1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/TargetLibraryInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/IR/CallSite.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GetElementPtrTypeIterator.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/MDBuilder.h"
35#include "llvm/IR/PatternMatch.h"
36#include "llvm/IR/Statepoint.h"
37#include "llvm/IR/ValueHandle.h"
38#include "llvm/IR/ValueMap.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetSubtargetInfo.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/BuildLibCalls.h"
47#include "llvm/Transforms/Utils/BypassSlowDivision.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
50using namespace llvm;
51using namespace llvm::PatternMatch;
52
53#define DEBUG_TYPE "codegenprepare"
54
55STATISTIC(NumBlocksElim, "Number of blocks eliminated");
56STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
57STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
58STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
59                      "sunken Cmps");
60STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
61                       "of sunken Casts");
62STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
63                          "computations were sunk");
64STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
65STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
66STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
67STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
68STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
69STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
70STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
71
72static cl::opt<bool> DisableBranchOpts(
73  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
74  cl::desc("Disable branch optimizations in CodeGenPrepare"));
75
76static cl::opt<bool>
77    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
78                  cl::desc("Disable GC optimizations in CodeGenPrepare"));
79
80static cl::opt<bool> DisableSelectToBranch(
81  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
82  cl::desc("Disable select to branch conversion."));
83
84static cl::opt<bool> AddrSinkUsingGEPs(
85  "addr-sink-using-gep", cl::Hidden, cl::init(false),
86  cl::desc("Address sinking in CGP using GEPs."));
87
88static cl::opt<bool> EnableAndCmpSinking(
89   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
90   cl::desc("Enable sinkinig and/cmp into branches."));
91
92static cl::opt<bool> DisableStoreExtract(
93    "disable-cgp-store-extract", cl::Hidden, cl::init(false),
94    cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
95
96static cl::opt<bool> StressStoreExtract(
97    "stress-cgp-store-extract", cl::Hidden, cl::init(false),
98    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
99
100static cl::opt<bool> DisableExtLdPromotion(
101    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
102    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
103             "CodeGenPrepare"));
104
105static cl::opt<bool> StressExtLdPromotion(
106    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
107    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
108             "optimization in CodeGenPrepare"));
109
110namespace {
111typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
112struct TypeIsSExt {
113  Type *Ty;
114  bool IsSExt;
115  TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {}
116};
117typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
118class TypePromotionTransaction;
119
120  class CodeGenPrepare : public FunctionPass {
121    /// TLI - Keep a pointer of a TargetLowering to consult for determining
122    /// transformation profitability.
123    const TargetMachine *TM;
124    const TargetLowering *TLI;
125    const TargetTransformInfo *TTI;
126    const TargetLibraryInfo *TLInfo;
127
128    /// CurInstIterator - As we scan instructions optimizing them, this is the
129    /// next instruction to optimize.  Xforms that can invalidate this should
130    /// update it.
131    BasicBlock::iterator CurInstIterator;
132
133    /// Keeps track of non-local addresses that have been sunk into a block.
134    /// This allows us to avoid inserting duplicate code for blocks with
135    /// multiple load/stores of the same address.
136    ValueMap<Value*, Value*> SunkAddrs;
137
138    /// Keeps track of all truncates inserted for the current function.
139    SetOfInstrs InsertedTruncsSet;
140    /// Keeps track of the type of the related instruction before their
141    /// promotion for the current function.
142    InstrToOrigTy PromotedInsts;
143
144    /// ModifiedDT - If CFG is modified in anyway.
145    bool ModifiedDT;
146
147    /// OptSize - True if optimizing for size.
148    bool OptSize;
149
150  public:
151    static char ID; // Pass identification, replacement for typeid
152    explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
153        : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) {
154        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
155      }
156    bool runOnFunction(Function &F) override;
157
158    const char *getPassName() const override { return "CodeGen Prepare"; }
159
160    void getAnalysisUsage(AnalysisUsage &AU) const override {
161      AU.addPreserved<DominatorTreeWrapperPass>();
162      AU.addRequired<TargetLibraryInfoWrapperPass>();
163      AU.addRequired<TargetTransformInfoWrapperPass>();
164    }
165
166  private:
167    bool EliminateFallThrough(Function &F);
168    bool EliminateMostlyEmptyBlocks(Function &F);
169    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
170    void EliminateMostlyEmptyBlock(BasicBlock *BB);
171    bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT);
172    bool OptimizeInst(Instruction *I, bool& ModifiedDT);
173    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
174    bool OptimizeInlineAsmInst(CallInst *CS);
175    bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT);
176    bool MoveExtToFormExtLoad(Instruction *&I);
177    bool OptimizeExtUses(Instruction *I);
178    bool OptimizeSelectInst(SelectInst *SI);
179    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
180    bool OptimizeExtractElementInst(Instruction *Inst);
181    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
182    bool PlaceDbgValues(Function &F);
183    bool sinkAndCmp(Function &F);
184    bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
185                        Instruction *&Inst,
186                        const SmallVectorImpl<Instruction *> &Exts,
187                        unsigned CreatedInstCost);
188    bool splitBranchCondition(Function &F);
189    bool simplifyOffsetableRelocate(Instruction &I);
190  };
191}
192
193char CodeGenPrepare::ID = 0;
194INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
195                   "Optimize for code generation", false, false)
196
197FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
198  return new CodeGenPrepare(TM);
199}
200
201bool CodeGenPrepare::runOnFunction(Function &F) {
202  if (skipOptnoneFunction(F))
203    return false;
204
205  bool EverMadeChange = false;
206  // Clear per function information.
207  InsertedTruncsSet.clear();
208  PromotedInsts.clear();
209
210  ModifiedDT = false;
211  if (TM)
212    TLI = TM->getSubtargetImpl(F)->getTargetLowering();
213  TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
214  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
215  OptSize = F.hasFnAttribute(Attribute::OptimizeForSize);
216
217  /// This optimization identifies DIV instructions that can be
218  /// profitably bypassed and carried out with a shorter, faster divide.
219  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
220    const DenseMap<unsigned int, unsigned int> &BypassWidths =
221       TLI->getBypassSlowDivWidths();
222    for (Function::iterator I = F.begin(); I != F.end(); I++)
223      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
224  }
225
226  // Eliminate blocks that contain only PHI nodes and an
227  // unconditional branch.
228  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
229
230  // llvm.dbg.value is far away from the value then iSel may not be able
231  // handle it properly. iSel will drop llvm.dbg.value if it can not
232  // find a node corresponding to the value.
233  EverMadeChange |= PlaceDbgValues(F);
234
235  // If there is a mask, compare against zero, and branch that can be combined
236  // into a single target instruction, push the mask and compare into branch
237  // users. Do this before OptimizeBlock -> OptimizeInst ->
238  // OptimizeCmpExpression, which perturbs the pattern being searched for.
239  if (!DisableBranchOpts) {
240    EverMadeChange |= sinkAndCmp(F);
241    EverMadeChange |= splitBranchCondition(F);
242  }
243
244  bool MadeChange = true;
245  while (MadeChange) {
246    MadeChange = false;
247    for (Function::iterator I = F.begin(); I != F.end(); ) {
248      BasicBlock *BB = I++;
249      bool ModifiedDTOnIteration = false;
250      MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration);
251
252      // Restart BB iteration if the dominator tree of the Function was changed
253      if (ModifiedDTOnIteration)
254        break;
255    }
256    EverMadeChange |= MadeChange;
257  }
258
259  SunkAddrs.clear();
260
261  if (!DisableBranchOpts) {
262    MadeChange = false;
263    SmallPtrSet<BasicBlock*, 8> WorkList;
264    for (BasicBlock &BB : F) {
265      SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
266      MadeChange |= ConstantFoldTerminator(&BB, true);
267      if (!MadeChange) continue;
268
269      for (SmallVectorImpl<BasicBlock*>::iterator
270             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
271        if (pred_begin(*II) == pred_end(*II))
272          WorkList.insert(*II);
273    }
274
275    // Delete the dead blocks and any of their dead successors.
276    MadeChange |= !WorkList.empty();
277    while (!WorkList.empty()) {
278      BasicBlock *BB = *WorkList.begin();
279      WorkList.erase(BB);
280      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
281
282      DeleteDeadBlock(BB);
283
284      for (SmallVectorImpl<BasicBlock*>::iterator
285             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
286        if (pred_begin(*II) == pred_end(*II))
287          WorkList.insert(*II);
288    }
289
290    // Merge pairs of basic blocks with unconditional branches, connected by
291    // a single edge.
292    if (EverMadeChange || MadeChange)
293      MadeChange |= EliminateFallThrough(F);
294
295    EverMadeChange |= MadeChange;
296  }
297
298  if (!DisableGCOpts) {
299    SmallVector<Instruction *, 2> Statepoints;
300    for (BasicBlock &BB : F)
301      for (Instruction &I : BB)
302        if (isStatepoint(I))
303          Statepoints.push_back(&I);
304    for (auto &I : Statepoints)
305      EverMadeChange |= simplifyOffsetableRelocate(*I);
306  }
307
308  return EverMadeChange;
309}
310
311/// EliminateFallThrough - Merge basic blocks which are connected
312/// by a single edge, where one of the basic blocks has a single successor
313/// pointing to the other basic block, which has a single predecessor.
314bool CodeGenPrepare::EliminateFallThrough(Function &F) {
315  bool Changed = false;
316  // Scan all of the blocks in the function, except for the entry block.
317  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
318    BasicBlock *BB = I++;
319    // If the destination block has a single pred, then this is a trivial
320    // edge, just collapse it.
321    BasicBlock *SinglePred = BB->getSinglePredecessor();
322
323    // Don't merge if BB's address is taken.
324    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
325
326    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
327    if (Term && !Term->isConditional()) {
328      Changed = true;
329      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
330      // Remember if SinglePred was the entry block of the function.
331      // If so, we will need to move BB back to the entry position.
332      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
333      MergeBasicBlockIntoOnlyPred(BB, nullptr);
334
335      if (isEntry && BB != &BB->getParent()->getEntryBlock())
336        BB->moveBefore(&BB->getParent()->getEntryBlock());
337
338      // We have erased a block. Update the iterator.
339      I = BB;
340    }
341  }
342  return Changed;
343}
344
345/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
346/// debug info directives, and an unconditional branch.  Passes before isel
347/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
348/// isel.  Start by eliminating these blocks so we can split them the way we
349/// want them.
350bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
351  bool MadeChange = false;
352  // Note that this intentionally skips the entry block.
353  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
354    BasicBlock *BB = I++;
355
356    // If this block doesn't end with an uncond branch, ignore it.
357    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
358    if (!BI || !BI->isUnconditional())
359      continue;
360
361    // If the instruction before the branch (skipping debug info) isn't a phi
362    // node, then other stuff is happening here.
363    BasicBlock::iterator BBI = BI;
364    if (BBI != BB->begin()) {
365      --BBI;
366      while (isa<DbgInfoIntrinsic>(BBI)) {
367        if (BBI == BB->begin())
368          break;
369        --BBI;
370      }
371      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
372        continue;
373    }
374
375    // Do not break infinite loops.
376    BasicBlock *DestBB = BI->getSuccessor(0);
377    if (DestBB == BB)
378      continue;
379
380    if (!CanMergeBlocks(BB, DestBB))
381      continue;
382
383    EliminateMostlyEmptyBlock(BB);
384    MadeChange = true;
385  }
386  return MadeChange;
387}
388
389/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
390/// single uncond branch between them, and BB contains no other non-phi
391/// instructions.
392bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
393                                    const BasicBlock *DestBB) const {
394  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
395  // the successor.  If there are more complex condition (e.g. preheaders),
396  // don't mess around with them.
397  BasicBlock::const_iterator BBI = BB->begin();
398  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
399    for (const User *U : PN->users()) {
400      const Instruction *UI = cast<Instruction>(U);
401      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
402        return false;
403      // If User is inside DestBB block and it is a PHINode then check
404      // incoming value. If incoming value is not from BB then this is
405      // a complex condition (e.g. preheaders) we want to avoid here.
406      if (UI->getParent() == DestBB) {
407        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
408          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
409            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
410            if (Insn && Insn->getParent() == BB &&
411                Insn->getParent() != UPN->getIncomingBlock(I))
412              return false;
413          }
414      }
415    }
416  }
417
418  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
419  // and DestBB may have conflicting incoming values for the block.  If so, we
420  // can't merge the block.
421  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
422  if (!DestBBPN) return true;  // no conflict.
423
424  // Collect the preds of BB.
425  SmallPtrSet<const BasicBlock*, 16> BBPreds;
426  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
427    // It is faster to get preds from a PHI than with pred_iterator.
428    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
429      BBPreds.insert(BBPN->getIncomingBlock(i));
430  } else {
431    BBPreds.insert(pred_begin(BB), pred_end(BB));
432  }
433
434  // Walk the preds of DestBB.
435  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
436    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
437    if (BBPreds.count(Pred)) {   // Common predecessor?
438      BBI = DestBB->begin();
439      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
440        const Value *V1 = PN->getIncomingValueForBlock(Pred);
441        const Value *V2 = PN->getIncomingValueForBlock(BB);
442
443        // If V2 is a phi node in BB, look up what the mapped value will be.
444        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
445          if (V2PN->getParent() == BB)
446            V2 = V2PN->getIncomingValueForBlock(Pred);
447
448        // If there is a conflict, bail out.
449        if (V1 != V2) return false;
450      }
451    }
452  }
453
454  return true;
455}
456
457
458/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
459/// an unconditional branch in it.
460void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
461  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
462  BasicBlock *DestBB = BI->getSuccessor(0);
463
464  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
465
466  // If the destination block has a single pred, then this is a trivial edge,
467  // just collapse it.
468  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
469    if (SinglePred != DestBB) {
470      // Remember if SinglePred was the entry block of the function.  If so, we
471      // will need to move BB back to the entry position.
472      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
473      MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
474
475      if (isEntry && BB != &BB->getParent()->getEntryBlock())
476        BB->moveBefore(&BB->getParent()->getEntryBlock());
477
478      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
479      return;
480    }
481  }
482
483  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
484  // to handle the new incoming edges it is about to have.
485  PHINode *PN;
486  for (BasicBlock::iterator BBI = DestBB->begin();
487       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
488    // Remove the incoming value for BB, and remember it.
489    Value *InVal = PN->removeIncomingValue(BB, false);
490
491    // Two options: either the InVal is a phi node defined in BB or it is some
492    // value that dominates BB.
493    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
494    if (InValPhi && InValPhi->getParent() == BB) {
495      // Add all of the input values of the input PHI as inputs of this phi.
496      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
497        PN->addIncoming(InValPhi->getIncomingValue(i),
498                        InValPhi->getIncomingBlock(i));
499    } else {
500      // Otherwise, add one instance of the dominating value for each edge that
501      // we will be adding.
502      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
503        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
504          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
505      } else {
506        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
507          PN->addIncoming(InVal, *PI);
508      }
509    }
510  }
511
512  // The PHIs are now updated, change everything that refers to BB to use
513  // DestBB and remove BB.
514  BB->replaceAllUsesWith(DestBB);
515  BB->eraseFromParent();
516  ++NumBlocksElim;
517
518  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
519}
520
521// Computes a map of base pointer relocation instructions to corresponding
522// derived pointer relocation instructions given a vector of all relocate calls
523static void computeBaseDerivedRelocateMap(
524    const SmallVectorImpl<User *> &AllRelocateCalls,
525    DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> &
526        RelocateInstMap) {
527  // Collect information in two maps: one primarily for locating the base object
528  // while filling the second map; the second map is the final structure holding
529  // a mapping between Base and corresponding Derived relocate calls
530  DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap;
531  for (auto &U : AllRelocateCalls) {
532    GCRelocateOperands ThisRelocate(U);
533    IntrinsicInst *I = cast<IntrinsicInst>(U);
534    auto K = std::make_pair(ThisRelocate.basePtrIndex(),
535                            ThisRelocate.derivedPtrIndex());
536    RelocateIdxMap.insert(std::make_pair(K, I));
537  }
538  for (auto &Item : RelocateIdxMap) {
539    std::pair<unsigned, unsigned> Key = Item.first;
540    if (Key.first == Key.second)
541      // Base relocation: nothing to insert
542      continue;
543
544    IntrinsicInst *I = Item.second;
545    auto BaseKey = std::make_pair(Key.first, Key.first);
546
547    // We're iterating over RelocateIdxMap so we cannot modify it.
548    auto MaybeBase = RelocateIdxMap.find(BaseKey);
549    if (MaybeBase == RelocateIdxMap.end())
550      // TODO: We might want to insert a new base object relocate and gep off
551      // that, if there are enough derived object relocates.
552      continue;
553
554    RelocateInstMap[MaybeBase->second].push_back(I);
555  }
556}
557
558// Accepts a GEP and extracts the operands into a vector provided they're all
559// small integer constants
560static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
561                                          SmallVectorImpl<Value *> &OffsetV) {
562  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
563    // Only accept small constant integer operands
564    auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
565    if (!Op || Op->getZExtValue() > 20)
566      return false;
567  }
568
569  for (unsigned i = 1; i < GEP->getNumOperands(); i++)
570    OffsetV.push_back(GEP->getOperand(i));
571  return true;
572}
573
574// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
575// replace, computes a replacement, and affects it.
576static bool
577simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase,
578                          const SmallVectorImpl<IntrinsicInst *> &Targets) {
579  bool MadeChange = false;
580  for (auto &ToReplace : Targets) {
581    GCRelocateOperands MasterRelocate(RelocatedBase);
582    GCRelocateOperands ThisRelocate(ToReplace);
583
584    assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() &&
585           "Not relocating a derived object of the original base object");
586    if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) {
587      // A duplicate relocate call. TODO: coalesce duplicates.
588      continue;
589    }
590
591    Value *Base = ThisRelocate.basePtr();
592    auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.derivedPtr());
593    if (!Derived || Derived->getPointerOperand() != Base)
594      continue;
595
596    SmallVector<Value *, 2> OffsetV;
597    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
598      continue;
599
600    // Create a Builder and replace the target callsite with a gep
601    IRBuilder<> Builder(ToReplace);
602    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
603    Value *Replacement = Builder.CreateGEP(
604        Derived->getSourceElementType(), RelocatedBase, makeArrayRef(OffsetV));
605    Instruction *ReplacementInst = cast<Instruction>(Replacement);
606    ReplacementInst->removeFromParent();
607    ReplacementInst->insertAfter(RelocatedBase);
608    Replacement->takeName(ToReplace);
609    ToReplace->replaceAllUsesWith(Replacement);
610    ToReplace->eraseFromParent();
611
612    MadeChange = true;
613  }
614  return MadeChange;
615}
616
617// Turns this:
618//
619// %base = ...
620// %ptr = gep %base + 15
621// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
622// %base' = relocate(%tok, i32 4, i32 4)
623// %ptr' = relocate(%tok, i32 4, i32 5)
624// %val = load %ptr'
625//
626// into this:
627//
628// %base = ...
629// %ptr = gep %base + 15
630// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
631// %base' = gc.relocate(%tok, i32 4, i32 4)
632// %ptr' = gep %base' + 15
633// %val = load %ptr'
634bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
635  bool MadeChange = false;
636  SmallVector<User *, 2> AllRelocateCalls;
637
638  for (auto *U : I.users())
639    if (isGCRelocate(dyn_cast<Instruction>(U)))
640      // Collect all the relocate calls associated with a statepoint
641      AllRelocateCalls.push_back(U);
642
643  // We need atleast one base pointer relocation + one derived pointer
644  // relocation to mangle
645  if (AllRelocateCalls.size() < 2)
646    return false;
647
648  // RelocateInstMap is a mapping from the base relocate instruction to the
649  // corresponding derived relocate instructions
650  DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap;
651  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
652  if (RelocateInstMap.empty())
653    return false;
654
655  for (auto &Item : RelocateInstMap)
656    // Item.first is the RelocatedBase to offset against
657    // Item.second is the vector of Targets to replace
658    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
659  return MadeChange;
660}
661
662/// SinkCast - Sink the specified cast instruction into its user blocks
663static bool SinkCast(CastInst *CI) {
664  BasicBlock *DefBB = CI->getParent();
665
666  /// InsertedCasts - Only insert a cast in each block once.
667  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
668
669  bool MadeChange = false;
670  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
671       UI != E; ) {
672    Use &TheUse = UI.getUse();
673    Instruction *User = cast<Instruction>(*UI);
674
675    // Figure out which BB this cast is used in.  For PHI's this is the
676    // appropriate predecessor block.
677    BasicBlock *UserBB = User->getParent();
678    if (PHINode *PN = dyn_cast<PHINode>(User)) {
679      UserBB = PN->getIncomingBlock(TheUse);
680    }
681
682    // Preincrement use iterator so we don't invalidate it.
683    ++UI;
684
685    // If this user is in the same block as the cast, don't change the cast.
686    if (UserBB == DefBB) continue;
687
688    // If we have already inserted a cast into this block, use it.
689    CastInst *&InsertedCast = InsertedCasts[UserBB];
690
691    if (!InsertedCast) {
692      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
693      InsertedCast =
694        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
695                         InsertPt);
696    }
697
698    // Replace a use of the cast with a use of the new cast.
699    TheUse = InsertedCast;
700    MadeChange = true;
701    ++NumCastUses;
702  }
703
704  // If we removed all uses, nuke the cast.
705  if (CI->use_empty()) {
706    CI->eraseFromParent();
707    MadeChange = true;
708  }
709
710  return MadeChange;
711}
712
713/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
714/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
715/// sink it into user blocks to reduce the number of virtual
716/// registers that must be created and coalesced.
717///
718/// Return true if any changes are made.
719///
720static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
721  // If this is a noop copy,
722  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
723  EVT DstVT = TLI.getValueType(CI->getType());
724
725  // This is an fp<->int conversion?
726  if (SrcVT.isInteger() != DstVT.isInteger())
727    return false;
728
729  // If this is an extension, it will be a zero or sign extension, which
730  // isn't a noop.
731  if (SrcVT.bitsLT(DstVT)) return false;
732
733  // If these values will be promoted, find out what they will be promoted
734  // to.  This helps us consider truncates on PPC as noop copies when they
735  // are.
736  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
737      TargetLowering::TypePromoteInteger)
738    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
739  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
740      TargetLowering::TypePromoteInteger)
741    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
742
743  // If, after promotion, these are the same types, this is a noop copy.
744  if (SrcVT != DstVT)
745    return false;
746
747  return SinkCast(CI);
748}
749
750/// CombineUAddWithOverflow - try to combine CI into a call to the
751/// llvm.uadd.with.overflow intrinsic if possible.
752///
753/// Return true if any changes were made.
754static bool CombineUAddWithOverflow(CmpInst *CI) {
755  Value *A, *B;
756  Instruction *AddI;
757  if (!match(CI,
758             m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
759    return false;
760
761  Type *Ty = AddI->getType();
762  if (!isa<IntegerType>(Ty))
763    return false;
764
765  // We don't want to move around uses of condition values this late, so we we
766  // check if it is legal to create the call to the intrinsic in the basic
767  // block containing the icmp:
768
769  if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
770    return false;
771
772#ifndef NDEBUG
773  // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
774  // for now:
775  if (AddI->hasOneUse())
776    assert(*AddI->user_begin() == CI && "expected!");
777#endif
778
779  Module *M = CI->getParent()->getParent()->getParent();
780  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
781
782  auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
783
784  auto *UAddWithOverflow =
785      CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
786  auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
787  auto *Overflow =
788      ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
789
790  CI->replaceAllUsesWith(Overflow);
791  AddI->replaceAllUsesWith(UAdd);
792  CI->eraseFromParent();
793  AddI->eraseFromParent();
794  return true;
795}
796
797/// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce
798/// the number of virtual registers that must be created and coalesced.  This is
799/// a clear win except on targets with multiple condition code registers
800///  (PowerPC), where it might lose; some adjustment may be wanted there.
801///
802/// Return true if any changes are made.
803static bool SinkCmpExpression(CmpInst *CI) {
804  BasicBlock *DefBB = CI->getParent();
805
806  /// InsertedCmp - Only insert a cmp in each block once.
807  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
808
809  bool MadeChange = false;
810  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
811       UI != E; ) {
812    Use &TheUse = UI.getUse();
813    Instruction *User = cast<Instruction>(*UI);
814
815    // Preincrement use iterator so we don't invalidate it.
816    ++UI;
817
818    // Don't bother for PHI nodes.
819    if (isa<PHINode>(User))
820      continue;
821
822    // Figure out which BB this cmp is used in.
823    BasicBlock *UserBB = User->getParent();
824
825    // If this user is in the same block as the cmp, don't change the cmp.
826    if (UserBB == DefBB) continue;
827
828    // If we have already inserted a cmp into this block, use it.
829    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
830
831    if (!InsertedCmp) {
832      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
833      InsertedCmp =
834        CmpInst::Create(CI->getOpcode(),
835                        CI->getPredicate(),  CI->getOperand(0),
836                        CI->getOperand(1), "", InsertPt);
837    }
838
839    // Replace a use of the cmp with a use of the new cmp.
840    TheUse = InsertedCmp;
841    MadeChange = true;
842    ++NumCmpUses;
843  }
844
845  // If we removed all uses, nuke the cmp.
846  if (CI->use_empty()) {
847    CI->eraseFromParent();
848    MadeChange = true;
849  }
850
851  return MadeChange;
852}
853
854static bool OptimizeCmpExpression(CmpInst *CI) {
855  if (SinkCmpExpression(CI))
856    return true;
857
858  if (CombineUAddWithOverflow(CI))
859    return true;
860
861  return false;
862}
863
864/// isExtractBitsCandidateUse - Check if the candidates could
865/// be combined with shift instruction, which includes:
866/// 1. Truncate instruction
867/// 2. And instruction and the imm is a mask of the low bits:
868/// imm & (imm+1) == 0
869static bool isExtractBitsCandidateUse(Instruction *User) {
870  if (!isa<TruncInst>(User)) {
871    if (User->getOpcode() != Instruction::And ||
872        !isa<ConstantInt>(User->getOperand(1)))
873      return false;
874
875    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
876
877    if ((Cimm & (Cimm + 1)).getBoolValue())
878      return false;
879  }
880  return true;
881}
882
883/// SinkShiftAndTruncate - sink both shift and truncate instruction
884/// to the use of truncate's BB.
885static bool
886SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
887                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
888                     const TargetLowering &TLI) {
889  BasicBlock *UserBB = User->getParent();
890  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
891  TruncInst *TruncI = dyn_cast<TruncInst>(User);
892  bool MadeChange = false;
893
894  for (Value::user_iterator TruncUI = TruncI->user_begin(),
895                            TruncE = TruncI->user_end();
896       TruncUI != TruncE;) {
897
898    Use &TruncTheUse = TruncUI.getUse();
899    Instruction *TruncUser = cast<Instruction>(*TruncUI);
900    // Preincrement use iterator so we don't invalidate it.
901
902    ++TruncUI;
903
904    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
905    if (!ISDOpcode)
906      continue;
907
908    // If the use is actually a legal node, there will not be an
909    // implicit truncate.
910    // FIXME: always querying the result type is just an
911    // approximation; some nodes' legality is determined by the
912    // operand or other means. There's no good way to find out though.
913    if (TLI.isOperationLegalOrCustom(
914            ISDOpcode, TLI.getValueType(TruncUser->getType(), true)))
915      continue;
916
917    // Don't bother for PHI nodes.
918    if (isa<PHINode>(TruncUser))
919      continue;
920
921    BasicBlock *TruncUserBB = TruncUser->getParent();
922
923    if (UserBB == TruncUserBB)
924      continue;
925
926    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
927    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
928
929    if (!InsertedShift && !InsertedTrunc) {
930      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
931      // Sink the shift
932      if (ShiftI->getOpcode() == Instruction::AShr)
933        InsertedShift =
934            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
935      else
936        InsertedShift =
937            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
938
939      // Sink the trunc
940      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
941      TruncInsertPt++;
942
943      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
944                                       TruncI->getType(), "", TruncInsertPt);
945
946      MadeChange = true;
947
948      TruncTheUse = InsertedTrunc;
949    }
950  }
951  return MadeChange;
952}
953
954/// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
955/// the uses could potentially be combined with this shift instruction and
956/// generate BitExtract instruction. It will only be applied if the architecture
957/// supports BitExtract instruction. Here is an example:
958/// BB1:
959///   %x.extract.shift = lshr i64 %arg1, 32
960/// BB2:
961///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
962/// ==>
963///
964/// BB2:
965///   %x.extract.shift.1 = lshr i64 %arg1, 32
966///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
967///
968/// CodeGen will recoginze the pattern in BB2 and generate BitExtract
969/// instruction.
970/// Return true if any changes are made.
971static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
972                                const TargetLowering &TLI) {
973  BasicBlock *DefBB = ShiftI->getParent();
974
975  /// Only insert instructions in each block once.
976  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
977
978  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
979
980  bool MadeChange = false;
981  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
982       UI != E;) {
983    Use &TheUse = UI.getUse();
984    Instruction *User = cast<Instruction>(*UI);
985    // Preincrement use iterator so we don't invalidate it.
986    ++UI;
987
988    // Don't bother for PHI nodes.
989    if (isa<PHINode>(User))
990      continue;
991
992    if (!isExtractBitsCandidateUse(User))
993      continue;
994
995    BasicBlock *UserBB = User->getParent();
996
997    if (UserBB == DefBB) {
998      // If the shift and truncate instruction are in the same BB. The use of
999      // the truncate(TruncUse) may still introduce another truncate if not
1000      // legal. In this case, we would like to sink both shift and truncate
1001      // instruction to the BB of TruncUse.
1002      // for example:
1003      // BB1:
1004      // i64 shift.result = lshr i64 opnd, imm
1005      // trunc.result = trunc shift.result to i16
1006      //
1007      // BB2:
1008      //   ----> We will have an implicit truncate here if the architecture does
1009      //   not have i16 compare.
1010      // cmp i16 trunc.result, opnd2
1011      //
1012      if (isa<TruncInst>(User) && shiftIsLegal
1013          // If the type of the truncate is legal, no trucate will be
1014          // introduced in other basic blocks.
1015          && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
1016        MadeChange =
1017            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
1018
1019      continue;
1020    }
1021    // If we have already inserted a shift into this block, use it.
1022    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1023
1024    if (!InsertedShift) {
1025      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1026
1027      if (ShiftI->getOpcode() == Instruction::AShr)
1028        InsertedShift =
1029            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
1030      else
1031        InsertedShift =
1032            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
1033
1034      MadeChange = true;
1035    }
1036
1037    // Replace a use of the shift with a use of the new shift.
1038    TheUse = InsertedShift;
1039  }
1040
1041  // If we removed all uses, nuke the shift.
1042  if (ShiftI->use_empty())
1043    ShiftI->eraseFromParent();
1044
1045  return MadeChange;
1046}
1047
1048//  ScalarizeMaskedLoad() translates masked load intrinsic, like
1049// <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1050//                               <16 x i1> %mask, <16 x i32> %passthru)
1051// to a chain of basic blocks, whith loading element one-by-one if
1052// the appropriate mask bit is set
1053//
1054//  %1 = bitcast i8* %addr to i32*
1055//  %2 = extractelement <16 x i1> %mask, i32 0
1056//  %3 = icmp eq i1 %2, true
1057//  br i1 %3, label %cond.load, label %else
1058//
1059//cond.load:                                        ; preds = %0
1060//  %4 = getelementptr i32* %1, i32 0
1061//  %5 = load i32* %4
1062//  %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1063//  br label %else
1064//
1065//else:                                             ; preds = %0, %cond.load
1066//  %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1067//  %7 = extractelement <16 x i1> %mask, i32 1
1068//  %8 = icmp eq i1 %7, true
1069//  br i1 %8, label %cond.load1, label %else2
1070//
1071//cond.load1:                                       ; preds = %else
1072//  %9 = getelementptr i32* %1, i32 1
1073//  %10 = load i32* %9
1074//  %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
1075//  br label %else2
1076//
1077//else2:                                            ; preds = %else, %cond.load1
1078//  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1079//  %12 = extractelement <16 x i1> %mask, i32 2
1080//  %13 = icmp eq i1 %12, true
1081//  br i1 %13, label %cond.load4, label %else5
1082//
1083static void ScalarizeMaskedLoad(CallInst *CI) {
1084  Value *Ptr  = CI->getArgOperand(0);
1085  Value *Src0 = CI->getArgOperand(3);
1086  Value *Mask = CI->getArgOperand(2);
1087  VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1088  Type *EltTy = VecType->getElementType();
1089
1090  assert(VecType && "Unexpected return type of masked load intrinsic");
1091
1092  IRBuilder<> Builder(CI->getContext());
1093  Instruction *InsertPt = CI;
1094  BasicBlock *IfBlock = CI->getParent();
1095  BasicBlock *CondBlock = nullptr;
1096  BasicBlock *PrevIfBlock = CI->getParent();
1097  Builder.SetInsertPoint(InsertPt);
1098
1099  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1100
1101  // Bitcast %addr fron i8* to EltTy*
1102  Type *NewPtrType =
1103    EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1104  Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1105  Value *UndefVal = UndefValue::get(VecType);
1106
1107  // The result vector
1108  Value *VResult = UndefVal;
1109
1110  PHINode *Phi = nullptr;
1111  Value *PrevPhi = UndefVal;
1112
1113  unsigned VectorWidth = VecType->getNumElements();
1114  for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1115
1116    // Fill the "else" block, created in the previous iteration
1117    //
1118    //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1119    //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1120    //  %to_load = icmp eq i1 %mask_1, true
1121    //  br i1 %to_load, label %cond.load, label %else
1122    //
1123    if (Idx > 0) {
1124      Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1125      Phi->addIncoming(VResult, CondBlock);
1126      Phi->addIncoming(PrevPhi, PrevIfBlock);
1127      PrevPhi = Phi;
1128      VResult = Phi;
1129    }
1130
1131    Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1132    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1133                                    ConstantInt::get(Predicate->getType(), 1));
1134
1135    // Create "cond" block
1136    //
1137    //  %EltAddr = getelementptr i32* %1, i32 0
1138    //  %Elt = load i32* %EltAddr
1139    //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1140    //
1141    CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
1142    Builder.SetInsertPoint(InsertPt);
1143
1144    Value *Gep =
1145        Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1146    LoadInst* Load = Builder.CreateLoad(Gep, false);
1147    VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
1148
1149    // Create "else" block, fill it in the next iteration
1150    BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1151    Builder.SetInsertPoint(InsertPt);
1152    Instruction *OldBr = IfBlock->getTerminator();
1153    BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1154    OldBr->eraseFromParent();
1155    PrevIfBlock = IfBlock;
1156    IfBlock = NewIfBlock;
1157  }
1158
1159  Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1160  Phi->addIncoming(VResult, CondBlock);
1161  Phi->addIncoming(PrevPhi, PrevIfBlock);
1162  Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1163  CI->replaceAllUsesWith(NewI);
1164  CI->eraseFromParent();
1165}
1166
1167//  ScalarizeMaskedStore() translates masked store intrinsic, like
1168// void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
1169//                               <16 x i1> %mask)
1170// to a chain of basic blocks, that stores element one-by-one if
1171// the appropriate mask bit is set
1172//
1173//   %1 = bitcast i8* %addr to i32*
1174//   %2 = extractelement <16 x i1> %mask, i32 0
1175//   %3 = icmp eq i1 %2, true
1176//   br i1 %3, label %cond.store, label %else
1177//
1178// cond.store:                                       ; preds = %0
1179//   %4 = extractelement <16 x i32> %val, i32 0
1180//   %5 = getelementptr i32* %1, i32 0
1181//   store i32 %4, i32* %5
1182//   br label %else
1183//
1184// else:                                             ; preds = %0, %cond.store
1185//   %6 = extractelement <16 x i1> %mask, i32 1
1186//   %7 = icmp eq i1 %6, true
1187//   br i1 %7, label %cond.store1, label %else2
1188//
1189// cond.store1:                                      ; preds = %else
1190//   %8 = extractelement <16 x i32> %val, i32 1
1191//   %9 = getelementptr i32* %1, i32 1
1192//   store i32 %8, i32* %9
1193//   br label %else2
1194//   . . .
1195static void ScalarizeMaskedStore(CallInst *CI) {
1196  Value *Ptr  = CI->getArgOperand(1);
1197  Value *Src = CI->getArgOperand(0);
1198  Value *Mask = CI->getArgOperand(3);
1199
1200  VectorType *VecType = dyn_cast<VectorType>(Src->getType());
1201  Type *EltTy = VecType->getElementType();
1202
1203  assert(VecType && "Unexpected data type in masked store intrinsic");
1204
1205  IRBuilder<> Builder(CI->getContext());
1206  Instruction *InsertPt = CI;
1207  BasicBlock *IfBlock = CI->getParent();
1208  Builder.SetInsertPoint(InsertPt);
1209  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1210
1211  // Bitcast %addr fron i8* to EltTy*
1212  Type *NewPtrType =
1213    EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1214  Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1215
1216  unsigned VectorWidth = VecType->getNumElements();
1217  for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1218
1219    // Fill the "else" block, created in the previous iteration
1220    //
1221    //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1222    //  %to_store = icmp eq i1 %mask_1, true
1223    //  br i1 %to_load, label %cond.store, label %else
1224    //
1225    Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1226    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1227                                    ConstantInt::get(Predicate->getType(), 1));
1228
1229    // Create "cond" block
1230    //
1231    //  %OneElt = extractelement <16 x i32> %Src, i32 Idx
1232    //  %EltAddr = getelementptr i32* %1, i32 0
1233    //  %store i32 %OneElt, i32* %EltAddr
1234    //
1235    BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1236    Builder.SetInsertPoint(InsertPt);
1237
1238    Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1239    Value *Gep =
1240        Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1241    Builder.CreateStore(OneElt, Gep);
1242
1243    // Create "else" block, fill it in the next iteration
1244    BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1245    Builder.SetInsertPoint(InsertPt);
1246    Instruction *OldBr = IfBlock->getTerminator();
1247    BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1248    OldBr->eraseFromParent();
1249    IfBlock = NewIfBlock;
1250  }
1251  CI->eraseFromParent();
1252}
1253
1254bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) {
1255  BasicBlock *BB = CI->getParent();
1256
1257  // Lower inline assembly if we can.
1258  // If we found an inline asm expession, and if the target knows how to
1259  // lower it to normal LLVM code, do so now.
1260  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1261    if (TLI->ExpandInlineAsm(CI)) {
1262      // Avoid invalidating the iterator.
1263      CurInstIterator = BB->begin();
1264      // Avoid processing instructions out of order, which could cause
1265      // reuse before a value is defined.
1266      SunkAddrs.clear();
1267      return true;
1268    }
1269    // Sink address computing for memory operands into the block.
1270    if (OptimizeInlineAsmInst(CI))
1271      return true;
1272  }
1273
1274  const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
1275
1276  // Align the pointer arguments to this call if the target thinks it's a good
1277  // idea
1278  unsigned MinSize, PrefAlign;
1279  if (TLI && TD && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1280    for (auto &Arg : CI->arg_operands()) {
1281      // We want to align both objects whose address is used directly and
1282      // objects whose address is used in casts and GEPs, though it only makes
1283      // sense for GEPs if the offset is a multiple of the desired alignment and
1284      // if size - offset meets the size threshold.
1285      if (!Arg->getType()->isPointerTy())
1286        continue;
1287      APInt Offset(TD->getPointerSizeInBits(
1288                     cast<PointerType>(Arg->getType())->getAddressSpace()), 0);
1289      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*TD, Offset);
1290      uint64_t Offset2 = Offset.getLimitedValue();
1291      if ((Offset2 & (PrefAlign-1)) != 0)
1292        continue;
1293      AllocaInst *AI;
1294      if ((AI = dyn_cast<AllocaInst>(Val)) &&
1295          AI->getAlignment() < PrefAlign &&
1296          TD->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1297        AI->setAlignment(PrefAlign);
1298      // Global variables can only be aligned if they are defined in this
1299      // object (i.e. they are uniquely initialized in this object), and
1300      // over-aligning global variables that have an explicit section is
1301      // forbidden.
1302      GlobalVariable *GV;
1303      if ((GV = dyn_cast<GlobalVariable>(Val)) &&
1304          GV->hasUniqueInitializer() &&
1305          !GV->hasSection() &&
1306          GV->getAlignment() < PrefAlign &&
1307          TD->getTypeAllocSize(
1308            GV->getType()->getElementType()) >= MinSize + Offset2)
1309        GV->setAlignment(PrefAlign);
1310    }
1311    // If this is a memcpy (or similar) then we may be able to improve the
1312    // alignment
1313    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1314      unsigned Align = getKnownAlignment(MI->getDest(), *TD);
1315      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1316        Align = std::min(Align, getKnownAlignment(MTI->getSource(), *TD));
1317      if (Align > MI->getAlignment())
1318        MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
1319    }
1320  }
1321
1322  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1323  if (II) {
1324    switch (II->getIntrinsicID()) {
1325    default: break;
1326    case Intrinsic::objectsize: {
1327      // Lower all uses of llvm.objectsize.*
1328      bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
1329      Type *ReturnTy = CI->getType();
1330      Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
1331
1332      // Substituting this can cause recursive simplifications, which can
1333      // invalidate our iterator.  Use a WeakVH to hold onto it in case this
1334      // happens.
1335      WeakVH IterHandle(CurInstIterator);
1336
1337      replaceAndRecursivelySimplify(CI, RetVal,
1338                                    TLInfo, nullptr);
1339
1340      // If the iterator instruction was recursively deleted, start over at the
1341      // start of the block.
1342      if (IterHandle != CurInstIterator) {
1343        CurInstIterator = BB->begin();
1344        SunkAddrs.clear();
1345      }
1346      return true;
1347    }
1348    case Intrinsic::masked_load: {
1349      // Scalarize unsupported vector masked load
1350      if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) {
1351        ScalarizeMaskedLoad(CI);
1352        ModifiedDT = true;
1353        return true;
1354      }
1355      return false;
1356    }
1357    case Intrinsic::masked_store: {
1358      if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) {
1359        ScalarizeMaskedStore(CI);
1360        ModifiedDT = true;
1361        return true;
1362      }
1363      return false;
1364    }
1365    }
1366
1367    if (TLI) {
1368      SmallVector<Value*, 2> PtrOps;
1369      Type *AccessTy;
1370      if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
1371        while (!PtrOps.empty())
1372          if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
1373            return true;
1374    }
1375  }
1376
1377  // From here on out we're working with named functions.
1378  if (!CI->getCalledFunction()) return false;
1379
1380  // Lower all default uses of _chk calls.  This is very similar
1381  // to what InstCombineCalls does, but here we are only lowering calls
1382  // to fortified library functions (e.g. __memcpy_chk) that have the default
1383  // "don't know" as the objectsize.  Anything else should be left alone.
1384  FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1385  if (Value *V = Simplifier.optimizeCall(CI)) {
1386    CI->replaceAllUsesWith(V);
1387    CI->eraseFromParent();
1388    return true;
1389  }
1390  return false;
1391}
1392
1393/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
1394/// instructions to the predecessor to enable tail call optimizations. The
1395/// case it is currently looking for is:
1396/// @code
1397/// bb0:
1398///   %tmp0 = tail call i32 @f0()
1399///   br label %return
1400/// bb1:
1401///   %tmp1 = tail call i32 @f1()
1402///   br label %return
1403/// bb2:
1404///   %tmp2 = tail call i32 @f2()
1405///   br label %return
1406/// return:
1407///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1408///   ret i32 %retval
1409/// @endcode
1410///
1411/// =>
1412///
1413/// @code
1414/// bb0:
1415///   %tmp0 = tail call i32 @f0()
1416///   ret i32 %tmp0
1417/// bb1:
1418///   %tmp1 = tail call i32 @f1()
1419///   ret i32 %tmp1
1420/// bb2:
1421///   %tmp2 = tail call i32 @f2()
1422///   ret i32 %tmp2
1423/// @endcode
1424bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
1425  if (!TLI)
1426    return false;
1427
1428  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
1429  if (!RI)
1430    return false;
1431
1432  PHINode *PN = nullptr;
1433  BitCastInst *BCI = nullptr;
1434  Value *V = RI->getReturnValue();
1435  if (V) {
1436    BCI = dyn_cast<BitCastInst>(V);
1437    if (BCI)
1438      V = BCI->getOperand(0);
1439
1440    PN = dyn_cast<PHINode>(V);
1441    if (!PN)
1442      return false;
1443  }
1444
1445  if (PN && PN->getParent() != BB)
1446    return false;
1447
1448  // It's not safe to eliminate the sign / zero extension of the return value.
1449  // See llvm::isInTailCallPosition().
1450  const Function *F = BB->getParent();
1451  AttributeSet CallerAttrs = F->getAttributes();
1452  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
1453      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1454    return false;
1455
1456  // Make sure there are no instructions between the PHI and return, or that the
1457  // return is the first instruction in the block.
1458  if (PN) {
1459    BasicBlock::iterator BI = BB->begin();
1460    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1461    if (&*BI == BCI)
1462      // Also skip over the bitcast.
1463      ++BI;
1464    if (&*BI != RI)
1465      return false;
1466  } else {
1467    BasicBlock::iterator BI = BB->begin();
1468    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1469    if (&*BI != RI)
1470      return false;
1471  }
1472
1473  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1474  /// call.
1475  SmallVector<CallInst*, 4> TailCalls;
1476  if (PN) {
1477    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1478      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1479      // Make sure the phi value is indeed produced by the tail call.
1480      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1481          TLI->mayBeEmittedAsTailCall(CI))
1482        TailCalls.push_back(CI);
1483    }
1484  } else {
1485    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1486    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1487      if (!VisitedBBs.insert(*PI).second)
1488        continue;
1489
1490      BasicBlock::InstListType &InstList = (*PI)->getInstList();
1491      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1492      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1493      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1494      if (RI == RE)
1495        continue;
1496
1497      CallInst *CI = dyn_cast<CallInst>(&*RI);
1498      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
1499        TailCalls.push_back(CI);
1500    }
1501  }
1502
1503  bool Changed = false;
1504  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1505    CallInst *CI = TailCalls[i];
1506    CallSite CS(CI);
1507
1508    // Conservatively require the attributes of the call to match those of the
1509    // return. Ignore noalias because it doesn't affect the call sequence.
1510    AttributeSet CalleeAttrs = CS.getAttributes();
1511    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1512          removeAttribute(Attribute::NoAlias) !=
1513        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1514          removeAttribute(Attribute::NoAlias))
1515      continue;
1516
1517    // Make sure the call instruction is followed by an unconditional branch to
1518    // the return block.
1519    BasicBlock *CallBB = CI->getParent();
1520    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1521    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1522      continue;
1523
1524    // Duplicate the return into CallBB.
1525    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
1526    ModifiedDT = Changed = true;
1527    ++NumRetsDup;
1528  }
1529
1530  // If we eliminated all predecessors of the block, delete the block now.
1531  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1532    BB->eraseFromParent();
1533
1534  return Changed;
1535}
1536
1537//===----------------------------------------------------------------------===//
1538// Memory Optimization
1539//===----------------------------------------------------------------------===//
1540
1541namespace {
1542
1543/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
1544/// which holds actual Value*'s for register values.
1545struct ExtAddrMode : public TargetLowering::AddrMode {
1546  Value *BaseReg;
1547  Value *ScaledReg;
1548  ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
1549  void print(raw_ostream &OS) const;
1550  void dump() const;
1551
1552  bool operator==(const ExtAddrMode& O) const {
1553    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
1554           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
1555           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
1556  }
1557};
1558
1559#ifndef NDEBUG
1560static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
1561  AM.print(OS);
1562  return OS;
1563}
1564#endif
1565
1566void ExtAddrMode::print(raw_ostream &OS) const {
1567  bool NeedPlus = false;
1568  OS << "[";
1569  if (BaseGV) {
1570    OS << (NeedPlus ? " + " : "")
1571       << "GV:";
1572    BaseGV->printAsOperand(OS, /*PrintType=*/false);
1573    NeedPlus = true;
1574  }
1575
1576  if (BaseOffs) {
1577    OS << (NeedPlus ? " + " : "")
1578       << BaseOffs;
1579    NeedPlus = true;
1580  }
1581
1582  if (BaseReg) {
1583    OS << (NeedPlus ? " + " : "")
1584       << "Base:";
1585    BaseReg->printAsOperand(OS, /*PrintType=*/false);
1586    NeedPlus = true;
1587  }
1588  if (Scale) {
1589    OS << (NeedPlus ? " + " : "")
1590       << Scale << "*";
1591    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
1592  }
1593
1594  OS << ']';
1595}
1596
1597#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1598void ExtAddrMode::dump() const {
1599  print(dbgs());
1600  dbgs() << '\n';
1601}
1602#endif
1603
1604/// \brief This class provides transaction based operation on the IR.
1605/// Every change made through this class is recorded in the internal state and
1606/// can be undone (rollback) until commit is called.
1607class TypePromotionTransaction {
1608
1609  /// \brief This represents the common interface of the individual transaction.
1610  /// Each class implements the logic for doing one specific modification on
1611  /// the IR via the TypePromotionTransaction.
1612  class TypePromotionAction {
1613  protected:
1614    /// The Instruction modified.
1615    Instruction *Inst;
1616
1617  public:
1618    /// \brief Constructor of the action.
1619    /// The constructor performs the related action on the IR.
1620    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
1621
1622    virtual ~TypePromotionAction() {}
1623
1624    /// \brief Undo the modification done by this action.
1625    /// When this method is called, the IR must be in the same state as it was
1626    /// before this action was applied.
1627    /// \pre Undoing the action works if and only if the IR is in the exact same
1628    /// state as it was directly after this action was applied.
1629    virtual void undo() = 0;
1630
1631    /// \brief Advocate every change made by this action.
1632    /// When the results on the IR of the action are to be kept, it is important
1633    /// to call this function, otherwise hidden information may be kept forever.
1634    virtual void commit() {
1635      // Nothing to be done, this action is not doing anything.
1636    }
1637  };
1638
1639  /// \brief Utility to remember the position of an instruction.
1640  class InsertionHandler {
1641    /// Position of an instruction.
1642    /// Either an instruction:
1643    /// - Is the first in a basic block: BB is used.
1644    /// - Has a previous instructon: PrevInst is used.
1645    union {
1646      Instruction *PrevInst;
1647      BasicBlock *BB;
1648    } Point;
1649    /// Remember whether or not the instruction had a previous instruction.
1650    bool HasPrevInstruction;
1651
1652  public:
1653    /// \brief Record the position of \p Inst.
1654    InsertionHandler(Instruction *Inst) {
1655      BasicBlock::iterator It = Inst;
1656      HasPrevInstruction = (It != (Inst->getParent()->begin()));
1657      if (HasPrevInstruction)
1658        Point.PrevInst = --It;
1659      else
1660        Point.BB = Inst->getParent();
1661    }
1662
1663    /// \brief Insert \p Inst at the recorded position.
1664    void insert(Instruction *Inst) {
1665      if (HasPrevInstruction) {
1666        if (Inst->getParent())
1667          Inst->removeFromParent();
1668        Inst->insertAfter(Point.PrevInst);
1669      } else {
1670        Instruction *Position = Point.BB->getFirstInsertionPt();
1671        if (Inst->getParent())
1672          Inst->moveBefore(Position);
1673        else
1674          Inst->insertBefore(Position);
1675      }
1676    }
1677  };
1678
1679  /// \brief Move an instruction before another.
1680  class InstructionMoveBefore : public TypePromotionAction {
1681    /// Original position of the instruction.
1682    InsertionHandler Position;
1683
1684  public:
1685    /// \brief Move \p Inst before \p Before.
1686    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
1687        : TypePromotionAction(Inst), Position(Inst) {
1688      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
1689      Inst->moveBefore(Before);
1690    }
1691
1692    /// \brief Move the instruction back to its original position.
1693    void undo() override {
1694      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
1695      Position.insert(Inst);
1696    }
1697  };
1698
1699  /// \brief Set the operand of an instruction with a new value.
1700  class OperandSetter : public TypePromotionAction {
1701    /// Original operand of the instruction.
1702    Value *Origin;
1703    /// Index of the modified instruction.
1704    unsigned Idx;
1705
1706  public:
1707    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
1708    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
1709        : TypePromotionAction(Inst), Idx(Idx) {
1710      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
1711                   << "for:" << *Inst << "\n"
1712                   << "with:" << *NewVal << "\n");
1713      Origin = Inst->getOperand(Idx);
1714      Inst->setOperand(Idx, NewVal);
1715    }
1716
1717    /// \brief Restore the original value of the instruction.
1718    void undo() override {
1719      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
1720                   << "for: " << *Inst << "\n"
1721                   << "with: " << *Origin << "\n");
1722      Inst->setOperand(Idx, Origin);
1723    }
1724  };
1725
1726  /// \brief Hide the operands of an instruction.
1727  /// Do as if this instruction was not using any of its operands.
1728  class OperandsHider : public TypePromotionAction {
1729    /// The list of original operands.
1730    SmallVector<Value *, 4> OriginalValues;
1731
1732  public:
1733    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
1734    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
1735      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
1736      unsigned NumOpnds = Inst->getNumOperands();
1737      OriginalValues.reserve(NumOpnds);
1738      for (unsigned It = 0; It < NumOpnds; ++It) {
1739        // Save the current operand.
1740        Value *Val = Inst->getOperand(It);
1741        OriginalValues.push_back(Val);
1742        // Set a dummy one.
1743        // We could use OperandSetter here, but that would implied an overhead
1744        // that we are not willing to pay.
1745        Inst->setOperand(It, UndefValue::get(Val->getType()));
1746      }
1747    }
1748
1749    /// \brief Restore the original list of uses.
1750    void undo() override {
1751      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
1752      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
1753        Inst->setOperand(It, OriginalValues[It]);
1754    }
1755  };
1756
1757  /// \brief Build a truncate instruction.
1758  class TruncBuilder : public TypePromotionAction {
1759    Value *Val;
1760  public:
1761    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
1762    /// result.
1763    /// trunc Opnd to Ty.
1764    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
1765      IRBuilder<> Builder(Opnd);
1766      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
1767      DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
1768    }
1769
1770    /// \brief Get the built value.
1771    Value *getBuiltValue() { return Val; }
1772
1773    /// \brief Remove the built instruction.
1774    void undo() override {
1775      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
1776      if (Instruction *IVal = dyn_cast<Instruction>(Val))
1777        IVal->eraseFromParent();
1778    }
1779  };
1780
1781  /// \brief Build a sign extension instruction.
1782  class SExtBuilder : public TypePromotionAction {
1783    Value *Val;
1784  public:
1785    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
1786    /// result.
1787    /// sext Opnd to Ty.
1788    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1789        : TypePromotionAction(InsertPt) {
1790      IRBuilder<> Builder(InsertPt);
1791      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
1792      DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
1793    }
1794
1795    /// \brief Get the built value.
1796    Value *getBuiltValue() { return Val; }
1797
1798    /// \brief Remove the built instruction.
1799    void undo() override {
1800      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
1801      if (Instruction *IVal = dyn_cast<Instruction>(Val))
1802        IVal->eraseFromParent();
1803    }
1804  };
1805
1806  /// \brief Build a zero extension instruction.
1807  class ZExtBuilder : public TypePromotionAction {
1808    Value *Val;
1809  public:
1810    /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
1811    /// result.
1812    /// zext Opnd to Ty.
1813    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1814        : TypePromotionAction(InsertPt) {
1815      IRBuilder<> Builder(InsertPt);
1816      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
1817      DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
1818    }
1819
1820    /// \brief Get the built value.
1821    Value *getBuiltValue() { return Val; }
1822
1823    /// \brief Remove the built instruction.
1824    void undo() override {
1825      DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
1826      if (Instruction *IVal = dyn_cast<Instruction>(Val))
1827        IVal->eraseFromParent();
1828    }
1829  };
1830
1831  /// \brief Mutate an instruction to another type.
1832  class TypeMutator : public TypePromotionAction {
1833    /// Record the original type.
1834    Type *OrigTy;
1835
1836  public:
1837    /// \brief Mutate the type of \p Inst into \p NewTy.
1838    TypeMutator(Instruction *Inst, Type *NewTy)
1839        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
1840      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
1841                   << "\n");
1842      Inst->mutateType(NewTy);
1843    }
1844
1845    /// \brief Mutate the instruction back to its original type.
1846    void undo() override {
1847      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
1848                   << "\n");
1849      Inst->mutateType(OrigTy);
1850    }
1851  };
1852
1853  /// \brief Replace the uses of an instruction by another instruction.
1854  class UsesReplacer : public TypePromotionAction {
1855    /// Helper structure to keep track of the replaced uses.
1856    struct InstructionAndIdx {
1857      /// The instruction using the instruction.
1858      Instruction *Inst;
1859      /// The index where this instruction is used for Inst.
1860      unsigned Idx;
1861      InstructionAndIdx(Instruction *Inst, unsigned Idx)
1862          : Inst(Inst), Idx(Idx) {}
1863    };
1864
1865    /// Keep track of the original uses (pair Instruction, Index).
1866    SmallVector<InstructionAndIdx, 4> OriginalUses;
1867    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
1868
1869  public:
1870    /// \brief Replace all the use of \p Inst by \p New.
1871    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
1872      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
1873                   << "\n");
1874      // Record the original uses.
1875      for (Use &U : Inst->uses()) {
1876        Instruction *UserI = cast<Instruction>(U.getUser());
1877        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
1878      }
1879      // Now, we can replace the uses.
1880      Inst->replaceAllUsesWith(New);
1881    }
1882
1883    /// \brief Reassign the original uses of Inst to Inst.
1884    void undo() override {
1885      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
1886      for (use_iterator UseIt = OriginalUses.begin(),
1887                        EndIt = OriginalUses.end();
1888           UseIt != EndIt; ++UseIt) {
1889        UseIt->Inst->setOperand(UseIt->Idx, Inst);
1890      }
1891    }
1892  };
1893
1894  /// \brief Remove an instruction from the IR.
1895  class InstructionRemover : public TypePromotionAction {
1896    /// Original position of the instruction.
1897    InsertionHandler Inserter;
1898    /// Helper structure to hide all the link to the instruction. In other
1899    /// words, this helps to do as if the instruction was removed.
1900    OperandsHider Hider;
1901    /// Keep track of the uses replaced, if any.
1902    UsesReplacer *Replacer;
1903
1904  public:
1905    /// \brief Remove all reference of \p Inst and optinally replace all its
1906    /// uses with New.
1907    /// \pre If !Inst->use_empty(), then New != nullptr
1908    InstructionRemover(Instruction *Inst, Value *New = nullptr)
1909        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
1910          Replacer(nullptr) {
1911      if (New)
1912        Replacer = new UsesReplacer(Inst, New);
1913      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
1914      Inst->removeFromParent();
1915    }
1916
1917    ~InstructionRemover() override { delete Replacer; }
1918
1919    /// \brief Really remove the instruction.
1920    void commit() override { delete Inst; }
1921
1922    /// \brief Resurrect the instruction and reassign it to the proper uses if
1923    /// new value was provided when build this action.
1924    void undo() override {
1925      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
1926      Inserter.insert(Inst);
1927      if (Replacer)
1928        Replacer->undo();
1929      Hider.undo();
1930    }
1931  };
1932
1933public:
1934  /// Restoration point.
1935  /// The restoration point is a pointer to an action instead of an iterator
1936  /// because the iterator may be invalidated but not the pointer.
1937  typedef const TypePromotionAction *ConstRestorationPt;
1938  /// Advocate every changes made in that transaction.
1939  void commit();
1940  /// Undo all the changes made after the given point.
1941  void rollback(ConstRestorationPt Point);
1942  /// Get the current restoration point.
1943  ConstRestorationPt getRestorationPoint() const;
1944
1945  /// \name API for IR modification with state keeping to support rollback.
1946  /// @{
1947  /// Same as Instruction::setOperand.
1948  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
1949  /// Same as Instruction::eraseFromParent.
1950  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
1951  /// Same as Value::replaceAllUsesWith.
1952  void replaceAllUsesWith(Instruction *Inst, Value *New);
1953  /// Same as Value::mutateType.
1954  void mutateType(Instruction *Inst, Type *NewTy);
1955  /// Same as IRBuilder::createTrunc.
1956  Value *createTrunc(Instruction *Opnd, Type *Ty);
1957  /// Same as IRBuilder::createSExt.
1958  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
1959  /// Same as IRBuilder::createZExt.
1960  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
1961  /// Same as Instruction::moveBefore.
1962  void moveBefore(Instruction *Inst, Instruction *Before);
1963  /// @}
1964
1965private:
1966  /// The ordered list of actions made so far.
1967  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
1968  typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
1969};
1970
1971void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
1972                                          Value *NewVal) {
1973  Actions.push_back(
1974      make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
1975}
1976
1977void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
1978                                                Value *NewVal) {
1979  Actions.push_back(
1980      make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
1981}
1982
1983void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
1984                                                  Value *New) {
1985  Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
1986}
1987
1988void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
1989  Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
1990}
1991
1992Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
1993                                             Type *Ty) {
1994  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
1995  Value *Val = Ptr->getBuiltValue();
1996  Actions.push_back(std::move(Ptr));
1997  return Val;
1998}
1999
2000Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2001                                            Value *Opnd, Type *Ty) {
2002  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2003  Value *Val = Ptr->getBuiltValue();
2004  Actions.push_back(std::move(Ptr));
2005  return Val;
2006}
2007
2008Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2009                                            Value *Opnd, Type *Ty) {
2010  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2011  Value *Val = Ptr->getBuiltValue();
2012  Actions.push_back(std::move(Ptr));
2013  return Val;
2014}
2015
2016void TypePromotionTransaction::moveBefore(Instruction *Inst,
2017                                          Instruction *Before) {
2018  Actions.push_back(
2019      make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
2020}
2021
2022TypePromotionTransaction::ConstRestorationPt
2023TypePromotionTransaction::getRestorationPoint() const {
2024  return !Actions.empty() ? Actions.back().get() : nullptr;
2025}
2026
2027void TypePromotionTransaction::commit() {
2028  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2029       ++It)
2030    (*It)->commit();
2031  Actions.clear();
2032}
2033
2034void TypePromotionTransaction::rollback(
2035    TypePromotionTransaction::ConstRestorationPt Point) {
2036  while (!Actions.empty() && Point != Actions.back().get()) {
2037    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2038    Curr->undo();
2039  }
2040}
2041
2042/// \brief A helper class for matching addressing modes.
2043///
2044/// This encapsulates the logic for matching the target-legal addressing modes.
2045class AddressingModeMatcher {
2046  SmallVectorImpl<Instruction*> &AddrModeInsts;
2047  const TargetMachine &TM;
2048  const TargetLowering &TLI;
2049
2050  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2051  /// the memory instruction that we're computing this address for.
2052  Type *AccessTy;
2053  Instruction *MemoryInst;
2054
2055  /// AddrMode - This is the addressing mode that we're building up.  This is
2056  /// part of the return value of this addressing mode matching stuff.
2057  ExtAddrMode &AddrMode;
2058
2059  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
2060  const SetOfInstrs &InsertedTruncs;
2061  /// A map from the instructions to their type before promotion.
2062  InstrToOrigTy &PromotedInsts;
2063  /// The ongoing transaction where every action should be registered.
2064  TypePromotionTransaction &TPT;
2065
2066  /// IgnoreProfitability - This is set to true when we should not do
2067  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
2068  /// always returns true.
2069  bool IgnoreProfitability;
2070
2071  AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2072                        const TargetMachine &TM, Type *AT, Instruction *MI,
2073                        ExtAddrMode &AM, const SetOfInstrs &InsertedTruncs,
2074                        InstrToOrigTy &PromotedInsts,
2075                        TypePromotionTransaction &TPT)
2076      : AddrModeInsts(AMI), TM(TM),
2077        TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
2078                 ->getTargetLowering()),
2079        AccessTy(AT), MemoryInst(MI), AddrMode(AM),
2080        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
2081    IgnoreProfitability = false;
2082  }
2083public:
2084
2085  /// Match - Find the maximal addressing mode that a load/store of V can fold,
2086  /// give an access type of AccessTy.  This returns a list of involved
2087  /// instructions in AddrModeInsts.
2088  /// \p InsertedTruncs The truncate instruction inserted by other
2089  /// CodeGenPrepare
2090  /// optimizations.
2091  /// \p PromotedInsts maps the instructions to their type before promotion.
2092  /// \p The ongoing transaction where every action should be registered.
2093  static ExtAddrMode Match(Value *V, Type *AccessTy,
2094                           Instruction *MemoryInst,
2095                           SmallVectorImpl<Instruction*> &AddrModeInsts,
2096                           const TargetMachine &TM,
2097                           const SetOfInstrs &InsertedTruncs,
2098                           InstrToOrigTy &PromotedInsts,
2099                           TypePromotionTransaction &TPT) {
2100    ExtAddrMode Result;
2101
2102    bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy,
2103                                         MemoryInst, Result, InsertedTruncs,
2104                                         PromotedInsts, TPT).MatchAddr(V, 0);
2105    (void)Success; assert(Success && "Couldn't select *anything*?");
2106    return Result;
2107  }
2108private:
2109  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2110  bool MatchAddr(Value *V, unsigned Depth);
2111  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2112                          bool *MovedAway = nullptr);
2113  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
2114                                            ExtAddrMode &AMBefore,
2115                                            ExtAddrMode &AMAfter);
2116  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2117  bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost,
2118                             Value *PromotedOperand) const;
2119};
2120
2121/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
2122/// Return true and update AddrMode if this addr mode is legal for the target,
2123/// false if not.
2124bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
2125                                             unsigned Depth) {
2126  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
2127  // mode.  Just process that directly.
2128  if (Scale == 1)
2129    return MatchAddr(ScaleReg, Depth);
2130
2131  // If the scale is 0, it takes nothing to add this.
2132  if (Scale == 0)
2133    return true;
2134
2135  // If we already have a scale of this value, we can add to it, otherwise, we
2136  // need an available scale field.
2137  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
2138    return false;
2139
2140  ExtAddrMode TestAddrMode = AddrMode;
2141
2142  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
2143  // [A+B + A*7] -> [B+A*8].
2144  TestAddrMode.Scale += Scale;
2145  TestAddrMode.ScaledReg = ScaleReg;
2146
2147  // If the new address isn't legal, bail out.
2148  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
2149    return false;
2150
2151  // It was legal, so commit it.
2152  AddrMode = TestAddrMode;
2153
2154  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
2155  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
2156  // X*Scale + C*Scale to addr mode.
2157  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
2158  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
2159      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
2160    TestAddrMode.ScaledReg = AddLHS;
2161    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
2162
2163    // If this addressing mode is legal, commit it and remember that we folded
2164    // this instruction.
2165    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
2166      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
2167      AddrMode = TestAddrMode;
2168      return true;
2169    }
2170  }
2171
2172  // Otherwise, not (x+c)*scale, just return what we have.
2173  return true;
2174}
2175
2176/// MightBeFoldableInst - This is a little filter, which returns true if an
2177/// addressing computation involving I might be folded into a load/store
2178/// accessing it.  This doesn't need to be perfect, but needs to accept at least
2179/// the set of instructions that MatchOperationAddr can.
2180static bool MightBeFoldableInst(Instruction *I) {
2181  switch (I->getOpcode()) {
2182  case Instruction::BitCast:
2183  case Instruction::AddrSpaceCast:
2184    // Don't touch identity bitcasts.
2185    if (I->getType() == I->getOperand(0)->getType())
2186      return false;
2187    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
2188  case Instruction::PtrToInt:
2189    // PtrToInt is always a noop, as we know that the int type is pointer sized.
2190    return true;
2191  case Instruction::IntToPtr:
2192    // We know the input is intptr_t, so this is foldable.
2193    return true;
2194  case Instruction::Add:
2195    return true;
2196  case Instruction::Mul:
2197  case Instruction::Shl:
2198    // Can only handle X*C and X << C.
2199    return isa<ConstantInt>(I->getOperand(1));
2200  case Instruction::GetElementPtr:
2201    return true;
2202  default:
2203    return false;
2204  }
2205}
2206
2207/// \brief Check whether or not \p Val is a legal instruction for \p TLI.
2208/// \note \p Val is assumed to be the product of some type promotion.
2209/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
2210/// to be legal, as the non-promoted value would have had the same state.
2211static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) {
2212  Instruction *PromotedInst = dyn_cast<Instruction>(Val);
2213  if (!PromotedInst)
2214    return false;
2215  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
2216  // If the ISDOpcode is undefined, it was undefined before the promotion.
2217  if (!ISDOpcode)
2218    return true;
2219  // Otherwise, check if the promoted instruction is legal or not.
2220  return TLI.isOperationLegalOrCustom(
2221      ISDOpcode, TLI.getValueType(PromotedInst->getType()));
2222}
2223
2224/// \brief Hepler class to perform type promotion.
2225class TypePromotionHelper {
2226  /// \brief Utility function to check whether or not a sign or zero extension
2227  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
2228  /// either using the operands of \p Inst or promoting \p Inst.
2229  /// The type of the extension is defined by \p IsSExt.
2230  /// In other words, check if:
2231  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
2232  /// #1 Promotion applies:
2233  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
2234  /// #2 Operand reuses:
2235  /// ext opnd1 to ConsideredExtType.
2236  /// \p PromotedInsts maps the instructions to their type before promotion.
2237  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
2238                            const InstrToOrigTy &PromotedInsts, bool IsSExt);
2239
2240  /// \brief Utility function to determine if \p OpIdx should be promoted when
2241  /// promoting \p Inst.
2242  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
2243    if (isa<SelectInst>(Inst) && OpIdx == 0)
2244      return false;
2245    return true;
2246  }
2247
2248  /// \brief Utility function to promote the operand of \p Ext when this
2249  /// operand is a promotable trunc or sext or zext.
2250  /// \p PromotedInsts maps the instructions to their type before promotion.
2251  /// \p CreatedInstsCost[out] contains the cost of all instructions
2252  /// created to promote the operand of Ext.
2253  /// Newly added extensions are inserted in \p Exts.
2254  /// Newly added truncates are inserted in \p Truncs.
2255  /// Should never be called directly.
2256  /// \return The promoted value which is used instead of Ext.
2257  static Value *promoteOperandForTruncAndAnyExt(
2258      Instruction *Ext, TypePromotionTransaction &TPT,
2259      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2260      SmallVectorImpl<Instruction *> *Exts,
2261      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
2262
2263  /// \brief Utility function to promote the operand of \p Ext when this
2264  /// operand is promotable and is not a supported trunc or sext.
2265  /// \p PromotedInsts maps the instructions to their type before promotion.
2266  /// \p CreatedInstsCost[out] contains the cost of all the instructions
2267  /// created to promote the operand of Ext.
2268  /// Newly added extensions are inserted in \p Exts.
2269  /// Newly added truncates are inserted in \p Truncs.
2270  /// Should never be called directly.
2271  /// \return The promoted value which is used instead of Ext.
2272  static Value *promoteOperandForOther(Instruction *Ext,
2273                                       TypePromotionTransaction &TPT,
2274                                       InstrToOrigTy &PromotedInsts,
2275                                       unsigned &CreatedInstsCost,
2276                                       SmallVectorImpl<Instruction *> *Exts,
2277                                       SmallVectorImpl<Instruction *> *Truncs,
2278                                       const TargetLowering &TLI, bool IsSExt);
2279
2280  /// \see promoteOperandForOther.
2281  static Value *signExtendOperandForOther(
2282      Instruction *Ext, TypePromotionTransaction &TPT,
2283      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2284      SmallVectorImpl<Instruction *> *Exts,
2285      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2286    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2287                                  Exts, Truncs, TLI, true);
2288  }
2289
2290  /// \see promoteOperandForOther.
2291  static Value *zeroExtendOperandForOther(
2292      Instruction *Ext, TypePromotionTransaction &TPT,
2293      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2294      SmallVectorImpl<Instruction *> *Exts,
2295      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2296    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2297                                  Exts, Truncs, TLI, false);
2298  }
2299
2300public:
2301  /// Type for the utility function that promotes the operand of Ext.
2302  typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
2303                           InstrToOrigTy &PromotedInsts,
2304                           unsigned &CreatedInstsCost,
2305                           SmallVectorImpl<Instruction *> *Exts,
2306                           SmallVectorImpl<Instruction *> *Truncs,
2307                           const TargetLowering &TLI);
2308  /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
2309  /// action to promote the operand of \p Ext instead of using Ext.
2310  /// \return NULL if no promotable action is possible with the current
2311  /// sign extension.
2312  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
2313  /// the others CodeGenPrepare optimizations. This information is important
2314  /// because we do not want to promote these instructions as CodeGenPrepare
2315  /// will reinsert them later. Thus creating an infinite loop: create/remove.
2316  /// \p PromotedInsts maps the instructions to their type before promotion.
2317  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs,
2318                          const TargetLowering &TLI,
2319                          const InstrToOrigTy &PromotedInsts);
2320};
2321
2322bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
2323                                        Type *ConsideredExtType,
2324                                        const InstrToOrigTy &PromotedInsts,
2325                                        bool IsSExt) {
2326  // The promotion helper does not know how to deal with vector types yet.
2327  // To be able to fix that, we would need to fix the places where we
2328  // statically extend, e.g., constants and such.
2329  if (Inst->getType()->isVectorTy())
2330    return false;
2331
2332  // We can always get through zext.
2333  if (isa<ZExtInst>(Inst))
2334    return true;
2335
2336  // sext(sext) is ok too.
2337  if (IsSExt && isa<SExtInst>(Inst))
2338    return true;
2339
2340  // We can get through binary operator, if it is legal. In other words, the
2341  // binary operator must have a nuw or nsw flag.
2342  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
2343  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
2344      ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
2345       (IsSExt && BinOp->hasNoSignedWrap())))
2346    return true;
2347
2348  // Check if we can do the following simplification.
2349  // ext(trunc(opnd)) --> ext(opnd)
2350  if (!isa<TruncInst>(Inst))
2351    return false;
2352
2353  Value *OpndVal = Inst->getOperand(0);
2354  // Check if we can use this operand in the extension.
2355  // If the type is larger than the result type of the extension,
2356  // we cannot.
2357  if (!OpndVal->getType()->isIntegerTy() ||
2358      OpndVal->getType()->getIntegerBitWidth() >
2359          ConsideredExtType->getIntegerBitWidth())
2360    return false;
2361
2362  // If the operand of the truncate is not an instruction, we will not have
2363  // any information on the dropped bits.
2364  // (Actually we could for constant but it is not worth the extra logic).
2365  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
2366  if (!Opnd)
2367    return false;
2368
2369  // Check if the source of the type is narrow enough.
2370  // I.e., check that trunc just drops extended bits of the same kind of
2371  // the extension.
2372  // #1 get the type of the operand and check the kind of the extended bits.
2373  const Type *OpndType;
2374  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
2375  if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt)
2376    OpndType = It->second.Ty;
2377  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
2378    OpndType = Opnd->getOperand(0)->getType();
2379  else
2380    return false;
2381
2382  // #2 check that the truncate just drop extended bits.
2383  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
2384    return true;
2385
2386  return false;
2387}
2388
2389TypePromotionHelper::Action TypePromotionHelper::getAction(
2390    Instruction *Ext, const SetOfInstrs &InsertedTruncs,
2391    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
2392  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2393         "Unexpected instruction type");
2394  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
2395  Type *ExtTy = Ext->getType();
2396  bool IsSExt = isa<SExtInst>(Ext);
2397  // If the operand of the extension is not an instruction, we cannot
2398  // get through.
2399  // If it, check we can get through.
2400  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
2401    return nullptr;
2402
2403  // Do not promote if the operand has been added by codegenprepare.
2404  // Otherwise, it means we are undoing an optimization that is likely to be
2405  // redone, thus causing potential infinite loop.
2406  if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd))
2407    return nullptr;
2408
2409  // SExt or Trunc instructions.
2410  // Return the related handler.
2411  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
2412      isa<ZExtInst>(ExtOpnd))
2413    return promoteOperandForTruncAndAnyExt;
2414
2415  // Regular instruction.
2416  // Abort early if we will have to insert non-free instructions.
2417  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
2418    return nullptr;
2419  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
2420}
2421
2422Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
2423    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
2424    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2425    SmallVectorImpl<Instruction *> *Exts,
2426    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2427  // By construction, the operand of SExt is an instruction. Otherwise we cannot
2428  // get through it and this method should not be called.
2429  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
2430  Value *ExtVal = SExt;
2431  bool HasMergedNonFreeExt = false;
2432  if (isa<ZExtInst>(SExtOpnd)) {
2433    // Replace s|zext(zext(opnd))
2434    // => zext(opnd).
2435    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
2436    Value *ZExt =
2437        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
2438    TPT.replaceAllUsesWith(SExt, ZExt);
2439    TPT.eraseInstruction(SExt);
2440    ExtVal = ZExt;
2441  } else {
2442    // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
2443    // => z|sext(opnd).
2444    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
2445  }
2446  CreatedInstsCost = 0;
2447
2448  // Remove dead code.
2449  if (SExtOpnd->use_empty())
2450    TPT.eraseInstruction(SExtOpnd);
2451
2452  // Check if the extension is still needed.
2453  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
2454  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
2455    if (ExtInst) {
2456      if (Exts)
2457        Exts->push_back(ExtInst);
2458      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
2459    }
2460    return ExtVal;
2461  }
2462
2463  // At this point we have: ext ty opnd to ty.
2464  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
2465  Value *NextVal = ExtInst->getOperand(0);
2466  TPT.eraseInstruction(ExtInst, NextVal);
2467  return NextVal;
2468}
2469
2470Value *TypePromotionHelper::promoteOperandForOther(
2471    Instruction *Ext, TypePromotionTransaction &TPT,
2472    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2473    SmallVectorImpl<Instruction *> *Exts,
2474    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
2475    bool IsSExt) {
2476  // By construction, the operand of Ext is an instruction. Otherwise we cannot
2477  // get through it and this method should not be called.
2478  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
2479  CreatedInstsCost = 0;
2480  if (!ExtOpnd->hasOneUse()) {
2481    // ExtOpnd will be promoted.
2482    // All its uses, but Ext, will need to use a truncated value of the
2483    // promoted version.
2484    // Create the truncate now.
2485    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
2486    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
2487      ITrunc->removeFromParent();
2488      // Insert it just after the definition.
2489      ITrunc->insertAfter(ExtOpnd);
2490      if (Truncs)
2491        Truncs->push_back(ITrunc);
2492    }
2493
2494    TPT.replaceAllUsesWith(ExtOpnd, Trunc);
2495    // Restore the operand of Ext (which has been replace by the previous call
2496    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
2497    TPT.setOperand(Ext, 0, ExtOpnd);
2498  }
2499
2500  // Get through the Instruction:
2501  // 1. Update its type.
2502  // 2. Replace the uses of Ext by Inst.
2503  // 3. Extend each operand that needs to be extended.
2504
2505  // Remember the original type of the instruction before promotion.
2506  // This is useful to know that the high bits are sign extended bits.
2507  PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
2508      ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
2509  // Step #1.
2510  TPT.mutateType(ExtOpnd, Ext->getType());
2511  // Step #2.
2512  TPT.replaceAllUsesWith(Ext, ExtOpnd);
2513  // Step #3.
2514  Instruction *ExtForOpnd = Ext;
2515
2516  DEBUG(dbgs() << "Propagate Ext to operands\n");
2517  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
2518       ++OpIdx) {
2519    DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
2520    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
2521        !shouldExtOperand(ExtOpnd, OpIdx)) {
2522      DEBUG(dbgs() << "No need to propagate\n");
2523      continue;
2524    }
2525    // Check if we can statically extend the operand.
2526    Value *Opnd = ExtOpnd->getOperand(OpIdx);
2527    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
2528      DEBUG(dbgs() << "Statically extend\n");
2529      unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
2530      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
2531                            : Cst->getValue().zext(BitWidth);
2532      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
2533      continue;
2534    }
2535    // UndefValue are typed, so we have to statically sign extend them.
2536    if (isa<UndefValue>(Opnd)) {
2537      DEBUG(dbgs() << "Statically extend\n");
2538      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
2539      continue;
2540    }
2541
2542    // Otherwise we have to explicity sign extend the operand.
2543    // Check if Ext was reused to extend an operand.
2544    if (!ExtForOpnd) {
2545      // If yes, create a new one.
2546      DEBUG(dbgs() << "More operands to ext\n");
2547      Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
2548        : TPT.createZExt(Ext, Opnd, Ext->getType());
2549      if (!isa<Instruction>(ValForExtOpnd)) {
2550        TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
2551        continue;
2552      }
2553      ExtForOpnd = cast<Instruction>(ValForExtOpnd);
2554    }
2555    if (Exts)
2556      Exts->push_back(ExtForOpnd);
2557    TPT.setOperand(ExtForOpnd, 0, Opnd);
2558
2559    // Move the sign extension before the insertion point.
2560    TPT.moveBefore(ExtForOpnd, ExtOpnd);
2561    TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
2562    CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
2563    // If more sext are required, new instructions will have to be created.
2564    ExtForOpnd = nullptr;
2565  }
2566  if (ExtForOpnd == Ext) {
2567    DEBUG(dbgs() << "Extension is useless now\n");
2568    TPT.eraseInstruction(Ext);
2569  }
2570  return ExtOpnd;
2571}
2572
2573/// IsPromotionProfitable - Check whether or not promoting an instruction
2574/// to a wider type was profitable.
2575/// \p NewCost gives the cost of extension instructions created by the
2576/// promotion.
2577/// \p OldCost gives the cost of extension instructions before the promotion
2578/// plus the number of instructions that have been
2579/// matched in the addressing mode the promotion.
2580/// \p PromotedOperand is the value that has been promoted.
2581/// \return True if the promotion is profitable, false otherwise.
2582bool AddressingModeMatcher::IsPromotionProfitable(
2583    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
2584  DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
2585  // The cost of the new extensions is greater than the cost of the
2586  // old extension plus what we folded.
2587  // This is not profitable.
2588  if (NewCost > OldCost)
2589    return false;
2590  if (NewCost < OldCost)
2591    return true;
2592  // The promotion is neutral but it may help folding the sign extension in
2593  // loads for instance.
2594  // Check that we did not create an illegal instruction.
2595  return isPromotedInstructionLegal(TLI, PromotedOperand);
2596}
2597
2598/// MatchOperationAddr - Given an instruction or constant expr, see if we can
2599/// fold the operation into the addressing mode.  If so, update the addressing
2600/// mode and return true, otherwise return false without modifying AddrMode.
2601/// If \p MovedAway is not NULL, it contains the information of whether or
2602/// not AddrInst has to be folded into the addressing mode on success.
2603/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
2604/// because it has been moved away.
2605/// Thus AddrInst must not be added in the matched instructions.
2606/// This state can happen when AddrInst is a sext, since it may be moved away.
2607/// Therefore, AddrInst may not be valid when MovedAway is true and it must
2608/// not be referenced anymore.
2609bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
2610                                               unsigned Depth,
2611                                               bool *MovedAway) {
2612  // Avoid exponential behavior on extremely deep expression trees.
2613  if (Depth >= 5) return false;
2614
2615  // By default, all matched instructions stay in place.
2616  if (MovedAway)
2617    *MovedAway = false;
2618
2619  switch (Opcode) {
2620  case Instruction::PtrToInt:
2621    // PtrToInt is always a noop, as we know that the int type is pointer sized.
2622    return MatchAddr(AddrInst->getOperand(0), Depth);
2623  case Instruction::IntToPtr:
2624    // This inttoptr is a no-op if the integer type is pointer sized.
2625    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
2626        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
2627      return MatchAddr(AddrInst->getOperand(0), Depth);
2628    return false;
2629  case Instruction::BitCast:
2630  case Instruction::AddrSpaceCast:
2631    // BitCast is always a noop, and we can handle it as long as it is
2632    // int->int or pointer->pointer (we don't want int<->fp or something).
2633    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
2634         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
2635        // Don't touch identity bitcasts.  These were probably put here by LSR,
2636        // and we don't want to mess around with them.  Assume it knows what it
2637        // is doing.
2638        AddrInst->getOperand(0)->getType() != AddrInst->getType())
2639      return MatchAddr(AddrInst->getOperand(0), Depth);
2640    return false;
2641  case Instruction::Add: {
2642    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
2643    ExtAddrMode BackupAddrMode = AddrMode;
2644    unsigned OldSize = AddrModeInsts.size();
2645    // Start a transaction at this point.
2646    // The LHS may match but not the RHS.
2647    // Therefore, we need a higher level restoration point to undo partially
2648    // matched operation.
2649    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2650        TPT.getRestorationPoint();
2651
2652    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
2653        MatchAddr(AddrInst->getOperand(0), Depth+1))
2654      return true;
2655
2656    // Restore the old addr mode info.
2657    AddrMode = BackupAddrMode;
2658    AddrModeInsts.resize(OldSize);
2659    TPT.rollback(LastKnownGood);
2660
2661    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
2662    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
2663        MatchAddr(AddrInst->getOperand(1), Depth+1))
2664      return true;
2665
2666    // Otherwise we definitely can't merge the ADD in.
2667    AddrMode = BackupAddrMode;
2668    AddrModeInsts.resize(OldSize);
2669    TPT.rollback(LastKnownGood);
2670    break;
2671  }
2672  //case Instruction::Or:
2673  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
2674  //break;
2675  case Instruction::Mul:
2676  case Instruction::Shl: {
2677    // Can only handle X*C and X << C.
2678    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
2679    if (!RHS)
2680      return false;
2681    int64_t Scale = RHS->getSExtValue();
2682    if (Opcode == Instruction::Shl)
2683      Scale = 1LL << Scale;
2684
2685    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
2686  }
2687  case Instruction::GetElementPtr: {
2688    // Scan the GEP.  We check it if it contains constant offsets and at most
2689    // one variable offset.
2690    int VariableOperand = -1;
2691    unsigned VariableScale = 0;
2692
2693    int64_t ConstantOffset = 0;
2694    const DataLayout *TD = TLI.getDataLayout();
2695    gep_type_iterator GTI = gep_type_begin(AddrInst);
2696    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
2697      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
2698        const StructLayout *SL = TD->getStructLayout(STy);
2699        unsigned Idx =
2700          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
2701        ConstantOffset += SL->getElementOffset(Idx);
2702      } else {
2703        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
2704        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
2705          ConstantOffset += CI->getSExtValue()*TypeSize;
2706        } else if (TypeSize) {  // Scales of zero don't do anything.
2707          // We only allow one variable index at the moment.
2708          if (VariableOperand != -1)
2709            return false;
2710
2711          // Remember the variable index.
2712          VariableOperand = i;
2713          VariableScale = TypeSize;
2714        }
2715      }
2716    }
2717
2718    // A common case is for the GEP to only do a constant offset.  In this case,
2719    // just add it to the disp field and check validity.
2720    if (VariableOperand == -1) {
2721      AddrMode.BaseOffs += ConstantOffset;
2722      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
2723        // Check to see if we can fold the base pointer in too.
2724        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
2725          return true;
2726      }
2727      AddrMode.BaseOffs -= ConstantOffset;
2728      return false;
2729    }
2730
2731    // Save the valid addressing mode in case we can't match.
2732    ExtAddrMode BackupAddrMode = AddrMode;
2733    unsigned OldSize = AddrModeInsts.size();
2734
2735    // See if the scale and offset amount is valid for this target.
2736    AddrMode.BaseOffs += ConstantOffset;
2737
2738    // Match the base operand of the GEP.
2739    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
2740      // If it couldn't be matched, just stuff the value in a register.
2741      if (AddrMode.HasBaseReg) {
2742        AddrMode = BackupAddrMode;
2743        AddrModeInsts.resize(OldSize);
2744        return false;
2745      }
2746      AddrMode.HasBaseReg = true;
2747      AddrMode.BaseReg = AddrInst->getOperand(0);
2748    }
2749
2750    // Match the remaining variable portion of the GEP.
2751    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
2752                          Depth)) {
2753      // If it couldn't be matched, try stuffing the base into a register
2754      // instead of matching it, and retrying the match of the scale.
2755      AddrMode = BackupAddrMode;
2756      AddrModeInsts.resize(OldSize);
2757      if (AddrMode.HasBaseReg)
2758        return false;
2759      AddrMode.HasBaseReg = true;
2760      AddrMode.BaseReg = AddrInst->getOperand(0);
2761      AddrMode.BaseOffs += ConstantOffset;
2762      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
2763                            VariableScale, Depth)) {
2764        // If even that didn't work, bail.
2765        AddrMode = BackupAddrMode;
2766        AddrModeInsts.resize(OldSize);
2767        return false;
2768      }
2769    }
2770
2771    return true;
2772  }
2773  case Instruction::SExt:
2774  case Instruction::ZExt: {
2775    Instruction *Ext = dyn_cast<Instruction>(AddrInst);
2776    if (!Ext)
2777      return false;
2778
2779    // Try to move this ext out of the way of the addressing mode.
2780    // Ask for a method for doing so.
2781    TypePromotionHelper::Action TPH =
2782        TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts);
2783    if (!TPH)
2784      return false;
2785
2786    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2787        TPT.getRestorationPoint();
2788    unsigned CreatedInstsCost = 0;
2789    unsigned ExtCost = !TLI.isExtFree(Ext);
2790    Value *PromotedOperand =
2791        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
2792    // SExt has been moved away.
2793    // Thus either it will be rematched later in the recursive calls or it is
2794    // gone. Anyway, we must not fold it into the addressing mode at this point.
2795    // E.g.,
2796    // op = add opnd, 1
2797    // idx = ext op
2798    // addr = gep base, idx
2799    // is now:
2800    // promotedOpnd = ext opnd            <- no match here
2801    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
2802    // addr = gep base, op                <- match
2803    if (MovedAway)
2804      *MovedAway = true;
2805
2806    assert(PromotedOperand &&
2807           "TypePromotionHelper should have filtered out those cases");
2808
2809    ExtAddrMode BackupAddrMode = AddrMode;
2810    unsigned OldSize = AddrModeInsts.size();
2811
2812    if (!MatchAddr(PromotedOperand, Depth) ||
2813        // The total of the new cost is equals to the cost of the created
2814        // instructions.
2815        // The total of the old cost is equals to the cost of the extension plus
2816        // what we have saved in the addressing mode.
2817        !IsPromotionProfitable(CreatedInstsCost,
2818                               ExtCost + (AddrModeInsts.size() - OldSize),
2819                               PromotedOperand)) {
2820      AddrMode = BackupAddrMode;
2821      AddrModeInsts.resize(OldSize);
2822      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
2823      TPT.rollback(LastKnownGood);
2824      return false;
2825    }
2826    return true;
2827  }
2828  }
2829  return false;
2830}
2831
2832/// MatchAddr - If we can, try to add the value of 'Addr' into the current
2833/// addressing mode.  If Addr can't be added to AddrMode this returns false and
2834/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
2835/// or intptr_t for the target.
2836///
2837bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
2838  // Start a transaction at this point that we will rollback if the matching
2839  // fails.
2840  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2841      TPT.getRestorationPoint();
2842  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
2843    // Fold in immediates if legal for the target.
2844    AddrMode.BaseOffs += CI->getSExtValue();
2845    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2846      return true;
2847    AddrMode.BaseOffs -= CI->getSExtValue();
2848  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
2849    // If this is a global variable, try to fold it into the addressing mode.
2850    if (!AddrMode.BaseGV) {
2851      AddrMode.BaseGV = GV;
2852      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2853        return true;
2854      AddrMode.BaseGV = nullptr;
2855    }
2856  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
2857    ExtAddrMode BackupAddrMode = AddrMode;
2858    unsigned OldSize = AddrModeInsts.size();
2859
2860    // Check to see if it is possible to fold this operation.
2861    bool MovedAway = false;
2862    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
2863      // This instruction may have been move away. If so, there is nothing
2864      // to check here.
2865      if (MovedAway)
2866        return true;
2867      // Okay, it's possible to fold this.  Check to see if it is actually
2868      // *profitable* to do so.  We use a simple cost model to avoid increasing
2869      // register pressure too much.
2870      if (I->hasOneUse() ||
2871          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
2872        AddrModeInsts.push_back(I);
2873        return true;
2874      }
2875
2876      // It isn't profitable to do this, roll back.
2877      //cerr << "NOT FOLDING: " << *I;
2878      AddrMode = BackupAddrMode;
2879      AddrModeInsts.resize(OldSize);
2880      TPT.rollback(LastKnownGood);
2881    }
2882  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2883    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
2884      return true;
2885    TPT.rollback(LastKnownGood);
2886  } else if (isa<ConstantPointerNull>(Addr)) {
2887    // Null pointer gets folded without affecting the addressing mode.
2888    return true;
2889  }
2890
2891  // Worse case, the target should support [reg] addressing modes. :)
2892  if (!AddrMode.HasBaseReg) {
2893    AddrMode.HasBaseReg = true;
2894    AddrMode.BaseReg = Addr;
2895    // Still check for legality in case the target supports [imm] but not [i+r].
2896    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2897      return true;
2898    AddrMode.HasBaseReg = false;
2899    AddrMode.BaseReg = nullptr;
2900  }
2901
2902  // If the base register is already taken, see if we can do [r+r].
2903  if (AddrMode.Scale == 0) {
2904    AddrMode.Scale = 1;
2905    AddrMode.ScaledReg = Addr;
2906    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2907      return true;
2908    AddrMode.Scale = 0;
2909    AddrMode.ScaledReg = nullptr;
2910  }
2911  // Couldn't match.
2912  TPT.rollback(LastKnownGood);
2913  return false;
2914}
2915
2916/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
2917/// inline asm call are due to memory operands.  If so, return true, otherwise
2918/// return false.
2919static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
2920                                    const TargetMachine &TM) {
2921  const Function *F = CI->getParent()->getParent();
2922  const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
2923  const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
2924  TargetLowering::AsmOperandInfoVector TargetConstraints =
2925      TLI->ParseConstraints(TRI, ImmutableCallSite(CI));
2926  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2927    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2928
2929    // Compute the constraint code and ConstraintType to use.
2930    TLI->ComputeConstraintToUse(OpInfo, SDValue());
2931
2932    // If this asm operand is our Value*, and if it isn't an indirect memory
2933    // operand, we can't fold it!
2934    if (OpInfo.CallOperandVal == OpVal &&
2935        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
2936         !OpInfo.isIndirect))
2937      return false;
2938  }
2939
2940  return true;
2941}
2942
2943/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
2944/// memory use.  If we find an obviously non-foldable instruction, return true.
2945/// Add the ultimately found memory instructions to MemoryUses.
2946static bool FindAllMemoryUses(
2947    Instruction *I,
2948    SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
2949    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
2950  // If we already considered this instruction, we're done.
2951  if (!ConsideredInsts.insert(I).second)
2952    return false;
2953
2954  // If this is an obviously unfoldable instruction, bail out.
2955  if (!MightBeFoldableInst(I))
2956    return true;
2957
2958  // Loop over all the uses, recursively processing them.
2959  for (Use &U : I->uses()) {
2960    Instruction *UserI = cast<Instruction>(U.getUser());
2961
2962    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
2963      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
2964      continue;
2965    }
2966
2967    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
2968      unsigned opNo = U.getOperandNo();
2969      if (opNo == 0) return true; // Storing addr, not into addr.
2970      MemoryUses.push_back(std::make_pair(SI, opNo));
2971      continue;
2972    }
2973
2974    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
2975      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
2976      if (!IA) return true;
2977
2978      // If this is a memory operand, we're cool, otherwise bail out.
2979      if (!IsOperandAMemoryOperand(CI, IA, I, TM))
2980        return true;
2981      continue;
2982    }
2983
2984    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
2985      return true;
2986  }
2987
2988  return false;
2989}
2990
2991/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
2992/// the use site that we're folding it into.  If so, there is no cost to
2993/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
2994/// that we know are live at the instruction already.
2995bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
2996                                                   Value *KnownLive2) {
2997  // If Val is either of the known-live values, we know it is live!
2998  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
2999    return true;
3000
3001  // All values other than instructions and arguments (e.g. constants) are live.
3002  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
3003
3004  // If Val is a constant sized alloca in the entry block, it is live, this is
3005  // true because it is just a reference to the stack/frame pointer, which is
3006  // live for the whole function.
3007  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
3008    if (AI->isStaticAlloca())
3009      return true;
3010
3011  // Check to see if this value is already used in the memory instruction's
3012  // block.  If so, it's already live into the block at the very least, so we
3013  // can reasonably fold it.
3014  return Val->isUsedInBasicBlock(MemoryInst->getParent());
3015}
3016
3017/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
3018/// mode of the machine to fold the specified instruction into a load or store
3019/// that ultimately uses it.  However, the specified instruction has multiple
3020/// uses.  Given this, it may actually increase register pressure to fold it
3021/// into the load.  For example, consider this code:
3022///
3023///     X = ...
3024///     Y = X+1
3025///     use(Y)   -> nonload/store
3026///     Z = Y+1
3027///     load Z
3028///
3029/// In this case, Y has multiple uses, and can be folded into the load of Z
3030/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
3031/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
3032/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
3033/// number of computations either.
3034///
3035/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
3036/// X was live across 'load Z' for other reasons, we actually *would* want to
3037/// fold the addressing mode in the Z case.  This would make Y die earlier.
3038bool AddressingModeMatcher::
3039IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
3040                                     ExtAddrMode &AMAfter) {
3041  if (IgnoreProfitability) return true;
3042
3043  // AMBefore is the addressing mode before this instruction was folded into it,
3044  // and AMAfter is the addressing mode after the instruction was folded.  Get
3045  // the set of registers referenced by AMAfter and subtract out those
3046  // referenced by AMBefore: this is the set of values which folding in this
3047  // address extends the lifetime of.
3048  //
3049  // Note that there are only two potential values being referenced here,
3050  // BaseReg and ScaleReg (global addresses are always available, as are any
3051  // folded immediates).
3052  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
3053
3054  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
3055  // lifetime wasn't extended by adding this instruction.
3056  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3057    BaseReg = nullptr;
3058  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3059    ScaledReg = nullptr;
3060
3061  // If folding this instruction (and it's subexprs) didn't extend any live
3062  // ranges, we're ok with it.
3063  if (!BaseReg && !ScaledReg)
3064    return true;
3065
3066  // If all uses of this instruction are ultimately load/store/inlineasm's,
3067  // check to see if their addressing modes will include this instruction.  If
3068  // so, we can fold it into all uses, so it doesn't matter if it has multiple
3069  // uses.
3070  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
3071  SmallPtrSet<Instruction*, 16> ConsideredInsts;
3072  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
3073    return false;  // Has a non-memory, non-foldable use!
3074
3075  // Now that we know that all uses of this instruction are part of a chain of
3076  // computation involving only operations that could theoretically be folded
3077  // into a memory use, loop over each of these uses and see if they could
3078  // *actually* fold the instruction.
3079  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
3080  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
3081    Instruction *User = MemoryUses[i].first;
3082    unsigned OpNo = MemoryUses[i].second;
3083
3084    // Get the access type of this use.  If the use isn't a pointer, we don't
3085    // know what it accesses.
3086    Value *Address = User->getOperand(OpNo);
3087    if (!Address->getType()->isPointerTy())
3088      return false;
3089    Type *AddressAccessTy = Address->getType()->getPointerElementType();
3090
3091    // Do a match against the root of this address, ignoring profitability. This
3092    // will tell us if the addressing mode for the memory operation will
3093    // *actually* cover the shared instruction.
3094    ExtAddrMode Result;
3095    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3096        TPT.getRestorationPoint();
3097    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy,
3098                                  MemoryInst, Result, InsertedTruncs,
3099                                  PromotedInsts, TPT);
3100    Matcher.IgnoreProfitability = true;
3101    bool Success = Matcher.MatchAddr(Address, 0);
3102    (void)Success; assert(Success && "Couldn't select *anything*?");
3103
3104    // The match was to check the profitability, the changes made are not
3105    // part of the original matcher. Therefore, they should be dropped
3106    // otherwise the original matcher will not present the right state.
3107    TPT.rollback(LastKnownGood);
3108
3109    // If the match didn't cover I, then it won't be shared by it.
3110    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
3111                  I) == MatchedAddrModeInsts.end())
3112      return false;
3113
3114    MatchedAddrModeInsts.clear();
3115  }
3116
3117  return true;
3118}
3119
3120} // end anonymous namespace
3121
3122/// IsNonLocalValue - Return true if the specified values are defined in a
3123/// different basic block than BB.
3124static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
3125  if (Instruction *I = dyn_cast<Instruction>(V))
3126    return I->getParent() != BB;
3127  return false;
3128}
3129
3130/// OptimizeMemoryInst - Load and Store Instructions often have
3131/// addressing modes that can do significant amounts of computation.  As such,
3132/// instruction selection will try to get the load or store to do as much
3133/// computation as possible for the program.  The problem is that isel can only
3134/// see within a single block.  As such, we sink as much legal addressing mode
3135/// stuff into the block as possible.
3136///
3137/// This method is used to optimize both load/store and inline asms with memory
3138/// operands.
3139bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
3140                                        Type *AccessTy) {
3141  Value *Repl = Addr;
3142
3143  // Try to collapse single-value PHI nodes.  This is necessary to undo
3144  // unprofitable PRE transformations.
3145  SmallVector<Value*, 8> worklist;
3146  SmallPtrSet<Value*, 16> Visited;
3147  worklist.push_back(Addr);
3148
3149  // Use a worklist to iteratively look through PHI nodes, and ensure that
3150  // the addressing mode obtained from the non-PHI roots of the graph
3151  // are equivalent.
3152  Value *Consensus = nullptr;
3153  unsigned NumUsesConsensus = 0;
3154  bool IsNumUsesConsensusValid = false;
3155  SmallVector<Instruction*, 16> AddrModeInsts;
3156  ExtAddrMode AddrMode;
3157  TypePromotionTransaction TPT;
3158  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3159      TPT.getRestorationPoint();
3160  while (!worklist.empty()) {
3161    Value *V = worklist.back();
3162    worklist.pop_back();
3163
3164    // Break use-def graph loops.
3165    if (!Visited.insert(V).second) {
3166      Consensus = nullptr;
3167      break;
3168    }
3169
3170    // For a PHI node, push all of its incoming values.
3171    if (PHINode *P = dyn_cast<PHINode>(V)) {
3172      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
3173        worklist.push_back(P->getIncomingValue(i));
3174      continue;
3175    }
3176
3177    // For non-PHIs, determine the addressing mode being computed.
3178    SmallVector<Instruction*, 16> NewAddrModeInsts;
3179    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
3180        V, AccessTy, MemoryInst, NewAddrModeInsts, *TM, InsertedTruncsSet,
3181        PromotedInsts, TPT);
3182
3183    // This check is broken into two cases with very similar code to avoid using
3184    // getNumUses() as much as possible. Some values have a lot of uses, so
3185    // calling getNumUses() unconditionally caused a significant compile-time
3186    // regression.
3187    if (!Consensus) {
3188      Consensus = V;
3189      AddrMode = NewAddrMode;
3190      AddrModeInsts = NewAddrModeInsts;
3191      continue;
3192    } else if (NewAddrMode == AddrMode) {
3193      if (!IsNumUsesConsensusValid) {
3194        NumUsesConsensus = Consensus->getNumUses();
3195        IsNumUsesConsensusValid = true;
3196      }
3197
3198      // Ensure that the obtained addressing mode is equivalent to that obtained
3199      // for all other roots of the PHI traversal.  Also, when choosing one
3200      // such root as representative, select the one with the most uses in order
3201      // to keep the cost modeling heuristics in AddressingModeMatcher
3202      // applicable.
3203      unsigned NumUses = V->getNumUses();
3204      if (NumUses > NumUsesConsensus) {
3205        Consensus = V;
3206        NumUsesConsensus = NumUses;
3207        AddrModeInsts = NewAddrModeInsts;
3208      }
3209      continue;
3210    }
3211
3212    Consensus = nullptr;
3213    break;
3214  }
3215
3216  // If the addressing mode couldn't be determined, or if multiple different
3217  // ones were determined, bail out now.
3218  if (!Consensus) {
3219    TPT.rollback(LastKnownGood);
3220    return false;
3221  }
3222  TPT.commit();
3223
3224  // Check to see if any of the instructions supersumed by this addr mode are
3225  // non-local to I's BB.
3226  bool AnyNonLocal = false;
3227  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
3228    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
3229      AnyNonLocal = true;
3230      break;
3231    }
3232  }
3233
3234  // If all the instructions matched are already in this BB, don't do anything.
3235  if (!AnyNonLocal) {
3236    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
3237    return false;
3238  }
3239
3240  // Insert this computation right after this user.  Since our caller is
3241  // scanning from the top of the BB to the bottom, reuse of the expr are
3242  // guaranteed to happen later.
3243  IRBuilder<> Builder(MemoryInst);
3244
3245  // Now that we determined the addressing expression we want to use and know
3246  // that we have to sink it into this block.  Check to see if we have already
3247  // done this for some other load/store instr in this block.  If so, reuse the
3248  // computation.
3249  Value *&SunkAddr = SunkAddrs[Addr];
3250  if (SunkAddr) {
3251    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
3252                 << *MemoryInst << "\n");
3253    if (SunkAddr->getType() != Addr->getType())
3254      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3255  } else if (AddrSinkUsingGEPs ||
3256             (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
3257              TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
3258                  ->useAA())) {
3259    // By default, we use the GEP-based method when AA is used later. This
3260    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
3261    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3262                 << *MemoryInst << "\n");
3263    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
3264    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
3265
3266    // First, find the pointer.
3267    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
3268      ResultPtr = AddrMode.BaseReg;
3269      AddrMode.BaseReg = nullptr;
3270    }
3271
3272    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
3273      // We can't add more than one pointer together, nor can we scale a
3274      // pointer (both of which seem meaningless).
3275      if (ResultPtr || AddrMode.Scale != 1)
3276        return false;
3277
3278      ResultPtr = AddrMode.ScaledReg;
3279      AddrMode.Scale = 0;
3280    }
3281
3282    if (AddrMode.BaseGV) {
3283      if (ResultPtr)
3284        return false;
3285
3286      ResultPtr = AddrMode.BaseGV;
3287    }
3288
3289    // If the real base value actually came from an inttoptr, then the matcher
3290    // will look through it and provide only the integer value. In that case,
3291    // use it here.
3292    if (!ResultPtr && AddrMode.BaseReg) {
3293      ResultPtr =
3294        Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
3295      AddrMode.BaseReg = nullptr;
3296    } else if (!ResultPtr && AddrMode.Scale == 1) {
3297      ResultPtr =
3298        Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
3299      AddrMode.Scale = 0;
3300    }
3301
3302    if (!ResultPtr &&
3303        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
3304      SunkAddr = Constant::getNullValue(Addr->getType());
3305    } else if (!ResultPtr) {
3306      return false;
3307    } else {
3308      Type *I8PtrTy =
3309          Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
3310      Type *I8Ty = Builder.getInt8Ty();
3311
3312      // Start with the base register. Do this first so that subsequent address
3313      // matching finds it last, which will prevent it from trying to match it
3314      // as the scaled value in case it happens to be a mul. That would be
3315      // problematic if we've sunk a different mul for the scale, because then
3316      // we'd end up sinking both muls.
3317      if (AddrMode.BaseReg) {
3318        Value *V = AddrMode.BaseReg;
3319        if (V->getType() != IntPtrTy)
3320          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3321
3322        ResultIndex = V;
3323      }
3324
3325      // Add the scale value.
3326      if (AddrMode.Scale) {
3327        Value *V = AddrMode.ScaledReg;
3328        if (V->getType() == IntPtrTy) {
3329          // done.
3330        } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3331                   cast<IntegerType>(V->getType())->getBitWidth()) {
3332          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3333        } else {
3334          // It is only safe to sign extend the BaseReg if we know that the math
3335          // required to create it did not overflow before we extend it. Since
3336          // the original IR value was tossed in favor of a constant back when
3337          // the AddrMode was created we need to bail out gracefully if widths
3338          // do not match instead of extending it.
3339          Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
3340          if (I && (ResultIndex != AddrMode.BaseReg))
3341            I->eraseFromParent();
3342          return false;
3343        }
3344
3345        if (AddrMode.Scale != 1)
3346          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3347                                "sunkaddr");
3348        if (ResultIndex)
3349          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
3350        else
3351          ResultIndex = V;
3352      }
3353
3354      // Add in the Base Offset if present.
3355      if (AddrMode.BaseOffs) {
3356        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3357        if (ResultIndex) {
3358          // We need to add this separately from the scale above to help with
3359          // SDAG consecutive load/store merging.
3360          if (ResultPtr->getType() != I8PtrTy)
3361            ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3362          ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3363        }
3364
3365        ResultIndex = V;
3366      }
3367
3368      if (!ResultIndex) {
3369        SunkAddr = ResultPtr;
3370      } else {
3371        if (ResultPtr->getType() != I8PtrTy)
3372          ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3373        SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3374      }
3375
3376      if (SunkAddr->getType() != Addr->getType())
3377        SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3378    }
3379  } else {
3380    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3381                 << *MemoryInst << "\n");
3382    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
3383    Value *Result = nullptr;
3384
3385    // Start with the base register. Do this first so that subsequent address
3386    // matching finds it last, which will prevent it from trying to match it
3387    // as the scaled value in case it happens to be a mul. That would be
3388    // problematic if we've sunk a different mul for the scale, because then
3389    // we'd end up sinking both muls.
3390    if (AddrMode.BaseReg) {
3391      Value *V = AddrMode.BaseReg;
3392      if (V->getType()->isPointerTy())
3393        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3394      if (V->getType() != IntPtrTy)
3395        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3396      Result = V;
3397    }
3398
3399    // Add the scale value.
3400    if (AddrMode.Scale) {
3401      Value *V = AddrMode.ScaledReg;
3402      if (V->getType() == IntPtrTy) {
3403        // done.
3404      } else if (V->getType()->isPointerTy()) {
3405        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3406      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3407                 cast<IntegerType>(V->getType())->getBitWidth()) {
3408        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3409      } else {
3410        // It is only safe to sign extend the BaseReg if we know that the math
3411        // required to create it did not overflow before we extend it. Since
3412        // the original IR value was tossed in favor of a constant back when
3413        // the AddrMode was created we need to bail out gracefully if widths
3414        // do not match instead of extending it.
3415        Instruction *I = dyn_cast_or_null<Instruction>(Result);
3416        if (I && (Result != AddrMode.BaseReg))
3417          I->eraseFromParent();
3418        return false;
3419      }
3420      if (AddrMode.Scale != 1)
3421        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3422                              "sunkaddr");
3423      if (Result)
3424        Result = Builder.CreateAdd(Result, V, "sunkaddr");
3425      else
3426        Result = V;
3427    }
3428
3429    // Add in the BaseGV if present.
3430    if (AddrMode.BaseGV) {
3431      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
3432      if (Result)
3433        Result = Builder.CreateAdd(Result, V, "sunkaddr");
3434      else
3435        Result = V;
3436    }
3437
3438    // Add in the Base Offset if present.
3439    if (AddrMode.BaseOffs) {
3440      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3441      if (Result)
3442        Result = Builder.CreateAdd(Result, V, "sunkaddr");
3443      else
3444        Result = V;
3445    }
3446
3447    if (!Result)
3448      SunkAddr = Constant::getNullValue(Addr->getType());
3449    else
3450      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
3451  }
3452
3453  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
3454
3455  // If we have no uses, recursively delete the value and all dead instructions
3456  // using it.
3457  if (Repl->use_empty()) {
3458    // This can cause recursive deletion, which can invalidate our iterator.
3459    // Use a WeakVH to hold onto it in case this happens.
3460    WeakVH IterHandle(CurInstIterator);
3461    BasicBlock *BB = CurInstIterator->getParent();
3462
3463    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
3464
3465    if (IterHandle != CurInstIterator) {
3466      // If the iterator instruction was recursively deleted, start over at the
3467      // start of the block.
3468      CurInstIterator = BB->begin();
3469      SunkAddrs.clear();
3470    }
3471  }
3472  ++NumMemoryInsts;
3473  return true;
3474}
3475
3476/// OptimizeInlineAsmInst - If there are any memory operands, use
3477/// OptimizeMemoryInst to sink their address computing into the block when
3478/// possible / profitable.
3479bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
3480  bool MadeChange = false;
3481
3482  const TargetRegisterInfo *TRI =
3483      TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
3484  TargetLowering::AsmOperandInfoVector
3485    TargetConstraints = TLI->ParseConstraints(TRI, CS);
3486  unsigned ArgNo = 0;
3487  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3488    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3489
3490    // Compute the constraint code and ConstraintType to use.
3491    TLI->ComputeConstraintToUse(OpInfo, SDValue());
3492
3493    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3494        OpInfo.isIndirect) {
3495      Value *OpVal = CS->getArgOperand(ArgNo++);
3496      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
3497    } else if (OpInfo.Type == InlineAsm::isInput)
3498      ArgNo++;
3499  }
3500
3501  return MadeChange;
3502}
3503
3504/// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
3505/// sign extensions.
3506static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
3507  assert(!Inst->use_empty() && "Input must have at least one use");
3508  const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
3509  bool IsSExt = isa<SExtInst>(FirstUser);
3510  Type *ExtTy = FirstUser->getType();
3511  for (const User *U : Inst->users()) {
3512    const Instruction *UI = cast<Instruction>(U);
3513    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
3514      return false;
3515    Type *CurTy = UI->getType();
3516    // Same input and output types: Same instruction after CSE.
3517    if (CurTy == ExtTy)
3518      continue;
3519
3520    // If IsSExt is true, we are in this situation:
3521    // a = Inst
3522    // b = sext ty1 a to ty2
3523    // c = sext ty1 a to ty3
3524    // Assuming ty2 is shorter than ty3, this could be turned into:
3525    // a = Inst
3526    // b = sext ty1 a to ty2
3527    // c = sext ty2 b to ty3
3528    // However, the last sext is not free.
3529    if (IsSExt)
3530      return false;
3531
3532    // This is a ZExt, maybe this is free to extend from one type to another.
3533    // In that case, we would not account for a different use.
3534    Type *NarrowTy;
3535    Type *LargeTy;
3536    if (ExtTy->getScalarType()->getIntegerBitWidth() >
3537        CurTy->getScalarType()->getIntegerBitWidth()) {
3538      NarrowTy = CurTy;
3539      LargeTy = ExtTy;
3540    } else {
3541      NarrowTy = ExtTy;
3542      LargeTy = CurTy;
3543    }
3544
3545    if (!TLI.isZExtFree(NarrowTy, LargeTy))
3546      return false;
3547  }
3548  // All uses are the same or can be derived from one another for free.
3549  return true;
3550}
3551
3552/// \brief Try to form ExtLd by promoting \p Exts until they reach a
3553/// load instruction.
3554/// If an ext(load) can be formed, it is returned via \p LI for the load
3555/// and \p Inst for the extension.
3556/// Otherwise LI == nullptr and Inst == nullptr.
3557/// When some promotion happened, \p TPT contains the proper state to
3558/// revert them.
3559///
3560/// \return true when promoting was necessary to expose the ext(load)
3561/// opportunity, false otherwise.
3562///
3563/// Example:
3564/// \code
3565/// %ld = load i32* %addr
3566/// %add = add nuw i32 %ld, 4
3567/// %zext = zext i32 %add to i64
3568/// \endcode
3569/// =>
3570/// \code
3571/// %ld = load i32* %addr
3572/// %zext = zext i32 %ld to i64
3573/// %add = add nuw i64 %zext, 4
3574/// \encode
3575/// Thanks to the promotion, we can match zext(load i32*) to i64.
3576bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT,
3577                                    LoadInst *&LI, Instruction *&Inst,
3578                                    const SmallVectorImpl<Instruction *> &Exts,
3579                                    unsigned CreatedInstsCost = 0) {
3580  // Iterate over all the extensions to see if one form an ext(load).
3581  for (auto I : Exts) {
3582    // Check if we directly have ext(load).
3583    if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
3584      Inst = I;
3585      // No promotion happened here.
3586      return false;
3587    }
3588    // Check whether or not we want to do any promotion.
3589    if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
3590      continue;
3591    // Get the action to perform the promotion.
3592    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
3593        I, InsertedTruncsSet, *TLI, PromotedInsts);
3594    // Check if we can promote.
3595    if (!TPH)
3596      continue;
3597    // Save the current state.
3598    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3599        TPT.getRestorationPoint();
3600    SmallVector<Instruction *, 4> NewExts;
3601    unsigned NewCreatedInstsCost = 0;
3602    unsigned ExtCost = !TLI->isExtFree(I);
3603    // Promote.
3604    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
3605                             &NewExts, nullptr, *TLI);
3606    assert(PromotedVal &&
3607           "TypePromotionHelper should have filtered out those cases");
3608
3609    // We would be able to merge only one extension in a load.
3610    // Therefore, if we have more than 1 new extension we heuristically
3611    // cut this search path, because it means we degrade the code quality.
3612    // With exactly 2, the transformation is neutral, because we will merge
3613    // one extension but leave one. However, we optimistically keep going,
3614    // because the new extension may be removed too.
3615    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
3616    TotalCreatedInstsCost -= ExtCost;
3617    if (!StressExtLdPromotion &&
3618        (TotalCreatedInstsCost > 1 ||
3619         !isPromotedInstructionLegal(*TLI, PromotedVal))) {
3620      // The promotion is not profitable, rollback to the previous state.
3621      TPT.rollback(LastKnownGood);
3622      continue;
3623    }
3624    // The promotion is profitable.
3625    // Check if it exposes an ext(load).
3626    (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
3627    if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
3628               // If we have created a new extension, i.e., now we have two
3629               // extensions. We must make sure one of them is merged with
3630               // the load, otherwise we may degrade the code quality.
3631               (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
3632      // Promotion happened.
3633      return true;
3634    // If this does not help to expose an ext(load) then, rollback.
3635    TPT.rollback(LastKnownGood);
3636  }
3637  // None of the extension can form an ext(load).
3638  LI = nullptr;
3639  Inst = nullptr;
3640  return false;
3641}
3642
3643/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
3644/// basic block as the load, unless conditions are unfavorable. This allows
3645/// SelectionDAG to fold the extend into the load.
3646/// \p I[in/out] the extension may be modified during the process if some
3647/// promotions apply.
3648///
3649bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) {
3650  // Try to promote a chain of computation if it allows to form
3651  // an extended load.
3652  TypePromotionTransaction TPT;
3653  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3654    TPT.getRestorationPoint();
3655  SmallVector<Instruction *, 1> Exts;
3656  Exts.push_back(I);
3657  // Look for a load being extended.
3658  LoadInst *LI = nullptr;
3659  Instruction *OldExt = I;
3660  bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts);
3661  if (!LI || !I) {
3662    assert(!HasPromoted && !LI && "If we did not match any load instruction "
3663                                  "the code must remain the same");
3664    I = OldExt;
3665    return false;
3666  }
3667
3668  // If they're already in the same block, there's nothing to do.
3669  // Make the cheap checks first if we did not promote.
3670  // If we promoted, we need to check if it is indeed profitable.
3671  if (!HasPromoted && LI->getParent() == I->getParent())
3672    return false;
3673
3674  EVT VT = TLI->getValueType(I->getType());
3675  EVT LoadVT = TLI->getValueType(LI->getType());
3676
3677  // If the load has other users and the truncate is not free, this probably
3678  // isn't worthwhile.
3679  if (!LI->hasOneUse() && TLI &&
3680      (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
3681      !TLI->isTruncateFree(I->getType(), LI->getType())) {
3682    I = OldExt;
3683    TPT.rollback(LastKnownGood);
3684    return false;
3685  }
3686
3687  // Check whether the target supports casts folded into loads.
3688  unsigned LType;
3689  if (isa<ZExtInst>(I))
3690    LType = ISD::ZEXTLOAD;
3691  else {
3692    assert(isa<SExtInst>(I) && "Unexpected ext type!");
3693    LType = ISD::SEXTLOAD;
3694  }
3695  if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
3696    I = OldExt;
3697    TPT.rollback(LastKnownGood);
3698    return false;
3699  }
3700
3701  // Move the extend into the same block as the load, so that SelectionDAG
3702  // can fold it.
3703  TPT.commit();
3704  I->removeFromParent();
3705  I->insertAfter(LI);
3706  ++NumExtsMoved;
3707  return true;
3708}
3709
3710bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
3711  BasicBlock *DefBB = I->getParent();
3712
3713  // If the result of a {s|z}ext and its source are both live out, rewrite all
3714  // other uses of the source with result of extension.
3715  Value *Src = I->getOperand(0);
3716  if (Src->hasOneUse())
3717    return false;
3718
3719  // Only do this xform if truncating is free.
3720  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
3721    return false;
3722
3723  // Only safe to perform the optimization if the source is also defined in
3724  // this block.
3725  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
3726    return false;
3727
3728  bool DefIsLiveOut = false;
3729  for (User *U : I->users()) {
3730    Instruction *UI = cast<Instruction>(U);
3731
3732    // Figure out which BB this ext is used in.
3733    BasicBlock *UserBB = UI->getParent();
3734    if (UserBB == DefBB) continue;
3735    DefIsLiveOut = true;
3736    break;
3737  }
3738  if (!DefIsLiveOut)
3739    return false;
3740
3741  // Make sure none of the uses are PHI nodes.
3742  for (User *U : Src->users()) {
3743    Instruction *UI = cast<Instruction>(U);
3744    BasicBlock *UserBB = UI->getParent();
3745    if (UserBB == DefBB) continue;
3746    // Be conservative. We don't want this xform to end up introducing
3747    // reloads just before load / store instructions.
3748    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
3749      return false;
3750  }
3751
3752  // InsertedTruncs - Only insert one trunc in each block once.
3753  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
3754
3755  bool MadeChange = false;
3756  for (Use &U : Src->uses()) {
3757    Instruction *User = cast<Instruction>(U.getUser());
3758
3759    // Figure out which BB this ext is used in.
3760    BasicBlock *UserBB = User->getParent();
3761    if (UserBB == DefBB) continue;
3762
3763    // Both src and def are live in this block. Rewrite the use.
3764    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
3765
3766    if (!InsertedTrunc) {
3767      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
3768      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
3769      InsertedTruncsSet.insert(InsertedTrunc);
3770    }
3771
3772    // Replace a use of the {s|z}ext source with a use of the result.
3773    U = InsertedTrunc;
3774    ++NumExtUses;
3775    MadeChange = true;
3776  }
3777
3778  return MadeChange;
3779}
3780
3781/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
3782/// turned into an explicit branch.
3783static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
3784  // FIXME: This should use the same heuristics as IfConversion to determine
3785  // whether a select is better represented as a branch.  This requires that
3786  // branch probability metadata is preserved for the select, which is not the
3787  // case currently.
3788
3789  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
3790
3791  // If the branch is predicted right, an out of order CPU can avoid blocking on
3792  // the compare.  Emit cmovs on compares with a memory operand as branches to
3793  // avoid stalls on the load from memory.  If the compare has more than one use
3794  // there's probably another cmov or setcc around so it's not worth emitting a
3795  // branch.
3796  if (!Cmp)
3797    return false;
3798
3799  Value *CmpOp0 = Cmp->getOperand(0);
3800  Value *CmpOp1 = Cmp->getOperand(1);
3801
3802  // We check that the memory operand has one use to avoid uses of the loaded
3803  // value directly after the compare, making branches unprofitable.
3804  return Cmp->hasOneUse() &&
3805         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
3806          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
3807}
3808
3809
3810/// If we have a SelectInst that will likely profit from branch prediction,
3811/// turn it into a branch.
3812bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
3813  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
3814
3815  // Can we convert the 'select' to CF ?
3816  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
3817    return false;
3818
3819  TargetLowering::SelectSupportKind SelectKind;
3820  if (VectorCond)
3821    SelectKind = TargetLowering::VectorMaskSelect;
3822  else if (SI->getType()->isVectorTy())
3823    SelectKind = TargetLowering::ScalarCondVectorVal;
3824  else
3825    SelectKind = TargetLowering::ScalarValSelect;
3826
3827  // Do we have efficient codegen support for this kind of 'selects' ?
3828  if (TLI->isSelectSupported(SelectKind)) {
3829    // We have efficient codegen support for the select instruction.
3830    // Check if it is profitable to keep this 'select'.
3831    if (!TLI->isPredictableSelectExpensive() ||
3832        !isFormingBranchFromSelectProfitable(SI))
3833      return false;
3834  }
3835
3836  ModifiedDT = true;
3837
3838  // First, we split the block containing the select into 2 blocks.
3839  BasicBlock *StartBlock = SI->getParent();
3840  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
3841  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
3842
3843  // Create a new block serving as the landing pad for the branch.
3844  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
3845                                             NextBlock->getParent(), NextBlock);
3846
3847  // Move the unconditional branch from the block with the select in it into our
3848  // landing pad block.
3849  StartBlock->getTerminator()->eraseFromParent();
3850  BranchInst::Create(NextBlock, SmallBlock);
3851
3852  // Insert the real conditional branch based on the original condition.
3853  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
3854
3855  // The select itself is replaced with a PHI Node.
3856  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
3857  PN->takeName(SI);
3858  PN->addIncoming(SI->getTrueValue(), StartBlock);
3859  PN->addIncoming(SI->getFalseValue(), SmallBlock);
3860  SI->replaceAllUsesWith(PN);
3861  SI->eraseFromParent();
3862
3863  // Instruct OptimizeBlock to skip to the next block.
3864  CurInstIterator = StartBlock->end();
3865  ++NumSelectsExpanded;
3866  return true;
3867}
3868
3869static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
3870  SmallVector<int, 16> Mask(SVI->getShuffleMask());
3871  int SplatElem = -1;
3872  for (unsigned i = 0; i < Mask.size(); ++i) {
3873    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
3874      return false;
3875    SplatElem = Mask[i];
3876  }
3877
3878  return true;
3879}
3880
3881/// Some targets have expensive vector shifts if the lanes aren't all the same
3882/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
3883/// it's often worth sinking a shufflevector splat down to its use so that
3884/// codegen can spot all lanes are identical.
3885bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
3886  BasicBlock *DefBB = SVI->getParent();
3887
3888  // Only do this xform if variable vector shifts are particularly expensive.
3889  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
3890    return false;
3891
3892  // We only expect better codegen by sinking a shuffle if we can recognise a
3893  // constant splat.
3894  if (!isBroadcastShuffle(SVI))
3895    return false;
3896
3897  // InsertedShuffles - Only insert a shuffle in each block once.
3898  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
3899
3900  bool MadeChange = false;
3901  for (User *U : SVI->users()) {
3902    Instruction *UI = cast<Instruction>(U);
3903
3904    // Figure out which BB this ext is used in.
3905    BasicBlock *UserBB = UI->getParent();
3906    if (UserBB == DefBB) continue;
3907
3908    // For now only apply this when the splat is used by a shift instruction.
3909    if (!UI->isShift()) continue;
3910
3911    // Everything checks out, sink the shuffle if the user's block doesn't
3912    // already have a copy.
3913    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
3914
3915    if (!InsertedShuffle) {
3916      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
3917      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
3918                                              SVI->getOperand(1),
3919                                              SVI->getOperand(2), "", InsertPt);
3920    }
3921
3922    UI->replaceUsesOfWith(SVI, InsertedShuffle);
3923    MadeChange = true;
3924  }
3925
3926  // If we removed all uses, nuke the shuffle.
3927  if (SVI->use_empty()) {
3928    SVI->eraseFromParent();
3929    MadeChange = true;
3930  }
3931
3932  return MadeChange;
3933}
3934
3935namespace {
3936/// \brief Helper class to promote a scalar operation to a vector one.
3937/// This class is used to move downward extractelement transition.
3938/// E.g.,
3939/// a = vector_op <2 x i32>
3940/// b = extractelement <2 x i32> a, i32 0
3941/// c = scalar_op b
3942/// store c
3943///
3944/// =>
3945/// a = vector_op <2 x i32>
3946/// c = vector_op a (equivalent to scalar_op on the related lane)
3947/// * d = extractelement <2 x i32> c, i32 0
3948/// * store d
3949/// Assuming both extractelement and store can be combine, we get rid of the
3950/// transition.
3951class VectorPromoteHelper {
3952  /// Used to perform some checks on the legality of vector operations.
3953  const TargetLowering &TLI;
3954
3955  /// Used to estimated the cost of the promoted chain.
3956  const TargetTransformInfo &TTI;
3957
3958  /// The transition being moved downwards.
3959  Instruction *Transition;
3960  /// The sequence of instructions to be promoted.
3961  SmallVector<Instruction *, 4> InstsToBePromoted;
3962  /// Cost of combining a store and an extract.
3963  unsigned StoreExtractCombineCost;
3964  /// Instruction that will be combined with the transition.
3965  Instruction *CombineInst;
3966
3967  /// \brief The instruction that represents the current end of the transition.
3968  /// Since we are faking the promotion until we reach the end of the chain
3969  /// of computation, we need a way to get the current end of the transition.
3970  Instruction *getEndOfTransition() const {
3971    if (InstsToBePromoted.empty())
3972      return Transition;
3973    return InstsToBePromoted.back();
3974  }
3975
3976  /// \brief Return the index of the original value in the transition.
3977  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
3978  /// c, is at index 0.
3979  unsigned getTransitionOriginalValueIdx() const {
3980    assert(isa<ExtractElementInst>(Transition) &&
3981           "Other kind of transitions are not supported yet");
3982    return 0;
3983  }
3984
3985  /// \brief Return the index of the index in the transition.
3986  /// E.g., for "extractelement <2 x i32> c, i32 0" the index
3987  /// is at index 1.
3988  unsigned getTransitionIdx() const {
3989    assert(isa<ExtractElementInst>(Transition) &&
3990           "Other kind of transitions are not supported yet");
3991    return 1;
3992  }
3993
3994  /// \brief Get the type of the transition.
3995  /// This is the type of the original value.
3996  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
3997  /// transition is <2 x i32>.
3998  Type *getTransitionType() const {
3999    return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
4000  }
4001
4002  /// \brief Promote \p ToBePromoted by moving \p Def downward through.
4003  /// I.e., we have the following sequence:
4004  /// Def = Transition <ty1> a to <ty2>
4005  /// b = ToBePromoted <ty2> Def, ...
4006  /// =>
4007  /// b = ToBePromoted <ty1> a, ...
4008  /// Def = Transition <ty1> ToBePromoted to <ty2>
4009  void promoteImpl(Instruction *ToBePromoted);
4010
4011  /// \brief Check whether or not it is profitable to promote all the
4012  /// instructions enqueued to be promoted.
4013  bool isProfitableToPromote() {
4014    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
4015    unsigned Index = isa<ConstantInt>(ValIdx)
4016                         ? cast<ConstantInt>(ValIdx)->getZExtValue()
4017                         : -1;
4018    Type *PromotedType = getTransitionType();
4019
4020    StoreInst *ST = cast<StoreInst>(CombineInst);
4021    unsigned AS = ST->getPointerAddressSpace();
4022    unsigned Align = ST->getAlignment();
4023    // Check if this store is supported.
4024    if (!TLI.allowsMisalignedMemoryAccesses(
4025            TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) {
4026      // If this is not supported, there is no way we can combine
4027      // the extract with the store.
4028      return false;
4029    }
4030
4031    // The scalar chain of computation has to pay for the transition
4032    // scalar to vector.
4033    // The vector chain has to account for the combining cost.
4034    uint64_t ScalarCost =
4035        TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
4036    uint64_t VectorCost = StoreExtractCombineCost;
4037    for (const auto &Inst : InstsToBePromoted) {
4038      // Compute the cost.
4039      // By construction, all instructions being promoted are arithmetic ones.
4040      // Moreover, one argument is a constant that can be viewed as a splat
4041      // constant.
4042      Value *Arg0 = Inst->getOperand(0);
4043      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
4044                            isa<ConstantFP>(Arg0);
4045      TargetTransformInfo::OperandValueKind Arg0OVK =
4046          IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4047                         : TargetTransformInfo::OK_AnyValue;
4048      TargetTransformInfo::OperandValueKind Arg1OVK =
4049          !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4050                          : TargetTransformInfo::OK_AnyValue;
4051      ScalarCost += TTI.getArithmeticInstrCost(
4052          Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
4053      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
4054                                               Arg0OVK, Arg1OVK);
4055    }
4056    DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
4057                 << ScalarCost << "\nVector: " << VectorCost << '\n');
4058    return ScalarCost > VectorCost;
4059  }
4060
4061  /// \brief Generate a constant vector with \p Val with the same
4062  /// number of elements as the transition.
4063  /// \p UseSplat defines whether or not \p Val should be replicated
4064  /// accross the whole vector.
4065  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
4066  /// otherwise we generate a vector with as many undef as possible:
4067  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
4068  /// used at the index of the extract.
4069  Value *getConstantVector(Constant *Val, bool UseSplat) const {
4070    unsigned ExtractIdx = UINT_MAX;
4071    if (!UseSplat) {
4072      // If we cannot determine where the constant must be, we have to
4073      // use a splat constant.
4074      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
4075      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
4076        ExtractIdx = CstVal->getSExtValue();
4077      else
4078        UseSplat = true;
4079    }
4080
4081    unsigned End = getTransitionType()->getVectorNumElements();
4082    if (UseSplat)
4083      return ConstantVector::getSplat(End, Val);
4084
4085    SmallVector<Constant *, 4> ConstVec;
4086    UndefValue *UndefVal = UndefValue::get(Val->getType());
4087    for (unsigned Idx = 0; Idx != End; ++Idx) {
4088      if (Idx == ExtractIdx)
4089        ConstVec.push_back(Val);
4090      else
4091        ConstVec.push_back(UndefVal);
4092    }
4093    return ConstantVector::get(ConstVec);
4094  }
4095
4096  /// \brief Check if promoting to a vector type an operand at \p OperandIdx
4097  /// in \p Use can trigger undefined behavior.
4098  static bool canCauseUndefinedBehavior(const Instruction *Use,
4099                                        unsigned OperandIdx) {
4100    // This is not safe to introduce undef when the operand is on
4101    // the right hand side of a division-like instruction.
4102    if (OperandIdx != 1)
4103      return false;
4104    switch (Use->getOpcode()) {
4105    default:
4106      return false;
4107    case Instruction::SDiv:
4108    case Instruction::UDiv:
4109    case Instruction::SRem:
4110    case Instruction::URem:
4111      return true;
4112    case Instruction::FDiv:
4113    case Instruction::FRem:
4114      return !Use->hasNoNaNs();
4115    }
4116    llvm_unreachable(nullptr);
4117  }
4118
4119public:
4120  VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI,
4121                      Instruction *Transition, unsigned CombineCost)
4122      : TLI(TLI), TTI(TTI), Transition(Transition),
4123        StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
4124    assert(Transition && "Do not know how to promote null");
4125  }
4126
4127  /// \brief Check if we can promote \p ToBePromoted to \p Type.
4128  bool canPromote(const Instruction *ToBePromoted) const {
4129    // We could support CastInst too.
4130    return isa<BinaryOperator>(ToBePromoted);
4131  }
4132
4133  /// \brief Check if it is profitable to promote \p ToBePromoted
4134  /// by moving downward the transition through.
4135  bool shouldPromote(const Instruction *ToBePromoted) const {
4136    // Promote only if all the operands can be statically expanded.
4137    // Indeed, we do not want to introduce any new kind of transitions.
4138    for (const Use &U : ToBePromoted->operands()) {
4139      const Value *Val = U.get();
4140      if (Val == getEndOfTransition()) {
4141        // If the use is a division and the transition is on the rhs,
4142        // we cannot promote the operation, otherwise we may create a
4143        // division by zero.
4144        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
4145          return false;
4146        continue;
4147      }
4148      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
4149          !isa<ConstantFP>(Val))
4150        return false;
4151    }
4152    // Check that the resulting operation is legal.
4153    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
4154    if (!ISDOpcode)
4155      return false;
4156    return StressStoreExtract ||
4157           TLI.isOperationLegalOrCustom(
4158               ISDOpcode, TLI.getValueType(getTransitionType(), true));
4159  }
4160
4161  /// \brief Check whether or not \p Use can be combined
4162  /// with the transition.
4163  /// I.e., is it possible to do Use(Transition) => AnotherUse?
4164  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
4165
4166  /// \brief Record \p ToBePromoted as part of the chain to be promoted.
4167  void enqueueForPromotion(Instruction *ToBePromoted) {
4168    InstsToBePromoted.push_back(ToBePromoted);
4169  }
4170
4171  /// \brief Set the instruction that will be combined with the transition.
4172  void recordCombineInstruction(Instruction *ToBeCombined) {
4173    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
4174    CombineInst = ToBeCombined;
4175  }
4176
4177  /// \brief Promote all the instructions enqueued for promotion if it is
4178  /// is profitable.
4179  /// \return True if the promotion happened, false otherwise.
4180  bool promote() {
4181    // Check if there is something to promote.
4182    // Right now, if we do not have anything to combine with,
4183    // we assume the promotion is not profitable.
4184    if (InstsToBePromoted.empty() || !CombineInst)
4185      return false;
4186
4187    // Check cost.
4188    if (!StressStoreExtract && !isProfitableToPromote())
4189      return false;
4190
4191    // Promote.
4192    for (auto &ToBePromoted : InstsToBePromoted)
4193      promoteImpl(ToBePromoted);
4194    InstsToBePromoted.clear();
4195    return true;
4196  }
4197};
4198} // End of anonymous namespace.
4199
4200void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
4201  // At this point, we know that all the operands of ToBePromoted but Def
4202  // can be statically promoted.
4203  // For Def, we need to use its parameter in ToBePromoted:
4204  // b = ToBePromoted ty1 a
4205  // Def = Transition ty1 b to ty2
4206  // Move the transition down.
4207  // 1. Replace all uses of the promoted operation by the transition.
4208  // = ... b => = ... Def.
4209  assert(ToBePromoted->getType() == Transition->getType() &&
4210         "The type of the result of the transition does not match "
4211         "the final type");
4212  ToBePromoted->replaceAllUsesWith(Transition);
4213  // 2. Update the type of the uses.
4214  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
4215  Type *TransitionTy = getTransitionType();
4216  ToBePromoted->mutateType(TransitionTy);
4217  // 3. Update all the operands of the promoted operation with promoted
4218  // operands.
4219  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
4220  for (Use &U : ToBePromoted->operands()) {
4221    Value *Val = U.get();
4222    Value *NewVal = nullptr;
4223    if (Val == Transition)
4224      NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
4225    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
4226             isa<ConstantFP>(Val)) {
4227      // Use a splat constant if it is not safe to use undef.
4228      NewVal = getConstantVector(
4229          cast<Constant>(Val),
4230          isa<UndefValue>(Val) ||
4231              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
4232    } else
4233      llvm_unreachable("Did you modified shouldPromote and forgot to update "
4234                       "this?");
4235    ToBePromoted->setOperand(U.getOperandNo(), NewVal);
4236  }
4237  Transition->removeFromParent();
4238  Transition->insertAfter(ToBePromoted);
4239  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
4240}
4241
4242/// Some targets can do store(extractelement) with one instruction.
4243/// Try to push the extractelement towards the stores when the target
4244/// has this feature and this is profitable.
4245bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) {
4246  unsigned CombineCost = UINT_MAX;
4247  if (DisableStoreExtract || !TLI ||
4248      (!StressStoreExtract &&
4249       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
4250                                       Inst->getOperand(1), CombineCost)))
4251    return false;
4252
4253  // At this point we know that Inst is a vector to scalar transition.
4254  // Try to move it down the def-use chain, until:
4255  // - We can combine the transition with its single use
4256  //   => we got rid of the transition.
4257  // - We escape the current basic block
4258  //   => we would need to check that we are moving it at a cheaper place and
4259  //      we do not do that for now.
4260  BasicBlock *Parent = Inst->getParent();
4261  DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
4262  VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost);
4263  // If the transition has more than one use, assume this is not going to be
4264  // beneficial.
4265  while (Inst->hasOneUse()) {
4266    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
4267    DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
4268
4269    if (ToBePromoted->getParent() != Parent) {
4270      DEBUG(dbgs() << "Instruction to promote is in a different block ("
4271                   << ToBePromoted->getParent()->getName()
4272                   << ") than the transition (" << Parent->getName() << ").\n");
4273      return false;
4274    }
4275
4276    if (VPH.canCombine(ToBePromoted)) {
4277      DEBUG(dbgs() << "Assume " << *Inst << '\n'
4278                   << "will be combined with: " << *ToBePromoted << '\n');
4279      VPH.recordCombineInstruction(ToBePromoted);
4280      bool Changed = VPH.promote();
4281      NumStoreExtractExposed += Changed;
4282      return Changed;
4283    }
4284
4285    DEBUG(dbgs() << "Try promoting.\n");
4286    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
4287      return false;
4288
4289    DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
4290
4291    VPH.enqueueForPromotion(ToBePromoted);
4292    Inst = ToBePromoted;
4293  }
4294  return false;
4295}
4296
4297bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) {
4298  if (PHINode *P = dyn_cast<PHINode>(I)) {
4299    // It is possible for very late stage optimizations (such as SimplifyCFG)
4300    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
4301    // trivial PHI, go ahead and zap it here.
4302    const DataLayout &DL = I->getModule()->getDataLayout();
4303    if (Value *V = SimplifyInstruction(P, DL, TLInfo, nullptr)) {
4304      P->replaceAllUsesWith(V);
4305      P->eraseFromParent();
4306      ++NumPHIsElim;
4307      return true;
4308    }
4309    return false;
4310  }
4311
4312  if (CastInst *CI = dyn_cast<CastInst>(I)) {
4313    // If the source of the cast is a constant, then this should have
4314    // already been constant folded.  The only reason NOT to constant fold
4315    // it is if something (e.g. LSR) was careful to place the constant
4316    // evaluation in a block other than then one that uses it (e.g. to hoist
4317    // the address of globals out of a loop).  If this is the case, we don't
4318    // want to forward-subst the cast.
4319    if (isa<Constant>(CI->getOperand(0)))
4320      return false;
4321
4322    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
4323      return true;
4324
4325    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
4326      /// Sink a zext or sext into its user blocks if the target type doesn't
4327      /// fit in one register
4328      if (TLI && TLI->getTypeAction(CI->getContext(),
4329                                    TLI->getValueType(CI->getType())) ==
4330                     TargetLowering::TypeExpandInteger) {
4331        return SinkCast(CI);
4332      } else {
4333        bool MadeChange = MoveExtToFormExtLoad(I);
4334        return MadeChange | OptimizeExtUses(I);
4335      }
4336    }
4337    return false;
4338  }
4339
4340  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4341    if (!TLI || !TLI->hasMultipleConditionRegisters())
4342      return OptimizeCmpExpression(CI);
4343
4344  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4345    if (TLI)
4346      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
4347    return false;
4348  }
4349
4350  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
4351    if (TLI)
4352      return OptimizeMemoryInst(I, SI->getOperand(1),
4353                                SI->getOperand(0)->getType());
4354    return false;
4355  }
4356
4357  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
4358
4359  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
4360                BinOp->getOpcode() == Instruction::LShr)) {
4361    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
4362    if (TLI && CI && TLI->hasExtractBitsInsn())
4363      return OptimizeExtractBits(BinOp, CI, *TLI);
4364
4365    return false;
4366  }
4367
4368  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
4369    if (GEPI->hasAllZeroIndices()) {
4370      /// The GEP operand must be a pointer, so must its result -> BitCast
4371      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
4372                                        GEPI->getName(), GEPI);
4373      GEPI->replaceAllUsesWith(NC);
4374      GEPI->eraseFromParent();
4375      ++NumGEPsElim;
4376      OptimizeInst(NC, ModifiedDT);
4377      return true;
4378    }
4379    return false;
4380  }
4381
4382  if (CallInst *CI = dyn_cast<CallInst>(I))
4383    return OptimizeCallInst(CI, ModifiedDT);
4384
4385  if (SelectInst *SI = dyn_cast<SelectInst>(I))
4386    return OptimizeSelectInst(SI);
4387
4388  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
4389    return OptimizeShuffleVectorInst(SVI);
4390
4391  if (isa<ExtractElementInst>(I))
4392    return OptimizeExtractElementInst(I);
4393
4394  return false;
4395}
4396
4397// In this pass we look for GEP and cast instructions that are used
4398// across basic blocks and rewrite them to improve basic-block-at-a-time
4399// selection.
4400bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
4401  SunkAddrs.clear();
4402  bool MadeChange = false;
4403
4404  CurInstIterator = BB.begin();
4405  while (CurInstIterator != BB.end()) {
4406    MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT);
4407    if (ModifiedDT)
4408      return true;
4409  }
4410  MadeChange |= DupRetToEnableTailCallOpts(&BB);
4411
4412  return MadeChange;
4413}
4414
4415// llvm.dbg.value is far away from the value then iSel may not be able
4416// handle it properly. iSel will drop llvm.dbg.value if it can not
4417// find a node corresponding to the value.
4418bool CodeGenPrepare::PlaceDbgValues(Function &F) {
4419  bool MadeChange = false;
4420  for (BasicBlock &BB : F) {
4421    Instruction *PrevNonDbgInst = nullptr;
4422    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
4423      Instruction *Insn = BI++;
4424      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
4425      // Leave dbg.values that refer to an alloca alone. These
4426      // instrinsics describe the address of a variable (= the alloca)
4427      // being taken.  They should not be moved next to the alloca
4428      // (and to the beginning of the scope), but rather stay close to
4429      // where said address is used.
4430      if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
4431        PrevNonDbgInst = Insn;
4432        continue;
4433      }
4434
4435      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
4436      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
4437        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
4438        DVI->removeFromParent();
4439        if (isa<PHINode>(VI))
4440          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
4441        else
4442          DVI->insertAfter(VI);
4443        MadeChange = true;
4444        ++NumDbgValueMoved;
4445      }
4446    }
4447  }
4448  return MadeChange;
4449}
4450
4451// If there is a sequence that branches based on comparing a single bit
4452// against zero that can be combined into a single instruction, and the
4453// target supports folding these into a single instruction, sink the
4454// mask and compare into the branch uses. Do this before OptimizeBlock ->
4455// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
4456// searched for.
4457bool CodeGenPrepare::sinkAndCmp(Function &F) {
4458  if (!EnableAndCmpSinking)
4459    return false;
4460  if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
4461    return false;
4462  bool MadeChange = false;
4463  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
4464    BasicBlock *BB = I++;
4465
4466    // Does this BB end with the following?
4467    //   %andVal = and %val, #single-bit-set
4468    //   %icmpVal = icmp %andResult, 0
4469    //   br i1 %cmpVal label %dest1, label %dest2"
4470    BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
4471    if (!Brcc || !Brcc->isConditional())
4472      continue;
4473    ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
4474    if (!Cmp || Cmp->getParent() != BB)
4475      continue;
4476    ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
4477    if (!Zero || !Zero->isZero())
4478      continue;
4479    Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
4480    if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
4481      continue;
4482    ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
4483    if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
4484      continue;
4485    DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
4486
4487    // Push the "and; icmp" for any users that are conditional branches.
4488    // Since there can only be one branch use per BB, we don't need to keep
4489    // track of which BBs we insert into.
4490    for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
4491         UI != E; ) {
4492      Use &TheUse = *UI;
4493      // Find brcc use.
4494      BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
4495      ++UI;
4496      if (!BrccUser || !BrccUser->isConditional())
4497        continue;
4498      BasicBlock *UserBB = BrccUser->getParent();
4499      if (UserBB == BB) continue;
4500      DEBUG(dbgs() << "found Brcc use\n");
4501
4502      // Sink the "and; icmp" to use.
4503      MadeChange = true;
4504      BinaryOperator *NewAnd =
4505        BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
4506                                  BrccUser);
4507      CmpInst *NewCmp =
4508        CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
4509                        "", BrccUser);
4510      TheUse = NewCmp;
4511      ++NumAndCmpsMoved;
4512      DEBUG(BrccUser->getParent()->dump());
4513    }
4514  }
4515  return MadeChange;
4516}
4517
4518/// \brief Retrieve the probabilities of a conditional branch. Returns true on
4519/// success, or returns false if no or invalid metadata was found.
4520static bool extractBranchMetadata(BranchInst *BI,
4521                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
4522  assert(BI->isConditional() &&
4523         "Looking for probabilities on unconditional branch?");
4524  auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
4525  if (!ProfileData || ProfileData->getNumOperands() != 3)
4526    return false;
4527
4528  const auto *CITrue =
4529      mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
4530  const auto *CIFalse =
4531      mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
4532  if (!CITrue || !CIFalse)
4533    return false;
4534
4535  ProbTrue = CITrue->getValue().getZExtValue();
4536  ProbFalse = CIFalse->getValue().getZExtValue();
4537
4538  return true;
4539}
4540
4541/// \brief Scale down both weights to fit into uint32_t.
4542static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
4543  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
4544  uint32_t Scale = (NewMax / UINT32_MAX) + 1;
4545  NewTrue = NewTrue / Scale;
4546  NewFalse = NewFalse / Scale;
4547}
4548
4549/// \brief Some targets prefer to split a conditional branch like:
4550/// \code
4551///   %0 = icmp ne i32 %a, 0
4552///   %1 = icmp ne i32 %b, 0
4553///   %or.cond = or i1 %0, %1
4554///   br i1 %or.cond, label %TrueBB, label %FalseBB
4555/// \endcode
4556/// into multiple branch instructions like:
4557/// \code
4558///   bb1:
4559///     %0 = icmp ne i32 %a, 0
4560///     br i1 %0, label %TrueBB, label %bb2
4561///   bb2:
4562///     %1 = icmp ne i32 %b, 0
4563///     br i1 %1, label %TrueBB, label %FalseBB
4564/// \endcode
4565/// This usually allows instruction selection to do even further optimizations
4566/// and combine the compare with the branch instruction. Currently this is
4567/// applied for targets which have "cheap" jump instructions.
4568///
4569/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
4570///
4571bool CodeGenPrepare::splitBranchCondition(Function &F) {
4572  if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
4573    return false;
4574
4575  bool MadeChange = false;
4576  for (auto &BB : F) {
4577    // Does this BB end with the following?
4578    //   %cond1 = icmp|fcmp|binary instruction ...
4579    //   %cond2 = icmp|fcmp|binary instruction ...
4580    //   %cond.or = or|and i1 %cond1, cond2
4581    //   br i1 %cond.or label %dest1, label %dest2"
4582    BinaryOperator *LogicOp;
4583    BasicBlock *TBB, *FBB;
4584    if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
4585      continue;
4586
4587    unsigned Opc;
4588    Value *Cond1, *Cond2;
4589    if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
4590                             m_OneUse(m_Value(Cond2)))))
4591      Opc = Instruction::And;
4592    else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
4593                                 m_OneUse(m_Value(Cond2)))))
4594      Opc = Instruction::Or;
4595    else
4596      continue;
4597
4598    if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
4599        !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
4600      continue;
4601
4602    DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
4603
4604    // Create a new BB.
4605    auto *InsertBefore = std::next(Function::iterator(BB))
4606        .getNodePtrUnchecked();
4607    auto TmpBB = BasicBlock::Create(BB.getContext(),
4608                                    BB.getName() + ".cond.split",
4609                                    BB.getParent(), InsertBefore);
4610
4611    // Update original basic block by using the first condition directly by the
4612    // branch instruction and removing the no longer needed and/or instruction.
4613    auto *Br1 = cast<BranchInst>(BB.getTerminator());
4614    Br1->setCondition(Cond1);
4615    LogicOp->eraseFromParent();
4616
4617    // Depending on the conditon we have to either replace the true or the false
4618    // successor of the original branch instruction.
4619    if (Opc == Instruction::And)
4620      Br1->setSuccessor(0, TmpBB);
4621    else
4622      Br1->setSuccessor(1, TmpBB);
4623
4624    // Fill in the new basic block.
4625    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
4626    if (auto *I = dyn_cast<Instruction>(Cond2)) {
4627      I->removeFromParent();
4628      I->insertBefore(Br2);
4629    }
4630
4631    // Update PHI nodes in both successors. The original BB needs to be
4632    // replaced in one succesor's PHI nodes, because the branch comes now from
4633    // the newly generated BB (NewBB). In the other successor we need to add one
4634    // incoming edge to the PHI nodes, because both branch instructions target
4635    // now the same successor. Depending on the original branch condition
4636    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
4637    // we perfrom the correct update for the PHI nodes.
4638    // This doesn't change the successor order of the just created branch
4639    // instruction (or any other instruction).
4640    if (Opc == Instruction::Or)
4641      std::swap(TBB, FBB);
4642
4643    // Replace the old BB with the new BB.
4644    for (auto &I : *TBB) {
4645      PHINode *PN = dyn_cast<PHINode>(&I);
4646      if (!PN)
4647        break;
4648      int i;
4649      while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
4650        PN->setIncomingBlock(i, TmpBB);
4651    }
4652
4653    // Add another incoming edge form the new BB.
4654    for (auto &I : *FBB) {
4655      PHINode *PN = dyn_cast<PHINode>(&I);
4656      if (!PN)
4657        break;
4658      auto *Val = PN->getIncomingValueForBlock(&BB);
4659      PN->addIncoming(Val, TmpBB);
4660    }
4661
4662    // Update the branch weights (from SelectionDAGBuilder::
4663    // FindMergedConditions).
4664    if (Opc == Instruction::Or) {
4665      // Codegen X | Y as:
4666      // BB1:
4667      //   jmp_if_X TBB
4668      //   jmp TmpBB
4669      // TmpBB:
4670      //   jmp_if_Y TBB
4671      //   jmp FBB
4672      //
4673
4674      // We have flexibility in setting Prob for BB1 and Prob for NewBB.
4675      // The requirement is that
4676      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
4677      //     = TrueProb for orignal BB.
4678      // Assuming the orignal weights are A and B, one choice is to set BB1's
4679      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
4680      // assumes that
4681      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
4682      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
4683      // TmpBB, but the math is more complicated.
4684      uint64_t TrueWeight, FalseWeight;
4685      if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
4686        uint64_t NewTrueWeight = TrueWeight;
4687        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
4688        scaleWeights(NewTrueWeight, NewFalseWeight);
4689        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
4690                         .createBranchWeights(TrueWeight, FalseWeight));
4691
4692        NewTrueWeight = TrueWeight;
4693        NewFalseWeight = 2 * FalseWeight;
4694        scaleWeights(NewTrueWeight, NewFalseWeight);
4695        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
4696                         .createBranchWeights(TrueWeight, FalseWeight));
4697      }
4698    } else {
4699      // Codegen X & Y as:
4700      // BB1:
4701      //   jmp_if_X TmpBB
4702      //   jmp FBB
4703      // TmpBB:
4704      //   jmp_if_Y TBB
4705      //   jmp FBB
4706      //
4707      //  This requires creation of TmpBB after CurBB.
4708
4709      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
4710      // The requirement is that
4711      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
4712      //     = FalseProb for orignal BB.
4713      // Assuming the orignal weights are A and B, one choice is to set BB1's
4714      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
4715      // assumes that
4716      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
4717      uint64_t TrueWeight, FalseWeight;
4718      if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
4719        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
4720        uint64_t NewFalseWeight = FalseWeight;
4721        scaleWeights(NewTrueWeight, NewFalseWeight);
4722        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
4723                         .createBranchWeights(TrueWeight, FalseWeight));
4724
4725        NewTrueWeight = 2 * TrueWeight;
4726        NewFalseWeight = FalseWeight;
4727        scaleWeights(NewTrueWeight, NewFalseWeight);
4728        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
4729                         .createBranchWeights(TrueWeight, FalseWeight));
4730      }
4731    }
4732
4733    // Note: No point in getting fancy here, since the DT info is never
4734    // available to CodeGenPrepare.
4735    ModifiedDT = true;
4736
4737    MadeChange = true;
4738
4739    DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
4740          TmpBB->dump());
4741  }
4742  return MadeChange;
4743}
4744