1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absence of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36#include "llvm/CodeGen/MachineDominators.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFunctionPass.h"
39#include "llvm/CodeGen/MachineLoopInfo.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetSubtargetInfo.h"
48#include <algorithm>
49using namespace llvm;
50
51#define DEBUG_TYPE "block-placement"
52
53STATISTIC(NumCondBranches, "Number of conditional branches");
54STATISTIC(NumUncondBranches, "Number of uncondittional branches");
55STATISTIC(CondBranchTakenFreq,
56          "Potential frequency of taking conditional branches");
57STATISTIC(UncondBranchTakenFreq,
58          "Potential frequency of taking unconditional branches");
59
60static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                       cl::desc("Force the alignment of all "
62                                                "blocks in the function."),
63                                       cl::init(0), cl::Hidden);
64
65// FIXME: Find a good default for this flag and remove the flag.
66static cl::opt<unsigned> ExitBlockBias(
67    "block-placement-exit-block-bias",
68    cl::desc("Block frequency percentage a loop exit block needs "
69             "over the original exit to be considered the new exit."),
70    cl::init(0), cl::Hidden);
71
72static cl::opt<bool> OutlineOptionalBranches(
73    "outline-optional-branches",
74    cl::desc("Put completely optional branches, i.e. branches with a common "
75             "post dominator, out of line."),
76    cl::init(false), cl::Hidden);
77
78static cl::opt<unsigned> OutlineOptionalThreshold(
79    "outline-optional-threshold",
80    cl::desc("Don't outline optional branches that are a single block with an "
81             "instruction count below this threshold"),
82    cl::init(4), cl::Hidden);
83
84namespace {
85class BlockChain;
86/// \brief Type for our function-wide basic block -> block chain mapping.
87typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
88}
89
90namespace {
91/// \brief A chain of blocks which will be laid out contiguously.
92///
93/// This is the datastructure representing a chain of consecutive blocks that
94/// are profitable to layout together in order to maximize fallthrough
95/// probabilities and code locality. We also can use a block chain to represent
96/// a sequence of basic blocks which have some external (correctness)
97/// requirement for sequential layout.
98///
99/// Chains can be built around a single basic block and can be merged to grow
100/// them. They participate in a block-to-chain mapping, which is updated
101/// automatically as chains are merged together.
102class BlockChain {
103  /// \brief The sequence of blocks belonging to this chain.
104  ///
105  /// This is the sequence of blocks for a particular chain. These will be laid
106  /// out in-order within the function.
107  SmallVector<MachineBasicBlock *, 4> Blocks;
108
109  /// \brief A handle to the function-wide basic block to block chain mapping.
110  ///
111  /// This is retained in each block chain to simplify the computation of child
112  /// block chains for SCC-formation and iteration. We store the edges to child
113  /// basic blocks, and map them back to their associated chains using this
114  /// structure.
115  BlockToChainMapType &BlockToChain;
116
117public:
118  /// \brief Construct a new BlockChain.
119  ///
120  /// This builds a new block chain representing a single basic block in the
121  /// function. It also registers itself as the chain that block participates
122  /// in with the BlockToChain mapping.
123  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
124      : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
125    assert(BB && "Cannot create a chain with a null basic block");
126    BlockToChain[BB] = this;
127  }
128
129  /// \brief Iterator over blocks within the chain.
130  typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
131
132  /// \brief Beginning of blocks within the chain.
133  iterator begin() { return Blocks.begin(); }
134
135  /// \brief End of blocks within the chain.
136  iterator end() { return Blocks.end(); }
137
138  /// \brief Merge a block chain into this one.
139  ///
140  /// This routine merges a block chain into this one. It takes care of forming
141  /// a contiguous sequence of basic blocks, updating the edge list, and
142  /// updating the block -> chain mapping. It does not free or tear down the
143  /// old chain, but the old chain's block list is no longer valid.
144  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
145    assert(BB);
146    assert(!Blocks.empty());
147
148    // Fast path in case we don't have a chain already.
149    if (!Chain) {
150      assert(!BlockToChain[BB]);
151      Blocks.push_back(BB);
152      BlockToChain[BB] = this;
153      return;
154    }
155
156    assert(BB == *Chain->begin());
157    assert(Chain->begin() != Chain->end());
158
159    // Update the incoming blocks to point to this chain, and add them to the
160    // chain structure.
161    for (MachineBasicBlock *ChainBB : *Chain) {
162      Blocks.push_back(ChainBB);
163      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
164      BlockToChain[ChainBB] = this;
165    }
166  }
167
168#ifndef NDEBUG
169  /// \brief Dump the blocks in this chain.
170  LLVM_DUMP_METHOD void dump() {
171    for (MachineBasicBlock *MBB : *this)
172      MBB->dump();
173  }
174#endif // NDEBUG
175
176  /// \brief Count of predecessors within the loop currently being processed.
177  ///
178  /// This count is updated at each loop we process to represent the number of
179  /// in-loop predecessors of this chain.
180  unsigned LoopPredecessors;
181};
182}
183
184namespace {
185class MachineBlockPlacement : public MachineFunctionPass {
186  /// \brief A typedef for a block filter set.
187  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
188
189  /// \brief A handle to the branch probability pass.
190  const MachineBranchProbabilityInfo *MBPI;
191
192  /// \brief A handle to the function-wide block frequency pass.
193  const MachineBlockFrequencyInfo *MBFI;
194
195  /// \brief A handle to the loop info.
196  const MachineLoopInfo *MLI;
197
198  /// \brief A handle to the target's instruction info.
199  const TargetInstrInfo *TII;
200
201  /// \brief A handle to the target's lowering info.
202  const TargetLoweringBase *TLI;
203
204  /// \brief A handle to the post dominator tree.
205  MachineDominatorTree *MDT;
206
207  /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
208  /// all terminators of the MachineFunction.
209  SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
210
211  /// \brief Allocator and owner of BlockChain structures.
212  ///
213  /// We build BlockChains lazily while processing the loop structure of
214  /// a function. To reduce malloc traffic, we allocate them using this
215  /// slab-like allocator, and destroy them after the pass completes. An
216  /// important guarantee is that this allocator produces stable pointers to
217  /// the chains.
218  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
219
220  /// \brief Function wide BasicBlock to BlockChain mapping.
221  ///
222  /// This mapping allows efficiently moving from any given basic block to the
223  /// BlockChain it participates in, if any. We use it to, among other things,
224  /// allow implicitly defining edges between chains as the existing edges
225  /// between basic blocks.
226  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
227
228  void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
229                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
230                           const BlockFilterSet *BlockFilter = nullptr);
231  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
232                                         BlockChain &Chain,
233                                         const BlockFilterSet *BlockFilter);
234  MachineBasicBlock *
235  selectBestCandidateBlock(BlockChain &Chain,
236                           SmallVectorImpl<MachineBasicBlock *> &WorkList,
237                           const BlockFilterSet *BlockFilter);
238  MachineBasicBlock *
239  getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
240                        MachineFunction::iterator &PrevUnplacedBlockIt,
241                        const BlockFilterSet *BlockFilter);
242  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
243                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
244                  const BlockFilterSet *BlockFilter = nullptr);
245  MachineBasicBlock *findBestLoopTop(MachineLoop &L,
246                                     const BlockFilterSet &LoopBlockSet);
247  MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
248                                      const BlockFilterSet &LoopBlockSet);
249  void buildLoopChains(MachineFunction &F, MachineLoop &L);
250  void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
251                  const BlockFilterSet &LoopBlockSet);
252  void buildCFGChains(MachineFunction &F);
253
254public:
255  static char ID; // Pass identification, replacement for typeid
256  MachineBlockPlacement() : MachineFunctionPass(ID) {
257    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
258  }
259
260  bool runOnMachineFunction(MachineFunction &F) override;
261
262  void getAnalysisUsage(AnalysisUsage &AU) const override {
263    AU.addRequired<MachineBranchProbabilityInfo>();
264    AU.addRequired<MachineBlockFrequencyInfo>();
265    AU.addRequired<MachineDominatorTree>();
266    AU.addRequired<MachineLoopInfo>();
267    MachineFunctionPass::getAnalysisUsage(AU);
268  }
269};
270}
271
272char MachineBlockPlacement::ID = 0;
273char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
274INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
275                      "Branch Probability Basic Block Placement", false, false)
276INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
277INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
278INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
279INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
280INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
281                    "Branch Probability Basic Block Placement", false, false)
282
283#ifndef NDEBUG
284/// \brief Helper to print the name of a MBB.
285///
286/// Only used by debug logging.
287static std::string getBlockName(MachineBasicBlock *BB) {
288  std::string Result;
289  raw_string_ostream OS(Result);
290  OS << "BB#" << BB->getNumber();
291  OS << " (derived from LLVM BB '" << BB->getName() << "')";
292  OS.flush();
293  return Result;
294}
295
296/// \brief Helper to print the number of a MBB.
297///
298/// Only used by debug logging.
299static std::string getBlockNum(MachineBasicBlock *BB) {
300  std::string Result;
301  raw_string_ostream OS(Result);
302  OS << "BB#" << BB->getNumber();
303  OS.flush();
304  return Result;
305}
306#endif
307
308/// \brief Mark a chain's successors as having one fewer preds.
309///
310/// When a chain is being merged into the "placed" chain, this routine will
311/// quickly walk the successors of each block in the chain and mark them as
312/// having one fewer active predecessor. It also adds any successors of this
313/// chain which reach the zero-predecessor state to the worklist passed in.
314void MachineBlockPlacement::markChainSuccessors(
315    BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
316    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
317    const BlockFilterSet *BlockFilter) {
318  // Walk all the blocks in this chain, marking their successors as having
319  // a predecessor placed.
320  for (MachineBasicBlock *MBB : Chain) {
321    // Add any successors for which this is the only un-placed in-loop
322    // predecessor to the worklist as a viable candidate for CFG-neutral
323    // placement. No subsequent placement of this block will violate the CFG
324    // shape, so we get to use heuristics to choose a favorable placement.
325    for (MachineBasicBlock *Succ : MBB->successors()) {
326      if (BlockFilter && !BlockFilter->count(Succ))
327        continue;
328      BlockChain &SuccChain = *BlockToChain[Succ];
329      // Disregard edges within a fixed chain, or edges to the loop header.
330      if (&Chain == &SuccChain || Succ == LoopHeaderBB)
331        continue;
332
333      // This is a cross-chain edge that is within the loop, so decrement the
334      // loop predecessor count of the destination chain.
335      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
336        BlockWorkList.push_back(*SuccChain.begin());
337    }
338  }
339}
340
341/// \brief Select the best successor for a block.
342///
343/// This looks across all successors of a particular block and attempts to
344/// select the "best" one to be the layout successor. It only considers direct
345/// successors which also pass the block filter. It will attempt to avoid
346/// breaking CFG structure, but cave and break such structures in the case of
347/// very hot successor edges.
348///
349/// \returns The best successor block found, or null if none are viable.
350MachineBasicBlock *
351MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
352                                           BlockChain &Chain,
353                                           const BlockFilterSet *BlockFilter) {
354  const BranchProbability HotProb(4, 5); // 80%
355
356  MachineBasicBlock *BestSucc = nullptr;
357  // FIXME: Due to the performance of the probability and weight routines in
358  // the MBPI analysis, we manually compute probabilities using the edge
359  // weights. This is suboptimal as it means that the somewhat subtle
360  // definition of edge weight semantics is encoded here as well. We should
361  // improve the MBPI interface to efficiently support query patterns such as
362  // this.
363  uint32_t BestWeight = 0;
364  uint32_t WeightScale = 0;
365  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
366  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
367  for (MachineBasicBlock *Succ : BB->successors()) {
368    if (BlockFilter && !BlockFilter->count(Succ))
369      continue;
370    BlockChain &SuccChain = *BlockToChain[Succ];
371    if (&SuccChain == &Chain) {
372      DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Already merged!\n");
373      continue;
374    }
375    if (Succ != *SuccChain.begin()) {
376      DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
377      continue;
378    }
379
380    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ);
381    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
382
383    // If we outline optional branches, look whether Succ is unavoidable, i.e.
384    // dominates all terminators of the MachineFunction. If it does, other
385    // successors must be optional. Don't do this for cold branches.
386    if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
387        UnavoidableBlocks.count(Succ) > 0) {
388      auto HasShortOptionalBranch = [&]() {
389        for (MachineBasicBlock *Pred : Succ->predecessors()) {
390          // Check whether there is an unplaced optional branch.
391          if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
392              BlockToChain[Pred] == &Chain)
393            continue;
394          // Check whether the optional branch has exactly one BB.
395          if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
396            continue;
397          // Check whether the optional branch is small.
398          if (Pred->size() < OutlineOptionalThreshold)
399            return true;
400        }
401        return false;
402      };
403      if (!HasShortOptionalBranch())
404        return Succ;
405    }
406
407    // Only consider successors which are either "hot", or wouldn't violate
408    // any CFG constraints.
409    if (SuccChain.LoopPredecessors != 0) {
410      if (SuccProb < HotProb) {
411        DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
412                     << " (prob) (CFG conflict)\n");
413        continue;
414      }
415
416      // Make sure that a hot successor doesn't have a globally more
417      // important predecessor.
418      BlockFrequency CandidateEdgeFreq =
419          MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
420      bool BadCFGConflict = false;
421      for (MachineBasicBlock *Pred : Succ->predecessors()) {
422        if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
423            BlockToChain[Pred] == &Chain)
424          continue;
425        BlockFrequency PredEdgeFreq =
426            MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
427        if (PredEdgeFreq >= CandidateEdgeFreq) {
428          BadCFGConflict = true;
429          break;
430        }
431      }
432      if (BadCFGConflict) {
433        DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
434                     << " (prob) (non-cold CFG conflict)\n");
435        continue;
436      }
437    }
438
439    DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
440                 << " (prob)"
441                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
442                 << "\n");
443    if (BestSucc && BestWeight >= SuccWeight)
444      continue;
445    BestSucc = Succ;
446    BestWeight = SuccWeight;
447  }
448  return BestSucc;
449}
450
451/// \brief Select the best block from a worklist.
452///
453/// This looks through the provided worklist as a list of candidate basic
454/// blocks and select the most profitable one to place. The definition of
455/// profitable only really makes sense in the context of a loop. This returns
456/// the most frequently visited block in the worklist, which in the case of
457/// a loop, is the one most desirable to be physically close to the rest of the
458/// loop body in order to improve icache behavior.
459///
460/// \returns The best block found, or null if none are viable.
461MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
462    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
463    const BlockFilterSet *BlockFilter) {
464  // Once we need to walk the worklist looking for a candidate, cleanup the
465  // worklist of already placed entries.
466  // FIXME: If this shows up on profiles, it could be folded (at the cost of
467  // some code complexity) into the loop below.
468  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
469                                [&](MachineBasicBlock *BB) {
470                                  return BlockToChain.lookup(BB) == &Chain;
471                                }),
472                 WorkList.end());
473
474  MachineBasicBlock *BestBlock = nullptr;
475  BlockFrequency BestFreq;
476  for (MachineBasicBlock *MBB : WorkList) {
477    BlockChain &SuccChain = *BlockToChain[MBB];
478    if (&SuccChain == &Chain) {
479      DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> Already merged!\n");
480      continue;
481    }
482    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
483
484    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
485    DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
486          MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
487    if (BestBlock && BestFreq >= CandidateFreq)
488      continue;
489    BestBlock = MBB;
490    BestFreq = CandidateFreq;
491  }
492  return BestBlock;
493}
494
495/// \brief Retrieve the first unplaced basic block.
496///
497/// This routine is called when we are unable to use the CFG to walk through
498/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
499/// We walk through the function's blocks in order, starting from the
500/// LastUnplacedBlockIt. We update this iterator on each call to avoid
501/// re-scanning the entire sequence on repeated calls to this routine.
502MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
503    MachineFunction &F, const BlockChain &PlacedChain,
504    MachineFunction::iterator &PrevUnplacedBlockIt,
505    const BlockFilterSet *BlockFilter) {
506  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
507       ++I) {
508    if (BlockFilter && !BlockFilter->count(I))
509      continue;
510    if (BlockToChain[I] != &PlacedChain) {
511      PrevUnplacedBlockIt = I;
512      // Now select the head of the chain to which the unplaced block belongs
513      // as the block to place. This will force the entire chain to be placed,
514      // and satisfies the requirements of merging chains.
515      return *BlockToChain[I]->begin();
516    }
517  }
518  return nullptr;
519}
520
521void MachineBlockPlacement::buildChain(
522    MachineBasicBlock *BB, BlockChain &Chain,
523    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
524    const BlockFilterSet *BlockFilter) {
525  assert(BB);
526  assert(BlockToChain[BB] == &Chain);
527  MachineFunction &F = *BB->getParent();
528  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
529
530  MachineBasicBlock *LoopHeaderBB = BB;
531  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
532  BB = *std::prev(Chain.end());
533  for (;;) {
534    assert(BB);
535    assert(BlockToChain[BB] == &Chain);
536    assert(*std::prev(Chain.end()) == BB);
537
538    // Look for the best viable successor if there is one to place immediately
539    // after this block.
540    MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
541
542    // If an immediate successor isn't available, look for the best viable
543    // block among those we've identified as not violating the loop's CFG at
544    // this point. This won't be a fallthrough, but it will increase locality.
545    if (!BestSucc)
546      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
547
548    if (!BestSucc) {
549      BestSucc =
550          getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
551      if (!BestSucc)
552        break;
553
554      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
555                      "layout successor until the CFG reduces\n");
556    }
557
558    // Place this block, updating the datastructures to reflect its placement.
559    BlockChain &SuccChain = *BlockToChain[BestSucc];
560    // Zero out LoopPredecessors for the successor we're about to merge in case
561    // we selected a successor that didn't fit naturally into the CFG.
562    SuccChain.LoopPredecessors = 0;
563    DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
564                 << getBlockNum(BestSucc) << "\n");
565    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
566    Chain.merge(BestSucc, &SuccChain);
567    BB = *std::prev(Chain.end());
568  }
569
570  DEBUG(dbgs() << "Finished forming chain for header block "
571               << getBlockNum(*Chain.begin()) << "\n");
572}
573
574/// \brief Find the best loop top block for layout.
575///
576/// Look for a block which is strictly better than the loop header for laying
577/// out at the top of the loop. This looks for one and only one pattern:
578/// a latch block with no conditional exit. This block will cause a conditional
579/// jump around it or will be the bottom of the loop if we lay it out in place,
580/// but if it it doesn't end up at the bottom of the loop for any reason,
581/// rotation alone won't fix it. Because such a block will always result in an
582/// unconditional jump (for the backedge) rotating it in front of the loop
583/// header is always profitable.
584MachineBasicBlock *
585MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
586                                       const BlockFilterSet &LoopBlockSet) {
587  // Check that the header hasn't been fused with a preheader block due to
588  // crazy branches. If it has, we need to start with the header at the top to
589  // prevent pulling the preheader into the loop body.
590  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
591  if (!LoopBlockSet.count(*HeaderChain.begin()))
592    return L.getHeader();
593
594  DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
595               << "\n");
596
597  BlockFrequency BestPredFreq;
598  MachineBasicBlock *BestPred = nullptr;
599  for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
600    if (!LoopBlockSet.count(Pred))
601      continue;
602    DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
603                 << Pred->succ_size() << " successors, ";
604          MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
605    if (Pred->succ_size() > 1)
606      continue;
607
608    BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
609    if (!BestPred || PredFreq > BestPredFreq ||
610        (!(PredFreq < BestPredFreq) &&
611         Pred->isLayoutSuccessor(L.getHeader()))) {
612      BestPred = Pred;
613      BestPredFreq = PredFreq;
614    }
615  }
616
617  // If no direct predecessor is fine, just use the loop header.
618  if (!BestPred)
619    return L.getHeader();
620
621  // Walk backwards through any straight line of predecessors.
622  while (BestPred->pred_size() == 1 &&
623         (*BestPred->pred_begin())->succ_size() == 1 &&
624         *BestPred->pred_begin() != L.getHeader())
625    BestPred = *BestPred->pred_begin();
626
627  DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
628  return BestPred;
629}
630
631/// \brief Find the best loop exiting block for layout.
632///
633/// This routine implements the logic to analyze the loop looking for the best
634/// block to layout at the top of the loop. Typically this is done to maximize
635/// fallthrough opportunities.
636MachineBasicBlock *
637MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
638                                        const BlockFilterSet &LoopBlockSet) {
639  // We don't want to layout the loop linearly in all cases. If the loop header
640  // is just a normal basic block in the loop, we want to look for what block
641  // within the loop is the best one to layout at the top. However, if the loop
642  // header has be pre-merged into a chain due to predecessors not having
643  // analyzable branches, *and* the predecessor it is merged with is *not* part
644  // of the loop, rotating the header into the middle of the loop will create
645  // a non-contiguous range of blocks which is Very Bad. So start with the
646  // header and only rotate if safe.
647  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
648  if (!LoopBlockSet.count(*HeaderChain.begin()))
649    return nullptr;
650
651  BlockFrequency BestExitEdgeFreq;
652  unsigned BestExitLoopDepth = 0;
653  MachineBasicBlock *ExitingBB = nullptr;
654  // If there are exits to outer loops, loop rotation can severely limit
655  // fallthrough opportunites unless it selects such an exit. Keep a set of
656  // blocks where rotating to exit with that block will reach an outer loop.
657  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
658
659  DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
660               << "\n");
661  for (MachineBasicBlock *MBB : L.getBlocks()) {
662    BlockChain &Chain = *BlockToChain[MBB];
663    // Ensure that this block is at the end of a chain; otherwise it could be
664    // mid-way through an inner loop or a successor of an unanalyzable branch.
665    if (MBB != *std::prev(Chain.end()))
666      continue;
667
668    // Now walk the successors. We need to establish whether this has a viable
669    // exiting successor and whether it has a viable non-exiting successor.
670    // We store the old exiting state and restore it if a viable looping
671    // successor isn't found.
672    MachineBasicBlock *OldExitingBB = ExitingBB;
673    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
674    bool HasLoopingSucc = false;
675    // FIXME: Due to the performance of the probability and weight routines in
676    // the MBPI analysis, we use the internal weights and manually compute the
677    // probabilities to avoid quadratic behavior.
678    uint32_t WeightScale = 0;
679    uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale);
680    for (MachineBasicBlock *Succ : MBB->successors()) {
681      if (Succ->isLandingPad())
682        continue;
683      if (Succ == MBB)
684        continue;
685      BlockChain &SuccChain = *BlockToChain[Succ];
686      // Don't split chains, either this chain or the successor's chain.
687      if (&Chain == &SuccChain) {
688        DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
689                     << getBlockName(Succ) << " (chain conflict)\n");
690        continue;
691      }
692
693      uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ);
694      if (LoopBlockSet.count(Succ)) {
695        DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
696                     << getBlockName(Succ) << " (" << SuccWeight << ")\n");
697        HasLoopingSucc = true;
698        continue;
699      }
700
701      unsigned SuccLoopDepth = 0;
702      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
703        SuccLoopDepth = ExitLoop->getLoopDepth();
704        if (ExitLoop->contains(&L))
705          BlocksExitingToOuterLoop.insert(MBB);
706      }
707
708      BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
709      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
710      DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
711                   << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
712            MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
713      // Note that we bias this toward an existing layout successor to retain
714      // incoming order in the absence of better information. The exit must have
715      // a frequency higher than the current exit before we consider breaking
716      // the layout.
717      BranchProbability Bias(100 - ExitBlockBias, 100);
718      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
719          ExitEdgeFreq > BestExitEdgeFreq ||
720          (MBB->isLayoutSuccessor(Succ) &&
721           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
722        BestExitEdgeFreq = ExitEdgeFreq;
723        ExitingBB = MBB;
724      }
725    }
726
727    if (!HasLoopingSucc) {
728      // Restore the old exiting state, no viable looping successor was found.
729      ExitingBB = OldExitingBB;
730      BestExitEdgeFreq = OldBestExitEdgeFreq;
731      continue;
732    }
733  }
734  // Without a candidate exiting block or with only a single block in the
735  // loop, just use the loop header to layout the loop.
736  if (!ExitingBB || L.getNumBlocks() == 1)
737    return nullptr;
738
739  // Also, if we have exit blocks which lead to outer loops but didn't select
740  // one of them as the exiting block we are rotating toward, disable loop
741  // rotation altogether.
742  if (!BlocksExitingToOuterLoop.empty() &&
743      !BlocksExitingToOuterLoop.count(ExitingBB))
744    return nullptr;
745
746  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
747  return ExitingBB;
748}
749
750/// \brief Attempt to rotate an exiting block to the bottom of the loop.
751///
752/// Once we have built a chain, try to rotate it to line up the hot exit block
753/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
754/// branches. For example, if the loop has fallthrough into its header and out
755/// of its bottom already, don't rotate it.
756void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
757                                       MachineBasicBlock *ExitingBB,
758                                       const BlockFilterSet &LoopBlockSet) {
759  if (!ExitingBB)
760    return;
761
762  MachineBasicBlock *Top = *LoopChain.begin();
763  bool ViableTopFallthrough = false;
764  for (MachineBasicBlock *Pred : Top->predecessors()) {
765    BlockChain *PredChain = BlockToChain[Pred];
766    if (!LoopBlockSet.count(Pred) &&
767        (!PredChain || Pred == *std::prev(PredChain->end()))) {
768      ViableTopFallthrough = true;
769      break;
770    }
771  }
772
773  // If the header has viable fallthrough, check whether the current loop
774  // bottom is a viable exiting block. If so, bail out as rotating will
775  // introduce an unnecessary branch.
776  if (ViableTopFallthrough) {
777    MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
778    for (MachineBasicBlock *Succ : Bottom->successors()) {
779      BlockChain *SuccChain = BlockToChain[Succ];
780      if (!LoopBlockSet.count(Succ) &&
781          (!SuccChain || Succ == *SuccChain->begin()))
782        return;
783    }
784  }
785
786  BlockChain::iterator ExitIt =
787      std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
788  if (ExitIt == LoopChain.end())
789    return;
790
791  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
792}
793
794/// \brief Forms basic block chains from the natural loop structures.
795///
796/// These chains are designed to preserve the existing *structure* of the code
797/// as much as possible. We can then stitch the chains together in a way which
798/// both preserves the topological structure and minimizes taken conditional
799/// branches.
800void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
801                                            MachineLoop &L) {
802  // First recurse through any nested loops, building chains for those inner
803  // loops.
804  for (MachineLoop *InnerLoop : L)
805    buildLoopChains(F, *InnerLoop);
806
807  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
808  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
809
810  // First check to see if there is an obviously preferable top block for the
811  // loop. This will default to the header, but may end up as one of the
812  // predecessors to the header if there is one which will result in strictly
813  // fewer branches in the loop body.
814  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
815
816  // If we selected just the header for the loop top, look for a potentially
817  // profitable exit block in the event that rotating the loop can eliminate
818  // branches by placing an exit edge at the bottom.
819  MachineBasicBlock *ExitingBB = nullptr;
820  if (LoopTop == L.getHeader())
821    ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
822
823  BlockChain &LoopChain = *BlockToChain[LoopTop];
824
825  // FIXME: This is a really lame way of walking the chains in the loop: we
826  // walk the blocks, and use a set to prevent visiting a particular chain
827  // twice.
828  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
829  assert(LoopChain.LoopPredecessors == 0);
830  UpdatedPreds.insert(&LoopChain);
831  for (MachineBasicBlock *LoopBB : L.getBlocks()) {
832    BlockChain &Chain = *BlockToChain[LoopBB];
833    if (!UpdatedPreds.insert(&Chain).second)
834      continue;
835
836    assert(Chain.LoopPredecessors == 0);
837    for (MachineBasicBlock *ChainBB : Chain) {
838      assert(BlockToChain[ChainBB] == &Chain);
839      for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
840        if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
841          continue;
842        ++Chain.LoopPredecessors;
843      }
844    }
845
846    if (Chain.LoopPredecessors == 0)
847      BlockWorkList.push_back(*Chain.begin());
848  }
849
850  buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
851  rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
852
853  DEBUG({
854    // Crash at the end so we get all of the debugging output first.
855    bool BadLoop = false;
856    if (LoopChain.LoopPredecessors) {
857      BadLoop = true;
858      dbgs() << "Loop chain contains a block without its preds placed!\n"
859             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
860             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
861    }
862    for (MachineBasicBlock *ChainBB : LoopChain) {
863      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
864      if (!LoopBlockSet.erase(ChainBB)) {
865        // We don't mark the loop as bad here because there are real situations
866        // where this can occur. For example, with an unanalyzable fallthrough
867        // from a loop block to a non-loop block or vice versa.
868        dbgs() << "Loop chain contains a block not contained by the loop!\n"
869               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
870               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
871               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
872      }
873    }
874
875    if (!LoopBlockSet.empty()) {
876      BadLoop = true;
877      for (MachineBasicBlock *LoopBB : LoopBlockSet)
878        dbgs() << "Loop contains blocks never placed into a chain!\n"
879               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
880               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
881               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
882    }
883    assert(!BadLoop && "Detected problems with the placement of this loop.");
884  });
885}
886
887void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
888  // Ensure that every BB in the function has an associated chain to simplify
889  // the assumptions of the remaining algorithm.
890  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
891  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
892    MachineBasicBlock *BB = FI;
893    BlockChain *Chain =
894        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
895    // Also, merge any blocks which we cannot reason about and must preserve
896    // the exact fallthrough behavior for.
897    for (;;) {
898      Cond.clear();
899      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
900      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
901        break;
902
903      MachineFunction::iterator NextFI(std::next(FI));
904      MachineBasicBlock *NextBB = NextFI;
905      // Ensure that the layout successor is a viable block, as we know that
906      // fallthrough is a possibility.
907      assert(NextFI != FE && "Can't fallthrough past the last block.");
908      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
909                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
910                   << "\n");
911      Chain->merge(NextBB, nullptr);
912      FI = NextFI;
913      BB = NextBB;
914    }
915  }
916
917  if (OutlineOptionalBranches) {
918    // Find the nearest common dominator of all of F's terminators.
919    MachineBasicBlock *Terminator = nullptr;
920    for (MachineBasicBlock &MBB : F) {
921      if (MBB.succ_size() == 0) {
922        if (Terminator == nullptr)
923          Terminator = &MBB;
924        else
925          Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
926      }
927    }
928
929    // MBBs dominating this common dominator are unavoidable.
930    UnavoidableBlocks.clear();
931    for (MachineBasicBlock &MBB : F) {
932      if (MDT->dominates(&MBB, Terminator)) {
933        UnavoidableBlocks.insert(&MBB);
934      }
935    }
936  }
937
938  // Build any loop-based chains.
939  for (MachineLoop *L : *MLI)
940    buildLoopChains(F, *L);
941
942  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
943
944  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
945  for (MachineBasicBlock &MBB : F) {
946    BlockChain &Chain = *BlockToChain[&MBB];
947    if (!UpdatedPreds.insert(&Chain).second)
948      continue;
949
950    assert(Chain.LoopPredecessors == 0);
951    for (MachineBasicBlock *ChainBB : Chain) {
952      assert(BlockToChain[ChainBB] == &Chain);
953      for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
954        if (BlockToChain[Pred] == &Chain)
955          continue;
956        ++Chain.LoopPredecessors;
957      }
958    }
959
960    if (Chain.LoopPredecessors == 0)
961      BlockWorkList.push_back(*Chain.begin());
962  }
963
964  BlockChain &FunctionChain = *BlockToChain[&F.front()];
965  buildChain(&F.front(), FunctionChain, BlockWorkList);
966
967#ifndef NDEBUG
968  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
969#endif
970  DEBUG({
971    // Crash at the end so we get all of the debugging output first.
972    bool BadFunc = false;
973    FunctionBlockSetType FunctionBlockSet;
974    for (MachineBasicBlock &MBB : F)
975      FunctionBlockSet.insert(&MBB);
976
977    for (MachineBasicBlock *ChainBB : FunctionChain)
978      if (!FunctionBlockSet.erase(ChainBB)) {
979        BadFunc = true;
980        dbgs() << "Function chain contains a block not in the function!\n"
981               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
982      }
983
984    if (!FunctionBlockSet.empty()) {
985      BadFunc = true;
986      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
987        dbgs() << "Function contains blocks never placed into a chain!\n"
988               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
989    }
990    assert(!BadFunc && "Detected problems with the block placement.");
991  });
992
993  // Splice the blocks into place.
994  MachineFunction::iterator InsertPos = F.begin();
995  for (MachineBasicBlock *ChainBB : FunctionChain) {
996    DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
997                                                       : "          ... ")
998                 << getBlockName(ChainBB) << "\n");
999    if (InsertPos != MachineFunction::iterator(ChainBB))
1000      F.splice(InsertPos, ChainBB);
1001    else
1002      ++InsertPos;
1003
1004    // Update the terminator of the previous block.
1005    if (ChainBB == *FunctionChain.begin())
1006      continue;
1007    MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(ChainBB));
1008
1009    // FIXME: It would be awesome of updateTerminator would just return rather
1010    // than assert when the branch cannot be analyzed in order to remove this
1011    // boiler plate.
1012    Cond.clear();
1013    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1014    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1015      // The "PrevBB" is not yet updated to reflect current code layout, so,
1016      //   o. it may fall-through to a block without explict "goto" instruction
1017      //      before layout, and no longer fall-through it after layout; or
1018      //   o. just opposite.
1019      //
1020      // AnalyzeBranch() may return erroneous value for FBB when these two
1021      // situations take place. For the first scenario FBB is mistakenly set
1022      // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1023      // is mistakenly pointing to "*BI".
1024      //
1025      bool needUpdateBr = true;
1026      if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1027        PrevBB->updateTerminator();
1028        needUpdateBr = false;
1029        Cond.clear();
1030        TBB = FBB = nullptr;
1031        if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1032          // FIXME: This should never take place.
1033          TBB = FBB = nullptr;
1034        }
1035      }
1036
1037      // If PrevBB has a two-way branch, try to re-order the branches
1038      // such that we branch to the successor with higher weight first.
1039      if (TBB && !Cond.empty() && FBB &&
1040          MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1041          !TII->ReverseBranchCondition(Cond)) {
1042        DEBUG(dbgs() << "Reverse order of the two branches: "
1043                     << getBlockName(PrevBB) << "\n");
1044        DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1045                     << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1046        DebugLoc dl; // FIXME: this is nowhere
1047        TII->RemoveBranch(*PrevBB);
1048        TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1049        needUpdateBr = true;
1050      }
1051      if (needUpdateBr)
1052        PrevBB->updateTerminator();
1053    }
1054  }
1055
1056  // Fixup the last block.
1057  Cond.clear();
1058  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1059  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1060    F.back().updateTerminator();
1061
1062  // Walk through the backedges of the function now that we have fully laid out
1063  // the basic blocks and align the destination of each backedge. We don't rely
1064  // exclusively on the loop info here so that we can align backedges in
1065  // unnatural CFGs and backedges that were introduced purely because of the
1066  // loop rotations done during this layout pass.
1067  if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1068    return;
1069  if (FunctionChain.begin() == FunctionChain.end())
1070    return; // Empty chain.
1071
1072  const BranchProbability ColdProb(1, 5); // 20%
1073  BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1074  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1075  for (MachineBasicBlock *ChainBB : FunctionChain) {
1076    if (ChainBB == *FunctionChain.begin())
1077      continue;
1078
1079    // Don't align non-looping basic blocks. These are unlikely to execute
1080    // enough times to matter in practice. Note that we'll still handle
1081    // unnatural CFGs inside of a natural outer loop (the common case) and
1082    // rotated loops.
1083    MachineLoop *L = MLI->getLoopFor(ChainBB);
1084    if (!L)
1085      continue;
1086
1087    unsigned Align = TLI->getPrefLoopAlignment(L);
1088    if (!Align)
1089      continue; // Don't care about loop alignment.
1090
1091    // If the block is cold relative to the function entry don't waste space
1092    // aligning it.
1093    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1094    if (Freq < WeightedEntryFreq)
1095      continue;
1096
1097    // If the block is cold relative to its loop header, don't align it
1098    // regardless of what edges into the block exist.
1099    MachineBasicBlock *LoopHeader = L->getHeader();
1100    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1101    if (Freq < (LoopHeaderFreq * ColdProb))
1102      continue;
1103
1104    // Check for the existence of a non-layout predecessor which would benefit
1105    // from aligning this block.
1106    MachineBasicBlock *LayoutPred =
1107        &*std::prev(MachineFunction::iterator(ChainBB));
1108
1109    // Force alignment if all the predecessors are jumps. We already checked
1110    // that the block isn't cold above.
1111    if (!LayoutPred->isSuccessor(ChainBB)) {
1112      ChainBB->setAlignment(Align);
1113      continue;
1114    }
1115
1116    // Align this block if the layout predecessor's edge into this block is
1117    // cold relative to the block. When this is true, other predecessors make up
1118    // all of the hot entries into the block and thus alignment is likely to be
1119    // important.
1120    BranchProbability LayoutProb =
1121        MBPI->getEdgeProbability(LayoutPred, ChainBB);
1122    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1123    if (LayoutEdgeFreq <= (Freq * ColdProb))
1124      ChainBB->setAlignment(Align);
1125  }
1126}
1127
1128bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1129  // Check for single-block functions and skip them.
1130  if (std::next(F.begin()) == F.end())
1131    return false;
1132
1133  if (skipOptnoneFunction(*F.getFunction()))
1134    return false;
1135
1136  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1137  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1138  MLI = &getAnalysis<MachineLoopInfo>();
1139  TII = F.getSubtarget().getInstrInfo();
1140  TLI = F.getSubtarget().getTargetLowering();
1141  MDT = &getAnalysis<MachineDominatorTree>();
1142  assert(BlockToChain.empty());
1143
1144  buildCFGChains(F);
1145
1146  BlockToChain.clear();
1147  ChainAllocator.DestroyAll();
1148
1149  if (AlignAllBlock)
1150    // Align all of the blocks in the function to a specific alignment.
1151    for (MachineBasicBlock &MBB : F)
1152      MBB.setAlignment(AlignAllBlock);
1153
1154  // We always return true as we have no way to track whether the final order
1155  // differs from the original order.
1156  return true;
1157}
1158
1159namespace {
1160/// \brief A pass to compute block placement statistics.
1161///
1162/// A separate pass to compute interesting statistics for evaluating block
1163/// placement. This is separate from the actual placement pass so that they can
1164/// be computed in the absence of any placement transformations or when using
1165/// alternative placement strategies.
1166class MachineBlockPlacementStats : public MachineFunctionPass {
1167  /// \brief A handle to the branch probability pass.
1168  const MachineBranchProbabilityInfo *MBPI;
1169
1170  /// \brief A handle to the function-wide block frequency pass.
1171  const MachineBlockFrequencyInfo *MBFI;
1172
1173public:
1174  static char ID; // Pass identification, replacement for typeid
1175  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1176    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1177  }
1178
1179  bool runOnMachineFunction(MachineFunction &F) override;
1180
1181  void getAnalysisUsage(AnalysisUsage &AU) const override {
1182    AU.addRequired<MachineBranchProbabilityInfo>();
1183    AU.addRequired<MachineBlockFrequencyInfo>();
1184    AU.setPreservesAll();
1185    MachineFunctionPass::getAnalysisUsage(AU);
1186  }
1187};
1188}
1189
1190char MachineBlockPlacementStats::ID = 0;
1191char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1192INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1193                      "Basic Block Placement Stats", false, false)
1194INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1195INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1196INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1197                    "Basic Block Placement Stats", false, false)
1198
1199bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1200  // Check for single-block functions and skip them.
1201  if (std::next(F.begin()) == F.end())
1202    return false;
1203
1204  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1205  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1206
1207  for (MachineBasicBlock &MBB : F) {
1208    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1209    Statistic &NumBranches =
1210        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1211    Statistic &BranchTakenFreq =
1212        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1213    for (MachineBasicBlock *Succ : MBB.successors()) {
1214      // Skip if this successor is a fallthrough.
1215      if (MBB.isLayoutSuccessor(Succ))
1216        continue;
1217
1218      BlockFrequency EdgeFreq =
1219          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1220      ++NumBranches;
1221      BranchTakenFreq += EdgeFreq.getFrequency();
1222    }
1223  }
1224
1225  return false;
1226}
1227
1228