X = ConstantInt::get(getContext(),
4261        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4262      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4263    }
4264    break;
4265
4266  case Instruction::LShr:
4267    // Turn logical shift right of a constant into a unsigned divide.
4268    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4269      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4270
4271      // If the shift count is not less than the bitwidth, the result of
4272      // the shift is undefined. Don't try to analyze it, because the
4273      // resolution chosen here may differ from the resolution chosen in
4274      // other parts of the compiler.
4275      if (SA->getValue().uge(BitWidth))
4276        break;
4277
4278      Constant *X = ConstantInt::get(getContext(),
4279        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4280      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4281    }
4282    break;
4283
4284  case Instruction::AShr:
4285    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4286    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4287      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4288        if (L->getOpcode() == Instruction::Shl &&
4289            L->getOperand(1) == U->getOperand(1)) {
4290          uint64_t BitWidth = getTypeSizeInBits(U->getType());
4291
4292          // If the shift count is not less than the bitwidth, the result of
4293          // the shift is undefined. Don't try to analyze it, because the
4294          // resolution chosen here may differ from the resolution chosen in
4295          // other parts of the compiler.
4296          if (CI->getValue().uge(BitWidth))
4297            break;
4298
4299          uint64_t Amt = BitWidth - CI->getZExtValue();
4300          if (Amt == BitWidth)
4301            return getSCEV(L->getOperand(0));       // shift by zero --> noop
4302          return
4303            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4304                                              IntegerType::get(getContext(),
4305                                                               Amt)),
4306                              U->getType());
4307        }
4308    break;
4309
4310  case Instruction::Trunc:
4311    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4312
4313  case Instruction::ZExt:
4314    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4315
4316  case Instruction::SExt:
4317    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4318
4319  case Instruction::BitCast:
4320    // BitCasts are no-op casts so we just eliminate the cast.
4321    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4322      return getSCEV(U->getOperand(0));
4323    break;
4324
4325  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4326  // lead to pointer expressions which cannot safely be expanded to GEPs,
4327  // because ScalarEvolution doesn't respect the GEP aliasing rules when
4328  // simplifying integer expressions.
4329
4330  case Instruction::GetElementPtr:
4331    return createNodeForGEP(cast<GEPOperator>(U));
4332
4333  case Instruction::PHI:
4334    return createNodeForPHI(cast<PHINode>(U));
4335
4336  case Instruction::Select:
4337    // This could be a smax or umax that was lowered earlier.
4338    // Try to recover it.
4339    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4340      Value *LHS = ICI->getOperand(0);
4341      Value *RHS = ICI->getOperand(1);
4342      switch (ICI->getPredicate()) {
4343      case ICmpInst::ICMP_SLT:
4344      case ICmpInst::ICMP_SLE:
4345        std::swap(LHS, RHS);
4346        // fall through
4347      case ICmpInst::ICMP_SGT:
4348      case ICmpInst::ICMP_SGE:
4349        // a >s b ? a+x : b+x  ->  smax(a, b)+x
4350        // a >s b ? b+x : a+x  ->  smin(a, b)+x
4351        if (getTypeSizeInBits(LHS->getType()) <=
4352            getTypeSizeInBits(U->getType())) {
4353          const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4354          const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
4355          const SCEV *LA = getSCEV(U->getOperand(1));
4356          const SCEV *RA = getSCEV(U->getOperand(2));
4357          const SCEV *LDiff = getMinusSCEV(LA, LS);
4358          const SCEV *RDiff = getMinusSCEV(RA, RS);
4359          if (LDiff == RDiff)
4360            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4361          LDiff = getMinusSCEV(LA, RS);
4362          RDiff = getMinusSCEV(RA, LS);
4363          if (LDiff == RDiff)
4364            return getAddExpr(getSMinExpr(LS, RS), LDiff);
4365        }
4366        break;
4367      case ICmpInst::ICMP_ULT:
4368      case ICmpInst::ICMP_ULE:
4369        std::swap(LHS, RHS);
4370        // fall through
4371      case ICmpInst::ICMP_UGT:
4372      case ICmpInst::ICMP_UGE:
4373        // a >u b ? a+x : b+x  ->  umax(a, b)+x
4374        // a >u b ? b+x : a+x  ->  umin(a, b)+x
4375        if (getTypeSizeInBits(LHS->getType()) <=
4376            getTypeSizeInBits(U->getType())) {
4377          const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4378          const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
4379          const SCEV *LA = getSCEV(U->getOperand(1));
4380          const SCEV *RA = getSCEV(U->getOperand(2));
4381          const SCEV *LDiff = getMinusSCEV(LA, LS);
4382          const SCEV *RDiff = getMinusSCEV(RA, RS);
4383          if (LDiff == RDiff)
4384            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4385          LDiff = getMinusSCEV(LA, RS);
4386          RDiff = getMinusSCEV(RA, LS);
4387          if (LDiff == RDiff)
4388            return getAddExpr(getUMinExpr(LS, RS), LDiff);
4389        }
4390        break;
4391      case ICmpInst::ICMP_NE:
4392        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4393        if (getTypeSizeInBits(LHS->getType()) <=
4394                getTypeSizeInBits(U->getType()) &&
4395            isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4396          const SCEV *One = getConstant(U->getType(), 1);
4397          const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4398          const SCEV *LA = getSCEV(U->getOperand(1));
4399          const SCEV *RA = getSCEV(U->getOperand(2));
4400          const SCEV *LDiff = getMinusSCEV(LA, LS);
4401          const SCEV *RDiff = getMinusSCEV(RA, One);
4402          if (LDiff == RDiff)
4403            return getAddExpr(getUMaxExpr(One, LS), LDiff);
4404        }
4405        break;
4406      case ICmpInst::ICMP_EQ:
4407        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4408        if (getTypeSizeInBits(LHS->getType()) <=
4409                getTypeSizeInBits(U->getType()) &&
4410            isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4411          const SCEV *One = getConstant(U->getType(), 1);
4412          const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4413          const SCEV *LA = getSCEV(U->getOperand(1));
4414          const SCEV *RA = getSCEV(U->getOperand(2));
4415          const SCEV *LDiff = getMinusSCEV(LA, One);
4416          const SCEV *RDiff = getMinusSCEV(RA, LS);
4417          if (LDiff == RDiff)
4418            return getAddExpr(getUMaxExpr(One, LS), LDiff);
4419        }
4420        break;
4421      default:
4422        break;
4423      }
4424    }
4425
4426  default: // We cannot analyze this expression.
4427    break;
4428  }
4429
4430  return getUnknown(V);
4431}
4432
4433
4434
4435//===----------------------------------------------------------------------===//
4436//                   Iteration Count Computation Code
4437//
4438
4439unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4440  if (BasicBlock *ExitingBB = L->getExitingBlock())
4441    return getSmallConstantTripCount(L, ExitingBB);
4442
4443  // No trip count information for multiple exits.
4444  return 0;
4445}
4446
4447/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4448/// normal unsigned value. Returns 0 if the trip count is unknown or not
4449/// constant. Will also return 0 if the maximum trip count is very large (>=
4450/// 2^32).
4451///
4452/// This "trip count" assumes that control exits via ExitingBlock. More
4453/// precisely, it is the number of times that control may reach ExitingBlock
4454/// before taking the branch. For loops with multiple exits, it may not be the
4455/// number times that the loop header executes because the loop may exit
4456/// prematurely via another branch.
4457unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4458                                                    BasicBlock *ExitingBlock) {
4459  assert(ExitingBlock && "Must pass a non-null exiting block!");
4460  assert(L->isLoopExiting(ExitingBlock) &&
4461         "Exiting block must actually branch out of the loop!");
4462  const SCEVConstant *ExitCount =
4463      dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4464  if (!ExitCount)
4465    return 0;
4466
4467  ConstantInt *ExitConst = ExitCount->getValue();
4468
4469  // Guard against huge trip counts.
4470  if (ExitConst->getValue().getActiveBits() > 32)
4471    return 0;
4472
4473  // In case of integer overflow, this returns 0, which is correct.
4474  return ((unsigned)ExitConst->getZExtValue()) + 1;
4475}
4476
4477unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4478  if (BasicBlock *ExitingBB = L->getExitingBlock())
4479    return getSmallConstantTripMultiple(L, ExitingBB);
4480
4481  // No trip multiple information for multiple exits.
4482  return 0;
4483}
4484
4485/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4486/// trip count of this loop as a normal unsigned value, if possible. This
4487/// means that the actual trip count is always a multiple of the returned
4488/// value (don't forget the trip count could very well be zero as well!).
4489///
4490/// Returns 1 if the trip count is unknown or not guaranteed to be the
4491/// multiple of a constant (which is also the case if the trip count is simply
4492/// constant, use getSmallConstantTripCount for that case), Will also return 1
4493/// if the trip count is very large (>= 2^32).
4494///
4495/// As explained in the comments for getSmallConstantTripCount, this assumes
4496/// that control exits the loop via ExitingBlock.
4497unsigned
4498ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4499                                              BasicBlock *ExitingBlock) {
4500  assert(ExitingBlock && "Must pass a non-null exiting block!");
4501  assert(L->isLoopExiting(ExitingBlock) &&
4502         "Exiting block must actually branch out of the loop!");
4503  const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4504  if (ExitCount == getCouldNotCompute())
4505    return 1;
4506
4507  // Get the trip count from the BE count by adding 1.
4508  const SCEV *TCMul = getAddExpr(ExitCount,
4509                                 getConstant(ExitCount->getType(), 1));
4510  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4511  // to factor simple cases.
4512  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4513    TCMul = Mul->getOperand(0);
4514
4515  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4516  if (!MulC)
4517    return 1;
4518
4519  ConstantInt *Result = MulC->getValue();
4520
4521  // Guard against huge trip counts (this requires checking
4522  // for zero to handle the case where the trip count == -1 and the
4523  // addition wraps).
4524  if (!Result || Result->getValue().getActiveBits() > 32 ||
4525      Result->getValue().getActiveBits() == 0)
4526    return 1;
4527
4528  return (unsigned)Result->getZExtValue();
4529}
4530
4531// getExitCount - Get the expression for the number of loop iterations for which
4532// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4533// SCEVCouldNotCompute.
4534const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4535  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4536}
4537
4538/// getBackedgeTakenCount - If the specified loop has a predictable
4539/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4540/// object. The backedge-taken count is the number of times the loop header
4541/// will be branched to from within the loop. This is one less than the
4542/// trip count of the loop, since it doesn't count the first iteration,
4543/// when the header is branched to from outside the loop.
4544///
4545/// Note that it is not valid to call this method on a loop without a
4546/// loop-invariant backedge-taken count (see
4547/// hasLoopInvariantBackedgeTakenCount).
4548///
4549const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4550  return getBackedgeTakenInfo(L).getExact(this);
4551}
4552
4553/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4554/// return the least SCEV value that is known never to be less than the
4555/// actual backedge taken count.
4556const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4557  return getBackedgeTakenInfo(L).getMax(this);
4558}
4559
4560/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4561/// onto the given Worklist.
4562static void
4563PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4564  BasicBlock *Header = L->getHeader();
4565
4566  // Push all Loop-header PHIs onto the Worklist stack.
4567  for (BasicBlock::iterator I = Header->begin();
4568       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4569    Worklist.push_back(PN);
4570}
4571
4572const ScalarEvolution::BackedgeTakenInfo &
4573ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4574  // Initially insert an invalid entry for this loop. If the insertion
4575  // succeeds, proceed to actually compute a backedge-taken count and
4576  // update the value. The temporary CouldNotCompute value tells SCEV
4577  // code elsewhere that it shouldn't attempt to request a new
4578  // backedge-taken count, which could result in infinite recursion.
4579  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4580    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4581  if (!Pair.second)
4582    return Pair.first->second;
4583
4584  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4585  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4586  // must be cleared in this scope.
4587  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4588
4589  if (Result.getExact(this) != getCouldNotCompute()) {
4590    assert(isLoopInvariant(Result.getExact(this), L) &&
4591           isLoopInvariant(Result.getMax(this), L) &&
4592           "Computed backedge-taken count isn't loop invariant for loop!");
4593    ++NumTripCountsComputed;
4594  }
4595  else if (Result.getMax(this) == getCouldNotCompute() &&
4596           isa<PHINode>(L->getHeader()->begin())) {
4597    // Only count loops that have phi nodes as not being computable.
4598    ++NumTripCountsNotComputed;
4599  }
4600
4601  // Now that we know more about the trip count for this loop, forget any
4602  // existing SCEV values for PHI nodes in this loop since they are only
4603  // conservative estimates made without the benefit of trip count
4604  // information. This is similar to the code in forgetLoop, except that
4605  // it handles SCEVUnknown PHI nodes specially.
4606  if (Result.hasAnyInfo()) {
4607    SmallVector<Instruction *, 16> Worklist;
4608    PushLoopPHIs(L, Worklist);
4609
4610    SmallPtrSet<Instruction *, 8> Visited;
4611    while (!Worklist.empty()) {
4612      Instruction *I = Worklist.pop_back_val();
4613      if (!Visited.insert(I).second)
4614        continue;
4615
4616      ValueExprMapType::iterator It =
4617        ValueExprMap.find_as(static_cast<Value *>(I));
4618      if (It != ValueExprMap.end()) {
4619        const SCEV *Old = It->second;
4620
4621        // SCEVUnknown for a PHI either means that it has an unrecognized
4622        // structure, or it's a PHI that's in the progress of being computed
4623        // by createNodeForPHI.  In the former case, additional loop trip
4624        // count information isn't going to change anything. In the later
4625        // case, createNodeForPHI will perform the necessary updates on its
4626        // own when it gets to that point.
4627        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4628          forgetMemoizedResults(Old);
4629          ValueExprMap.erase(It);
4630        }
4631        if (PHINode *PN = dyn_cast<PHINode>(I))
4632          ConstantEvolutionLoopExitValue.erase(PN);
4633      }
4634
4635      PushDefUseChildren(I, Worklist);
4636    }
4637  }
4638
4639  // Re-lookup the insert position, since the call to
4640  // ComputeBackedgeTakenCount above could result in a
4641  // recusive call to getBackedgeTakenInfo (on a different
4642  // loop), which would invalidate the iterator computed
4643  // earlier.
4644  return BackedgeTakenCounts.find(L)->second = Result;
4645}
4646
4647/// forgetLoop - This method should be called by the client when it has
4648/// changed a loop in a way that may effect ScalarEvolution's ability to
4649/// compute a trip count, or if the loop is deleted.
4650void ScalarEvolution::forgetLoop(const Loop *L) {
4651  // Drop any stored trip count value.
4652  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4653    BackedgeTakenCounts.find(L);
4654  if (BTCPos != BackedgeTakenCounts.end()) {
4655    BTCPos->second.clear();
4656    BackedgeTakenCounts.erase(BTCPos);
4657  }
4658
4659  // Drop information about expressions based on loop-header PHIs.
4660  SmallVector<Instruction *, 16> Worklist;
4661  PushLoopPHIs(L, Worklist);
4662
4663  SmallPtrSet<Instruction *, 8> Visited;
4664  while (!Worklist.empty()) {
4665    Instruction *I = Worklist.pop_back_val();
4666    if (!Visited.insert(I).second)
4667      continue;
4668
4669    ValueExprMapType::iterator It =
4670      ValueExprMap.find_as(static_cast<Value *>(I));
4671    if (It != ValueExprMap.end()) {
4672      forgetMemoizedResults(It->second);
4673      ValueExprMap.erase(It);
4674      if (PHINode *PN = dyn_cast<PHINode>(I))
4675        ConstantEvolutionLoopExitValue.erase(PN);
4676    }
4677
4678    PushDefUseChildren(I, Worklist);
4679  }
4680
4681  // Forget all contained loops too, to avoid dangling entries in the
4682  // ValuesAtScopes map.
4683  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4684    forgetLoop(*I);
4685}
4686
4687/// forgetValue - This method should be called by the client when it has
4688/// changed a value in a way that may effect its value, or which may
4689/// disconnect it from a def-use chain linking it to a loop.
4690void ScalarEvolution::forgetValue(Value *V) {
4691  Instruction *I = dyn_cast<Instruction>(V);
4692  if (!I) return;
4693
4694  // Drop information about expressions based on loop-header PHIs.
4695  SmallVector<Instruction *, 16> Worklist;
4696  Worklist.push_back(I);
4697
4698  SmallPtrSet<Instruction *, 8> Visited;
4699  while (!Worklist.empty()) {
4700    I = Worklist.pop_back_val();
4701    if (!Visited.insert(I).second)
4702      continue;
4703
4704    ValueExprMapType::iterator It =
4705      ValueExprMap.find_as(static_cast<Value *>(I));
4706    if (It != ValueExprMap.end()) {
4707      forgetMemoizedResults(It->second);
4708      ValueExprMap.erase(It);
4709      if (PHINode *PN = dyn_cast<PHINode>(I))
4710        ConstantEvolutionLoopExitValue.erase(PN);
4711    }
4712
4713    PushDefUseChildren(I, Worklist);
4714  }
4715}
4716
4717/// getExact - Get the exact loop backedge taken count considering all loop
4718/// exits. A computable result can only be return for loops with a single exit.
4719/// Returning the minimum taken count among all exits is incorrect because one
4720/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4721/// the limit of each loop test is never skipped. This is a valid assumption as
4722/// long as the loop exits via that test. For precise results, it is the
4723/// caller's responsibility to specify the relevant loop exit using
4724/// getExact(ExitingBlock, SE).
4725const SCEV *
4726ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4727  // If any exits were not computable, the loop is not computable.
4728  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4729
4730  // We need exactly one computable exit.
4731  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4732  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4733
4734  const SCEV *BECount = nullptr;
4735  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4736       ENT != nullptr; ENT = ENT->getNextExit()) {
4737
4738    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4739
4740    if (!BECount)
4741      BECount = ENT->ExactNotTaken;
4742    else if (BECount != ENT->ExactNotTaken)
4743      return SE->getCouldNotCompute();
4744  }
4745  assert(BECount && "Invalid not taken count for loop exit");
4746  return BECount;
4747}
4748
4749/// getExact - Get the exact not taken count for this loop exit.
4750const SCEV *
4751ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4752                                             ScalarEvolution *SE) const {
4753  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4754       ENT != nullptr; ENT = ENT->getNextExit()) {
4755
4756    if (ENT->ExitingBlock == ExitingBlock)
4757      return ENT->ExactNotTaken;
4758  }
4759  return SE->getCouldNotCompute();
4760}
4761
4762/// getMax - Get the max backedge taken count for the loop.
4763const SCEV *
4764ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4765  return Max ? Max : SE->getCouldNotCompute();
4766}
4767
4768bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4769                                                    ScalarEvolution *SE) const {
4770  if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4771    return true;
4772
4773  if (!ExitNotTaken.ExitingBlock)
4774    return false;
4775
4776  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4777       ENT != nullptr; ENT = ENT->getNextExit()) {
4778
4779    if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4780        && SE->hasOperand(ENT->ExactNotTaken, S)) {
4781      return true;
4782    }
4783  }
4784  return false;
4785}
4786
4787/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4788/// computable exit into a persistent ExitNotTakenInfo array.
4789ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4790  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4791  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4792
4793  if (!Complete)
4794    ExitNotTaken.setIncomplete();
4795
4796  unsigned NumExits = ExitCounts.size();
4797  if (NumExits == 0) return;
4798
4799  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4800  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4801  if (NumExits == 1) return;
4802
4803  // Handle the rare case of multiple computable exits.
4804  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4805
4806  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4807  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4808    PrevENT->setNextExit(ENT);
4809    ENT->ExitingBlock = ExitCounts[i].first;
4810    ENT->ExactNotTaken = ExitCounts[i].second;
4811  }
4812}
4813
4814/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4815void ScalarEvolution::BackedgeTakenInfo::clear() {
4816  ExitNotTaken.ExitingBlock = nullptr;
4817  ExitNotTaken.ExactNotTaken = nullptr;
4818  delete[] ExitNotTaken.getNextExit();
4819}
4820
4821/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4822/// of the specified loop will execute.
4823ScalarEvolution::BackedgeTakenInfo
4824ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4825  SmallVector<BasicBlock *, 8> ExitingBlocks;
4826  L->getExitingBlocks(ExitingBlocks);
4827
4828  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4829  bool CouldComputeBECount = true;
4830  BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4831  const SCEV *MustExitMaxBECount = nullptr;
4832  const SCEV *MayExitMaxBECount = nullptr;
4833
4834  // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4835  // and compute maxBECount.
4836  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4837    BasicBlock *ExitBB = ExitingBlocks[i];
4838    ExitLimit EL = ComputeExitLimit(L, ExitBB);
4839
4840    // 1. For each exit that can be computed, add an entry to ExitCounts.
4841    // CouldComputeBECount is true only if all exits can be computed.
4842    if (EL.Exact == getCouldNotCompute())
4843      // We couldn't compute an exact value for this exit, so
4844      // we won't be able to compute an exact value for the loop.
4845      CouldComputeBECount = false;
4846    else
4847      ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4848
4849    // 2. Derive the loop's MaxBECount from each exit's max number of
4850    // non-exiting iterations. Partition the loop exits into two kinds:
4851    // LoopMustExits and LoopMayExits.
4852    //
4853    // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4854    // is a LoopMayExit.  If any computable LoopMustExit is found, then
4855    // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4856    // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4857    // considered greater than any computable EL.Max.
4858    if (EL.Max != getCouldNotCompute() && Latch &&
4859        DT->dominates(ExitBB, Latch)) {
4860      if (!MustExitMaxBECount)
4861        MustExitMaxBECount = EL.Max;
4862      else {
4863        MustExitMaxBECount =
4864          getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4865      }
4866    } else if (MayExitMaxBECount != getCouldNotCompute()) {
4867      if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4868        MayExitMaxBECount = EL.Max;
4869      else {
4870        MayExitMaxBECount =
4871          getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4872      }
4873    }
4874  }
4875  const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4876    (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4877  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4878}
4879
4880/// ComputeExitLimit - Compute the number of times the backedge of the specified
4881/// loop will execute if it exits via the specified block.
4882ScalarEvolution::ExitLimit
4883ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4884
4885  // Okay, we've chosen an exiting block.  See what condition causes us to
4886  // exit at this block and remember the exit block and whether all other targets
4887  // lead to the loop header.
4888  bool MustExecuteLoopHeader = true;
4889  BasicBlock *Exit = nullptr;
4890  for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4891       SI != SE; ++SI)
4892    if (!L->contains(*SI)) {
4893      if (Exit) // Multiple exit successors.
4894        return getCouldNotCompute();
4895      Exit = *SI;
4896    } else if (*SI != L->getHeader()) {
4897      MustExecuteLoopHeader = false;
4898    }
4899
4900  // At this point, we know we have a conditional branch that determines whether
4901  // the loop is exited.  However, we don't know if the branch is executed each
4902  // time through the loop.  If not, then the execution count of the branch will
4903  // not be equal to the trip count of the loop.
4904  //
4905  // Currently we check for this by checking to see if the Exit branch goes to
4906  // the loop header.  If so, we know it will always execute the same number of
4907  // times as the loop.  We also handle the case where the exit block *is* the
4908  // loop header.  This is common for un-rotated loops.
4909  //
4910  // If both of those tests fail, walk up the unique predecessor chain to the
4911  // header, stopping if there is an edge that doesn't exit the loop. If the
4912  // header is reached, the execution count of the branch will be equal to the
4913  // trip count of the loop.
4914  //
4915  //  More extensive analysis could be done to handle more cases here.
4916  //
4917  if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4918    // The simple checks failed, try climbing the unique predecessor chain
4919    // up to the header.
4920    bool Ok = false;
4921    for (BasicBlock *BB = ExitingBlock; BB; ) {
4922      BasicBlock *Pred = BB->getUniquePredecessor();
4923      if (!Pred)
4924        return getCouldNotCompute();
4925      TerminatorInst *PredTerm = Pred->getTerminator();
4926      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4927        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4928        if (PredSucc == BB)
4929          continue;
4930        // If the predecessor has a successor that isn't BB and isn't
4931        // outside the loop, assume the worst.
4932        if (L->contains(PredSucc))
4933          return getCouldNotCompute();
4934      }
4935      if (Pred == L->getHeader()) {
4936        Ok = true;
4937        break;
4938      }
4939      BB = Pred;
4940    }
4941    if (!Ok)
4942      return getCouldNotCompute();
4943  }
4944
4945  bool IsOnlyExit = (L->getExitingBlock() != nullptr);
4946  TerminatorInst *Term = ExitingBlock->getTerminator();
4947  if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4948    assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4949    // Proceed to the next level to examine the exit condition expression.
4950    return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4951                                    BI->getSuccessor(1),
4952                                    /*ControlsExit=*/IsOnlyExit);
4953  }
4954
4955  if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4956    return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4957                                                /*ControlsExit=*/IsOnlyExit);
4958
4959  return getCouldNotCompute();
4960}
4961
4962/// ComputeExitLimitFromCond - Compute the number of times the
4963/// backedge of the specified loop will execute if its exit condition
4964/// were a conditional branch of ExitCond, TBB, and FBB.
4965///
4966/// @param ControlsExit is true if ExitCond directly controls the exit
4967/// branch. In this case, we can assume that the loop exits only if the
4968/// condition is true and can infer that failing to meet the condition prior to
4969/// integer wraparound results in undefined behavior.
4970ScalarEvolution::ExitLimit
4971ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4972                                          Value *ExitCond,
4973                                          BasicBlock *TBB,
4974                                          BasicBlock *FBB,
4975                                          bool ControlsExit) {
4976  // Check if the controlling expression for this loop is an And or Or.
4977  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4978    if (BO->getOpcode() == Instruction::And) {
4979      // Recurse on the operands of the and.
4980      bool EitherMayExit = L->contains(TBB);
4981      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4982                                               ControlsExit && !EitherMayExit);
4983      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4984                                               ControlsExit && !EitherMayExit);
4985      const SCEV *BECount = getCouldNotCompute();
4986      const SCEV *MaxBECount = getCouldNotCompute();
4987      if (EitherMayExit) {
4988        // Both conditions must be true for the loop to continue executing.
4989        // Choose the less conservative count.
4990        if (EL0.Exact == getCouldNotCompute() ||
4991            EL1.Exact == getCouldNotCompute())
4992          BECount = getCouldNotCompute();
4993        else
4994          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4995        if (EL0.Max == getCouldNotCompute())
4996          MaxBECount = EL1.Max;
4997        else if (EL1.Max == getCouldNotCompute())
4998          MaxBECount = EL0.Max;
4999        else
5000          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5001      } else {
5002        // Both conditions must be true at the same time for the loop to exit.
5003        // For now, be conservative.
5004        assert(L->contains(FBB) && "Loop block has no successor in loop!");
5005        if (EL0.Max == EL1.Max)
5006          MaxBECount = EL0.Max;
5007        if (EL0.Exact == EL1.Exact)
5008          BECount = EL0.Exact;
5009      }
5010
5011      return ExitLimit(BECount, MaxBECount);
5012    }
5013    if (BO->getOpcode() == Instruction::Or) {
5014      // Recurse on the operands of the or.
5015      bool EitherMayExit = L->contains(FBB);
5016      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5017                                               ControlsExit && !EitherMayExit);
5018      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5019                                               ControlsExit && !EitherMayExit);
5020      const SCEV *BECount = getCouldNotCompute();
5021      const SCEV *MaxBECount = getCouldNotCompute();
5022      if (EitherMayExit) {
5023        // Both conditions must be false for the loop to continue executing.
5024        // Choose the less conservative count.
5025        if (EL0.Exact == getCouldNotCompute() ||
5026            EL1.Exact == getCouldNotCompute())
5027          BECount = getCouldNotCompute();
5028        else
5029          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5030        if (EL0.Max == getCouldNotCompute())
5031          MaxBECount = EL1.Max;
5032        else if (EL1.Max == getCouldNotCompute())
5033          MaxBECount = EL0.Max;
5034        else
5035          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5036      } else {
5037        // Both conditions must be false at the same time for the loop to exit.
5038        // For now, be conservative.
5039        assert(L->contains(TBB) && "Loop block has no successor in loop!");
5040        if (EL0.Max == EL1.Max)
5041          MaxBECount = EL0.Max;
5042        if (EL0.Exact == EL1.Exact)
5043          BECount = EL0.Exact;
5044      }
5045
5046      return ExitLimit(BECount, MaxBECount);
5047    }
5048  }
5049
5050  // With an icmp, it may be feasible to compute an exact backedge-taken count.
5051  // Proceed to the next level to examine the icmp.
5052  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5053    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5054
5055  // Check for a constant condition. These are normally stripped out by
5056  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5057  // preserve the CFG and is temporarily leaving constant conditions
5058  // in place.
5059  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5060    if (L->contains(FBB) == !CI->getZExtValue())
5061      // The backedge is always taken.
5062      return getCouldNotCompute();
5063    else
5064      // The backedge is never taken.
5065      return getConstant(CI->getType(), 0);
5066  }
5067
5068  // If it's not an integer or pointer comparison then compute it the hard way.
5069  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5070}
5071
5072/// ComputeExitLimitFromICmp - Compute the number of times the
5073/// backedge of the specified loop will execute if its exit condition
5074/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
5075ScalarEvolution::ExitLimit
5076ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5077                                          ICmpInst *ExitCond,
5078                                          BasicBlock *TBB,
5079                                          BasicBlock *FBB,
5080                                          bool ControlsExit) {
5081
5082  // If the condition was exit on true, convert the condition to exit on false
5083  ICmpInst::Predicate Cond;
5084  if (!L->contains(FBB))
5085    Cond = ExitCond->getPredicate();
5086  else
5087    Cond = ExitCond->getInversePredicate();
5088
5089  // Handle common loops like: for (X = "string"; *X; ++X)
5090  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5091    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5092      ExitLimit ItCnt =
5093        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5094      if (ItCnt.hasAnyInfo())
5095        return ItCnt;
5096    }
5097
5098  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5099  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5100
5101  // Try to evaluate any dependencies out of the loop.
5102  LHS = getSCEVAtScope(LHS, L);
5103  RHS = getSCEVAtScope(RHS, L);
5104
5105  // At this point, we would like to compute how many iterations of the
5106  // loop the predicate will return true for these inputs.
5107  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5108    // If there is a loop-invariant, force it into the RHS.
5109    std::swap(LHS, RHS);
5110    Cond = ICmpInst::getSwappedPredicate(Cond);
5111  }
5112
5113  // Simplify the operands before analyzing them.
5114  (void)SimplifyICmpOperands(Cond, LHS, RHS);
5115
5116  // If we have a comparison of a chrec against a constant, try to use value
5117  // ranges to answer this query.
5118  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5119    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5120      if (AddRec->getLoop() == L) {
5121        // Form the constant range.
5122        ConstantRange CompRange(
5123            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
5124
5125        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5126        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5127      }
5128
5129  switch (Cond) {
5130  case ICmpInst::ICMP_NE: {                     // while (X != Y)
5131    // Convert to: while (X-Y != 0)
5132    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5133    if (EL.hasAnyInfo()) return EL;
5134    break;
5135  }
5136  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5137    // Convert to: while (X-Y == 0)
5138    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5139    if (EL.hasAnyInfo()) return EL;
5140    break;
5141  }
5142  case ICmpInst::ICMP_SLT:
5143  case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5144    bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5145    ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5146    if (EL.hasAnyInfo()) return EL;
5147    break;
5148  }
5149  case ICmpInst::ICMP_SGT:
5150  case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5151    bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5152    ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5153    if (EL.hasAnyInfo()) return EL;
5154    break;
5155  }
5156  default:
5157#if 0
5158    dbgs() << "ComputeBackedgeTakenCount ";
5159    if (ExitCond->getOperand(0)->getType()->isUnsigned())
5160      dbgs() << "[unsigned] ";
5161    dbgs() << *LHS << "   "
5162         << Instruction::getOpcodeName(Instruction::ICmp)
5163         << "   " << *RHS << "\n";
5164#endif
5165    break;
5166  }
5167  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5168}
5169
5170ScalarEvolution::ExitLimit
5171ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5172                                                      SwitchInst *Switch,
5173                                                      BasicBlock *ExitingBlock,
5174                                                      bool ControlsExit) {
5175  assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5176
5177  // Give up if the exit is the default dest of a switch.
5178  if (Switch->getDefaultDest() == ExitingBlock)
5179    return getCouldNotCompute();
5180
5181  assert(L->contains(Switch->getDefaultDest()) &&
5182         "Default case must not exit the loop!");
5183  const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5184  const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5185
5186  // while (X != Y) --> while (X-Y != 0)
5187  ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5188  if (EL.hasAnyInfo())
5189    return EL;
5190
5191  return getCouldNotCompute();
5192}
5193
5194static ConstantInt *
5195EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5196                                ScalarEvolution &SE) {
5197  const SCEV *InVal = SE.getConstant(C);
5198  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5199  assert(isa<SCEVConstant>(Val) &&
5200         "Evaluation of SCEV at constant didn't fold correctly?");
5201  return cast<SCEVConstant>(Val)->getValue();
5202}
5203
5204/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
5205/// 'icmp op load X, cst', try to see if we can compute the backedge
5206/// execution count.
5207ScalarEvolution::ExitLimit
5208ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5209  LoadInst *LI,
5210  Constant *RHS,
5211  const Loop *L,
5212  ICmpInst::Predicate predicate) {
5213
5214  if (LI->isVolatile()) return getCouldNotCompute();
5215
5216  // Check to see if the loaded pointer is a getelementptr of a global.
5217  // TODO: Use SCEV instead of manually grubbing with GEPs.
5218  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5219  if (!GEP) return getCouldNotCompute();
5220
5221  // Make sure that it is really a constant global we are gepping, with an
5222  // initializer, and make sure the first IDX is really 0.
5223  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5224  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5225      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5226      !cast<Constant>(GEP->getOperand(1))->isNullValue())
5227    return getCouldNotCompute();
5228
5229  // Okay, we allow one non-constant index into the GEP instruction.
5230  Value *VarIdx = nullptr;
5231  std::vector<Constant*> Indexes;
5232  unsigned VarIdxNum = 0;
5233  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5234    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5235      Indexes.push_back(CI);
5236    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5237      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5238      VarIdx = GEP->getOperand(i);
5239      VarIdxNum = i-2;
5240      Indexes.push_back(nullptr);
5241    }
5242
5243  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5244  if (!VarIdx)
5245    return getCouldNotCompute();
5246
5247  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5248  // Check to see if X is a loop variant variable value now.
5249  const SCEV *Idx = getSCEV(VarIdx);
5250  Idx = getSCEVAtScope(Idx, L);
5251
5252  // We can only recognize very limited forms of loop index expressions, in
5253  // particular, only affine AddRec's like {C1,+,C2}.
5254  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5255  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5256      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5257      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5258    return getCouldNotCompute();
5259
5260  unsigned MaxSteps = MaxBruteForceIterations;
5261  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5262    ConstantInt *ItCst = ConstantInt::get(
5263                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
5264    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5265
5266    // Form the GEP offset.
5267    Indexes[VarIdxNum] = Val;
5268
5269    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5270                                                         Indexes);
5271    if (!Result) break;  // Cannot compute!
5272
5273    // Evaluate the condition for this iteration.
5274    Result = ConstantExpr::getICmp(predicate, Result, RHS);
5275    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5276    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5277#if 0
5278      dbgs() << "\n***\n*** Computed loop count " << *ItCst
5279             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5280             << "***\n";
5281#endif
5282      ++NumArrayLenItCounts;
5283      return getConstant(ItCst);   // Found terminating iteration!
5284    }
5285  }
5286  return getCouldNotCompute();
5287}
5288
5289
5290/// CanConstantFold - Return true if we can constant fold an instruction of the
5291/// specified type, assuming that all operands were constants.
5292static bool CanConstantFold(const Instruction *I) {
5293  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5294      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5295      isa<LoadInst>(I))
5296    return true;
5297
5298  if (const CallInst *CI = dyn_cast<CallInst>(I))
5299    if (const Function *F = CI->getCalledFunction())
5300      return canConstantFoldCallTo(F);
5301  return false;
5302}
5303
5304/// Determine whether this instruction can constant evolve within this loop
5305/// assuming its operands can all constant evolve.
5306static bool canConstantEvolve(Instruction *I, const Loop *L) {
5307  // An instruction outside of the loop can't be derived from a loop PHI.
5308  if (!L->contains(I)) return false;
5309
5310  if (isa<PHINode>(I)) {
5311    // We don't currently keep track of the control flow needed to evaluate
5312    // PHIs, so we cannot handle PHIs inside of loops.
5313    return L->getHeader() == I->getParent();
5314  }
5315
5316  // If we won't be able to constant fold this expression even if the operands
5317  // are constants, bail early.
5318  return CanConstantFold(I);
5319}
5320
5321/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5322/// recursing through each instruction operand until reaching a loop header phi.
5323static PHINode *
5324getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5325                               DenseMap<Instruction *, PHINode *> &PHIMap) {
5326
5327  // Otherwise, we can evaluate this instruction if all of its operands are
5328  // constant or derived from a PHI node themselves.
5329  PHINode *PHI = nullptr;
5330  for (Instruction::op_iterator OpI = UseInst->op_begin(),
5331         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5332
5333    if (isa<Constant>(*OpI)) continue;
5334
5335    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
5336    if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5337
5338    PHINode *P = dyn_cast<PHINode>(OpInst);
5339    if (!P)
5340      // If this operand is already visited, reuse the prior result.
5341      // We may have P != PHI if this is the deepest point at which the
5342      // inconsistent paths meet.
5343      P = PHIMap.lookup(OpInst);
5344    if (!P) {
5345      // Recurse and memoize the results, whether a phi is found or not.
5346      // This recursive call invalidates pointers into PHIMap.
5347      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5348      PHIMap[OpInst] = P;
5349    }
5350    if (!P)
5351      return nullptr;  // Not evolving from PHI
5352    if (PHI && PHI != P)
5353      return nullptr;  // Evolving from multiple different PHIs.
5354    PHI = P;
5355  }
5356  // This is a expression evolving from a constant PHI!
5357  return PHI;
5358}
5359
5360/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5361/// in the loop that V is derived from.  We allow arbitrary operations along the
5362/// way, but the operands of an operation must either be constants or a value
5363/// derived from a constant PHI.  If this expression does not fit with these
5364/// constraints, return null.
5365static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5366  Instruction *I = dyn_cast<Instruction>(V);
5367  if (!I || !canConstantEvolve(I, L)) return nullptr;
5368
5369  if (PHINode *PN = dyn_cast<PHINode>(I)) {
5370    return PN;
5371  }
5372
5373  // Record non-constant instructions contained by the loop.
5374  DenseMap<Instruction *, PHINode *> PHIMap;
5375  return getConstantEvolvingPHIOperands(I, L, PHIMap);
5376}
5377
5378/// EvaluateExpression - Given an expression that passes the
5379/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5380/// in the loop has the value PHIVal.  If we can't fold this expression for some
5381/// reason, return null.
5382static Constant *EvaluateExpression(Value *V, const Loop *L,
5383                                    DenseMap<Instruction *, Constant *> &Vals,
5384                                    const DataLayout &DL,
5385                                    const TargetLibraryInfo *TLI) {
5386  // Convenient constant check, but redundant for recursive calls.
5387  if (Constant *C = dyn_cast<Constant>(V)) return C;
5388  Instruction *I = dyn_cast<Instruction>(V);
5389  if (!I) return nullptr;
5390
5391  if (Constant *C = Vals.lookup(I)) return C;
5392
5393  // An instruction inside the loop depends on a value outside the loop that we
5394  // weren't given a mapping for, or a value such as a call inside the loop.
5395  if (!canConstantEvolve(I, L)) return nullptr;
5396
5397  // An unmapped PHI can be due to a branch or another loop inside this loop,
5398  // or due to this not being the initial iteration through a loop where we
5399  // couldn't compute the evolution of this particular PHI last time.
5400  if (isa<PHINode>(I)) return nullptr;
5401
5402  std::vector<Constant*> Operands(I->getNumOperands());
5403
5404  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5405    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5406    if (!Operand) {
5407      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5408      if (!Operands[i]) return nullptr;
5409      continue;
5410    }
5411    Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5412    Vals[Operand] = C;
5413    if (!C) return nullptr;
5414    Operands[i] = C;
5415  }
5416
5417  if (CmpInst *CI = dyn_cast<CmpInst>(I))
5418    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5419                                           Operands[1], DL, TLI);
5420  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5421    if (!LI->isVolatile())
5422      return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5423  }
5424  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5425                                  TLI);
5426}
5427
5428/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5429/// in the header of its containing loop, we know the loop executes a
5430/// constant number of times, and the PHI node is just a recurrence
5431/// involving constants, fold it.
5432Constant *
5433ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5434                                                   const APInt &BEs,
5435                                                   const Loop *L) {
5436  DenseMap<PHINode*, Constant*>::const_iterator I =
5437    ConstantEvolutionLoopExitValue.find(PN);
5438  if (I != ConstantEvolutionLoopExitValue.end())
5439    return I->second;
5440
5441  if (BEs.ugt(MaxBruteForceIterations))
5442    return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5443
5444  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5445
5446  DenseMap<Instruction *, Constant *> CurrentIterVals;
5447  BasicBlock *Header = L->getHeader();
5448  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5449
5450  // Since the loop is canonicalized, the PHI node must have two entries.  One
5451  // entry must be a constant (coming in from outside of the loop), and the
5452  // second must be derived from the same PHI.
5453  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5454  PHINode *PHI = nullptr;
5455  for (BasicBlock::iterator I = Header->begin();
5456       (PHI = dyn_cast<PHINode>(I)); ++I) {
5457    Constant *StartCST =
5458      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5459    if (!StartCST) continue;
5460    CurrentIterVals[PHI] = StartCST;
5461  }
5462  if (!CurrentIterVals.count(PN))
5463    return RetVal = nullptr;
5464
5465  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5466
5467  // Execute the loop symbolically to determine the exit value.
5468  if (BEs.getActiveBits() >= 32)
5469    return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5470
5471  unsigned NumIterations = BEs.getZExtValue(); // must be in range
5472  unsigned IterationNum = 0;
5473  const DataLayout &DL = F->getParent()->getDataLayout();
5474  for (; ; ++IterationNum) {
5475    if (IterationNum == NumIterations)
5476      return RetVal = CurrentIterVals[PN];  // Got exit value!
5477
5478    // Compute the value of the PHIs for the next iteration.
5479    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5480    DenseMap<Instruction *, Constant *> NextIterVals;
5481    Constant *NextPHI =
5482        EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5483    if (!NextPHI)
5484      return nullptr;        // Couldn't evaluate!
5485    NextIterVals[PN] = NextPHI;
5486
5487    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5488
5489    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
5490    // cease to be able to evaluate one of them or if they stop evolving,
5491    // because that doesn't necessarily prevent us from computing PN.
5492    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5493    for (DenseMap<Instruction *, Constant *>::const_iterator
5494           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5495      PHINode *PHI = dyn_cast<PHINode>(I->first);
5496      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5497      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5498    }
5499    // We use two distinct loops because EvaluateExpression may invalidate any
5500    // iterators into CurrentIterVals.
5501    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5502             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5503      PHINode *PHI = I->first;
5504      Constant *&NextPHI = NextIterVals[PHI];
5505      if (!NextPHI) {   // Not already computed.
5506        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5507        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5508      }
5509      if (NextPHI != I->second)
5510        StoppedEvolving = false;
5511    }
5512
5513    // If all entries in CurrentIterVals == NextIterVals then we can stop
5514    // iterating, the loop can't continue to change.
5515    if (StoppedEvolving)
5516      return RetVal = CurrentIterVals[PN];
5517
5518    CurrentIterVals.swap(NextIterVals);
5519  }
5520}
5521
5522/// ComputeExitCountExhaustively - If the loop is known to execute a
5523/// constant number of times (the condition evolves only from constants),
5524/// try to evaluate a few iterations of the loop until we get the exit
5525/// condition gets a value of ExitWhen (true or false).  If we cannot
5526/// evaluate the trip count of the loop, return getCouldNotCompute().
5527const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5528                                                          Value *Cond,
5529                                                          bool ExitWhen) {
5530  PHINode *PN = getConstantEvolvingPHI(Cond, L);
5531  if (!PN) return getCouldNotCompute();
5532
5533  // If the loop is canonicalized, the PHI will have exactly two entries.
5534  // That's the only form we support here.
5535  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5536
5537  DenseMap<Instruction *, Constant *> CurrentIterVals;
5538  BasicBlock *Header = L->getHeader();
5539  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5540
5541  // One entry must be a constant (coming in from outside of the loop), and the
5542  // second must be derived from the same PHI.
5543  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5544  PHINode *PHI = nullptr;
5545  for (BasicBlock::iterator I = Header->begin();
5546       (PHI = dyn_cast<PHINode>(I)); ++I) {
5547    Constant *StartCST =
5548      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5549    if (!StartCST) continue;
5550    CurrentIterVals[PHI] = StartCST;
5551  }
5552  if (!CurrentIterVals.count(PN))
5553    return getCouldNotCompute();
5554
5555  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
5556  // the loop symbolically to determine when the condition gets a value of
5557  // "ExitWhen".
5558  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
5559  const DataLayout &DL = F->getParent()->getDataLayout();
5560  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5561    ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
5562        EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
5563
5564    // Couldn't symbolically evaluate.
5565    if (!CondVal) return getCouldNotCompute();
5566
5567    if (CondVal->getValue() == uint64_t(ExitWhen)) {
5568      ++NumBruteForceTripCountsComputed;
5569      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5570    }
5571
5572    // Update all the PHI nodes for the next iteration.
5573    DenseMap<Instruction *, Constant *> NextIterVals;
5574
5575    // Create a list of which PHIs we need to compute. We want to do this before
5576    // calling EvaluateExpression on them because that may invalidate iterators
5577    // into CurrentIterVals.
5578    SmallVector<PHINode *, 8> PHIsToCompute;
5579    for (DenseMap<Instruction *, Constant *>::const_iterator
5580           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5581      PHINode *PHI = dyn_cast<PHINode>(I->first);
5582      if (!PHI || PHI->getParent() != Header) continue;
5583      PHIsToCompute.push_back(PHI);
5584    }
5585    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5586             E = PHIsToCompute.end(); I != E; ++I) {
5587      PHINode *PHI = *I;
5588      Constant *&NextPHI = NextIterVals[PHI];
5589      if (NextPHI) continue;    // Already computed!
5590
5591      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5592      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5593    }
5594    CurrentIterVals.swap(NextIterVals);
5595  }
5596
5597  // Too many iterations were needed to evaluate.
5598  return getCouldNotCompute();
5599}
5600
5601/// getSCEVAtScope - Return a SCEV expression for the specified value
5602/// at the specified scope in the program.  The L value specifies a loop
5603/// nest to evaluate the expression at, where null is the top-level or a
5604/// specified loop is immediately inside of the loop.
5605///
5606/// This method can be used to compute the exit value for a variable defined
5607/// in a loop by querying what the value will hold in the parent loop.
5608///
5609/// In the case that a relevant loop exit value cannot be computed, the
5610/// original value V is returned.
5611const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5612  // Check to see if we've folded this expression at this loop before.
5613  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5614  for (unsigned u = 0; u < Values.size(); u++) {
5615    if (Values[u].first == L)
5616      return Values[u].second ? Values[u].second : V;
5617  }
5618  Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5619  // Otherwise compute it.
5620  const SCEV *C = computeSCEVAtScope(V, L);
5621  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5622  for (unsigned u = Values2.size(); u > 0; u--) {
5623    if (Values2[u - 1].first == L) {
5624      Values2[u - 1].second = C;
5625      break;
5626    }
5627  }
5628  return C;
5629}
5630
5631/// This builds up a Constant using the ConstantExpr interface.  That way, we
5632/// will return Constants for objects which aren't represented by a
5633/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5634/// Returns NULL if the SCEV isn't representable as a Constant.
5635static Constant *BuildConstantFromSCEV(const SCEV *V) {
5636  switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5637    case scCouldNotCompute:
5638    case scAddRecExpr:
5639      break;
5640    case scConstant:
5641      return cast<SCEVConstant>(V)->getValue();
5642    case scUnknown:
5643      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5644    case scSignExtend: {
5645      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5646      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5647        return ConstantExpr::getSExt(CastOp, SS->getType());
5648      break;
5649    }
5650    case scZeroExtend: {
5651      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5652      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5653        return ConstantExpr::getZExt(CastOp, SZ->getType());
5654      break;
5655    }
5656    case scTruncate: {
5657      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5658      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5659        return ConstantExpr::getTrunc(CastOp, ST->getType());
5660      break;
5661    }
5662    case scAddExpr: {
5663      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5664      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5665        if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5666          unsigned AS = PTy->getAddressSpace();
5667          Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5668          C = ConstantExpr::getBitCast(C, DestPtrTy);
5669        }
5670        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5671          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5672          if (!C2) return nullptr;
5673
5674          // First pointer!
5675          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5676            unsigned AS = C2->getType()->getPointerAddressSpace();
5677            std::swap(C, C2);
5678            Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5679            // The offsets have been converted to bytes.  We can add bytes to an
5680            // i8* by GEP with the byte count in the first index.
5681            C = ConstantExpr::getBitCast(C, DestPtrTy);
5682          }
5683
5684          // Don't bother trying to sum two pointers. We probably can't
5685          // statically compute a load that results from it anyway.
5686          if (C2->getType()->isPointerTy())
5687            return nullptr;
5688
5689          if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5690            if (PTy->getElementType()->isStructTy())
5691              C2 = ConstantExpr::getIntegerCast(
5692                  C2, Type::getInt32Ty(C->getContext()), true);
5693            C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
5694          } else
5695            C = ConstantExpr::getAdd(C, C2);
5696        }
5697        return C;
5698      }
5699      break;
5700    }
5701    case scMulExpr: {
5702      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5703      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5704        // Don't bother with pointers at all.
5705        if (C->getType()->isPointerTy()) return nullptr;
5706        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5707          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5708          if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5709          C = ConstantExpr::getMul(C, C2);
5710        }
5711        return C;
5712      }
5713      break;
5714    }
5715    case scUDivExpr: {
5716      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5717      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5718        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5719          if (LHS->getType() == RHS->getType())
5720            return ConstantExpr::getUDiv(LHS, RHS);
5721      break;
5722    }
5723    case scSMaxExpr:
5724    case scUMaxExpr:
5725      break; // TODO: smax, umax.
5726  }
5727  return nullptr;
5728}
5729
5730const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5731  if (isa<SCEVConstant>(V)) return V;
5732
5733  // If this instruction is evolved from a constant-evolving PHI, compute the
5734  // exit value from the loop without using SCEVs.
5735  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5736    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5737      const Loop *LI = (*this->LI)[I->getParent()];
5738      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5739        if (PHINode *PN = dyn_cast<PHINode>(I))
5740          if (PN->getParent() == LI->getHeader()) {
5741            // Okay, there is no closed form solution for the PHI node.  Check
5742            // to see if the loop that contains it has a known backedge-taken
5743            // count.  If so, we may be able to force computation of the exit
5744            // value.
5745            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5746            if (const SCEVConstant *BTCC =
5747                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5748              // Okay, we know how many times the containing loop executes.  If
5749              // this is a constant evolving PHI node, get the final value at
5750              // the specified iteration number.
5751              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5752                                                   BTCC->getValue()->getValue(),
5753                                                               LI);
5754              if (RV) return getSCEV(RV);
5755            }
5756          }
5757
5758      // Okay, this is an expression that we cannot symbolically evaluate
5759      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5760      // the arguments into constants, and if so, try to constant propagate the
5761      // result.  This is particularly useful for computing loop exit values.
5762      if (CanConstantFold(I)) {
5763        SmallVector<Constant *, 4> Operands;
5764        bool MadeImprovement = false;
5765        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5766          Value *Op = I->getOperand(i);
5767          if (Constant *C = dyn_cast<Constant>(Op)) {
5768            Operands.push_back(C);
5769            continue;
5770          }
5771
5772          // If any of the operands is non-constant and if they are
5773          // non-integer and non-pointer, don't even try to analyze them
5774          // with scev techniques.
5775          if (!isSCEVable(Op->getType()))
5776            return V;
5777
5778          const SCEV *OrigV = getSCEV(Op);
5779          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5780          MadeImprovement |= OrigV != OpV;
5781
5782          Constant *C = BuildConstantFromSCEV(OpV);
5783          if (!C) return V;
5784          if (C->getType() != Op->getType())
5785            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5786                                                              Op->getType(),
5787                                                              false),
5788                                      C, Op->getType());
5789          Operands.push_back(C);
5790        }
5791
5792        // Check to see if getSCEVAtScope actually made an improvement.
5793        if (MadeImprovement) {
5794          Constant *C = nullptr;
5795          const DataLayout &DL = F->getParent()->getDataLayout();
5796          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5797            C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5798                                                Operands[1], DL, TLI);
5799          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5800            if (!LI->isVolatile())
5801              C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5802          } else
5803            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
5804                                         DL, TLI);
5805          if (!C) return V;
5806          return getSCEV(C);
5807        }
5808      }
5809    }
5810
5811    // This is some other type of SCEVUnknown, just return it.
5812    return V;
5813  }
5814
5815  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5816    // Avoid performing the look-up in the common case where the specified
5817    // expression has no loop-variant portions.
5818    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5819      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5820      if (OpAtScope != Comm->getOperand(i)) {
5821        // Okay, at least one of these operands is loop variant but might be
5822        // foldable.  Build a new instance of the folded commutative expression.
5823        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5824                                            Comm->op_begin()+i);
5825        NewOps.push_back(OpAtScope);
5826
5827        for (++i; i != e; ++i) {
5828          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5829          NewOps.push_back(OpAtScope);
5830        }
5831        if (isa<SCEVAddExpr>(Comm))
5832          return getAddExpr(NewOps);
5833        if (isa<SCEVMulExpr>(Comm))
5834          return getMulExpr(NewOps);
5835        if (isa<SCEVSMaxExpr>(Comm))
5836          return getSMaxExpr(NewOps);
5837        if (isa<SCEVUMaxExpr>(Comm))
5838          return getUMaxExpr(NewOps);
5839        llvm_unreachable("Unknown commutative SCEV type!");
5840      }
5841    }
5842    // If we got here, all operands are loop invariant.
5843    return Comm;
5844  }
5845
5846  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5847    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5848    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5849    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5850      return Div;   // must be loop invariant
5851    return getUDivExpr(LHS, RHS);
5852  }
5853
5854  // If this is a loop recurrence for a loop that does not contain L, then we
5855  // are dealing with the final value computed by the loop.
5856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5857    // First, attempt to evaluate each operand.
5858    // Avoid performing the look-up in the common case where the specified
5859    // expression has no loop-variant portions.
5860    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5861      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5862      if (OpAtScope == AddRec->getOperand(i))
5863        continue;
5864
5865      // Okay, at least one of these operands is loop variant but might be
5866      // foldable.  Build a new instance of the folded commutative expression.
5867      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5868                                          AddRec->op_begin()+i);
5869      NewOps.push_back(OpAtScope);
5870      for (++i; i != e; ++i)
5871        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5872
5873      const SCEV *FoldedRec =
5874        getAddRecExpr(NewOps, AddRec->getLoop(),
5875                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5876      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5877      // The addrec may be folded to a nonrecurrence, for example, if the
5878      // induction variable is multiplied by zero after constant folding. Go
5879      // ahead and return the folded value.
5880      if (!AddRec)
5881        return FoldedRec;
5882      break;
5883    }
5884
5885    // If the scope is outside the addrec's loop, evaluate it by using the
5886    // loop exit value of the addrec.
5887    if (!AddRec->getLoop()->contains(L)) {
5888      // To evaluate this recurrence, we need to know how many times the AddRec
5889      // loop iterates.  Compute this now.
5890      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5891      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5892
5893      // Then, evaluate the AddRec.
5894      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5895    }
5896
5897    return AddRec;
5898  }
5899
5900  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5901    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5902    if (Op == Cast->getOperand())
5903      return Cast;  // must be loop invariant
5904    return getZeroExtendExpr(Op, Cast->getType());
5905  }
5906
5907  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5908    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5909    if (Op == Cast->getOperand())
5910      return Cast;  // must be loop invariant
5911    return getSignExtendExpr(Op, Cast->getType());
5912  }
5913
5914  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5915    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5916    if (Op == Cast->getOperand())
5917      return Cast;  // must be loop invariant
5918    return getTruncateExpr(Op, Cast->getType());
5919  }
5920
5921  llvm_unreachable("Unknown SCEV type!");
5922}
5923
5924/// getSCEVAtScope - This is a convenience function which does
5925/// getSCEVAtScope(getSCEV(V), L).
5926const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5927  return getSCEVAtScope(getSCEV(V), L);
5928}
5929
5930/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5931/// following equation:
5932///
5933///     A * X = B (mod N)
5934///
5935/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5936/// A and B isn't important.
5937///
5938/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5939static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5940                                               ScalarEvolution &SE) {
5941  uint32_t BW = A.getBitWidth();
5942  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5943  assert(A != 0 && "A must be non-zero.");
5944
5945  // 1. D = gcd(A, N)
5946  //
5947  // The gcd of A and N may have only one prime factor: 2. The number of
5948  // trailing zeros in A is its multiplicity
5949  uint32_t Mult2 = A.countTrailingZeros();
5950  // D = 2^Mult2
5951
5952  // 2. Check if B is divisible by D.
5953  //
5954  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5955  // is not less than multiplicity of this prime factor for D.
5956  if (B.countTrailingZeros() < Mult2)
5957    return SE.getCouldNotCompute();
5958
5959  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5960  // modulo (N / D).
5961  //
5962  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5963  // bit width during computations.
5964  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5965  APInt Mod(BW + 1, 0);
5966  Mod.setBit(BW - Mult2);  // Mod = N / D
5967  APInt I = AD.multiplicativeInverse(Mod);
5968
5969  // 4. Compute the minimum unsigned root of the equation:
5970  // I * (B / D) mod (N / D)
5971  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5972
5973  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5974  // bits.
5975  return SE.getConstant(Result.trunc(BW));
5976}
5977
5978/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5979/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5980/// might be the same) or two SCEVCouldNotCompute objects.
5981///
5982static std::pair<const SCEV *,const SCEV *>
5983SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5984  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5985  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5986  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5987  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5988
5989  // We currently can only solve this if the coefficients are constants.
5990  if (!LC || !MC || !NC) {
5991    const SCEV *CNC = SE.getCouldNotCompute();
5992    return std::make_pair(CNC, CNC);
5993  }
5994
5995  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5996  const APInt &L = LC->getValue()->getValue();
5997  const APInt &M = MC->getValue()->getValue();
5998  const APInt &N = NC->getValue()->getValue();
5999  APInt Two(BitWidth, 2);
6000  APInt Four(BitWidth, 4);
6001
6002  {
6003    using namespace APIntOps;
6004    const APInt& C = L;
6005    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6006    // The B coefficient is M-N/2
6007    APInt B(M);
6008    B -= sdiv(N,Two);
6009
6010    // The A coefficient is N/2
6011    APInt A(N.sdiv(Two));
6012
6013    // Compute the B^2-4ac term.
6014    APInt SqrtTerm(B);
6015    SqrtTerm *= B;
6016    SqrtTerm -= Four * (A * C);
6017
6018    if (SqrtTerm.isNegative()) {
6019      // The loop is provably infinite.
6020      const SCEV *CNC = SE.getCouldNotCompute();
6021      return std::make_pair(CNC, CNC);
6022    }
6023
6024    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6025    // integer value or else APInt::sqrt() will assert.
6026    APInt SqrtVal(SqrtTerm.sqrt());
6027
6028    // Compute the two solutions for the quadratic formula.
6029    // The divisions must be performed as signed divisions.
6030    APInt NegB(-B);
6031    APInt TwoA(A << 1);
6032    if (TwoA.isMinValue()) {
6033      const SCEV *CNC = SE.getCouldNotCompute();
6034      return std::make_pair(CNC, CNC);
6035    }
6036
6037    LLVMContext &Context = SE.getContext();
6038
6039    ConstantInt *Solution1 =
6040      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6041    ConstantInt *Solution2 =
6042      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6043
6044    return std::make_pair(SE.getConstant(Solution1),
6045                          SE.getConstant(Solution2));
6046  } // end APIntOps namespace
6047}
6048
6049/// HowFarToZero - Return the number of times a backedge comparing the specified
6050/// value to zero will execute.  If not computable, return CouldNotCompute.
6051///
6052/// This is only used for loops with a "x != y" exit test. The exit condition is
6053/// now expressed as a single expression, V = x-y. So the exit test is
6054/// effectively V != 0.  We know and take advantage of the fact that this
6055/// expression only being used in a comparison by zero context.
6056ScalarEvolution::ExitLimit
6057ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6058  // If the value is a constant
6059  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6060    // If the value is already zero, the branch will execute zero times.
6061    if (C->getValue()->isZero()) return C;
6062    return getCouldNotCompute();  // Otherwise it will loop infinitely.
6063  }
6064
6065  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6066  if (!AddRec || AddRec->getLoop() != L)
6067    return getCouldNotCompute();
6068
6069  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6070  // the quadratic equation to solve it.
6071  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6072    std::pair<const SCEV *,const SCEV *> Roots =
6073      SolveQuadraticEquation(AddRec, *this);
6074    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6075    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6076    if (R1 && R2) {
6077#if 0
6078      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
6079             << "  sol#2: " << *R2 << "\n";
6080#endif
6081      // Pick the smallest positive root value.
6082      if (ConstantInt *CB =
6083          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6084                                                      R1->getValue(),
6085                                                      R2->getValue()))) {
6086        if (!CB->getZExtValue())
6087          std::swap(R1, R2);   // R1 is the minimum root now.
6088
6089        // We can only use this value if the chrec ends up with an exact zero
6090        // value at this index.  When solving for "X*X != 5", for example, we
6091        // should not accept a root of 2.
6092        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6093        if (Val->isZero())
6094          return R1;  // We found a quadratic root!
6095      }
6096    }
6097    return getCouldNotCompute();
6098  }
6099
6100  // Otherwise we can only handle this if it is affine.
6101  if (!AddRec->isAffine())
6102    return getCouldNotCompute();
6103
6104  // If this is an affine expression, the execution count of this branch is
6105  // the minimum unsigned root of the following equation:
6106  //
6107  //     Start + Step*N = 0 (mod 2^BW)
6108  //
6109  // equivalent to:
6110  //
6111  //             Step*N = -Start (mod 2^BW)
6112  //
6113  // where BW is the common bit width of Start and Step.
6114
6115  // Get the initial value for the loop.
6116  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6117  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6118
6119  // For now we handle only constant steps.
6120  //
6121  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6122  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6123  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6124  // We have not yet seen any such cases.
6125  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6126  if (!StepC || StepC->getValue()->equalsInt(0))
6127    return getCouldNotCompute();
6128
6129  // For positive steps (counting up until unsigned overflow):
6130  //   N = -Start/Step (as unsigned)
6131  // For negative steps (counting down to zero):
6132  //   N = Start/-Step
6133  // First compute the unsigned distance from zero in the direction of Step.
6134  bool CountDown = StepC->getValue()->getValue().isNegative();
6135  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6136
6137  // Handle unitary steps, which cannot wraparound.
6138  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6139  //   N = Distance (as unsigned)
6140  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6141    ConstantRange CR = getUnsignedRange(Start);
6142    const SCEV *MaxBECount;
6143    if (!CountDown && CR.getUnsignedMin().isMinValue())
6144      // When counting up, the worst starting value is 1, not 0.
6145      MaxBECount = CR.getUnsignedMax().isMinValue()
6146        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6147        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6148    else
6149      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6150                                         : -CR.getUnsignedMin());
6151    return ExitLimit(Distance, MaxBECount);
6152  }
6153
6154  // As a special case, handle the instance where Step is a positive power of
6155  // two. In this case, determining whether Step divides Distance evenly can be
6156  // done by counting and comparing the number of trailing zeros of Step and
6157  // Distance.
6158  if (!CountDown) {
6159    const APInt &StepV = StepC->getValue()->getValue();
6160    // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6161    // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6162    // case is not handled as this code is guarded by !CountDown.
6163    if (StepV.isPowerOf2() &&
6164        GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6165      return getUDivExactExpr(Distance, Step);
6166  }
6167
6168  // If the condition controls loop exit (the loop exits only if the expression
6169  // is true) and the addition is no-wrap we can use unsigned divide to
6170  // compute the backedge count.  In this case, the step may not divide the
6171  // distance, but we don't care because if the condition is "missed" the loop
6172  // will have undefined behavior due to wrapping.
6173  if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6174    const SCEV *Exact =
6175        getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6176    return ExitLimit(Exact, Exact);
6177  }
6178
6179  // Then, try to solve the above equation provided that Start is constant.
6180  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6181    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6182                                        -StartC->getValue()->getValue(),
6183                                        *this);
6184  return getCouldNotCompute();
6185}
6186
6187/// HowFarToNonZero - Return the number of times a backedge checking the
6188/// specified value for nonzero will execute.  If not computable, return
6189/// CouldNotCompute
6190ScalarEvolution::ExitLimit
6191ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6192  // Loops that look like: while (X == 0) are very strange indeed.  We don't
6193  // handle them yet except for the trivial case.  This could be expanded in the
6194  // future as needed.
6195
6196  // If the value is a constant, check to see if it is known to be non-zero
6197  // already.  If so, the backedge will execute zero times.
6198  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6199    if (!C->getValue()->isNullValue())
6200      return getConstant(C->getType(), 0);
6201    return getCouldNotCompute();  // Otherwise it will loop infinitely.
6202  }
6203
6204  // We could implement others, but I really doubt anyone writes loops like
6205  // this, and if they did, they would already be constant folded.
6206  return getCouldNotCompute();
6207}
6208
6209/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6210/// (which may not be an immediate predecessor) which has exactly one
6211/// successor from which BB is reachable, or null if no such block is
6212/// found.
6213///
6214std::pair<BasicBlock *, BasicBlock *>
6215ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6216  // If the block has a unique predecessor, then there is no path from the
6217  // predecessor to the block that does not go through the direct edge
6218  // from the predecessor to the block.
6219  if (BasicBlock *Pred = BB->getSinglePredecessor())
6220    return std::make_pair(Pred, BB);
6221
6222  // A loop's header is defined to be a block that dominates the loop.
6223  // If the header has a unique predecessor outside the loop, it must be
6224  // a block that has exactly one successor that can reach the loop.
6225  if (Loop *L = LI->getLoopFor(BB))
6226    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6227
6228  return std::pair<BasicBlock *, BasicBlock *>();
6229}
6230
6231/// HasSameValue - SCEV structural equivalence is usually sufficient for
6232/// testing whether two expressions are equal, however for the purposes of
6233/// looking for a condition guarding a loop, it can be useful to be a little
6234/// more general, since a front-end may have replicated the controlling
6235/// expression.
6236///
6237static bool HasSameValue(const SCEV *A, const SCEV *B) {
6238  // Quick check to see if they are the same SCEV.
6239  if (A == B) return true;
6240
6241  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6242  // two different instructions with the same value. Check for this case.
6243  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6244    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6245      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6246        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6247          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
6248            return true;
6249
6250  // Otherwise assume they may have a different value.
6251  return false;
6252}
6253
6254/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6255/// predicate Pred. Return true iff any changes were made.
6256///
6257bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6258                                           const SCEV *&LHS, const SCEV *&RHS,
6259                                           unsigned Depth) {
6260  bool Changed = false;
6261
6262  // If we hit the max recursion limit bail out.
6263  if (Depth >= 3)
6264    return false;
6265
6266  // Canonicalize a constant to the right side.
6267  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6268    // Check for both operands constant.
6269    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6270      if (ConstantExpr::getICmp(Pred,
6271                                LHSC->getValue(),
6272                                RHSC->getValue())->isNullValue())
6273        goto trivially_false;
6274      else
6275        goto trivially_true;
6276    }
6277    // Otherwise swap the operands to put the constant on the right.
6278    std::swap(LHS, RHS);
6279    Pred = ICmpInst::getSwappedPredicate(Pred);
6280    Changed = true;
6281  }
6282
6283  // If we're comparing an addrec with a value which is loop-invariant in the
6284  // addrec's loop, put the addrec on the left. Also make a dominance check,
6285  // as both operands could be addrecs loop-invariant in each other's loop.
6286  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6287    const Loop *L = AR->getLoop();
6288    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6289      std::swap(LHS, RHS);
6290      Pred = ICmpInst::getSwappedPredicate(Pred);
6291      Changed = true;
6292    }
6293  }
6294
6295  // If there's a constant operand, canonicalize comparisons with boundary
6296  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6297  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6298    const APInt &RA = RC->getValue()->getValue();
6299    switch (Pred) {
6300    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6301    case ICmpInst::ICMP_EQ:
6302    case ICmpInst::ICMP_NE:
6303      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6304      if (!RA)
6305        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6306          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6307            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6308                ME->getOperand(0)->isAllOnesValue()) {
6309              RHS = AE->getOperand(1);
6310              LHS = ME->getOperand(1);
6311              Changed = true;
6312            }
6313      break;
6314    case ICmpInst::ICMP_UGE:
6315      if ((RA - 1).isMinValue()) {
6316        Pred = ICmpInst::ICMP_NE;
6317        RHS = getConstant(RA - 1);
6318        Changed = true;
6319        break;
6320      }
6321      if (RA.isMaxValue()) {
6322        Pred = ICmpInst::ICMP_EQ;
6323        Changed = true;
6324        break;
6325      }
6326      if (RA.isMinValue()) goto trivially_true;
6327
6328      Pred = ICmpInst::ICMP_UGT;
6329      RHS = getConstant(RA - 1);
6330      Changed = true;
6331      break;
6332    case ICmpInst::ICMP_ULE:
6333      if ((RA + 1).isMaxValue()) {
6334        Pred = ICmpInst::ICMP_NE;
6335        RHS = getConstant(RA + 1);
6336        Changed = true;
6337        break;
6338      }
6339      if (RA.isMinValue()) {
6340        Pred = ICmpInst::ICMP_EQ;
6341        Changed = true;
6342        break;
6343      }
6344      if (RA.isMaxValue()) goto trivially_true;
6345
6346      Pred = ICmpInst::ICMP_ULT;
6347      RHS = getConstant(RA + 1);
6348      Changed = true;
6349      break;
6350    case ICmpInst::ICMP_SGE:
6351      if ((RA - 1).isMinSignedValue()) {
6352        Pred = ICmpInst::ICMP_NE;
6353        RHS = getConstant(RA - 1);
6354        Changed = true;
6355        break;
6356      }
6357      if (RA.isMaxSignedValue()) {
6358        Pred = ICmpInst::ICMP_EQ;
6359        Changed = true;
6360        break;
6361      }
6362      if (RA.isMinSignedValue()) goto trivially_true;
6363
6364      Pred = ICmpInst::ICMP_SGT;
6365      RHS = getConstant(RA - 1);
6366      Changed = true;
6367      break;
6368    case ICmpInst::ICMP_SLE:
6369      if ((RA + 1).isMaxSignedValue()) {
6370        Pred = ICmpInst::ICMP_NE;
6371        RHS = getConstant(RA + 1);
6372        Changed = true;
6373        break;
6374      }
6375      if (RA.isMinSignedValue()) {
6376        Pred = ICmpInst::ICMP_EQ;
6377        Changed = true;
6378        break;
6379      }
6380      if (RA.isMaxSignedValue()) goto trivially_true;
6381
6382      Pred = ICmpInst::ICMP_SLT;
6383      RHS = getConstant(RA + 1);
6384      Changed = true;
6385      break;
6386    case ICmpInst::ICMP_UGT:
6387      if (RA.isMinValue()) {
6388        Pred = ICmpInst::ICMP_NE;
6389        Changed = true;
6390        break;
6391      }
6392      if ((RA + 1).isMaxValue()) {
6393        Pred = ICmpInst::ICMP_EQ;
6394        RHS = getConstant(RA + 1);
6395        Changed = true;
6396        break;
6397      }
6398      if (RA.isMaxValue()) goto trivially_false;
6399      break;
6400    case ICmpInst::ICMP_ULT:
6401      if (RA.isMaxValue()) {
6402        Pred = ICmpInst::ICMP_NE;
6403        Changed = true;
6404        break;
6405      }
6406      if ((RA - 1).isMinValue()) {
6407        Pred = ICmpInst::ICMP_EQ;
6408        RHS = getConstant(RA - 1);
6409        Changed = true;
6410        break;
6411      }
6412      if (RA.isMinValue()) goto trivially_false;
6413      break;
6414    case ICmpInst::ICMP_SGT:
6415      if (RA.isMinSignedValue()) {
6416        Pred = ICmpInst::ICMP_NE;
6417        Changed = true;
6418        break;
6419      }
6420      if ((RA + 1).isMaxSignedValue()) {
6421        Pred = ICmpInst::ICMP_EQ;
6422        RHS = getConstant(RA + 1);
6423        Changed = true;
6424        break;
6425      }
6426      if (RA.isMaxSignedValue()) goto trivially_false;
6427      break;
6428    case ICmpInst::ICMP_SLT:
6429      if (RA.isMaxSignedValue()) {
6430        Pred = ICmpInst::ICMP_NE;
6431        Changed = true;
6432        break;
6433      }
6434      if ((RA - 1).isMinSignedValue()) {
6435       Pred = ICmpInst::ICMP_EQ;
6436       RHS = getConstant(RA - 1);
6437        Changed = true;
6438       break;
6439      }
6440      if (RA.isMinSignedValue()) goto trivially_false;
6441      break;
6442    }
6443  }
6444
6445  // Check for obvious equality.
6446  if (HasSameValue(LHS, RHS)) {
6447    if (ICmpInst::isTrueWhenEqual(Pred))
6448      goto trivially_true;
6449    if (ICmpInst::isFalseWhenEqual(Pred))
6450      goto trivially_false;
6451  }
6452
6453  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6454  // adding or subtracting 1 from one of the operands.
6455  switch (Pred) {
6456  case ICmpInst::ICMP_SLE:
6457    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6458      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6459                       SCEV::FlagNSW);
6460      Pred = ICmpInst::ICMP_SLT;
6461      Changed = true;
6462    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6463      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6464                       SCEV::FlagNSW);
6465      Pred = ICmpInst::ICMP_SLT;
6466      Changed = true;
6467    }
6468    break;
6469  case ICmpInst::ICMP_SGE:
6470    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6471      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6472                       SCEV::FlagNSW);
6473      Pred = ICmpInst::ICMP_SGT;
6474      Changed = true;
6475    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6476      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6477                       SCEV::FlagNSW);
6478      Pred = ICmpInst::ICMP_SGT;
6479      Changed = true;
6480    }
6481    break;
6482  case ICmpInst::ICMP_ULE:
6483    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6484      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6485                       SCEV::FlagNUW);
6486      Pred = ICmpInst::ICMP_ULT;
6487      Changed = true;
6488    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6489      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6490                       SCEV::FlagNUW);
6491      Pred = ICmpInst::ICMP_ULT;
6492      Changed = true;
6493    }
6494    break;
6495  case ICmpInst::ICMP_UGE:
6496    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6497      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6498                       SCEV::FlagNUW);
6499      Pred = ICmpInst::ICMP_UGT;
6500      Changed = true;
6501    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6502      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6503                       SCEV::FlagNUW);
6504      Pred = ICmpInst::ICMP_UGT;
6505      Changed = true;
6506    }
6507    break;
6508  default:
6509    break;
6510  }
6511
6512  // TODO: More simplifications are possible here.
6513
6514  // Recursively simplify until we either hit a recursion limit or nothing
6515  // changes.
6516  if (Changed)
6517    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6518
6519  return Changed;
6520
6521trivially_true:
6522  // Return 0 == 0.
6523  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6524  Pred = ICmpInst::ICMP_EQ;
6525  return true;
6526
6527trivially_false:
6528  // Return 0 != 0.
6529  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6530  Pred = ICmpInst::ICMP_NE;
6531  return true;
6532}
6533
6534bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6535  return getSignedRange(S).getSignedMax().isNegative();
6536}
6537
6538bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6539  return getSignedRange(S).getSignedMin().isStrictlyPositive();
6540}
6541
6542bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6543  return !getSignedRange(S).getSignedMin().isNegative();
6544}
6545
6546bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6547  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6548}
6549
6550bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6551  return isKnownNegative(S) || isKnownPositive(S);
6552}
6553
6554bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6555                                       const SCEV *LHS, const SCEV *RHS) {
6556  // Canonicalize the inputs first.
6557  (void)SimplifyICmpOperands(Pred, LHS, RHS);
6558
6559  // If LHS or RHS is an addrec, check to see if the condition is true in
6560  // every iteration of the loop.
6561  // If LHS and RHS are both addrec, both conditions must be true in
6562  // every iteration of the loop.
6563  const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6564  const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6565  bool LeftGuarded = false;
6566  bool RightGuarded = false;
6567  if (LAR) {
6568    const Loop *L = LAR->getLoop();
6569    if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6570        isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6571      if (!RAR) return true;
6572      LeftGuarded = true;
6573    }
6574  }
6575  if (RAR) {
6576    const Loop *L = RAR->getLoop();
6577    if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6578        isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6579      if (!LAR) return true;
6580      RightGuarded = true;
6581    }
6582  }
6583  if (LeftGuarded && RightGuarded)
6584    return true;
6585
6586  // Otherwise see what can be done with known constant ranges.
6587  return isKnownPredicateWithRanges(Pred, LHS, RHS);
6588}
6589
6590bool
6591ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6592                                            const SCEV *LHS, const SCEV *RHS) {
6593  if (HasSameValue(LHS, RHS))
6594    return ICmpInst::isTrueWhenEqual(Pred);
6595
6596  // This code is split out from isKnownPredicate because it is called from
6597  // within isLoopEntryGuardedByCond.
6598  switch (Pred) {
6599  default:
6600    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6601  case ICmpInst::ICMP_SGT:
6602    std::swap(LHS, RHS);
6603  case ICmpInst::ICMP_SLT: {
6604    ConstantRange LHSRange = getSignedRange(LHS);
6605    ConstantRange RHSRange = getSignedRange(RHS);
6606    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6607      return true;
6608    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6609      return false;
6610    break;
6611  }
6612  case ICmpInst::ICMP_SGE:
6613    std::swap(LHS, RHS);
6614  case ICmpInst::ICMP_SLE: {
6615    ConstantRange LHSRange = getSignedRange(LHS);
6616    ConstantRange RHSRange = getSignedRange(RHS);
6617    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6618      return true;
6619    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6620      return false;
6621    break;
6622  }
6623  case ICmpInst::ICMP_UGT:
6624    std::swap(LHS, RHS);
6625  case ICmpInst::ICMP_ULT: {
6626    ConstantRange LHSRange = getUnsignedRange(LHS);
6627    ConstantRange RHSRange = getUnsignedRange(RHS);
6628    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6629      return true;
6630    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6631      return false;
6632    break;
6633  }
6634  case ICmpInst::ICMP_UGE:
6635    std::swap(LHS, RHS);
6636  case ICmpInst::ICMP_ULE: {
6637    ConstantRange LHSRange = getUnsignedRange(LHS);
6638    ConstantRange RHSRange = getUnsignedRange(RHS);
6639    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6640      return true;
6641    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6642      return false;
6643    break;
6644  }
6645  case ICmpInst::ICMP_NE: {
6646    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6647      return true;
6648    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6649      return true;
6650
6651    const SCEV *Diff = getMinusSCEV(LHS, RHS);
6652    if (isKnownNonZero(Diff))
6653      return true;
6654    break;
6655  }
6656  case ICmpInst::ICMP_EQ:
6657    // The check at the top of the function catches the case where
6658    // the values are known to be equal.
6659    break;
6660  }
6661  return false;
6662}
6663
6664/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6665/// protected by a conditional between LHS and RHS.  This is used to
6666/// to eliminate casts.
6667bool
6668ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6669                                             ICmpInst::Predicate Pred,
6670                                             const SCEV *LHS, const SCEV *RHS) {
6671  // Interpret a null as meaning no loop, where there is obviously no guard
6672  // (interprocedural conditions notwithstanding).
6673  if (!L) return true;
6674
6675  if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6676
6677  BasicBlock *Latch = L->getLoopLatch();
6678  if (!Latch)
6679    return false;
6680
6681  BranchInst *LoopContinuePredicate =
6682    dyn_cast<BranchInst>(Latch->getTerminator());
6683  if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6684      isImpliedCond(Pred, LHS, RHS,
6685                    LoopContinuePredicate->getCondition(),
6686                    LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6687    return true;
6688
6689  // Check conditions due to any @llvm.assume intrinsics.
6690  for (auto &AssumeVH : AC->assumptions()) {
6691    if (!AssumeVH)
6692      continue;
6693    auto *CI = cast<CallInst>(AssumeVH);
6694    if (!DT->dominates(CI, Latch->getTerminator()))
6695      continue;
6696
6697    if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6698      return true;
6699  }
6700
6701  struct ClearWalkingBEDominatingCondsOnExit {
6702    ScalarEvolution &SE;
6703
6704    explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE)
6705        : SE(SE){};
6706
6707    ~ClearWalkingBEDominatingCondsOnExit() {
6708      SE.WalkingBEDominatingConds = false;
6709    }
6710  };
6711
6712  // We don't want more than one activation of the following loop on the stack
6713  // -- that can lead to O(n!) time complexity.
6714  if (WalkingBEDominatingConds)
6715    return false;
6716
6717  WalkingBEDominatingConds = true;
6718  ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this);
6719
6720  // If the loop is not reachable from the entry block, we risk running into an
6721  // infinite loop as we walk up into the dom tree.  These loops do not matter
6722  // anyway, so we just return a conservative answer when we see them.
6723  if (!DT->isReachableFromEntry(L->getHeader()))
6724    return false;
6725
6726  for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()];
6727       DTN != HeaderDTN;
6728       DTN = DTN->getIDom()) {
6729
6730    assert(DTN && "should reach the loop header before reaching the root!");
6731
6732    BasicBlock *BB = DTN->getBlock();
6733    BasicBlock *PBB = BB->getSinglePredecessor();
6734    if (!PBB)
6735      continue;
6736
6737    BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
6738    if (!ContinuePredicate || !ContinuePredicate->isConditional())
6739      continue;
6740
6741    Value *Condition = ContinuePredicate->getCondition();
6742
6743    // If we have an edge `E` within the loop body that dominates the only
6744    // latch, the condition guarding `E` also guards the backedge.  This
6745    // reasoning works only for loops with a single latch.
6746
6747    BasicBlockEdge DominatingEdge(PBB, BB);
6748    if (DominatingEdge.isSingleEdge()) {
6749      // We're constructively (and conservatively) enumerating edges within the
6750      // loop body that dominate the latch.  The dominator tree better agree
6751      // with us on this:
6752      assert(DT->dominates(DominatingEdge, Latch) && "should be!");
6753
6754      if (isImpliedCond(Pred, LHS, RHS, Condition,
6755                        BB != ContinuePredicate->getSuccessor(0)))
6756        return true;
6757    }
6758  }
6759
6760  return false;
6761}
6762
6763/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6764/// by a conditional between LHS and RHS.  This is used to help avoid max
6765/// expressions in loop trip counts, and to eliminate casts.
6766bool
6767ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6768                                          ICmpInst::Predicate Pred,
6769                                          const SCEV *LHS, const SCEV *RHS) {
6770  // Interpret a null as meaning no loop, where there is obviously no guard
6771  // (interprocedural conditions notwithstanding).
6772  if (!L) return false;
6773
6774  if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6775
6776  // Starting at the loop predecessor, climb up the predecessor chain, as long
6777  // as there are predecessors that can be found that have unique successors
6778  // leading to the original header.
6779  for (std::pair<BasicBlock *, BasicBlock *>
6780         Pair(L->getLoopPredecessor(), L->getHeader());
6781       Pair.first;
6782       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6783
6784    BranchInst *LoopEntryPredicate =
6785      dyn_cast<BranchInst>(Pair.first->getTerminator());
6786    if (!LoopEntryPredicate ||
6787        LoopEntryPredicate->isUnconditional())
6788      continue;
6789
6790    if (isImpliedCond(Pred, LHS, RHS,
6791                      LoopEntryPredicate->getCondition(),
6792                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6793      return true;
6794  }
6795
6796  // Check conditions due to any @llvm.assume intrinsics.
6797  for (auto &AssumeVH : AC->assumptions()) {
6798    if (!AssumeVH)
6799      continue;
6800    auto *CI = cast<CallInst>(AssumeVH);
6801    if (!DT->dominates(CI, L->getHeader()))
6802      continue;
6803
6804    if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6805      return true;
6806  }
6807
6808  return false;
6809}
6810
6811/// RAII wrapper to prevent recursive application of isImpliedCond.
6812/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6813/// currently evaluating isImpliedCond.
6814struct MarkPendingLoopPredicate {
6815  Value *Cond;
6816  DenseSet<Value*> &LoopPreds;
6817  bool Pending;
6818
6819  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6820    : Cond(C), LoopPreds(LP) {
6821    Pending = !LoopPreds.insert(Cond).second;
6822  }
6823  ~MarkPendingLoopPredicate() {
6824    if (!Pending)
6825      LoopPreds.erase(Cond);
6826  }
6827};
6828
6829/// isImpliedCond - Test whether the condition described by Pred, LHS,
6830/// and RHS is true whenever the given Cond value evaluates to true.
6831bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6832                                    const SCEV *LHS, const SCEV *RHS,
6833                                    Value *FoundCondValue,
6834                                    bool Inverse) {
6835  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6836  if (Mark.Pending)
6837    return false;
6838
6839  // Recursively handle And and Or conditions.
6840  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6841    if (BO->getOpcode() == Instruction::And) {
6842      if (!Inverse)
6843        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6844               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6845    } else if (BO->getOpcode() == Instruction::Or) {
6846      if (Inverse)
6847        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6848               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6849    }
6850  }
6851
6852  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6853  if (!ICI) return false;
6854
6855  // Now that we found a conditional branch that dominates the loop or controls
6856  // the loop latch. Check to see if it is the comparison we are looking for.
6857  ICmpInst::Predicate FoundPred;
6858  if (Inverse)
6859    FoundPred = ICI->getInversePredicate();
6860  else
6861    FoundPred = ICI->getPredicate();
6862
6863  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6864  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6865
6866  // Balance the types.
6867  if (getTypeSizeInBits(LHS->getType()) <
6868      getTypeSizeInBits(FoundLHS->getType())) {
6869    if (CmpInst::isSigned(Pred)) {
6870      LHS = getSignExtendExpr(LHS, FoundLHS->getType());
6871      RHS = getSignExtendExpr(RHS, FoundLHS->getType());
6872    } else {
6873      LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
6874      RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
6875    }
6876  } else if (getTypeSizeInBits(LHS->getType()) >
6877      getTypeSizeInBits(FoundLHS->getType())) {
6878    if (CmpInst::isSigned(FoundPred)) {
6879      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6880      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6881    } else {
6882      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6883      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6884    }
6885  }
6886
6887  // Canonicalize the query to match the way instcombine will have
6888  // canonicalized the comparison.
6889  if (SimplifyICmpOperands(Pred, LHS, RHS))
6890    if (LHS == RHS)
6891      return CmpInst::isTrueWhenEqual(Pred);
6892  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6893    if (FoundLHS == FoundRHS)
6894      return CmpInst::isFalseWhenEqual(FoundPred);
6895
6896  // Check to see if we can make the LHS or RHS match.
6897  if (LHS == FoundRHS || RHS == FoundLHS) {
6898    if (isa<SCEVConstant>(RHS)) {
6899      std::swap(FoundLHS, FoundRHS);
6900      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6901    } else {
6902      std::swap(LHS, RHS);
6903      Pred = ICmpInst::getSwappedPredicate(Pred);
6904    }
6905  }
6906
6907  // Check whether the found predicate is the same as the desired predicate.
6908  if (FoundPred == Pred)
6909    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6910
6911  // Check whether swapping the found predicate makes it the same as the
6912  // desired predicate.
6913  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6914    if (isa<SCEVConstant>(RHS))
6915      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6916    else
6917      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6918                                   RHS, LHS, FoundLHS, FoundRHS);
6919  }
6920
6921  // Check if we can make progress by sharpening ranges.
6922  if (FoundPred == ICmpInst::ICMP_NE &&
6923      (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6924
6925    const SCEVConstant *C = nullptr;
6926    const SCEV *V = nullptr;
6927
6928    if (isa<SCEVConstant>(FoundLHS)) {
6929      C = cast<SCEVConstant>(FoundLHS);
6930      V = FoundRHS;
6931    } else {
6932      C = cast<SCEVConstant>(FoundRHS);
6933      V = FoundLHS;
6934    }
6935
6936    // The guarding predicate tells us that C != V. If the known range
6937    // of V is [C, t), we can sharpen the range to [C + 1, t).  The
6938    // range we consider has to correspond to same signedness as the
6939    // predicate we're interested in folding.
6940
6941    APInt Min = ICmpInst::isSigned(Pred) ?
6942        getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6943
6944    if (Min == C->getValue()->getValue()) {
6945      // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6946      // This is true even if (Min + 1) wraps around -- in case of
6947      // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6948
6949      APInt SharperMin = Min + 1;
6950
6951      switch (Pred) {
6952        case ICmpInst::ICMP_SGE:
6953        case ICmpInst::ICMP_UGE:
6954          // We know V `Pred` SharperMin.  If this implies LHS `Pred`
6955          // RHS, we're done.
6956          if (isImpliedCondOperands(Pred, LHS, RHS, V,
6957                                    getConstant(SharperMin)))
6958            return true;
6959
6960        case ICmpInst::ICMP_SGT:
6961        case ICmpInst::ICMP_UGT:
6962          // We know from the range information that (V `Pred` Min ||
6963          // V == Min).  We know from the guarding condition that !(V
6964          // == Min).  This gives us
6965          //
6966          //       V `Pred` Min || V == Min && !(V == Min)
6967          //   =>  V `Pred` Min
6968          //
6969          // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6970
6971          if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6972            return true;
6973
6974        default:
6975          // No change
6976          break;
6977      }
6978    }
6979  }
6980
6981  // Check whether the actual condition is beyond sufficient.
6982  if (FoundPred == ICmpInst::ICMP_EQ)
6983    if (ICmpInst::isTrueWhenEqual(Pred))
6984      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6985        return true;
6986  if (Pred == ICmpInst::ICMP_NE)
6987    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6988      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6989        return true;
6990
6991  // Otherwise assume the worst.
6992  return false;
6993}
6994
6995/// isImpliedCondOperands - Test whether the condition described by Pred,
6996/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6997/// and FoundRHS is true.
6998bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6999                                            const SCEV *LHS, const SCEV *RHS,
7000                                            const SCEV *FoundLHS,
7001                                            const SCEV *FoundRHS) {
7002  if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7003    return true;
7004
7005  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7006                                     FoundLHS, FoundRHS) ||
7007         // ~x < ~y --> x > y
7008         isImpliedCondOperandsHelper(Pred, LHS, RHS,
7009                                     getNotSCEV(FoundRHS),
7010                                     getNotSCEV(FoundLHS));
7011}
7012
7013
7014/// If Expr computes ~A, return A else return nullptr
7015static const SCEV *MatchNotExpr(const SCEV *Expr) {
7016  const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7017  if (!Add || Add->getNumOperands() != 2) return nullptr;
7018
7019  const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
7020  if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
7021    return nullptr;
7022
7023  const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7024  if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
7025
7026  const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
7027  if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
7028    return nullptr;
7029
7030  return AddRHS->getOperand(1);
7031}
7032
7033
7034/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7035template<typename MaxExprType>
7036static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7037                              const SCEV *Candidate) {
7038  const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7039  if (!MaxExpr) return false;
7040
7041  auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7042  return It != MaxExpr->op_end();
7043}
7044
7045
7046/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7047template<typename MaxExprType>
7048static bool IsMinConsistingOf(ScalarEvolution &SE,
7049                              const SCEV *MaybeMinExpr,
7050                              const SCEV *Candidate) {
7051  const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7052  if (!MaybeMaxExpr)
7053    return false;
7054
7055  return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7056}
7057
7058
7059/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7060/// expression?
7061static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7062                                        ICmpInst::Predicate Pred,
7063                                        const SCEV *LHS, const SCEV *RHS) {
7064  switch (Pred) {
7065  default:
7066    return false;
7067
7068  case ICmpInst::ICMP_SGE:
7069    std::swap(LHS, RHS);
7070    // fall through
7071  case ICmpInst::ICMP_SLE:
7072    return
7073      // min(A, ...) <= A
7074      IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7075      // A <= max(A, ...)
7076      IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7077
7078  case ICmpInst::ICMP_UGE:
7079    std::swap(LHS, RHS);
7080    // fall through
7081  case ICmpInst::ICMP_ULE:
7082    return
7083      // min(A, ...) <= A
7084      IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7085      // A <= max(A, ...)
7086      IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7087  }
7088
7089  llvm_unreachable("covered switch fell through?!");
7090}
7091
7092/// isImpliedCondOperandsHelper - Test whether the condition described by
7093/// Pred, LHS, and RHS is true whenever the condition described by Pred,
7094/// FoundLHS, and FoundRHS is true.
7095bool
7096ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7097                                             const SCEV *LHS, const SCEV *RHS,
7098                                             const SCEV *FoundLHS,
7099                                             const SCEV *FoundRHS) {
7100  auto IsKnownPredicateFull =
7101      [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7102    return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7103        IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7104  };
7105
7106  switch (Pred) {
7107  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7108  case ICmpInst::ICMP_EQ:
7109  case ICmpInst::ICMP_NE:
7110    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7111      return true;
7112    break;
7113  case ICmpInst::ICMP_SLT:
7114  case ICmpInst::ICMP_SLE:
7115    if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7116        IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
7117      return true;
7118    break;
7119  case ICmpInst::ICMP_SGT:
7120  case ICmpInst::ICMP_SGE:
7121    if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7122        IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
7123      return true;
7124    break;
7125  case ICmpInst::ICMP_ULT:
7126  case ICmpInst::ICMP_ULE:
7127    if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7128        IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
7129      return true;
7130    break;
7131  case ICmpInst::ICMP_UGT:
7132  case ICmpInst::ICMP_UGE:
7133    if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7134        IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
7135      return true;
7136    break;
7137  }
7138
7139  return false;
7140}
7141
7142/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7143/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7144bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7145                                                     const SCEV *LHS,
7146                                                     const SCEV *RHS,
7147                                                     const SCEV *FoundLHS,
7148                                                     const SCEV *FoundRHS) {
7149  if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7150    // The restriction on `FoundRHS` be lifted easily -- it exists only to
7151    // reduce the compile time impact of this optimization.
7152    return false;
7153
7154  const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7155  if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7156      !isa<SCEVConstant>(AddLHS->getOperand(0)))
7157    return false;
7158
7159  APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7160
7161  // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7162  // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7163  ConstantRange FoundLHSRange =
7164      ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7165
7166  // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7167  // for `LHS`:
7168  APInt Addend =
7169      cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7170  ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7171
7172  // We can also compute the range of values for `LHS` that satisfy the
7173  // consequent, "`LHS` `Pred` `RHS`":
7174  APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7175  ConstantRange SatisfyingLHSRange =
7176      ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7177
7178  // The antecedent implies the consequent if every value of `LHS` that
7179  // satisfies the antecedent also satisfies the consequent.
7180  return SatisfyingLHSRange.contains(LHSRange);
7181}
7182
7183// Verify if an linear IV with positive stride can overflow when in a
7184// less-than comparison, knowing the invariant term of the comparison, the
7185// stride and the knowledge of NSW/NUW flags on the recurrence.
7186bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7187                                         bool IsSigned, bool NoWrap) {
7188  if (NoWrap) return false;
7189
7190  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7191  const SCEV *One = getConstant(Stride->getType(), 1);
7192
7193  if (IsSigned) {
7194    APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7195    APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7196    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7197                                .getSignedMax();
7198
7199    // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7200    return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
7201  }
7202
7203  APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7204  APInt MaxValue = APInt::getMaxValue(BitWidth);
7205  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7206                              .getUnsignedMax();
7207
7208  // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7209  return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7210}
7211
7212// Verify if an linear IV with negative stride can overflow when in a
7213// greater-than comparison, knowing the invariant term of the comparison,
7214// the stride and the knowledge of NSW/NUW flags on the recurrence.
7215bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7216                                         bool IsSigned, bool NoWrap) {
7217  if (NoWrap) return false;
7218
7219  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7220  const SCEV *One = getConstant(Stride->getType(), 1);
7221
7222  if (IsSigned) {
7223    APInt MinRHS = getSignedRange(RHS).getSignedMin();
7224    APInt MinValue = APInt::getSignedMinValue(BitWidth);
7225    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7226                               .getSignedMax();
7227
7228    // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7229    return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7230  }
7231
7232  APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7233  APInt MinValue = APInt::getMinValue(BitWidth);
7234  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7235                            .getUnsignedMax();
7236
7237  // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7238  return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7239}
7240
7241// Compute the backedge taken count knowing the interval difference, the
7242// stride and presence of the equality in the comparison.
7243const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7244                                            bool Equality) {
7245  const SCEV *One = getConstant(Step->getType(), 1);
7246  Delta = Equality ? getAddExpr(Delta, Step)
7247                   : getAddExpr(Delta, getMinusSCEV(Step, One));
7248  return getUDivExpr(Delta, Step);
7249}
7250
7251/// HowManyLessThans - Return the number of times a backedge containing the
7252/// specified less-than comparison will execute.  If not computable, return
7253/// CouldNotCompute.
7254///
7255/// @param ControlsExit is true when the LHS < RHS condition directly controls
7256/// the branch (loops exits only if condition is true). In this case, we can use
7257/// NoWrapFlags to skip overflow checks.
7258ScalarEvolution::ExitLimit
7259ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
7260                                  const Loop *L, bool IsSigned,
7261                                  bool ControlsExit) {
7262  // We handle only IV < Invariant
7263  if (!isLoopInvariant(RHS, L))
7264    return getCouldNotCompute();
7265
7266  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7267
7268  // Avoid weird loops
7269  if (!IV || IV->getLoop() != L || !IV->isAffine())
7270    return getCouldNotCompute();
7271
7272  bool NoWrap = ControlsExit &&
7273                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7274
7275  const SCEV *Stride = IV->getStepRecurrence(*this);
7276
7277  // Avoid negative or zero stride values
7278  if (!isKnownPositive(Stride))
7279    return getCouldNotCompute();
7280
7281  // Avoid proven overflow cases: this will ensure that the backedge taken count
7282  // will not generate any unsigned overflow. Relaxed no-overflow conditions
7283  // exploit NoWrapFlags, allowing to optimize in presence of undefined
7284  // behaviors like the case of C language.
7285  if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7286    return getCouldNotCompute();
7287
7288  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7289                                      : ICmpInst::ICMP_ULT;
7290  const SCEV *Start = IV->getStart();
7291  const SCEV *End = RHS;
7292  if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7293    const SCEV *Diff = getMinusSCEV(RHS, Start);
7294    // If we have NoWrap set, then we can assume that the increment won't
7295    // overflow, in which case if RHS - Start is a constant, we don't need to
7296    // do a max operation since we can just figure it out statically
7297    if (NoWrap && isa<SCEVConstant>(Diff)) {
7298      APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7299      if (D.isNegative())
7300        End = Start;
7301    } else
7302      End = IsSigned ? getSMaxExpr(RHS, Start)
7303                     : getUMaxExpr(RHS, Start);
7304  }
7305
7306  const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
7307
7308  APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7309                            : getUnsignedRange(Start).getUnsignedMin();
7310
7311  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7312                             : getUnsignedRange(Stride).getUnsignedMin();
7313
7314  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7315  APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7316                         : APInt::getMaxValue(BitWidth) - (MinStride - 1);
7317
7318  // Although End can be a MAX expression we estimate MaxEnd considering only
7319  // the case End = RHS. This is safe because in the other case (End - Start)
7320  // is zero, leading to a zero maximum backedge taken count.
7321  APInt MaxEnd =
7322    IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7323             : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7324
7325  const SCEV *MaxBECount;
7326  if (isa<SCEVConstant>(BECount))
7327    MaxBECount = BECount;
7328  else
7329    MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7330                                getConstant(MinStride), false);
7331
7332  if (isa<SCEVCouldNotCompute>(MaxBECount))
7333    MaxBECount = BECount;
7334
7335  return ExitLimit(BECount, MaxBECount);
7336}
7337
7338ScalarEvolution::ExitLimit
7339ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7340                                     const Loop *L, bool IsSigned,
7341                                     bool ControlsExit) {
7342  // We handle only IV > Invariant
7343  if (!isLoopInvariant(RHS, L))
7344    return getCouldNotCompute();
7345
7346  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7347
7348  // Avoid weird loops
7349  if (!IV || IV->getLoop() != L || !IV->isAffine())
7350    return getCouldNotCompute();
7351
7352  bool NoWrap = ControlsExit &&
7353                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7354
7355  const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7356
7357  // Avoid negative or zero stride values
7358  if (!isKnownPositive(Stride))
7359    return getCouldNotCompute();
7360
7361  // Avoid proven overflow cases: this will ensure that the backedge taken count
7362  // will not generate any unsigned overflow. Relaxed no-overflow conditions
7363  // exploit NoWrapFlags, allowing to optimize in presence of undefined
7364  // behaviors like the case of C language.
7365  if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7366    return getCouldNotCompute();
7367
7368  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7369                                      : ICmpInst::ICMP_UGT;
7370
7371  const SCEV *Start = IV->getStart();
7372  const SCEV *End = RHS;
7373  if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7374    const SCEV *Diff = getMinusSCEV(RHS, Start);
7375    // If we have NoWrap set, then we can assume that the increment won't
7376    // overflow, in which case if RHS - Start is a constant, we don't need to
7377    // do a max operation since we can just figure it out statically
7378    if (NoWrap && isa<SCEVConstant>(Diff)) {
7379      APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7380      if (!D.isNegative())
7381        End = Start;
7382    } else
7383      End = IsSigned ? getSMinExpr(RHS, Start)
7384                     : getUMinExpr(RHS, Start);
7385  }
7386
7387  const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7388
7389  APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7390                            : getUnsignedRange(Start).getUnsignedMax();
7391
7392  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7393                             : getUnsignedRange(Stride).getUnsignedMin();
7394
7395  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7396  APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7397                         : APInt::getMinValue(BitWidth) + (MinStride - 1);
7398
7399  // Although End can be a MIN expression we estimate MinEnd considering only
7400  // the case End = RHS. This is safe because in the other case (Start - End)
7401  // is zero, leading to a zero maximum backedge taken count.
7402  APInt MinEnd =
7403    IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7404             : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7405
7406
7407  const SCEV *MaxBECount = getCouldNotCompute();
7408  if (isa<SCEVConstant>(BECount))
7409    MaxBECount = BECount;
7410  else
7411    MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7412                                getConstant(MinStride), false);
7413
7414  if (isa<SCEVCouldNotCompute>(MaxBECount))
7415    MaxBECount = BECount;
7416
7417  return ExitLimit(BECount, MaxBECount);
7418}
7419
7420/// getNumIterationsInRange - Return the number of iterations of this loop that
7421/// produce values in the specified constant range.  Another way of looking at
7422/// this is that it returns the first iteration number where the value is not in
7423/// the condition, thus computing the exit count. If the iteration count can't
7424/// be computed, an instance of SCEVCouldNotCompute is returned.
7425const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
7426                                                    ScalarEvolution &SE) const {
7427  if (Range.isFullSet())  // Infinite loop.
7428    return SE.getCouldNotCompute();
7429
7430  // If the start is a non-zero constant, shift the range to simplify things.
7431  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
7432    if (!SC->getValue()->isZero()) {
7433      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
7434      Operands[0] = SE.getConstant(SC->getType(), 0);
7435      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
7436                                             getNoWrapFlags(FlagNW));
7437      if (const SCEVAddRecExpr *ShiftedAddRec =
7438            dyn_cast<SCEVAddRecExpr>(Shifted))
7439        return ShiftedAddRec->getNumIterationsInRange(
7440                           Range.subtract(SC->getValue()->getValue()), SE);
7441      // This is strange and shouldn't happen.
7442      return SE.getCouldNotCompute();
7443    }
7444
7445  // The only time we can solve this is when we have all constant indices.
7446  // Otherwise, we cannot determine the overflow conditions.
7447  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7448    if (!isa<SCEVConstant>(getOperand(i)))
7449      return SE.getCouldNotCompute();
7450
7451
7452  // Okay at this point we know that all elements of the chrec are constants and
7453  // that the start element is zero.
7454
7455  // First check to see if the range contains zero.  If not, the first
7456  // iteration exits.
7457  unsigned BitWidth = SE.getTypeSizeInBits(getType());
7458  if (!Range.contains(APInt(BitWidth, 0)))
7459    return SE.getConstant(getType(), 0);
7460
7461  if (isAffine()) {
7462    // If this is an affine expression then we have this situation:
7463    //   Solve {0,+,A} in Range  ===  Ax in Range
7464
7465    // We know that zero is in the range.  If A is positive then we know that
7466    // the upper value of the range must be the first possible exit value.
7467    // If A is negative then the lower of the range is the last possible loop
7468    // value.  Also note that we already checked for a full range.
7469    APInt One(BitWidth,1);
7470    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7471    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
7472
7473    // The exit value should be (End+A)/A.
7474    APInt ExitVal = (End + A).udiv(A);
7475    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
7476
7477    // Evaluate at the exit value.  If we really did fall out of the valid
7478    // range, then we computed our trip count, otherwise wrap around or other
7479    // things must have happened.
7480    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
7481    if (Range.contains(Val->getValue()))
7482      return SE.getCouldNotCompute();  // Something strange happened
7483
7484    // Ensure that the previous value is in the range.  This is a sanity check.
7485    assert(Range.contains(
7486           EvaluateConstantChrecAtConstant(this,
7487           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
7488           "Linear scev computation is off in a bad way!");
7489    return SE.getConstant(ExitValue);
7490  } else if (isQuadratic()) {
7491    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7492    // quadratic equation to solve it.  To do this, we must frame our problem in
7493    // terms of figuring out when zero is crossed, instead of when
7494    // Range.getUpper() is crossed.
7495    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
7496    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
7497    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7498                                             // getNoWrapFlags(FlagNW)
7499                                             FlagAnyWrap);
7500
7501    // Next, solve the constructed addrec
7502    std::pair<const SCEV *,const SCEV *> Roots =
7503      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
7504    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7505    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7506    if (R1) {
7507      // Pick the smallest positive root value.
7508      if (ConstantInt *CB =
7509          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
7510                         R1->getValue(), R2->getValue()))) {
7511        if (!CB->getZExtValue())
7512          std::swap(R1, R2);   // R1 is the minimum root now.
7513
7514        // Make sure the root is not off by one.  The returned iteration should
7515        // not be in the range, but the previous one should be.  When solving
7516        // for "X*X < 5", for example, we should not return a root of 2.
7517        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
7518                                                             R1->getValue(),
7519                                                             SE);
7520        if (Range.contains(R1Val->getValue())) {
7521          // The next iteration must be out of the range...
7522          ConstantInt *NextVal =
7523                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
7524
7525          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7526          if (!Range.contains(R1Val->getValue()))
7527            return SE.getConstant(NextVal);
7528          return SE.getCouldNotCompute();  // Something strange happened
7529        }
7530
7531        // If R1 was not in the range, then it is a good return value.  Make
7532        // sure that R1-1 WAS in the range though, just in case.
7533        ConstantInt *NextVal =
7534               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
7535        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7536        if (Range.contains(R1Val->getValue()))
7537          return R1;
7538        return SE.getCouldNotCompute();  // Something strange happened
7539      }
7540    }
7541  }
7542
7543  return SE.getCouldNotCompute();
7544}
7545
7546namespace {
7547struct FindUndefs {
7548  bool Found;
7549  FindUndefs() : Found(false) {}
7550
7551  bool follow(const SCEV *S) {
7552    if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7553      if (isa<UndefValue>(C->getValue()))
7554        Found = true;
7555    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7556      if (isa<UndefValue>(C->getValue()))
7557        Found = true;
7558    }
7559
7560    // Keep looking if we haven't found it yet.
7561    return !Found;
7562  }
7563  bool isDone() const {
7564    // Stop recursion if we have found an undef.
7565    return Found;
7566  }
7567};
7568}
7569
7570// Return true when S contains at least an undef value.
7571static inline bool
7572containsUndefs(const SCEV *S) {
7573  FindUndefs F;
7574  SCEVTraversal<FindUndefs> ST(F);
7575  ST.visitAll(S);
7576
7577  return F.Found;
7578}
7579
7580namespace {
7581// Collect all steps of SCEV expressions.
7582struct SCEVCollectStrides {
7583  ScalarEvolution &SE;
7584  SmallVectorImpl<const SCEV *> &Strides;
7585
7586  SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7587      : SE(SE), Strides(S) {}
7588
7589  bool follow(const SCEV *S) {
7590    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7591      Strides.push_back(AR->getStepRecurrence(SE));
7592    return true;
7593  }
7594  bool isDone() const { return false; }
7595};
7596
7597// Collect all SCEVUnknown and SCEVMulExpr expressions.
7598struct SCEVCollectTerms {
7599  SmallVectorImpl<const SCEV *> &Terms;
7600
7601  SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7602      : Terms(T) {}
7603
7604  bool follow(const SCEV *S) {
7605    if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
7606      if (!containsUndefs(S))
7607        Terms.push_back(S);
7608
7609      // Stop recursion: once we collected a term, do not walk its operands.
7610      return false;
7611    }
7612
7613    // Keep looking.
7614    return true;
7615  }
7616  bool isDone() const { return false; }
7617};
7618}
7619
7620/// Find parametric terms in this SCEVAddRecExpr.
7621void SCEVAddRecExpr::collectParametricTerms(
7622    ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7623  SmallVector<const SCEV *, 4> Strides;
7624  SCEVCollectStrides StrideCollector(SE, Strides);
7625  visitAll(this, StrideCollector);
7626
7627  DEBUG({
7628      dbgs() << "Strides:\n";
7629      for (const SCEV *S : Strides)
7630        dbgs() << *S << "\n";
7631    });
7632
7633  for (const SCEV *S : Strides) {
7634    SCEVCollectTerms TermCollector(Terms);
7635    visitAll(S, TermCollector);
7636  }
7637
7638  DEBUG({
7639      dbgs() << "Terms:\n";
7640      for (const SCEV *T : Terms)
7641        dbgs() << *T << "\n";
7642    });
7643}
7644
7645static bool findArrayDimensionsRec(ScalarEvolution &SE,
7646                                   SmallVectorImpl<const SCEV *> &Terms,
7647                                   SmallVectorImpl<const SCEV *> &Sizes) {
7648  int Last = Terms.size() - 1;
7649  const SCEV *Step = Terms[Last];
7650
7651  // End of recursion.
7652  if (Last == 0) {
7653    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7654      SmallVector<const SCEV *, 2> Qs;
7655      for (const SCEV *Op : M->operands())
7656        if (!isa<SCEVConstant>(Op))
7657          Qs.push_back(Op);
7658
7659      Step = SE.getMulExpr(Qs);
7660    }
7661
7662    Sizes.push_back(Step);
7663    return true;
7664  }
7665
7666  for (const SCEV *&Term : Terms) {
7667    // Normalize the terms before the next call to findArrayDimensionsRec.
7668    const SCEV *Q, *R;
7669    SCEVDivision::divide(SE, Term, Step, &Q, &R);
7670
7671    // Bail out when GCD does not evenly divide one of the terms.
7672    if (!R->isZero())
7673      return false;
7674
7675    Term = Q;
7676  }
7677
7678  // Remove all SCEVConstants.
7679  Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7680                return isa<SCEVConstant>(E);
7681              }),
7682              Terms.end());
7683
7684  if (Terms.size() > 0)
7685    if (!findArrayDimensionsRec(SE, Terms, Sizes))
7686      return false;
7687
7688  Sizes.push_back(Step);
7689  return true;
7690}
7691
7692namespace {
7693struct FindParameter {
7694  bool FoundParameter;
7695  FindParameter() : FoundParameter(false) {}
7696
7697  bool follow(const SCEV *S) {
7698    if (isa<SCEVUnknown>(S)) {
7699      FoundParameter = true;
7700      // Stop recursion: we found a parameter.
7701      return false;
7702    }
7703    // Keep looking.
7704    return true;
7705  }
7706  bool isDone() const {
7707    // Stop recursion if we have found a parameter.
7708    return FoundParameter;
7709  }
7710};
7711}
7712
7713// Returns true when S contains at least a SCEVUnknown parameter.
7714static inline bool
7715containsParameters(const SCEV *S) {
7716  FindParameter F;
7717  SCEVTraversal<FindParameter> ST(F);
7718  ST.visitAll(S);
7719
7720  return F.FoundParameter;
7721}
7722
7723// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7724static inline bool
7725containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7726  for (const SCEV *T : Terms)
7727    if (containsParameters(T))
7728      return true;
7729  return false;
7730}
7731
7732// Return the number of product terms in S.
7733static inline int numberOfTerms(const SCEV *S) {
7734  if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7735    return Expr->getNumOperands();
7736  return 1;
7737}
7738
7739static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7740  if (isa<SCEVConstant>(T))
7741    return nullptr;
7742
7743  if (isa<SCEVUnknown>(T))
7744    return T;
7745
7746  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7747    SmallVector<const SCEV *, 2> Factors;
7748    for (const SCEV *Op : M->operands())
7749      if (!isa<SCEVConstant>(Op))
7750        Factors.push_back(Op);
7751
7752    return SE.getMulExpr(Factors);
7753  }
7754
7755  return T;
7756}
7757
7758/// Return the size of an element read or written by Inst.
7759const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7760  Type *Ty;
7761  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7762    Ty = Store->getValueOperand()->getType();
7763  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7764    Ty = Load->getType();
7765  else
7766    return nullptr;
7767
7768  Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7769  return getSizeOfExpr(ETy, Ty);
7770}
7771
7772/// Second step of delinearization: compute the array dimensions Sizes from the
7773/// set of Terms extracted from the memory access function of this SCEVAddRec.
7774void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7775                                          SmallVectorImpl<const SCEV *> &Sizes,
7776                                          const SCEV *ElementSize) const {
7777
7778  if (Terms.size() < 1 || !ElementSize)
7779    return;
7780
7781  // Early return when Terms do not contain parameters: we do not delinearize
7782  // non parametric SCEVs.
7783  if (!containsParameters(Terms))
7784    return;
7785
7786  DEBUG({
7787      dbgs() << "Terms:\n";
7788      for (const SCEV *T : Terms)
7789        dbgs() << *T << "\n";
7790    });
7791
7792  // Remove duplicates.
7793  std::sort(Terms.begin(), Terms.end());
7794  Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7795
7796  // Put larger terms first.
7797  std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7798    return numberOfTerms(LHS) > numberOfTerms(RHS);
7799  });
7800
7801  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7802
7803  // Divide all terms by the element size.
7804  for (const SCEV *&Term : Terms) {
7805    const SCEV *Q, *R;
7806    SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7807    Term = Q;
7808  }
7809
7810  SmallVector<const SCEV *, 4> NewTerms;
7811
7812  // Remove constant factors.
7813  for (const SCEV *T : Terms)
7814    if (const SCEV *NewT = removeConstantFactors(SE, T))
7815      NewTerms.push_back(NewT);
7816
7817  DEBUG({
7818      dbgs() << "Terms after sorting:\n";
7819      for (const SCEV *T : NewTerms)
7820        dbgs() << *T << "\n";
7821    });
7822
7823  if (NewTerms.empty() ||
7824      !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7825    Sizes.clear();
7826    return;
7827  }
7828
7829  // The last element to be pushed into Sizes is the size of an element.
7830  Sizes.push_back(ElementSize);
7831
7832  DEBUG({
7833      dbgs() << "Sizes:\n";
7834      for (const SCEV *S : Sizes)
7835        dbgs() << *S << "\n";
7836    });
7837}
7838
7839/// Third step of delinearization: compute the access functions for the
7840/// Subscripts based on the dimensions in Sizes.
7841void SCEVAddRecExpr::computeAccessFunctions(
7842    ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7843    SmallVectorImpl<const SCEV *> &Sizes) const {
7844
7845  // Early exit in case this SCEV is not an affine multivariate function.
7846  if (Sizes.empty() || !this->isAffine())
7847    return;
7848
7849  const SCEV *Res = this;
7850  int Last = Sizes.size() - 1;
7851  for (int i = Last; i >= 0; i--) {
7852    const SCEV *Q, *R;
7853    SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7854
7855    DEBUG({
7856        dbgs() << "Res: " << *Res << "\n";
7857        dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7858        dbgs() << "Res divided by Sizes[i]:\n";
7859        dbgs() << "Quotient: " << *Q << "\n";
7860        dbgs() << "Remainder: " << *R << "\n";
7861      });
7862
7863    Res = Q;
7864
7865    // Do not record the last subscript corresponding to the size of elements in
7866    // the array.
7867    if (i == Last) {
7868
7869      // Bail out if the remainder is too complex.
7870      if (isa<SCEVAddRecExpr>(R)) {
7871        Subscripts.clear();
7872        Sizes.clear();
7873        return;
7874      }
7875
7876      continue;
7877    }
7878
7879    // Record the access function for the current subscript.
7880    Subscripts.push_back(R);
7881  }
7882
7883  // Also push in last position the remainder of the last division: it will be
7884  // the access function of the innermost dimension.
7885  Subscripts.push_back(Res);
7886
7887  std::reverse(Subscripts.begin(), Subscripts.end());
7888
7889  DEBUG({
7890      dbgs() << "Subscripts:\n";
7891      for (const SCEV *S : Subscripts)
7892        dbgs() << *S << "\n";
7893    });
7894}
7895
7896/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7897/// sizes of an array access. Returns the remainder of the delinearization that
7898/// is the offset start of the array.  The SCEV->delinearize algorithm computes
7899/// the multiples of SCEV coefficients: that is a pattern matching of sub
7900/// expressions in the stride and base of a SCEV corresponding to the
7901/// computation of a GCD (greatest common divisor) of base and stride.  When
7902/// SCEV->delinearize fails, it returns the SCEV unchanged.
7903///
7904/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7905///
7906///  void foo(long n, long m, long o, double A[n][m][o]) {
7907///
7908///    for (long i = 0; i < n; i++)
7909///      for (long j = 0; j < m; j++)
7910///        for (long k = 0; k < o; k++)
7911///          A[i][j][k] = 1.0;
7912///  }
7913///
7914/// the delinearization input is the following AddRec SCEV:
7915///
7916///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7917///
7918/// From this SCEV, we are able to say that the base offset of the access is %A
7919/// because it appears as an offset that does not divide any of the strides in
7920/// the loops:
7921///
7922///  CHECK: Base offset: %A
7923///
7924/// and then SCEV->delinearize determines the size of some of the dimensions of
7925/// the array as these are the multiples by which the strides are happening:
7926///
7927///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7928///
7929/// Note that the outermost dimension remains of UnknownSize because there are
7930/// no strides that would help identifying the size of the last dimension: when
7931/// the array has been statically allocated, one could compute the size of that
7932/// dimension by dividing the overall size of the array by the size of the known
7933/// dimensions: %m * %o * 8.
7934///
7935/// Finally delinearize provides the access functions for the array reference
7936/// that does correspond to A[i][j][k] of the above C testcase:
7937///
7938///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7939///
7940/// The testcases are checking the output of a function pass:
7941/// DelinearizationPass that walks through all loads and stores of a function
7942/// asking for the SCEV of the memory access with respect to all enclosing
7943/// loops, calling SCEV->delinearize on that and printing the results.
7944
7945void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7946                                 SmallVectorImpl<const SCEV *> &Subscripts,
7947                                 SmallVectorImpl<const SCEV *> &Sizes,
7948                                 const SCEV *ElementSize) const {
7949  // First step: collect parametric terms.
7950  SmallVector<const SCEV *, 4> Terms;
7951  collectParametricTerms(SE, Terms);
7952
7953  if (Terms.empty())
7954    return;
7955
7956  // Second step: find subscript sizes.
7957  SE.findArrayDimensions(Terms, Sizes, ElementSize);
7958
7959  if (Sizes.empty())
7960    return;
7961
7962  // Third step: compute the access functions for each subscript.
7963  computeAccessFunctions(SE, Subscripts, Sizes);
7964
7965  if (Subscripts.empty())
7966    return;
7967
7968  DEBUG({
7969      dbgs() << "succeeded to delinearize " << *this << "\n";
7970      dbgs() << "ArrayDecl[UnknownSize]";
7971      for (const SCEV *S : Sizes)
7972        dbgs() << "[" << *S << "]";
7973
7974      dbgs() << "\nArrayRef";
7975      for (const SCEV *S : Subscripts)
7976        dbgs() << "[" << *S << "]";
7977      dbgs() << "\n";
7978    });
7979}
7980
7981//===----------------------------------------------------------------------===//
7982//                   SCEVCallbackVH Class Implementation
7983//===----------------------------------------------------------------------===//
7984
7985void ScalarEvolution::SCEVCallbackVH::deleted() {
7986  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7987  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7988    SE->ConstantEvolutionLoopExitValue.erase(PN);
7989  SE->ValueExprMap.erase(getValPtr());
7990  // this now dangles!
7991}
7992
7993void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7994  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7995
7996  // Forget all the expressions associated with users of the old value,
7997  // so that future queries will recompute the expressions using the new
7998  // value.
7999  Value *Old = getValPtr();
8000  SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
8001  SmallPtrSet<User *, 8> Visited;
8002  while (!Worklist.empty()) {
8003    User *U = Worklist.pop_back_val();
8004    // Deleting the Old value will cause this to dangle. Postpone
8005    // that until everything else is done.
8006    if (U == Old)
8007      continue;
8008    if (!Visited.insert(U).second)
8009      continue;
8010    if (PHINode *PN = dyn_cast<PHINode>(U))
8011      SE->ConstantEvolutionLoopExitValue.erase(PN);
8012    SE->ValueExprMap.erase(U);
8013    Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
8014  }
8015  // Delete the Old value.
8016  if (PHINode *PN = dyn_cast<PHINode>(Old))
8017    SE->ConstantEvolutionLoopExitValue.erase(PN);
8018  SE->ValueExprMap.erase(Old);
8019  // this now dangles!
8020}
8021
8022ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
8023  : CallbackVH(V), SE(se) {}
8024
8025//===----------------------------------------------------------------------===//
8026//                   ScalarEvolution Class Implementation
8027//===----------------------------------------------------------------------===//
8028
8029ScalarEvolution::ScalarEvolution()
8030    : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64),
8031      LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) {
8032  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
8033}
8034
8035bool ScalarEvolution::runOnFunction(Function &F) {
8036  this->F = &F;
8037  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
8038  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
8039  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
8040  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
8041  return false;
8042}
8043
8044void ScalarEvolution::releaseMemory() {
8045  // Iterate through all the SCEVUnknown instances and call their
8046  // destructors, so that they release their references to their values.
8047  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
8048    U->~SCEVUnknown();
8049  FirstUnknown = nullptr;
8050
8051  ValueExprMap.clear();
8052
8053  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8054  // that a loop had multiple computable exits.
8055  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8056         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8057       I != E; ++I) {
8058    I->second.clear();
8059  }
8060
8061  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
8062  assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
8063
8064  BackedgeTakenCounts.clear();
8065  ConstantEvolutionLoopExitValue.clear();
8066  ValuesAtScopes.clear();
8067  LoopDispositions.clear();
8068  BlockDispositions.clear();
8069  UnsignedRanges.clear();
8070  SignedRanges.clear();
8071  UniqueSCEVs.clear();
8072  SCEVAllocator.Reset();
8073}
8074
8075void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8076  AU.setPreservesAll();
8077  AU.addRequired<AssumptionCacheTracker>();
8078  AU.addRequiredTransitive<LoopInfoWrapperPass>();
8079  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
8080  AU.addRequired<TargetLibraryInfoWrapperPass>();
8081}
8082
8083bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
8084  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
8085}
8086
8087static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
8088                          const Loop *L) {
8089  // Print all inner loops first
8090  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8091    PrintLoopInfo(OS, SE, *I);
8092
8093  OS << "Loop ";
8094  L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
8095  OS << ": ";
8096
8097  SmallVector<BasicBlock *, 8> ExitBlocks;
8098  L->getExitBlocks(ExitBlocks);
8099  if (ExitBlocks.size() != 1)
8100    OS << "<multiple exits> ";
8101
8102  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8103    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
8104  } else {
8105    OS << "Unpredictable backedge-taken count. ";
8106  }
8107
8108  OS << "\n"
8109        "Loop ";
8110  L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
8111  OS << ": ";
8112
8113  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8114    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8115  } else {
8116    OS << "Unpredictable max backedge-taken count. ";
8117  }
8118
8119  OS << "\n";
8120}
8121
8122void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
8123  // ScalarEvolution's implementation of the print method is to print
8124  // out SCEV values of all instructions that are interesting. Doing
8125  // this potentially causes it to create new SCEV objects though,
8126  // which technically conflicts with the const qualifier. This isn't
8127  // observable from outside the class though, so casting away the
8128  // const isn't dangerous.
8129  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8130
8131  OS << "Classifying expressions for: ";
8132  F->printAsOperand(OS, /*PrintType=*/false);
8133  OS << "\n";
8134  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
8135    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
8136      OS << *I << '\n';
8137      OS << "  -->  ";
8138      const SCEV *SV = SE.getSCEV(&*I);
8139      SV->print(OS);
8140      if (!isa<SCEVCouldNotCompute>(SV)) {
8141        OS << " U: ";
8142        SE.getUnsignedRange(SV).print(OS);
8143        OS << " S: ";
8144        SE.getSignedRange(SV).print(OS);
8145      }
8146
8147      const Loop *L = LI->getLoopFor((*I).getParent());
8148
8149      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
8150      if (AtUse != SV) {
8151        OS << "  -->  ";
8152        AtUse->print(OS);
8153        if (!isa<SCEVCouldNotCompute>(AtUse)) {
8154          OS << " U: ";
8155          SE.getUnsignedRange(AtUse).print(OS);
8156          OS << " S: ";
8157          SE.getSignedRange(AtUse).print(OS);
8158        }
8159      }
8160
8161      if (L) {
8162        OS << "\t\t" "Exits: ";
8163        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
8164        if (!SE.isLoopInvariant(ExitValue, L)) {
8165          OS << "<<Unknown>>";
8166        } else {
8167          OS << *ExitValue;
8168        }
8169      }
8170
8171      OS << "\n";
8172    }
8173
8174  OS << "Determining loop execution counts for: ";
8175  F->printAsOperand(OS, /*PrintType=*/false);
8176  OS << "\n";
8177  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8178    PrintLoopInfo(OS, &SE, *I);
8179}
8180
8181ScalarEvolution::LoopDisposition
8182ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
8183  auto &Values = LoopDispositions[S];
8184  for (auto &V : Values) {
8185    if (V.getPointer() == L)
8186      return V.getInt();
8187  }
8188  Values.emplace_back(L, LoopVariant);
8189  LoopDisposition D = computeLoopDisposition(S, L);
8190  auto &Values2 = LoopDispositions[S];
8191  for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8192    if (V.getPointer() == L) {
8193      V.setInt(D);
8194      break;
8195    }
8196  }
8197  return D;
8198}
8199
8200ScalarEvolution::LoopDisposition
8201ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
8202  switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8203  case scConstant:
8204    return LoopInvariant;
8205  case scTruncate:
8206  case scZeroExtend:
8207  case scSignExtend:
8208    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
8209  case scAddRecExpr: {
8210    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8211
8212    // If L is the addrec's loop, it's computable.
8213    if (AR->getLoop() == L)
8214      return LoopComputable;
8215
8216    // Add recurrences are never invariant in the function-body (null loop).
8217    if (!L)
8218      return LoopVariant;
8219
8220    // This recurrence is variant w.r.t. L if L contains AR's loop.
8221    if (L->contains(AR->getLoop()))
8222      return LoopVariant;
8223
8224    // This recurrence is invariant w.r.t. L if AR's loop contains L.
8225    if (AR->getLoop()->contains(L))
8226      return LoopInvariant;
8227
8228    // This recurrence is variant w.r.t. L if any of its operands
8229    // are variant.
8230    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8231         I != E; ++I)
8232      if (!isLoopInvariant(*I, L))
8233        return LoopVariant;
8234
8235    // Otherwise it's loop-invariant.
8236    return LoopInvariant;
8237  }
8238  case scAddExpr:
8239  case scMulExpr:
8240  case scUMaxExpr:
8241  case scSMaxExpr: {
8242    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8243    bool HasVarying = false;
8244    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8245         I != E; ++I) {
8246      LoopDisposition D = getLoopDisposition(*I, L);
8247      if (D == LoopVariant)
8248        return LoopVariant;
8249      if (D == LoopComputable)
8250        HasVarying = true;
8251    }
8252    return HasVarying ? LoopComputable : LoopInvariant;
8253  }
8254  case scUDivExpr: {
8255    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8256    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8257    if (LD == LoopVariant)
8258      return LoopVariant;
8259    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8260    if (RD == LoopVariant)
8261      return LoopVariant;
8262    return (LD == LoopInvariant && RD == LoopInvariant) ?
8263           LoopInvariant : LoopComputable;
8264  }
8265  case scUnknown:
8266    // All non-instruction values are loop invariant.  All instructions are loop
8267    // invariant if they are not contained in the specified loop.
8268    // Instructions are never considered invariant in the function body
8269    // (null loop) because they are defined within the "loop".
8270    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8271      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8272    return LoopInvariant;
8273  case scCouldNotCompute:
8274    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8275  }
8276  llvm_unreachable("Unknown SCEV kind!");
8277}
8278
8279bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8280  return getLoopDisposition(S, L) == LoopInvariant;
8281}
8282
8283bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8284  return getLoopDisposition(S, L) == LoopComputable;
8285}
8286
8287ScalarEvolution::BlockDisposition
8288ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8289  auto &Values = BlockDispositions[S];
8290  for (auto &V : Values) {
8291    if (V.getPointer() == BB)
8292      return V.getInt();
8293  }
8294  Values.emplace_back(BB, DoesNotDominateBlock);
8295  BlockDisposition D = computeBlockDisposition(S, BB);
8296  auto &Values2 = BlockDispositions[S];
8297  for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8298    if (V.getPointer() == BB) {
8299      V.setInt(D);
8300      break;
8301    }
8302  }
8303  return D;
8304}
8305
8306ScalarEvolution::BlockDisposition
8307ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8308  switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8309  case scConstant:
8310    return ProperlyDominatesBlock;
8311  case scTruncate:
8312  case scZeroExtend:
8313  case scSignExtend:
8314    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
8315  case scAddRecExpr: {
8316    // This uses a "dominates" query instead of "properly dominates" query
8317    // to test for proper dominance too, because the instruction which
8318    // produces the addrec's value is a PHI, and a PHI effectively properly
8319    // dominates its entire containing block.
8320    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8321    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
8322      return DoesNotDominateBlock;
8323  }
8324  // FALL THROUGH into SCEVNAryExpr handling.
8325  case scAddExpr:
8326  case scMulExpr:
8327  case scUMaxExpr:
8328  case scSMaxExpr: {
8329    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8330    bool Proper = true;
8331    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8332         I != E; ++I) {
8333      BlockDisposition D = getBlockDisposition(*I, BB);
8334      if (D == DoesNotDominateBlock)
8335        return DoesNotDominateBlock;
8336      if (D == DominatesBlock)
8337        Proper = false;
8338    }
8339    return Proper ? ProperlyDominatesBlock : DominatesBlock;
8340  }
8341  case scUDivExpr: {
8342    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8343    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8344    BlockDisposition LD = getBlockDisposition(LHS, BB);
8345    if (LD == DoesNotDominateBlock)
8346      return DoesNotDominateBlock;
8347    BlockDisposition RD = getBlockDisposition(RHS, BB);
8348    if (RD == DoesNotDominateBlock)
8349      return DoesNotDominateBlock;
8350    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8351      ProperlyDominatesBlock : DominatesBlock;
8352  }
8353  case scUnknown:
8354    if (Instruction *I =
8355          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8356      if (I->getParent() == BB)
8357        return DominatesBlock;
8358      if (DT->properlyDominates(I->getParent(), BB))
8359        return ProperlyDominatesBlock;
8360      return DoesNotDominateBlock;
8361    }
8362    return ProperlyDominatesBlock;
8363  case scCouldNotCompute:
8364    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8365  }
8366  llvm_unreachable("Unknown SCEV kind!");
8367}
8368
8369bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8370  return getBlockDisposition(S, BB) >= DominatesBlock;
8371}
8372
8373bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8374  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
8375}
8376
8377namespace {
8378// Search for a SCEV expression node within an expression tree.
8379// Implements SCEVTraversal::Visitor.
8380struct SCEVSearch {
8381  const SCEV *Node;
8382  bool IsFound;
8383
8384  SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8385
8386  bool follow(const SCEV *S) {
8387    IsFound |= (S == Node);
8388    return !IsFound;
8389  }
8390  bool isDone() const { return IsFound; }
8391};
8392}
8393
8394bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
8395  SCEVSearch Search(Op);
8396  visitAll(S, Search);
8397  return Search.IsFound;
8398}
8399
8400void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8401  ValuesAtScopes.erase(S);
8402  LoopDispositions.erase(S);
8403  BlockDispositions.erase(S);
8404  UnsignedRanges.erase(S);
8405  SignedRanges.erase(S);
8406
8407  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8408         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8409    BackedgeTakenInfo &BEInfo = I->second;
8410    if (BEInfo.hasOperand(S, this)) {
8411      BEInfo.clear();
8412      BackedgeTakenCounts.erase(I++);
8413    }
8414    else
8415      ++I;
8416  }
8417}
8418
8419typedef DenseMap<const Loop *, std::string> VerifyMap;
8420
8421/// replaceSubString - Replaces all occurrences of From in Str with To.
8422static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8423  size_t Pos = 0;
8424  while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8425    Str.replace(Pos, From.size(), To.data(), To.size());
8426    Pos += To.size();
8427  }
8428}
8429
8430/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8431static void
8432getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8433  for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8434    getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8435
8436    std::string &S = Map[L];
8437    if (S.empty()) {
8438      raw_string_ostream OS(S);
8439      SE.getBackedgeTakenCount(L)->print(OS);
8440
8441      // false and 0 are semantically equivalent. This can happen in dead loops.
8442      replaceSubString(OS.str(), "false", "0");
8443      // Remove wrap flags, their use in SCEV is highly fragile.
8444      // FIXME: Remove this when SCEV gets smarter about them.
8445      replaceSubString(OS.str(), "<nw>", "");
8446      replaceSubString(OS.str(), "<nsw>", "");
8447      replaceSubString(OS.str(), "<nuw>", "");
8448    }
8449  }
8450}
8451
8452void ScalarEvolution::verifyAnalysis() const {
8453  if (!VerifySCEV)
8454    return;
8455
8456  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8457
8458  // Gather stringified backedge taken counts for all loops using SCEV's caches.
8459  // FIXME: It would be much better to store actual values instead of strings,
8460  //        but SCEV pointers will change if we drop the caches.
8461  VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8462  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8463    getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8464
8465  // Gather stringified backedge taken counts for all loops without using
8466  // SCEV's caches.
8467  SE.releaseMemory();
8468  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8469    getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8470
8471  // Now compare whether they're the same with and without caches. This allows
8472  // verifying that no pass changed the cache.
8473  assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8474         "New loops suddenly appeared!");
8475
8476  for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8477                           OldE = BackedgeDumpsOld.end(),
8478                           NewI = BackedgeDumpsNew.begin();
8479       OldI != OldE; ++OldI, ++NewI) {
8480    assert(OldI->first == NewI->first && "Loop order changed!");
8481
8482    // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8483    // changes.
8484    // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8485    // means that a pass is buggy or SCEV has to learn a new pattern but is
8486    // usually not harmful.
8487    if (OldI->second != NewI->second &&
8488        OldI->second.find("undef") == std::string::npos &&
8489        NewI->second.find("undef") == std::string::npos &&
8490        OldI->second != "***COULDNOTCOMPUTE***" &&
8491        NewI->second != "***COULDNOTCOMPUTE***") {
8492      dbgs() << "SCEVValidator: SCEV for loop '"
8493             << OldI->first->getHeader()->getName()
8494             << "' changed from '" << OldI->second
8495             << "' to '" << NewI->second << "'!\n";
8496      std::abort();
8497    }
8498  }
8499
8500  // TODO: Verify more things.
8501}
8502