1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines several CodeGen-specific LLVM IR analysis utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/Analysis.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/SelectionDAG.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Module.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetSubtargetInfo.h"
29#include "llvm/Transforms/Utils/GlobalStatus.h"
30
31using namespace llvm;
32
33/// Compute the linearized index of a member in a nested aggregate/struct/array
34/// by recursing and accumulating CurIndex as long as there are indices in the
35/// index list.
36unsigned llvm::ComputeLinearIndex(Type *Ty,
37                                  const unsigned *Indices,
38                                  const unsigned *IndicesEnd,
39                                  unsigned CurIndex) {
40  // Base case: We're done.
41  if (Indices && Indices == IndicesEnd)
42    return CurIndex;
43
44  // Given a struct type, recursively traverse the elements.
45  if (StructType *STy = dyn_cast<StructType>(Ty)) {
46    for (StructType::element_iterator EB = STy->element_begin(),
47                                      EI = EB,
48                                      EE = STy->element_end();
49        EI != EE; ++EI) {
50      if (Indices && *Indices == unsigned(EI - EB))
51        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
52      CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
53    }
54    assert(!Indices && "Unexpected out of bound");
55    return CurIndex;
56  }
57  // Given an array type, recursively traverse the elements.
58  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
59    Type *EltTy = ATy->getElementType();
60    unsigned NumElts = ATy->getNumElements();
61    // Compute the Linear offset when jumping one element of the array
62    unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
63    if (Indices) {
64      assert(*Indices < NumElts && "Unexpected out of bound");
65      // If the indice is inside the array, compute the index to the requested
66      // elt and recurse inside the element with the end of the indices list
67      CurIndex += EltLinearOffset* *Indices;
68      return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
69    }
70    CurIndex += EltLinearOffset*NumElts;
71    return CurIndex;
72  }
73  // We haven't found the type we're looking for, so keep searching.
74  return CurIndex + 1;
75}
76
77/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
78/// EVTs that represent all the individual underlying
79/// non-aggregate types that comprise it.
80///
81/// If Offsets is non-null, it points to a vector to be filled in
82/// with the in-memory offsets of each of the individual values.
83///
84void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
85                           SmallVectorImpl<EVT> &ValueVTs,
86                           SmallVectorImpl<uint64_t> *Offsets,
87                           uint64_t StartingOffset) {
88  // Given a struct type, recursively traverse the elements.
89  if (StructType *STy = dyn_cast<StructType>(Ty)) {
90    const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
91    for (StructType::element_iterator EB = STy->element_begin(),
92                                      EI = EB,
93                                      EE = STy->element_end();
94         EI != EE; ++EI)
95      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
96                      StartingOffset + SL->getElementOffset(EI - EB));
97    return;
98  }
99  // Given an array type, recursively traverse the elements.
100  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101    Type *EltTy = ATy->getElementType();
102    uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
103    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
105                      StartingOffset + i * EltSize);
106    return;
107  }
108  // Interpret void as zero return values.
109  if (Ty->isVoidTy())
110    return;
111  // Base case: we can get an EVT for this LLVM IR type.
112  ValueVTs.push_back(TLI.getValueType(Ty));
113  if (Offsets)
114    Offsets->push_back(StartingOffset);
115}
116
117/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
118GlobalValue *llvm::ExtractTypeInfo(Value *V) {
119  V = V->stripPointerCasts();
120  GlobalValue *GV = dyn_cast<GlobalValue>(V);
121  GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
122
123  if (Var && Var->getName() == "llvm.eh.catch.all.value") {
124    assert(Var->hasInitializer() &&
125           "The EH catch-all value must have an initializer");
126    Value *Init = Var->getInitializer();
127    GV = dyn_cast<GlobalValue>(Init);
128    if (!GV) V = cast<ConstantPointerNull>(Init);
129  }
130
131  assert((GV || isa<ConstantPointerNull>(V)) &&
132         "TypeInfo must be a global variable or NULL");
133  return GV;
134}
135
136/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
137/// processed uses a memory 'm' constraint.
138bool
139llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
140                                const TargetLowering &TLI) {
141  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
142    InlineAsm::ConstraintInfo &CI = CInfos[i];
143    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
144      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
145      if (CType == TargetLowering::C_Memory)
146        return true;
147    }
148
149    // Indirect operand accesses access memory.
150    if (CI.isIndirect)
151      return true;
152  }
153
154  return false;
155}
156
157/// getFCmpCondCode - Return the ISD condition code corresponding to
158/// the given LLVM IR floating-point condition code.  This includes
159/// consideration of global floating-point math flags.
160///
161ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
162  switch (Pred) {
163  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
164  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
165  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
166  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
167  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
168  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
169  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
170  case FCmpInst::FCMP_ORD:   return ISD::SETO;
171  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
172  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
173  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
174  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
175  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
176  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
177  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
178  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
179  default: llvm_unreachable("Invalid FCmp predicate opcode!");
180  }
181}
182
183ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
184  switch (CC) {
185    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
186    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
187    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
188    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
189    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
190    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
191    default: return CC;
192  }
193}
194
195/// getICmpCondCode - Return the ISD condition code corresponding to
196/// the given LLVM IR integer condition code.
197///
198ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
199  switch (Pred) {
200  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
201  case ICmpInst::ICMP_NE:  return ISD::SETNE;
202  case ICmpInst::ICMP_SLE: return ISD::SETLE;
203  case ICmpInst::ICMP_ULE: return ISD::SETULE;
204  case ICmpInst::ICMP_SGE: return ISD::SETGE;
205  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
206  case ICmpInst::ICMP_SLT: return ISD::SETLT;
207  case ICmpInst::ICMP_ULT: return ISD::SETULT;
208  case ICmpInst::ICMP_SGT: return ISD::SETGT;
209  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
210  default:
211    llvm_unreachable("Invalid ICmp predicate opcode!");
212  }
213}
214
215static bool isNoopBitcast(Type *T1, Type *T2,
216                          const TargetLoweringBase& TLI) {
217  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
218         (isa<VectorType>(T1) && isa<VectorType>(T2) &&
219          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
220}
221
222/// Look through operations that will be free to find the earliest source of
223/// this value.
224///
225/// @param ValLoc If V has aggegate type, we will be interested in a particular
226/// scalar component. This records its address; the reverse of this list gives a
227/// sequence of indices appropriate for an extractvalue to locate the important
228/// value. This value is updated during the function and on exit will indicate
229/// similar information for the Value returned.
230///
231/// @param DataBits If this function looks through truncate instructions, this
232/// will record the smallest size attained.
233static const Value *getNoopInput(const Value *V,
234                                 SmallVectorImpl<unsigned> &ValLoc,
235                                 unsigned &DataBits,
236                                 const TargetLoweringBase &TLI) {
237  while (true) {
238    // Try to look through V1; if V1 is not an instruction, it can't be looked
239    // through.
240    const Instruction *I = dyn_cast<Instruction>(V);
241    if (!I || I->getNumOperands() == 0) return V;
242    const Value *NoopInput = nullptr;
243
244    Value *Op = I->getOperand(0);
245    if (isa<BitCastInst>(I)) {
246      // Look through truly no-op bitcasts.
247      if (isNoopBitcast(Op->getType(), I->getType(), TLI))
248        NoopInput = Op;
249    } else if (isa<GetElementPtrInst>(I)) {
250      // Look through getelementptr
251      if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
252        NoopInput = Op;
253    } else if (isa<IntToPtrInst>(I)) {
254      // Look through inttoptr.
255      // Make sure this isn't a truncating or extending cast.  We could
256      // support this eventually, but don't bother for now.
257      if (!isa<VectorType>(I->getType()) &&
258          TLI.getPointerTy().getSizeInBits() ==
259          cast<IntegerType>(Op->getType())->getBitWidth())
260        NoopInput = Op;
261    } else if (isa<PtrToIntInst>(I)) {
262      // Look through ptrtoint.
263      // Make sure this isn't a truncating or extending cast.  We could
264      // support this eventually, but don't bother for now.
265      if (!isa<VectorType>(I->getType()) &&
266          TLI.getPointerTy().getSizeInBits() ==
267          cast<IntegerType>(I->getType())->getBitWidth())
268        NoopInput = Op;
269    } else if (isa<TruncInst>(I) &&
270               TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
271      DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
272      NoopInput = Op;
273    } else if (isa<CallInst>(I)) {
274      // Look through call (skipping callee)
275      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
276           i != e; ++i) {
277        unsigned attrInd = i - I->op_begin() + 1;
278        if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
279            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
280          NoopInput = *i;
281          break;
282        }
283      }
284    } else if (isa<InvokeInst>(I)) {
285      // Look through invoke (skipping BB, BB, Callee)
286      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
287           i != e; ++i) {
288        unsigned attrInd = i - I->op_begin() + 1;
289        if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
290            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
291          NoopInput = *i;
292          break;
293        }
294      }
295    } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
296      // Value may come from either the aggregate or the scalar
297      ArrayRef<unsigned> InsertLoc = IVI->getIndices();
298      if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
299                     ValLoc.rbegin())) {
300        // The type being inserted is a nested sub-type of the aggregate; we
301        // have to remove those initial indices to get the location we're
302        // interested in for the operand.
303        ValLoc.resize(ValLoc.size() - InsertLoc.size());
304        NoopInput = IVI->getInsertedValueOperand();
305      } else {
306        // The struct we're inserting into has the value we're interested in, no
307        // change of address.
308        NoopInput = Op;
309      }
310    } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
311      // The part we're interested in will inevitably be some sub-section of the
312      // previous aggregate. Combine the two paths to obtain the true address of
313      // our element.
314      ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
315      ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
316      NoopInput = Op;
317    }
318    // Terminate if we couldn't find anything to look through.
319    if (!NoopInput)
320      return V;
321
322    V = NoopInput;
323  }
324}
325
326/// Return true if this scalar return value only has bits discarded on its path
327/// from the "tail call" to the "ret". This includes the obvious noop
328/// instructions handled by getNoopInput above as well as free truncations (or
329/// extensions prior to the call).
330static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
331                                 SmallVectorImpl<unsigned> &RetIndices,
332                                 SmallVectorImpl<unsigned> &CallIndices,
333                                 bool AllowDifferingSizes,
334                                 const TargetLoweringBase &TLI) {
335
336  // Trace the sub-value needed by the return value as far back up the graph as
337  // possible, in the hope that it will intersect with the value produced by the
338  // call. In the simple case with no "returned" attribute, the hope is actually
339  // that we end up back at the tail call instruction itself.
340  unsigned BitsRequired = UINT_MAX;
341  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
342
343  // If this slot in the value returned is undef, it doesn't matter what the
344  // call puts there, it'll be fine.
345  if (isa<UndefValue>(RetVal))
346    return true;
347
348  // Now do a similar search up through the graph to find where the value
349  // actually returned by the "tail call" comes from. In the simple case without
350  // a "returned" attribute, the search will be blocked immediately and the loop
351  // a Noop.
352  unsigned BitsProvided = UINT_MAX;
353  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
354
355  // There's no hope if we can't actually trace them to (the same part of!) the
356  // same value.
357  if (CallVal != RetVal || CallIndices != RetIndices)
358    return false;
359
360  // However, intervening truncates may have made the call non-tail. Make sure
361  // all the bits that are needed by the "ret" have been provided by the "tail
362  // call". FIXME: with sufficiently cunning bit-tracking, we could look through
363  // extensions too.
364  if (BitsProvided < BitsRequired ||
365      (!AllowDifferingSizes && BitsProvided != BitsRequired))
366    return false;
367
368  return true;
369}
370
371/// For an aggregate type, determine whether a given index is within bounds or
372/// not.
373static bool indexReallyValid(CompositeType *T, unsigned Idx) {
374  if (ArrayType *AT = dyn_cast<ArrayType>(T))
375    return Idx < AT->getNumElements();
376
377  return Idx < cast<StructType>(T)->getNumElements();
378}
379
380/// Move the given iterators to the next leaf type in depth first traversal.
381///
382/// Performs a depth-first traversal of the type as specified by its arguments,
383/// stopping at the next leaf node (which may be a legitimate scalar type or an
384/// empty struct or array).
385///
386/// @param SubTypes List of the partial components making up the type from
387/// outermost to innermost non-empty aggregate. The element currently
388/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
389///
390/// @param Path Set of extractvalue indices leading from the outermost type
391/// (SubTypes[0]) to the leaf node currently represented.
392///
393/// @returns true if a new type was found, false otherwise. Calling this
394/// function again on a finished iterator will repeatedly return
395/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
396/// aggregate or a non-aggregate
397static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
398                                  SmallVectorImpl<unsigned> &Path) {
399  // First march back up the tree until we can successfully increment one of the
400  // coordinates in Path.
401  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
402    Path.pop_back();
403    SubTypes.pop_back();
404  }
405
406  // If we reached the top, then the iterator is done.
407  if (Path.empty())
408    return false;
409
410  // We know there's *some* valid leaf now, so march back down the tree picking
411  // out the left-most element at each node.
412  ++Path.back();
413  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
414  while (DeeperType->isAggregateType()) {
415    CompositeType *CT = cast<CompositeType>(DeeperType);
416    if (!indexReallyValid(CT, 0))
417      return true;
418
419    SubTypes.push_back(CT);
420    Path.push_back(0);
421
422    DeeperType = CT->getTypeAtIndex(0U);
423  }
424
425  return true;
426}
427
428/// Find the first non-empty, scalar-like type in Next and setup the iterator
429/// components.
430///
431/// Assuming Next is an aggregate of some kind, this function will traverse the
432/// tree from left to right (i.e. depth-first) looking for the first
433/// non-aggregate type which will play a role in function return.
434///
435/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
436/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
437/// i32 in that type.
438static bool firstRealType(Type *Next,
439                          SmallVectorImpl<CompositeType *> &SubTypes,
440                          SmallVectorImpl<unsigned> &Path) {
441  // First initialise the iterator components to the first "leaf" node
442  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
443  // despite nominally being an aggregate).
444  while (Next->isAggregateType() &&
445         indexReallyValid(cast<CompositeType>(Next), 0)) {
446    SubTypes.push_back(cast<CompositeType>(Next));
447    Path.push_back(0);
448    Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
449  }
450
451  // If there's no Path now, Next was originally scalar already (or empty
452  // leaf). We're done.
453  if (Path.empty())
454    return true;
455
456  // Otherwise, use normal iteration to keep looking through the tree until we
457  // find a non-aggregate type.
458  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
459    if (!advanceToNextLeafType(SubTypes, Path))
460      return false;
461  }
462
463  return true;
464}
465
466/// Set the iterator data-structures to the next non-empty, non-aggregate
467/// subtype.
468static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
469                         SmallVectorImpl<unsigned> &Path) {
470  do {
471    if (!advanceToNextLeafType(SubTypes, Path))
472      return false;
473
474    assert(!Path.empty() && "found a leaf but didn't set the path?");
475  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
476
477  return true;
478}
479
480
481/// Test if the given instruction is in a position to be optimized
482/// with a tail-call. This roughly means that it's in a block with
483/// a return and there's nothing that needs to be scheduled
484/// between it and the return.
485///
486/// This function only tests target-independent requirements.
487bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
488  const Instruction *I = CS.getInstruction();
489  const BasicBlock *ExitBB = I->getParent();
490  const TerminatorInst *Term = ExitBB->getTerminator();
491  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
492
493  // The block must end in a return statement or unreachable.
494  //
495  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
496  // an unreachable, for now. The way tailcall optimization is currently
497  // implemented means it will add an epilogue followed by a jump. That is
498  // not profitable. Also, if the callee is a special function (e.g.
499  // longjmp on x86), it can end up causing miscompilation that has not
500  // been fully understood.
501  if (!Ret &&
502      (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
503    return false;
504
505  // If I will have a chain, make sure no other instruction that will have a
506  // chain interposes between I and the return.
507  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
508      !isSafeToSpeculativelyExecute(I))
509    for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
510      if (&*BBI == I)
511        break;
512      // Debug info intrinsics do not get in the way of tail call optimization.
513      if (isa<DbgInfoIntrinsic>(BBI))
514        continue;
515      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
516          !isSafeToSpeculativelyExecute(BBI))
517        return false;
518    }
519
520  const Function *F = ExitBB->getParent();
521  return returnTypeIsEligibleForTailCall(
522      F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
523}
524
525bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
526                                           const Instruction *I,
527                                           const ReturnInst *Ret,
528                                           const TargetLoweringBase &TLI) {
529  // If the block ends with a void return or unreachable, it doesn't matter
530  // what the call's return type is.
531  if (!Ret || Ret->getNumOperands() == 0) return true;
532
533  // If the return value is undef, it doesn't matter what the call's
534  // return type is.
535  if (isa<UndefValue>(Ret->getOperand(0))) return true;
536
537  // Make sure the attributes attached to each return are compatible.
538  AttrBuilder CallerAttrs(F->getAttributes(),
539                          AttributeSet::ReturnIndex);
540  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
541                          AttributeSet::ReturnIndex);
542
543  // Noalias is completely benign as far as calling convention goes, it
544  // shouldn't affect whether the call is a tail call.
545  CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
546  CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
547
548  bool AllowDifferingSizes = true;
549  if (CallerAttrs.contains(Attribute::ZExt)) {
550    if (!CalleeAttrs.contains(Attribute::ZExt))
551      return false;
552
553    AllowDifferingSizes = false;
554    CallerAttrs.removeAttribute(Attribute::ZExt);
555    CalleeAttrs.removeAttribute(Attribute::ZExt);
556  } else if (CallerAttrs.contains(Attribute::SExt)) {
557    if (!CalleeAttrs.contains(Attribute::SExt))
558      return false;
559
560    AllowDifferingSizes = false;
561    CallerAttrs.removeAttribute(Attribute::SExt);
562    CalleeAttrs.removeAttribute(Attribute::SExt);
563  }
564
565  // If they're still different, there's some facet we don't understand
566  // (currently only "inreg", but in future who knows). It may be OK but the
567  // only safe option is to reject the tail call.
568  if (CallerAttrs != CalleeAttrs)
569    return false;
570
571  const Value *RetVal = Ret->getOperand(0), *CallVal = I;
572  SmallVector<unsigned, 4> RetPath, CallPath;
573  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
574
575  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
576  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
577
578  // Nothing's actually returned, it doesn't matter what the callee put there
579  // it's a valid tail call.
580  if (RetEmpty)
581    return true;
582
583  // Iterate pairwise through each of the value types making up the tail call
584  // and the corresponding return. For each one we want to know whether it's
585  // essentially going directly from the tail call to the ret, via operations
586  // that end up not generating any code.
587  //
588  // We allow a certain amount of covariance here. For example it's permitted
589  // for the tail call to define more bits than the ret actually cares about
590  // (e.g. via a truncate).
591  do {
592    if (CallEmpty) {
593      // We've exhausted the values produced by the tail call instruction, the
594      // rest are essentially undef. The type doesn't really matter, but we need
595      // *something*.
596      Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
597      CallVal = UndefValue::get(SlotType);
598    }
599
600    // The manipulations performed when we're looking through an insertvalue or
601    // an extractvalue would happen at the front of the RetPath list, so since
602    // we have to copy it anyway it's more efficient to create a reversed copy.
603    SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
604    SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
605
606    // Finally, we can check whether the value produced by the tail call at this
607    // index is compatible with the value we return.
608    if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
609                              AllowDifferingSizes, TLI))
610      return false;
611
612    CallEmpty  = !nextRealType(CallSubTypes, CallPath);
613  } while(nextRealType(RetSubTypes, RetPath));
614
615  return true;
616}
617
618bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
619  if (!GV->hasLinkOnceODRLinkage())
620    return false;
621
622  if (GV->hasUnnamedAddr())
623    return true;
624
625  // If it is a non constant variable, it needs to be uniqued across shared
626  // objects.
627  if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
628    if (!Var->isConstant())
629      return false;
630  }
631
632  // An alias can point to a variable. We could try to resolve the alias to
633  // decide, but for now just don't hide them.
634  if (isa<GlobalAlias>(GV))
635    return false;
636
637  GlobalStatus GS;
638  if (GlobalStatus::analyzeGlobal(GV, GS))
639    return false;
640
641  return !GS.IsCompared;
642}
643