1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements basic block placement transformations using the CFG 11// structure and branch probability estimates. 12// 13// The pass strives to preserve the structure of the CFG (that is, retain 14// a topological ordering of basic blocks) in the absence of a *strong* signal 15// to the contrary from probabilities. However, within the CFG structure, it 16// attempts to choose an ordering which favors placing more likely sequences of 17// blocks adjacent to each other. 18// 19// The algorithm works from the inner-most loop within a function outward, and 20// at each stage walks through the basic blocks, trying to coalesce them into 21// sequential chains where allowed by the CFG (or demanded by heavy 22// probabilities). Finally, it walks the blocks in topological order, and the 23// first time it reaches a chain of basic blocks, it schedules them in the 24// function in-order. 25// 26//===----------------------------------------------------------------------===// 27 28#include "llvm/CodeGen/Passes.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/SmallVector.h" 32#include "llvm/ADT/Statistic.h" 33#include "llvm/CodeGen/MachineBasicBlock.h" 34#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36#include "llvm/CodeGen/MachineDominators.h" 37#include "llvm/CodeGen/MachineFunction.h" 38#include "llvm/CodeGen/MachineFunctionPass.h" 39#include "llvm/CodeGen/MachineLoopInfo.h" 40#include "llvm/CodeGen/MachineModuleInfo.h" 41#include "llvm/Support/Allocator.h" 42#include "llvm/Support/CommandLine.h" 43#include "llvm/Support/Debug.h" 44#include "llvm/Support/raw_ostream.h" 45#include "llvm/Target/TargetInstrInfo.h" 46#include "llvm/Target/TargetLowering.h" 47#include "llvm/Target/TargetSubtargetInfo.h" 48#include <algorithm> 49using namespace llvm; 50 51#define DEBUG_TYPE "block-placement" 52 53STATISTIC(NumCondBranches, "Number of conditional branches"); 54STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 55STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65// FIXME: Find a good default for this flag and remove the flag. 66static cl::opt<unsigned> ExitBlockBias( 67 "block-placement-exit-block-bias", 68 cl::desc("Block frequency percentage a loop exit block needs " 69 "over the original exit to be considered the new exit."), 70 cl::init(0), cl::Hidden); 71 72static cl::opt<bool> OutlineOptionalBranches( 73 "outline-optional-branches", 74 cl::desc("Put completely optional branches, i.e. branches with a common " 75 "post dominator, out of line."), 76 cl::init(false), cl::Hidden); 77 78static cl::opt<unsigned> OutlineOptionalThreshold( 79 "outline-optional-threshold", 80 cl::desc("Don't outline optional branches that are a single block with an " 81 "instruction count below this threshold"), 82 cl::init(4), cl::Hidden); 83 84namespace { 85class BlockChain; 86/// \brief Type for our function-wide basic block -> block chain mapping. 87typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 88} 89 90namespace { 91/// \brief A chain of blocks which will be laid out contiguously. 92/// 93/// This is the datastructure representing a chain of consecutive blocks that 94/// are profitable to layout together in order to maximize fallthrough 95/// probabilities and code locality. We also can use a block chain to represent 96/// a sequence of basic blocks which have some external (correctness) 97/// requirement for sequential layout. 98/// 99/// Chains can be built around a single basic block and can be merged to grow 100/// them. They participate in a block-to-chain mapping, which is updated 101/// automatically as chains are merged together. 102class BlockChain { 103 /// \brief The sequence of blocks belonging to this chain. 104 /// 105 /// This is the sequence of blocks for a particular chain. These will be laid 106 /// out in-order within the function. 107 SmallVector<MachineBasicBlock *, 4> Blocks; 108 109 /// \brief A handle to the function-wide basic block to block chain mapping. 110 /// 111 /// This is retained in each block chain to simplify the computation of child 112 /// block chains for SCC-formation and iteration. We store the edges to child 113 /// basic blocks, and map them back to their associated chains using this 114 /// structure. 115 BlockToChainMapType &BlockToChain; 116 117public: 118 /// \brief Construct a new BlockChain. 119 /// 120 /// This builds a new block chain representing a single basic block in the 121 /// function. It also registers itself as the chain that block participates 122 /// in with the BlockToChain mapping. 123 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 124 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 125 assert(BB && "Cannot create a chain with a null basic block"); 126 BlockToChain[BB] = this; 127 } 128 129 /// \brief Iterator over blocks within the chain. 130 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 131 132 /// \brief Beginning of blocks within the chain. 133 iterator begin() { return Blocks.begin(); } 134 135 /// \brief End of blocks within the chain. 136 iterator end() { return Blocks.end(); } 137 138 /// \brief Merge a block chain into this one. 139 /// 140 /// This routine merges a block chain into this one. It takes care of forming 141 /// a contiguous sequence of basic blocks, updating the edge list, and 142 /// updating the block -> chain mapping. It does not free or tear down the 143 /// old chain, but the old chain's block list is no longer valid. 144 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 145 assert(BB); 146 assert(!Blocks.empty()); 147 148 // Fast path in case we don't have a chain already. 149 if (!Chain) { 150 assert(!BlockToChain[BB]); 151 Blocks.push_back(BB); 152 BlockToChain[BB] = this; 153 return; 154 } 155 156 assert(BB == *Chain->begin()); 157 assert(Chain->begin() != Chain->end()); 158 159 // Update the incoming blocks to point to this chain, and add them to the 160 // chain structure. 161 for (MachineBasicBlock *ChainBB : *Chain) { 162 Blocks.push_back(ChainBB); 163 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 164 BlockToChain[ChainBB] = this; 165 } 166 } 167 168#ifndef NDEBUG 169 /// \brief Dump the blocks in this chain. 170 LLVM_DUMP_METHOD void dump() { 171 for (MachineBasicBlock *MBB : *this) 172 MBB->dump(); 173 } 174#endif // NDEBUG 175 176 /// \brief Count of predecessors within the loop currently being processed. 177 /// 178 /// This count is updated at each loop we process to represent the number of 179 /// in-loop predecessors of this chain. 180 unsigned LoopPredecessors; 181}; 182} 183 184namespace { 185class MachineBlockPlacement : public MachineFunctionPass { 186 /// \brief A typedef for a block filter set. 187 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 188 189 /// \brief A handle to the branch probability pass. 190 const MachineBranchProbabilityInfo *MBPI; 191 192 /// \brief A handle to the function-wide block frequency pass. 193 const MachineBlockFrequencyInfo *MBFI; 194 195 /// \brief A handle to the loop info. 196 const MachineLoopInfo *MLI; 197 198 /// \brief A handle to the target's instruction info. 199 const TargetInstrInfo *TII; 200 201 /// \brief A handle to the target's lowering info. 202 const TargetLoweringBase *TLI; 203 204 /// \brief A handle to the post dominator tree. 205 MachineDominatorTree *MDT; 206 207 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 208 /// all terminators of the MachineFunction. 209 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 210 211 /// \brief Allocator and owner of BlockChain structures. 212 /// 213 /// We build BlockChains lazily while processing the loop structure of 214 /// a function. To reduce malloc traffic, we allocate them using this 215 /// slab-like allocator, and destroy them after the pass completes. An 216 /// important guarantee is that this allocator produces stable pointers to 217 /// the chains. 218 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 219 220 /// \brief Function wide BasicBlock to BlockChain mapping. 221 /// 222 /// This mapping allows efficiently moving from any given basic block to the 223 /// BlockChain it participates in, if any. We use it to, among other things, 224 /// allow implicitly defining edges between chains as the existing edges 225 /// between basic blocks. 226 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 227 228 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 229 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 230 const BlockFilterSet *BlockFilter = nullptr); 231 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 232 BlockChain &Chain, 233 const BlockFilterSet *BlockFilter); 234 MachineBasicBlock * 235 selectBestCandidateBlock(BlockChain &Chain, 236 SmallVectorImpl<MachineBasicBlock *> &WorkList, 237 const BlockFilterSet *BlockFilter); 238 MachineBasicBlock * 239 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 240 MachineFunction::iterator &PrevUnplacedBlockIt, 241 const BlockFilterSet *BlockFilter); 242 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 243 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 244 const BlockFilterSet *BlockFilter = nullptr); 245 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 246 const BlockFilterSet &LoopBlockSet); 247 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 248 const BlockFilterSet &LoopBlockSet); 249 void buildLoopChains(MachineFunction &F, MachineLoop &L); 250 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 251 const BlockFilterSet &LoopBlockSet); 252 void buildCFGChains(MachineFunction &F); 253 254public: 255 static char ID; // Pass identification, replacement for typeid 256 MachineBlockPlacement() : MachineFunctionPass(ID) { 257 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 258 } 259 260 bool runOnMachineFunction(MachineFunction &F) override; 261 262 void getAnalysisUsage(AnalysisUsage &AU) const override { 263 AU.addRequired<MachineBranchProbabilityInfo>(); 264 AU.addRequired<MachineBlockFrequencyInfo>(); 265 AU.addRequired<MachineDominatorTree>(); 266 AU.addRequired<MachineLoopInfo>(); 267 MachineFunctionPass::getAnalysisUsage(AU); 268 } 269}; 270} 271 272char MachineBlockPlacement::ID = 0; 273char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 274INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 275 "Branch Probability Basic Block Placement", false, false) 276INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 278INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 279INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 280INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 281 "Branch Probability Basic Block Placement", false, false) 282 283#ifndef NDEBUG 284/// \brief Helper to print the name of a MBB. 285/// 286/// Only used by debug logging. 287static std::string getBlockName(MachineBasicBlock *BB) { 288 std::string Result; 289 raw_string_ostream OS(Result); 290 OS << "BB#" << BB->getNumber(); 291 OS << " (derived from LLVM BB '" << BB->getName() << "')"; 292 OS.flush(); 293 return Result; 294} 295 296/// \brief Helper to print the number of a MBB. 297/// 298/// Only used by debug logging. 299static std::string getBlockNum(MachineBasicBlock *BB) { 300 std::string Result; 301 raw_string_ostream OS(Result); 302 OS << "BB#" << BB->getNumber(); 303 OS.flush(); 304 return Result; 305} 306#endif 307 308/// \brief Mark a chain's successors as having one fewer preds. 309/// 310/// When a chain is being merged into the "placed" chain, this routine will 311/// quickly walk the successors of each block in the chain and mark them as 312/// having one fewer active predecessor. It also adds any successors of this 313/// chain which reach the zero-predecessor state to the worklist passed in. 314void MachineBlockPlacement::markChainSuccessors( 315 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 316 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 317 const BlockFilterSet *BlockFilter) { 318 // Walk all the blocks in this chain, marking their successors as having 319 // a predecessor placed. 320 for (MachineBasicBlock *MBB : Chain) { 321 // Add any successors for which this is the only un-placed in-loop 322 // predecessor to the worklist as a viable candidate for CFG-neutral 323 // placement. No subsequent placement of this block will violate the CFG 324 // shape, so we get to use heuristics to choose a favorable placement. 325 for (MachineBasicBlock *Succ : MBB->successors()) { 326 if (BlockFilter && !BlockFilter->count(Succ)) 327 continue; 328 BlockChain &SuccChain = *BlockToChain[Succ]; 329 // Disregard edges within a fixed chain, or edges to the loop header. 330 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 331 continue; 332 333 // This is a cross-chain edge that is within the loop, so decrement the 334 // loop predecessor count of the destination chain. 335 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 336 BlockWorkList.push_back(*SuccChain.begin()); 337 } 338 } 339} 340 341/// \brief Select the best successor for a block. 342/// 343/// This looks across all successors of a particular block and attempts to 344/// select the "best" one to be the layout successor. It only considers direct 345/// successors which also pass the block filter. It will attempt to avoid 346/// breaking CFG structure, but cave and break such structures in the case of 347/// very hot successor edges. 348/// 349/// \returns The best successor block found, or null if none are viable. 350MachineBasicBlock * 351MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 352 BlockChain &Chain, 353 const BlockFilterSet *BlockFilter) { 354 const BranchProbability HotProb(4, 5); // 80% 355 356 MachineBasicBlock *BestSucc = nullptr; 357 // FIXME: Due to the performance of the probability and weight routines in 358 // the MBPI analysis, we manually compute probabilities using the edge 359 // weights. This is suboptimal as it means that the somewhat subtle 360 // definition of edge weight semantics is encoded here as well. We should 361 // improve the MBPI interface to efficiently support query patterns such as 362 // this. 363 uint32_t BestWeight = 0; 364 uint32_t WeightScale = 0; 365 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 366 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 367 for (MachineBasicBlock *Succ : BB->successors()) { 368 if (BlockFilter && !BlockFilter->count(Succ)) 369 continue; 370 BlockChain &SuccChain = *BlockToChain[Succ]; 371 if (&SuccChain == &Chain) { 372 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n"); 373 continue; 374 } 375 if (Succ != *SuccChain.begin()) { 376 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 377 continue; 378 } 379 380 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 381 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 382 383 // If we outline optional branches, look whether Succ is unavoidable, i.e. 384 // dominates all terminators of the MachineFunction. If it does, other 385 // successors must be optional. Don't do this for cold branches. 386 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 387 UnavoidableBlocks.count(Succ) > 0) { 388 auto HasShortOptionalBranch = [&]() { 389 for (MachineBasicBlock *Pred : Succ->predecessors()) { 390 // Check whether there is an unplaced optional branch. 391 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 392 BlockToChain[Pred] == &Chain) 393 continue; 394 // Check whether the optional branch has exactly one BB. 395 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 396 continue; 397 // Check whether the optional branch is small. 398 if (Pred->size() < OutlineOptionalThreshold) 399 return true; 400 } 401 return false; 402 }; 403 if (!HasShortOptionalBranch()) 404 return Succ; 405 } 406 407 // Only consider successors which are either "hot", or wouldn't violate 408 // any CFG constraints. 409 if (SuccChain.LoopPredecessors != 0) { 410 if (SuccProb < HotProb) { 411 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 412 << " (prob) (CFG conflict)\n"); 413 continue; 414 } 415 416 // Make sure that a hot successor doesn't have a globally more 417 // important predecessor. 418 BlockFrequency CandidateEdgeFreq = 419 MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 420 bool BadCFGConflict = false; 421 for (MachineBasicBlock *Pred : Succ->predecessors()) { 422 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 423 BlockToChain[Pred] == &Chain) 424 continue; 425 BlockFrequency PredEdgeFreq = 426 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 427 if (PredEdgeFreq >= CandidateEdgeFreq) { 428 BadCFGConflict = true; 429 break; 430 } 431 } 432 if (BadCFGConflict) { 433 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 434 << " (prob) (non-cold CFG conflict)\n"); 435 continue; 436 } 437 } 438 439 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 440 << " (prob)" 441 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 442 << "\n"); 443 if (BestSucc && BestWeight >= SuccWeight) 444 continue; 445 BestSucc = Succ; 446 BestWeight = SuccWeight; 447 } 448 return BestSucc; 449} 450 451/// \brief Select the best block from a worklist. 452/// 453/// This looks through the provided worklist as a list of candidate basic 454/// blocks and select the most profitable one to place. The definition of 455/// profitable only really makes sense in the context of a loop. This returns 456/// the most frequently visited block in the worklist, which in the case of 457/// a loop, is the one most desirable to be physically close to the rest of the 458/// loop body in order to improve icache behavior. 459/// 460/// \returns The best block found, or null if none are viable. 461MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 462 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 463 const BlockFilterSet *BlockFilter) { 464 // Once we need to walk the worklist looking for a candidate, cleanup the 465 // worklist of already placed entries. 466 // FIXME: If this shows up on profiles, it could be folded (at the cost of 467 // some code complexity) into the loop below. 468 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 469 [&](MachineBasicBlock *BB) { 470 return BlockToChain.lookup(BB) == &Chain; 471 }), 472 WorkList.end()); 473 474 MachineBasicBlock *BestBlock = nullptr; 475 BlockFrequency BestFreq; 476 for (MachineBasicBlock *MBB : WorkList) { 477 BlockChain &SuccChain = *BlockToChain[MBB]; 478 if (&SuccChain == &Chain) { 479 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n"); 480 continue; 481 } 482 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 483 484 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 485 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 486 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 487 if (BestBlock && BestFreq >= CandidateFreq) 488 continue; 489 BestBlock = MBB; 490 BestFreq = CandidateFreq; 491 } 492 return BestBlock; 493} 494 495/// \brief Retrieve the first unplaced basic block. 496/// 497/// This routine is called when we are unable to use the CFG to walk through 498/// all of the basic blocks and form a chain due to unnatural loops in the CFG. 499/// We walk through the function's blocks in order, starting from the 500/// LastUnplacedBlockIt. We update this iterator on each call to avoid 501/// re-scanning the entire sequence on repeated calls to this routine. 502MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 503 MachineFunction &F, const BlockChain &PlacedChain, 504 MachineFunction::iterator &PrevUnplacedBlockIt, 505 const BlockFilterSet *BlockFilter) { 506 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 507 ++I) { 508 if (BlockFilter && !BlockFilter->count(I)) 509 continue; 510 if (BlockToChain[I] != &PlacedChain) { 511 PrevUnplacedBlockIt = I; 512 // Now select the head of the chain to which the unplaced block belongs 513 // as the block to place. This will force the entire chain to be placed, 514 // and satisfies the requirements of merging chains. 515 return *BlockToChain[I]->begin(); 516 } 517 } 518 return nullptr; 519} 520 521void MachineBlockPlacement::buildChain( 522 MachineBasicBlock *BB, BlockChain &Chain, 523 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 524 const BlockFilterSet *BlockFilter) { 525 assert(BB); 526 assert(BlockToChain[BB] == &Chain); 527 MachineFunction &F = *BB->getParent(); 528 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 529 530 MachineBasicBlock *LoopHeaderBB = BB; 531 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 532 BB = *std::prev(Chain.end()); 533 for (;;) { 534 assert(BB); 535 assert(BlockToChain[BB] == &Chain); 536 assert(*std::prev(Chain.end()) == BB); 537 538 // Look for the best viable successor if there is one to place immediately 539 // after this block. 540 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 541 542 // If an immediate successor isn't available, look for the best viable 543 // block among those we've identified as not violating the loop's CFG at 544 // this point. This won't be a fallthrough, but it will increase locality. 545 if (!BestSucc) 546 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 547 548 if (!BestSucc) { 549 BestSucc = 550 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 551 if (!BestSucc) 552 break; 553 554 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 555 "layout successor until the CFG reduces\n"); 556 } 557 558 // Place this block, updating the datastructures to reflect its placement. 559 BlockChain &SuccChain = *BlockToChain[BestSucc]; 560 // Zero out LoopPredecessors for the successor we're about to merge in case 561 // we selected a successor that didn't fit naturally into the CFG. 562 SuccChain.LoopPredecessors = 0; 563 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " 564 << getBlockNum(BestSucc) << "\n"); 565 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 566 Chain.merge(BestSucc, &SuccChain); 567 BB = *std::prev(Chain.end()); 568 } 569 570 DEBUG(dbgs() << "Finished forming chain for header block " 571 << getBlockNum(*Chain.begin()) << "\n"); 572} 573 574/// \brief Find the best loop top block for layout. 575/// 576/// Look for a block which is strictly better than the loop header for laying 577/// out at the top of the loop. This looks for one and only one pattern: 578/// a latch block with no conditional exit. This block will cause a conditional 579/// jump around it or will be the bottom of the loop if we lay it out in place, 580/// but if it it doesn't end up at the bottom of the loop for any reason, 581/// rotation alone won't fix it. Because such a block will always result in an 582/// unconditional jump (for the backedge) rotating it in front of the loop 583/// header is always profitable. 584MachineBasicBlock * 585MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 586 const BlockFilterSet &LoopBlockSet) { 587 // Check that the header hasn't been fused with a preheader block due to 588 // crazy branches. If it has, we need to start with the header at the top to 589 // prevent pulling the preheader into the loop body. 590 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 591 if (!LoopBlockSet.count(*HeaderChain.begin())) 592 return L.getHeader(); 593 594 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 595 << "\n"); 596 597 BlockFrequency BestPredFreq; 598 MachineBasicBlock *BestPred = nullptr; 599 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 600 if (!LoopBlockSet.count(Pred)) 601 continue; 602 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 603 << Pred->succ_size() << " successors, "; 604 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 605 if (Pred->succ_size() > 1) 606 continue; 607 608 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 609 if (!BestPred || PredFreq > BestPredFreq || 610 (!(PredFreq < BestPredFreq) && 611 Pred->isLayoutSuccessor(L.getHeader()))) { 612 BestPred = Pred; 613 BestPredFreq = PredFreq; 614 } 615 } 616 617 // If no direct predecessor is fine, just use the loop header. 618 if (!BestPred) 619 return L.getHeader(); 620 621 // Walk backwards through any straight line of predecessors. 622 while (BestPred->pred_size() == 1 && 623 (*BestPred->pred_begin())->succ_size() == 1 && 624 *BestPred->pred_begin() != L.getHeader()) 625 BestPred = *BestPred->pred_begin(); 626 627 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 628 return BestPred; 629} 630 631/// \brief Find the best loop exiting block for layout. 632/// 633/// This routine implements the logic to analyze the loop looking for the best 634/// block to layout at the top of the loop. Typically this is done to maximize 635/// fallthrough opportunities. 636MachineBasicBlock * 637MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 638 const BlockFilterSet &LoopBlockSet) { 639 // We don't want to layout the loop linearly in all cases. If the loop header 640 // is just a normal basic block in the loop, we want to look for what block 641 // within the loop is the best one to layout at the top. However, if the loop 642 // header has be pre-merged into a chain due to predecessors not having 643 // analyzable branches, *and* the predecessor it is merged with is *not* part 644 // of the loop, rotating the header into the middle of the loop will create 645 // a non-contiguous range of blocks which is Very Bad. So start with the 646 // header and only rotate if safe. 647 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 648 if (!LoopBlockSet.count(*HeaderChain.begin())) 649 return nullptr; 650 651 BlockFrequency BestExitEdgeFreq; 652 unsigned BestExitLoopDepth = 0; 653 MachineBasicBlock *ExitingBB = nullptr; 654 // If there are exits to outer loops, loop rotation can severely limit 655 // fallthrough opportunites unless it selects such an exit. Keep a set of 656 // blocks where rotating to exit with that block will reach an outer loop. 657 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 658 659 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 660 << "\n"); 661 for (MachineBasicBlock *MBB : L.getBlocks()) { 662 BlockChain &Chain = *BlockToChain[MBB]; 663 // Ensure that this block is at the end of a chain; otherwise it could be 664 // mid-way through an inner loop or a successor of an unanalyzable branch. 665 if (MBB != *std::prev(Chain.end())) 666 continue; 667 668 // Now walk the successors. We need to establish whether this has a viable 669 // exiting successor and whether it has a viable non-exiting successor. 670 // We store the old exiting state and restore it if a viable looping 671 // successor isn't found. 672 MachineBasicBlock *OldExitingBB = ExitingBB; 673 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 674 bool HasLoopingSucc = false; 675 // FIXME: Due to the performance of the probability and weight routines in 676 // the MBPI analysis, we use the internal weights and manually compute the 677 // probabilities to avoid quadratic behavior. 678 uint32_t WeightScale = 0; 679 uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale); 680 for (MachineBasicBlock *Succ : MBB->successors()) { 681 if (Succ->isLandingPad()) 682 continue; 683 if (Succ == MBB) 684 continue; 685 BlockChain &SuccChain = *BlockToChain[Succ]; 686 // Don't split chains, either this chain or the successor's chain. 687 if (&Chain == &SuccChain) { 688 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 689 << getBlockName(Succ) << " (chain conflict)\n"); 690 continue; 691 } 692 693 uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ); 694 if (LoopBlockSet.count(Succ)) { 695 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 696 << getBlockName(Succ) << " (" << SuccWeight << ")\n"); 697 HasLoopingSucc = true; 698 continue; 699 } 700 701 unsigned SuccLoopDepth = 0; 702 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 703 SuccLoopDepth = ExitLoop->getLoopDepth(); 704 if (ExitLoop->contains(&L)) 705 BlocksExitingToOuterLoop.insert(MBB); 706 } 707 708 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 709 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 710 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 711 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 712 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 713 // Note that we bias this toward an existing layout successor to retain 714 // incoming order in the absence of better information. The exit must have 715 // a frequency higher than the current exit before we consider breaking 716 // the layout. 717 BranchProbability Bias(100 - ExitBlockBias, 100); 718 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 719 ExitEdgeFreq > BestExitEdgeFreq || 720 (MBB->isLayoutSuccessor(Succ) && 721 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 722 BestExitEdgeFreq = ExitEdgeFreq; 723 ExitingBB = MBB; 724 } 725 } 726 727 if (!HasLoopingSucc) { 728 // Restore the old exiting state, no viable looping successor was found. 729 ExitingBB = OldExitingBB; 730 BestExitEdgeFreq = OldBestExitEdgeFreq; 731 continue; 732 } 733 } 734 // Without a candidate exiting block or with only a single block in the 735 // loop, just use the loop header to layout the loop. 736 if (!ExitingBB || L.getNumBlocks() == 1) 737 return nullptr; 738 739 // Also, if we have exit blocks which lead to outer loops but didn't select 740 // one of them as the exiting block we are rotating toward, disable loop 741 // rotation altogether. 742 if (!BlocksExitingToOuterLoop.empty() && 743 !BlocksExitingToOuterLoop.count(ExitingBB)) 744 return nullptr; 745 746 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 747 return ExitingBB; 748} 749 750/// \brief Attempt to rotate an exiting block to the bottom of the loop. 751/// 752/// Once we have built a chain, try to rotate it to line up the hot exit block 753/// with fallthrough out of the loop if doing so doesn't introduce unnecessary 754/// branches. For example, if the loop has fallthrough into its header and out 755/// of its bottom already, don't rotate it. 756void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 757 MachineBasicBlock *ExitingBB, 758 const BlockFilterSet &LoopBlockSet) { 759 if (!ExitingBB) 760 return; 761 762 MachineBasicBlock *Top = *LoopChain.begin(); 763 bool ViableTopFallthrough = false; 764 for (MachineBasicBlock *Pred : Top->predecessors()) { 765 BlockChain *PredChain = BlockToChain[Pred]; 766 if (!LoopBlockSet.count(Pred) && 767 (!PredChain || Pred == *std::prev(PredChain->end()))) { 768 ViableTopFallthrough = true; 769 break; 770 } 771 } 772 773 // If the header has viable fallthrough, check whether the current loop 774 // bottom is a viable exiting block. If so, bail out as rotating will 775 // introduce an unnecessary branch. 776 if (ViableTopFallthrough) { 777 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 778 for (MachineBasicBlock *Succ : Bottom->successors()) { 779 BlockChain *SuccChain = BlockToChain[Succ]; 780 if (!LoopBlockSet.count(Succ) && 781 (!SuccChain || Succ == *SuccChain->begin())) 782 return; 783 } 784 } 785 786 BlockChain::iterator ExitIt = 787 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 788 if (ExitIt == LoopChain.end()) 789 return; 790 791 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 792} 793 794/// \brief Forms basic block chains from the natural loop structures. 795/// 796/// These chains are designed to preserve the existing *structure* of the code 797/// as much as possible. We can then stitch the chains together in a way which 798/// both preserves the topological structure and minimizes taken conditional 799/// branches. 800void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 801 MachineLoop &L) { 802 // First recurse through any nested loops, building chains for those inner 803 // loops. 804 for (MachineLoop *InnerLoop : L) 805 buildLoopChains(F, *InnerLoop); 806 807 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 808 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 809 810 // First check to see if there is an obviously preferable top block for the 811 // loop. This will default to the header, but may end up as one of the 812 // predecessors to the header if there is one which will result in strictly 813 // fewer branches in the loop body. 814 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 815 816 // If we selected just the header for the loop top, look for a potentially 817 // profitable exit block in the event that rotating the loop can eliminate 818 // branches by placing an exit edge at the bottom. 819 MachineBasicBlock *ExitingBB = nullptr; 820 if (LoopTop == L.getHeader()) 821 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 822 823 BlockChain &LoopChain = *BlockToChain[LoopTop]; 824 825 // FIXME: This is a really lame way of walking the chains in the loop: we 826 // walk the blocks, and use a set to prevent visiting a particular chain 827 // twice. 828 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 829 assert(LoopChain.LoopPredecessors == 0); 830 UpdatedPreds.insert(&LoopChain); 831 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 832 BlockChain &Chain = *BlockToChain[LoopBB]; 833 if (!UpdatedPreds.insert(&Chain).second) 834 continue; 835 836 assert(Chain.LoopPredecessors == 0); 837 for (MachineBasicBlock *ChainBB : Chain) { 838 assert(BlockToChain[ChainBB] == &Chain); 839 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 840 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred)) 841 continue; 842 ++Chain.LoopPredecessors; 843 } 844 } 845 846 if (Chain.LoopPredecessors == 0) 847 BlockWorkList.push_back(*Chain.begin()); 848 } 849 850 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 851 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 852 853 DEBUG({ 854 // Crash at the end so we get all of the debugging output first. 855 bool BadLoop = false; 856 if (LoopChain.LoopPredecessors) { 857 BadLoop = true; 858 dbgs() << "Loop chain contains a block without its preds placed!\n" 859 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 860 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 861 } 862 for (MachineBasicBlock *ChainBB : LoopChain) { 863 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 864 if (!LoopBlockSet.erase(ChainBB)) { 865 // We don't mark the loop as bad here because there are real situations 866 // where this can occur. For example, with an unanalyzable fallthrough 867 // from a loop block to a non-loop block or vice versa. 868 dbgs() << "Loop chain contains a block not contained by the loop!\n" 869 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 870 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 871 << " Bad block: " << getBlockName(ChainBB) << "\n"; 872 } 873 } 874 875 if (!LoopBlockSet.empty()) { 876 BadLoop = true; 877 for (MachineBasicBlock *LoopBB : LoopBlockSet) 878 dbgs() << "Loop contains blocks never placed into a chain!\n" 879 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 880 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 881 << " Bad block: " << getBlockName(LoopBB) << "\n"; 882 } 883 assert(!BadLoop && "Detected problems with the placement of this loop."); 884 }); 885} 886 887void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 888 // Ensure that every BB in the function has an associated chain to simplify 889 // the assumptions of the remaining algorithm. 890 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 891 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 892 MachineBasicBlock *BB = FI; 893 BlockChain *Chain = 894 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 895 // Also, merge any blocks which we cannot reason about and must preserve 896 // the exact fallthrough behavior for. 897 for (;;) { 898 Cond.clear(); 899 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 900 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 901 break; 902 903 MachineFunction::iterator NextFI(std::next(FI)); 904 MachineBasicBlock *NextBB = NextFI; 905 // Ensure that the layout successor is a viable block, as we know that 906 // fallthrough is a possibility. 907 assert(NextFI != FE && "Can't fallthrough past the last block."); 908 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 909 << getBlockName(BB) << " -> " << getBlockName(NextBB) 910 << "\n"); 911 Chain->merge(NextBB, nullptr); 912 FI = NextFI; 913 BB = NextBB; 914 } 915 } 916 917 if (OutlineOptionalBranches) { 918 // Find the nearest common dominator of all of F's terminators. 919 MachineBasicBlock *Terminator = nullptr; 920 for (MachineBasicBlock &MBB : F) { 921 if (MBB.succ_size() == 0) { 922 if (Terminator == nullptr) 923 Terminator = &MBB; 924 else 925 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 926 } 927 } 928 929 // MBBs dominating this common dominator are unavoidable. 930 UnavoidableBlocks.clear(); 931 for (MachineBasicBlock &MBB : F) { 932 if (MDT->dominates(&MBB, Terminator)) { 933 UnavoidableBlocks.insert(&MBB); 934 } 935 } 936 } 937 938 // Build any loop-based chains. 939 for (MachineLoop *L : *MLI) 940 buildLoopChains(F, *L); 941 942 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 943 944 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 945 for (MachineBasicBlock &MBB : F) { 946 BlockChain &Chain = *BlockToChain[&MBB]; 947 if (!UpdatedPreds.insert(&Chain).second) 948 continue; 949 950 assert(Chain.LoopPredecessors == 0); 951 for (MachineBasicBlock *ChainBB : Chain) { 952 assert(BlockToChain[ChainBB] == &Chain); 953 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 954 if (BlockToChain[Pred] == &Chain) 955 continue; 956 ++Chain.LoopPredecessors; 957 } 958 } 959 960 if (Chain.LoopPredecessors == 0) 961 BlockWorkList.push_back(*Chain.begin()); 962 } 963 964 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 965 buildChain(&F.front(), FunctionChain, BlockWorkList); 966 967#ifndef NDEBUG 968 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 969#endif 970 DEBUG({ 971 // Crash at the end so we get all of the debugging output first. 972 bool BadFunc = false; 973 FunctionBlockSetType FunctionBlockSet; 974 for (MachineBasicBlock &MBB : F) 975 FunctionBlockSet.insert(&MBB); 976 977 for (MachineBasicBlock *ChainBB : FunctionChain) 978 if (!FunctionBlockSet.erase(ChainBB)) { 979 BadFunc = true; 980 dbgs() << "Function chain contains a block not in the function!\n" 981 << " Bad block: " << getBlockName(ChainBB) << "\n"; 982 } 983 984 if (!FunctionBlockSet.empty()) { 985 BadFunc = true; 986 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 987 dbgs() << "Function contains blocks never placed into a chain!\n" 988 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 989 } 990 assert(!BadFunc && "Detected problems with the block placement."); 991 }); 992 993 // Splice the blocks into place. 994 MachineFunction::iterator InsertPos = F.begin(); 995 for (MachineBasicBlock *ChainBB : FunctionChain) { 996 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 997 : " ... ") 998 << getBlockName(ChainBB) << "\n"); 999 if (InsertPos != MachineFunction::iterator(ChainBB)) 1000 F.splice(InsertPos, ChainBB); 1001 else 1002 ++InsertPos; 1003 1004 // Update the terminator of the previous block. 1005 if (ChainBB == *FunctionChain.begin()) 1006 continue; 1007 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(ChainBB)); 1008 1009 // FIXME: It would be awesome of updateTerminator would just return rather 1010 // than assert when the branch cannot be analyzed in order to remove this 1011 // boiler plate. 1012 Cond.clear(); 1013 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1014 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1015 // The "PrevBB" is not yet updated to reflect current code layout, so, 1016 // o. it may fall-through to a block without explict "goto" instruction 1017 // before layout, and no longer fall-through it after layout; or 1018 // o. just opposite. 1019 // 1020 // AnalyzeBranch() may return erroneous value for FBB when these two 1021 // situations take place. For the first scenario FBB is mistakenly set 1022 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1023 // is mistakenly pointing to "*BI". 1024 // 1025 bool needUpdateBr = true; 1026 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1027 PrevBB->updateTerminator(); 1028 needUpdateBr = false; 1029 Cond.clear(); 1030 TBB = FBB = nullptr; 1031 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1032 // FIXME: This should never take place. 1033 TBB = FBB = nullptr; 1034 } 1035 } 1036 1037 // If PrevBB has a two-way branch, try to re-order the branches 1038 // such that we branch to the successor with higher weight first. 1039 if (TBB && !Cond.empty() && FBB && 1040 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1041 !TII->ReverseBranchCondition(Cond)) { 1042 DEBUG(dbgs() << "Reverse order of the two branches: " 1043 << getBlockName(PrevBB) << "\n"); 1044 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1045 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1046 DebugLoc dl; // FIXME: this is nowhere 1047 TII->RemoveBranch(*PrevBB); 1048 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1049 needUpdateBr = true; 1050 } 1051 if (needUpdateBr) 1052 PrevBB->updateTerminator(); 1053 } 1054 } 1055 1056 // Fixup the last block. 1057 Cond.clear(); 1058 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1059 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1060 F.back().updateTerminator(); 1061 1062 // Walk through the backedges of the function now that we have fully laid out 1063 // the basic blocks and align the destination of each backedge. We don't rely 1064 // exclusively on the loop info here so that we can align backedges in 1065 // unnatural CFGs and backedges that were introduced purely because of the 1066 // loop rotations done during this layout pass. 1067 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1068 return; 1069 if (FunctionChain.begin() == FunctionChain.end()) 1070 return; // Empty chain. 1071 1072 const BranchProbability ColdProb(1, 5); // 20% 1073 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1074 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1075 for (MachineBasicBlock *ChainBB : FunctionChain) { 1076 if (ChainBB == *FunctionChain.begin()) 1077 continue; 1078 1079 // Don't align non-looping basic blocks. These are unlikely to execute 1080 // enough times to matter in practice. Note that we'll still handle 1081 // unnatural CFGs inside of a natural outer loop (the common case) and 1082 // rotated loops. 1083 MachineLoop *L = MLI->getLoopFor(ChainBB); 1084 if (!L) 1085 continue; 1086 1087 unsigned Align = TLI->getPrefLoopAlignment(L); 1088 if (!Align) 1089 continue; // Don't care about loop alignment. 1090 1091 // If the block is cold relative to the function entry don't waste space 1092 // aligning it. 1093 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1094 if (Freq < WeightedEntryFreq) 1095 continue; 1096 1097 // If the block is cold relative to its loop header, don't align it 1098 // regardless of what edges into the block exist. 1099 MachineBasicBlock *LoopHeader = L->getHeader(); 1100 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1101 if (Freq < (LoopHeaderFreq * ColdProb)) 1102 continue; 1103 1104 // Check for the existence of a non-layout predecessor which would benefit 1105 // from aligning this block. 1106 MachineBasicBlock *LayoutPred = 1107 &*std::prev(MachineFunction::iterator(ChainBB)); 1108 1109 // Force alignment if all the predecessors are jumps. We already checked 1110 // that the block isn't cold above. 1111 if (!LayoutPred->isSuccessor(ChainBB)) { 1112 ChainBB->setAlignment(Align); 1113 continue; 1114 } 1115 1116 // Align this block if the layout predecessor's edge into this block is 1117 // cold relative to the block. When this is true, other predecessors make up 1118 // all of the hot entries into the block and thus alignment is likely to be 1119 // important. 1120 BranchProbability LayoutProb = 1121 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1122 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1123 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1124 ChainBB->setAlignment(Align); 1125 } 1126} 1127 1128bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1129 // Check for single-block functions and skip them. 1130 if (std::next(F.begin()) == F.end()) 1131 return false; 1132 1133 if (skipOptnoneFunction(*F.getFunction())) 1134 return false; 1135 1136 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1137 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1138 MLI = &getAnalysis<MachineLoopInfo>(); 1139 TII = F.getSubtarget().getInstrInfo(); 1140 TLI = F.getSubtarget().getTargetLowering(); 1141 MDT = &getAnalysis<MachineDominatorTree>(); 1142 assert(BlockToChain.empty()); 1143 1144 buildCFGChains(F); 1145 1146 BlockToChain.clear(); 1147 ChainAllocator.DestroyAll(); 1148 1149 if (AlignAllBlock) 1150 // Align all of the blocks in the function to a specific alignment. 1151 for (MachineBasicBlock &MBB : F) 1152 MBB.setAlignment(AlignAllBlock); 1153 1154 // We always return true as we have no way to track whether the final order 1155 // differs from the original order. 1156 return true; 1157} 1158 1159namespace { 1160/// \brief A pass to compute block placement statistics. 1161/// 1162/// A separate pass to compute interesting statistics for evaluating block 1163/// placement. This is separate from the actual placement pass so that they can 1164/// be computed in the absence of any placement transformations or when using 1165/// alternative placement strategies. 1166class MachineBlockPlacementStats : public MachineFunctionPass { 1167 /// \brief A handle to the branch probability pass. 1168 const MachineBranchProbabilityInfo *MBPI; 1169 1170 /// \brief A handle to the function-wide block frequency pass. 1171 const MachineBlockFrequencyInfo *MBFI; 1172 1173public: 1174 static char ID; // Pass identification, replacement for typeid 1175 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1176 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1177 } 1178 1179 bool runOnMachineFunction(MachineFunction &F) override; 1180 1181 void getAnalysisUsage(AnalysisUsage &AU) const override { 1182 AU.addRequired<MachineBranchProbabilityInfo>(); 1183 AU.addRequired<MachineBlockFrequencyInfo>(); 1184 AU.setPreservesAll(); 1185 MachineFunctionPass::getAnalysisUsage(AU); 1186 } 1187}; 1188} 1189 1190char MachineBlockPlacementStats::ID = 0; 1191char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1192INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1193 "Basic Block Placement Stats", false, false) 1194INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1195INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1196INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1197 "Basic Block Placement Stats", false, false) 1198 1199bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1200 // Check for single-block functions and skip them. 1201 if (std::next(F.begin()) == F.end()) 1202 return false; 1203 1204 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1205 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1206 1207 for (MachineBasicBlock &MBB : F) { 1208 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1209 Statistic &NumBranches = 1210 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1211 Statistic &BranchTakenFreq = 1212 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1213 for (MachineBasicBlock *Succ : MBB.successors()) { 1214 // Skip if this successor is a fallthrough. 1215 if (MBB.isLayoutSuccessor(Succ)) 1216 continue; 1217 1218 BlockFrequency EdgeFreq = 1219 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1220 ++NumBranches; 1221 BranchTakenFreq += EdgeFreq.getFrequency(); 1222 } 1223 } 1224 1225 return false; 1226} 1227 1228