1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the implementation of the FastISel class. 11// 12// "Fast" instruction selection is designed to emit very poor code quickly. 13// Also, it is not designed to be able to do much lowering, so most illegal 14// types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15// also not intended to be able to do much optimization, except in a few cases 16// where doing optimizations reduces overall compile time. For example, folding 17// constants into immediate fields is often done, because it's cheap and it 18// reduces the number of instructions later phases have to examine. 19// 20// "Fast" instruction selection is able to fail gracefully and transfer 21// control to the SelectionDAG selector for operations that it doesn't 22// support. In many cases, this allows us to avoid duplicating a lot of 23// the complicated lowering logic that SelectionDAG currently has. 24// 25// The intended use for "fast" instruction selection is "-O0" mode 26// compilation, where the quality of the generated code is irrelevant when 27// weighed against the speed at which the code can be generated. Also, 28// at -O0, the LLVM optimizers are not running, and this makes the 29// compile time of codegen a much higher portion of the overall compile 30// time. Despite its limitations, "fast" instruction selection is able to 31// handle enough code on its own to provide noticeable overall speedups 32// in -O0 compiles. 33// 34// Basic operations are supported in a target-independent way, by reading 35// the same instruction descriptions that the SelectionDAG selector reads, 36// and identifying simple arithmetic operations that can be directly selected 37// from simple operators. More complicated operations currently require 38// target-specific code. 39// 40//===----------------------------------------------------------------------===// 41 42#include "llvm/CodeGen/Analysis.h" 43#include "llvm/ADT/Optional.h" 44#include "llvm/ADT/Statistic.h" 45#include "llvm/Analysis/BranchProbabilityInfo.h" 46#include "llvm/Analysis/Loads.h" 47#include "llvm/Analysis/TargetLibraryInfo.h" 48#include "llvm/CodeGen/Analysis.h" 49#include "llvm/CodeGen/FastISel.h" 50#include "llvm/CodeGen/FunctionLoweringInfo.h" 51#include "llvm/CodeGen/MachineFrameInfo.h" 52#include "llvm/CodeGen/MachineInstrBuilder.h" 53#include "llvm/CodeGen/MachineModuleInfo.h" 54#include "llvm/CodeGen/MachineRegisterInfo.h" 55#include "llvm/CodeGen/StackMaps.h" 56#include "llvm/IR/DataLayout.h" 57#include "llvm/IR/DebugInfo.h" 58#include "llvm/IR/Function.h" 59#include "llvm/IR/GlobalVariable.h" 60#include "llvm/IR/Instructions.h" 61#include "llvm/IR/IntrinsicInst.h" 62#include "llvm/IR/Operator.h" 63#include "llvm/Support/Debug.h" 64#include "llvm/Support/ErrorHandling.h" 65#include "llvm/Support/raw_ostream.h" 66#include "llvm/Target/TargetInstrInfo.h" 67#include "llvm/Target/TargetLowering.h" 68#include "llvm/Target/TargetMachine.h" 69#include "llvm/Target/TargetSubtargetInfo.h" 70using namespace llvm; 71 72#define DEBUG_TYPE "isel" 73 74STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 75 "target-independent selector"); 76STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 77 "target-specific selector"); 78STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 79 80void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 81 unsigned AttrIdx) { 82 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 83 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 84 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 85 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 86 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 87 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 88 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 89 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 90 Alignment = CS->getParamAlignment(AttrIdx); 91} 92 93/// Set the current block to which generated machine instructions will be 94/// appended, and clear the local CSE map. 95void FastISel::startNewBlock() { 96 LocalValueMap.clear(); 97 98 // Instructions are appended to FuncInfo.MBB. If the basic block already 99 // contains labels or copies, use the last instruction as the last local 100 // value. 101 EmitStartPt = nullptr; 102 if (!FuncInfo.MBB->empty()) 103 EmitStartPt = &FuncInfo.MBB->back(); 104 LastLocalValue = EmitStartPt; 105} 106 107bool FastISel::lowerArguments() { 108 if (!FuncInfo.CanLowerReturn) 109 // Fallback to SDISel argument lowering code to deal with sret pointer 110 // parameter. 111 return false; 112 113 if (!fastLowerArguments()) 114 return false; 115 116 // Enter arguments into ValueMap for uses in non-entry BBs. 117 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 118 E = FuncInfo.Fn->arg_end(); 119 I != E; ++I) { 120 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 121 assert(VI != LocalValueMap.end() && "Missed an argument?"); 122 FuncInfo.ValueMap[I] = VI->second; 123 } 124 return true; 125} 126 127void FastISel::flushLocalValueMap() { 128 LocalValueMap.clear(); 129 LastLocalValue = EmitStartPt; 130 recomputeInsertPt(); 131 SavedInsertPt = FuncInfo.InsertPt; 132} 133 134bool FastISel::hasTrivialKill(const Value *V) { 135 // Don't consider constants or arguments to have trivial kills. 136 const Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) 138 return false; 139 140 // No-op casts are trivially coalesced by fast-isel. 141 if (const auto *Cast = dyn_cast<CastInst>(I)) 142 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 143 !hasTrivialKill(Cast->getOperand(0))) 144 return false; 145 146 // Even the value might have only one use in the LLVM IR, it is possible that 147 // FastISel might fold the use into another instruction and now there is more 148 // than one use at the Machine Instruction level. 149 unsigned Reg = lookUpRegForValue(V); 150 if (Reg && !MRI.use_empty(Reg)) 151 return false; 152 153 // GEPs with all zero indices are trivially coalesced by fast-isel. 154 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 155 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 156 return false; 157 158 // Only instructions with a single use in the same basic block are considered 159 // to have trivial kills. 160 return I->hasOneUse() && 161 !(I->getOpcode() == Instruction::BitCast || 162 I->getOpcode() == Instruction::PtrToInt || 163 I->getOpcode() == Instruction::IntToPtr) && 164 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 165} 166 167unsigned FastISel::getRegForValue(const Value *V) { 168 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 169 // Don't handle non-simple values in FastISel. 170 if (!RealVT.isSimple()) 171 return 0; 172 173 // Ignore illegal types. We must do this before looking up the value 174 // in ValueMap because Arguments are given virtual registers regardless 175 // of whether FastISel can handle them. 176 MVT VT = RealVT.getSimpleVT(); 177 if (!TLI.isTypeLegal(VT)) { 178 // Handle integer promotions, though, because they're common and easy. 179 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 180 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 181 else 182 return 0; 183 } 184 185 // Look up the value to see if we already have a register for it. 186 unsigned Reg = lookUpRegForValue(V); 187 if (Reg) 188 return Reg; 189 190 // In bottom-up mode, just create the virtual register which will be used 191 // to hold the value. It will be materialized later. 192 if (isa<Instruction>(V) && 193 (!isa<AllocaInst>(V) || 194 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 195 return FuncInfo.InitializeRegForValue(V); 196 197 SavePoint SaveInsertPt = enterLocalValueArea(); 198 199 // Materialize the value in a register. Emit any instructions in the 200 // local value area. 201 Reg = materializeRegForValue(V, VT); 202 203 leaveLocalValueArea(SaveInsertPt); 204 205 return Reg; 206} 207 208unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 209 unsigned Reg = 0; 210 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 211 if (CI->getValue().getActiveBits() <= 64) 212 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 213 } else if (isa<AllocaInst>(V)) 214 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 215 else if (isa<ConstantPointerNull>(V)) 216 // Translate this as an integer zero so that it can be 217 // local-CSE'd with actual integer zeros. 218 Reg = getRegForValue( 219 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 220 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 221 if (CF->isNullValue()) 222 Reg = fastMaterializeFloatZero(CF); 223 else 224 // Try to emit the constant directly. 225 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 226 227 if (!Reg) { 228 // Try to emit the constant by using an integer constant with a cast. 229 const APFloat &Flt = CF->getValueAPF(); 230 EVT IntVT = TLI.getPointerTy(); 231 232 uint64_t x[2]; 233 uint32_t IntBitWidth = IntVT.getSizeInBits(); 234 bool isExact; 235 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 236 APFloat::rmTowardZero, &isExact); 237 if (isExact) { 238 APInt IntVal(IntBitWidth, x); 239 240 unsigned IntegerReg = 241 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 242 if (IntegerReg != 0) 243 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 244 /*Kill=*/false); 245 } 246 } 247 } else if (const auto *Op = dyn_cast<Operator>(V)) { 248 if (!selectOperator(Op, Op->getOpcode())) 249 if (!isa<Instruction>(Op) || 250 !fastSelectInstruction(cast<Instruction>(Op))) 251 return 0; 252 Reg = lookUpRegForValue(Op); 253 } else if (isa<UndefValue>(V)) { 254 Reg = createResultReg(TLI.getRegClassFor(VT)); 255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 256 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 257 } 258 return Reg; 259} 260 261/// Helper for getRegForValue. This function is called when the value isn't 262/// already available in a register and must be materialized with new 263/// instructions. 264unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 265 unsigned Reg = 0; 266 // Give the target-specific code a try first. 267 if (isa<Constant>(V)) 268 Reg = fastMaterializeConstant(cast<Constant>(V)); 269 270 // If target-specific code couldn't or didn't want to handle the value, then 271 // give target-independent code a try. 272 if (!Reg) 273 Reg = materializeConstant(V, VT); 274 275 // Don't cache constant materializations in the general ValueMap. 276 // To do so would require tracking what uses they dominate. 277 if (Reg) { 278 LocalValueMap[V] = Reg; 279 LastLocalValue = MRI.getVRegDef(Reg); 280 } 281 return Reg; 282} 283 284unsigned FastISel::lookUpRegForValue(const Value *V) { 285 // Look up the value to see if we already have a register for it. We 286 // cache values defined by Instructions across blocks, and other values 287 // only locally. This is because Instructions already have the SSA 288 // def-dominates-use requirement enforced. 289 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 290 if (I != FuncInfo.ValueMap.end()) 291 return I->second; 292 return LocalValueMap[V]; 293} 294 295void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 296 if (!isa<Instruction>(I)) { 297 LocalValueMap[I] = Reg; 298 return; 299 } 300 301 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 302 if (AssignedReg == 0) 303 // Use the new register. 304 AssignedReg = Reg; 305 else if (Reg != AssignedReg) { 306 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 307 for (unsigned i = 0; i < NumRegs; i++) 308 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 309 310 AssignedReg = Reg; 311 } 312} 313 314std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 315 unsigned IdxN = getRegForValue(Idx); 316 if (IdxN == 0) 317 // Unhandled operand. Halt "fast" selection and bail. 318 return std::pair<unsigned, bool>(0, false); 319 320 bool IdxNIsKill = hasTrivialKill(Idx); 321 322 // If the index is smaller or larger than intptr_t, truncate or extend it. 323 MVT PtrVT = TLI.getPointerTy(); 324 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 325 if (IdxVT.bitsLT(PtrVT)) { 326 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 327 IdxNIsKill); 328 IdxNIsKill = true; 329 } else if (IdxVT.bitsGT(PtrVT)) { 330 IdxN = 331 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 332 IdxNIsKill = true; 333 } 334 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 335} 336 337void FastISel::recomputeInsertPt() { 338 if (getLastLocalValue()) { 339 FuncInfo.InsertPt = getLastLocalValue(); 340 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 341 ++FuncInfo.InsertPt; 342 } else 343 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 344 345 // Now skip past any EH_LABELs, which must remain at the beginning. 346 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 347 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 348 ++FuncInfo.InsertPt; 349} 350 351void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 352 MachineBasicBlock::iterator E) { 353 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 354 while (I != E) { 355 MachineInstr *Dead = &*I; 356 ++I; 357 Dead->eraseFromParent(); 358 ++NumFastIselDead; 359 } 360 recomputeInsertPt(); 361} 362 363FastISel::SavePoint FastISel::enterLocalValueArea() { 364 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 365 DebugLoc OldDL = DbgLoc; 366 recomputeInsertPt(); 367 DbgLoc = DebugLoc(); 368 SavePoint SP = {OldInsertPt, OldDL}; 369 return SP; 370} 371 372void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 373 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 374 LastLocalValue = std::prev(FuncInfo.InsertPt); 375 376 // Restore the previous insert position. 377 FuncInfo.InsertPt = OldInsertPt.InsertPt; 378 DbgLoc = OldInsertPt.DL; 379} 380 381bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 382 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 383 if (VT == MVT::Other || !VT.isSimple()) 384 // Unhandled type. Halt "fast" selection and bail. 385 return false; 386 387 // We only handle legal types. For example, on x86-32 the instruction 388 // selector contains all of the 64-bit instructions from x86-64, 389 // under the assumption that i64 won't be used if the target doesn't 390 // support it. 391 if (!TLI.isTypeLegal(VT)) { 392 // MVT::i1 is special. Allow AND, OR, or XOR because they 393 // don't require additional zeroing, which makes them easy. 394 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 395 ISDOpcode == ISD::XOR)) 396 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 397 else 398 return false; 399 } 400 401 // Check if the first operand is a constant, and handle it as "ri". At -O0, 402 // we don't have anything that canonicalizes operand order. 403 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 404 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 405 unsigned Op1 = getRegForValue(I->getOperand(1)); 406 if (!Op1) 407 return false; 408 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 409 410 unsigned ResultReg = 411 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 412 CI->getZExtValue(), VT.getSimpleVT()); 413 if (!ResultReg) 414 return false; 415 416 // We successfully emitted code for the given LLVM Instruction. 417 updateValueMap(I, ResultReg); 418 return true; 419 } 420 421 unsigned Op0 = getRegForValue(I->getOperand(0)); 422 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 423 return false; 424 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 425 426 // Check if the second operand is a constant and handle it appropriately. 427 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 428 uint64_t Imm = CI->getSExtValue(); 429 430 // Transform "sdiv exact X, 8" -> "sra X, 3". 431 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 432 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 433 Imm = Log2_64(Imm); 434 ISDOpcode = ISD::SRA; 435 } 436 437 // Transform "urem x, pow2" -> "and x, pow2-1". 438 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 439 isPowerOf2_64(Imm)) { 440 --Imm; 441 ISDOpcode = ISD::AND; 442 } 443 444 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 445 Op0IsKill, Imm, VT.getSimpleVT()); 446 if (!ResultReg) 447 return false; 448 449 // We successfully emitted code for the given LLVM Instruction. 450 updateValueMap(I, ResultReg); 451 return true; 452 } 453 454 // Check if the second operand is a constant float. 455 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 456 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 457 ISDOpcode, Op0, Op0IsKill, CF); 458 if (ResultReg) { 459 // We successfully emitted code for the given LLVM Instruction. 460 updateValueMap(I, ResultReg); 461 return true; 462 } 463 } 464 465 unsigned Op1 = getRegForValue(I->getOperand(1)); 466 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 467 return false; 468 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 469 470 // Now we have both operands in registers. Emit the instruction. 471 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 472 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 473 if (!ResultReg) 474 // Target-specific code wasn't able to find a machine opcode for 475 // the given ISD opcode and type. Halt "fast" selection and bail. 476 return false; 477 478 // We successfully emitted code for the given LLVM Instruction. 479 updateValueMap(I, ResultReg); 480 return true; 481} 482 483bool FastISel::selectGetElementPtr(const User *I) { 484 unsigned N = getRegForValue(I->getOperand(0)); 485 if (!N) // Unhandled operand. Halt "fast" selection and bail. 486 return false; 487 bool NIsKill = hasTrivialKill(I->getOperand(0)); 488 489 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 490 // into a single N = N + TotalOffset. 491 uint64_t TotalOffs = 0; 492 // FIXME: What's a good SWAG number for MaxOffs? 493 uint64_t MaxOffs = 2048; 494 Type *Ty = I->getOperand(0)->getType(); 495 MVT VT = TLI.getPointerTy(); 496 for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1, 497 E = I->op_end(); 498 OI != E; ++OI) { 499 const Value *Idx = *OI; 500 if (auto *StTy = dyn_cast<StructType>(Ty)) { 501 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 502 if (Field) { 503 // N = N + Offset 504 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 505 if (TotalOffs >= MaxOffs) { 506 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 507 if (!N) // Unhandled operand. Halt "fast" selection and bail. 508 return false; 509 NIsKill = true; 510 TotalOffs = 0; 511 } 512 } 513 Ty = StTy->getElementType(Field); 514 } else { 515 Ty = cast<SequentialType>(Ty)->getElementType(); 516 517 // If this is a constant subscript, handle it quickly. 518 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 519 if (CI->isZero()) 520 continue; 521 // N = N + Offset 522 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 523 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 524 if (TotalOffs >= MaxOffs) { 525 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 526 if (!N) // Unhandled operand. Halt "fast" selection and bail. 527 return false; 528 NIsKill = true; 529 TotalOffs = 0; 530 } 531 continue; 532 } 533 if (TotalOffs) { 534 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 535 if (!N) // Unhandled operand. Halt "fast" selection and bail. 536 return false; 537 NIsKill = true; 538 TotalOffs = 0; 539 } 540 541 // N = N + Idx * ElementSize; 542 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 543 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 544 unsigned IdxN = Pair.first; 545 bool IdxNIsKill = Pair.second; 546 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 547 return false; 548 549 if (ElementSize != 1) { 550 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 551 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 552 return false; 553 IdxNIsKill = true; 554 } 555 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 556 if (!N) // Unhandled operand. Halt "fast" selection and bail. 557 return false; 558 } 559 } 560 if (TotalOffs) { 561 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 562 if (!N) // Unhandled operand. Halt "fast" selection and bail. 563 return false; 564 } 565 566 // We successfully emitted code for the given LLVM Instruction. 567 updateValueMap(I, N); 568 return true; 569} 570 571bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 572 const CallInst *CI, unsigned StartIdx) { 573 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 574 Value *Val = CI->getArgOperand(i); 575 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 576 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 577 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 578 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 579 } else if (isa<ConstantPointerNull>(Val)) { 580 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 581 Ops.push_back(MachineOperand::CreateImm(0)); 582 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 583 // Values coming from a stack location also require a sepcial encoding, 584 // but that is added later on by the target specific frame index 585 // elimination implementation. 586 auto SI = FuncInfo.StaticAllocaMap.find(AI); 587 if (SI != FuncInfo.StaticAllocaMap.end()) 588 Ops.push_back(MachineOperand::CreateFI(SI->second)); 589 else 590 return false; 591 } else { 592 unsigned Reg = getRegForValue(Val); 593 if (!Reg) 594 return false; 595 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 596 } 597 } 598 return true; 599} 600 601bool FastISel::selectStackmap(const CallInst *I) { 602 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 603 // [live variables...]) 604 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 605 "Stackmap cannot return a value."); 606 607 // The stackmap intrinsic only records the live variables (the arguments 608 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 609 // intrinsic, this won't be lowered to a function call. This means we don't 610 // have to worry about calling conventions and target-specific lowering code. 611 // Instead we perform the call lowering right here. 612 // 613 // CALLSEQ_START(0) 614 // STACKMAP(id, nbytes, ...) 615 // CALLSEQ_END(0, 0) 616 // 617 SmallVector<MachineOperand, 32> Ops; 618 619 // Add the <id> and <numBytes> constants. 620 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 621 "Expected a constant integer."); 622 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 623 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 624 625 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 626 "Expected a constant integer."); 627 const auto *NumBytes = 628 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 629 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 630 631 // Push live variables for the stack map (skipping the first two arguments 632 // <id> and <numBytes>). 633 if (!addStackMapLiveVars(Ops, I, 2)) 634 return false; 635 636 // We are not adding any register mask info here, because the stackmap doesn't 637 // clobber anything. 638 639 // Add scratch registers as implicit def and early clobber. 640 CallingConv::ID CC = I->getCallingConv(); 641 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 642 for (unsigned i = 0; ScratchRegs[i]; ++i) 643 Ops.push_back(MachineOperand::CreateReg( 644 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 645 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 646 647 // Issue CALLSEQ_START 648 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 649 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 650 .addImm(0); 651 652 // Issue STACKMAP. 653 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 654 TII.get(TargetOpcode::STACKMAP)); 655 for (auto const &MO : Ops) 656 MIB.addOperand(MO); 657 658 // Issue CALLSEQ_END 659 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 661 .addImm(0) 662 .addImm(0); 663 664 // Inform the Frame Information that we have a stackmap in this function. 665 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 666 667 return true; 668} 669 670/// \brief Lower an argument list according to the target calling convention. 671/// 672/// This is a helper for lowering intrinsics that follow a target calling 673/// convention or require stack pointer adjustment. Only a subset of the 674/// intrinsic's operands need to participate in the calling convention. 675bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 676 unsigned NumArgs, const Value *Callee, 677 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 678 ArgListTy Args; 679 Args.reserve(NumArgs); 680 681 // Populate the argument list. 682 // Attributes for args start at offset 1, after the return attribute. 683 ImmutableCallSite CS(CI); 684 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 685 ArgI != ArgE; ++ArgI) { 686 Value *V = CI->getOperand(ArgI); 687 688 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 689 690 ArgListEntry Entry; 691 Entry.Val = V; 692 Entry.Ty = V->getType(); 693 Entry.setAttributes(&CS, AttrI); 694 Args.push_back(Entry); 695 } 696 697 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 698 : CI->getType(); 699 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 700 701 return lowerCallTo(CLI); 702} 703 704bool FastISel::selectPatchpoint(const CallInst *I) { 705 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 706 // i32 <numBytes>, 707 // i8* <target>, 708 // i32 <numArgs>, 709 // [Args...], 710 // [live variables...]) 711 CallingConv::ID CC = I->getCallingConv(); 712 bool IsAnyRegCC = CC == CallingConv::AnyReg; 713 bool HasDef = !I->getType()->isVoidTy(); 714 Value *Callee = I->getOperand(PatchPointOpers::TargetPos); 715 716 // Get the real number of arguments participating in the call <numArgs> 717 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 718 "Expected a constant integer."); 719 const auto *NumArgsVal = 720 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 721 unsigned NumArgs = NumArgsVal->getZExtValue(); 722 723 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 724 // This includes all meta-operands up to but not including CC. 725 unsigned NumMetaOpers = PatchPointOpers::CCPos; 726 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 727 "Not enough arguments provided to the patchpoint intrinsic"); 728 729 // For AnyRegCC the arguments are lowered later on manually. 730 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 731 CallLoweringInfo CLI; 732 CLI.setIsPatchPoint(); 733 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 734 return false; 735 736 assert(CLI.Call && "No call instruction specified."); 737 738 SmallVector<MachineOperand, 32> Ops; 739 740 // Add an explicit result reg if we use the anyreg calling convention. 741 if (IsAnyRegCC && HasDef) { 742 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 743 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 744 CLI.NumResultRegs = 1; 745 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 746 } 747 748 // Add the <id> and <numBytes> constants. 749 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 750 "Expected a constant integer."); 751 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 752 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 753 754 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 755 "Expected a constant integer."); 756 const auto *NumBytes = 757 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 758 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 759 760 // Assume that the callee is a constant address or null pointer. 761 // FIXME: handle function symbols in the future. 762 uint64_t CalleeAddr; 763 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) 764 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 765 else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 766 if (C->getOpcode() == Instruction::IntToPtr) 767 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 768 else 769 llvm_unreachable("Unsupported ConstantExpr."); 770 } else if (isa<ConstantPointerNull>(Callee)) 771 CalleeAddr = 0; 772 else 773 llvm_unreachable("Unsupported callee address."); 774 775 Ops.push_back(MachineOperand::CreateImm(CalleeAddr)); 776 777 // Adjust <numArgs> to account for any arguments that have been passed on 778 // the stack instead. 779 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 780 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 781 782 // Add the calling convention 783 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 784 785 // Add the arguments we omitted previously. The register allocator should 786 // place these in any free register. 787 if (IsAnyRegCC) { 788 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 789 unsigned Reg = getRegForValue(I->getArgOperand(i)); 790 if (!Reg) 791 return false; 792 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 793 } 794 } 795 796 // Push the arguments from the call instruction. 797 for (auto Reg : CLI.OutRegs) 798 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 799 800 // Push live variables for the stack map. 801 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 802 return false; 803 804 // Push the register mask info. 805 Ops.push_back(MachineOperand::CreateRegMask( 806 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 807 808 // Add scratch registers as implicit def and early clobber. 809 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 810 for (unsigned i = 0; ScratchRegs[i]; ++i) 811 Ops.push_back(MachineOperand::CreateReg( 812 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 813 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 814 815 // Add implicit defs (return values). 816 for (auto Reg : CLI.InRegs) 817 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 818 /*IsImpl=*/true)); 819 820 // Insert the patchpoint instruction before the call generated by the target. 821 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 822 TII.get(TargetOpcode::PATCHPOINT)); 823 824 for (auto &MO : Ops) 825 MIB.addOperand(MO); 826 827 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 828 829 // Delete the original call instruction. 830 CLI.Call->eraseFromParent(); 831 832 // Inform the Frame Information that we have a patchpoint in this function. 833 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 834 835 if (CLI.NumResultRegs) 836 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 837 return true; 838} 839 840/// Returns an AttributeSet representing the attributes applied to the return 841/// value of the given call. 842static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 843 SmallVector<Attribute::AttrKind, 2> Attrs; 844 if (CLI.RetSExt) 845 Attrs.push_back(Attribute::SExt); 846 if (CLI.RetZExt) 847 Attrs.push_back(Attribute::ZExt); 848 if (CLI.IsInReg) 849 Attrs.push_back(Attribute::InReg); 850 851 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 852 Attrs); 853} 854 855bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 856 unsigned NumArgs) { 857 ImmutableCallSite CS(CI); 858 859 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 860 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 861 Type *RetTy = FTy->getReturnType(); 862 863 ArgListTy Args; 864 Args.reserve(NumArgs); 865 866 // Populate the argument list. 867 // Attributes for args start at offset 1, after the return attribute. 868 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 869 Value *V = CI->getOperand(ArgI); 870 871 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 872 873 ArgListEntry Entry; 874 Entry.Val = V; 875 Entry.Ty = V->getType(); 876 Entry.setAttributes(&CS, ArgI + 1); 877 Args.push_back(Entry); 878 } 879 880 CallLoweringInfo CLI; 881 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 882 883 return lowerCallTo(CLI); 884} 885 886bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 887 // Handle the incoming return values from the call. 888 CLI.clearIns(); 889 SmallVector<EVT, 4> RetTys; 890 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 891 892 SmallVector<ISD::OutputArg, 4> Outs; 893 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 894 895 bool CanLowerReturn = TLI.CanLowerReturn( 896 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 897 898 // FIXME: sret demotion isn't supported yet - bail out. 899 if (!CanLowerReturn) 900 return false; 901 902 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 903 EVT VT = RetTys[I]; 904 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 905 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 906 for (unsigned i = 0; i != NumRegs; ++i) { 907 ISD::InputArg MyFlags; 908 MyFlags.VT = RegisterVT; 909 MyFlags.ArgVT = VT; 910 MyFlags.Used = CLI.IsReturnValueUsed; 911 if (CLI.RetSExt) 912 MyFlags.Flags.setSExt(); 913 if (CLI.RetZExt) 914 MyFlags.Flags.setZExt(); 915 if (CLI.IsInReg) 916 MyFlags.Flags.setInReg(); 917 CLI.Ins.push_back(MyFlags); 918 } 919 } 920 921 // Handle all of the outgoing arguments. 922 CLI.clearOuts(); 923 for (auto &Arg : CLI.getArgs()) { 924 Type *FinalType = Arg.Ty; 925 if (Arg.IsByVal) 926 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 927 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 928 FinalType, CLI.CallConv, CLI.IsVarArg); 929 930 ISD::ArgFlagsTy Flags; 931 if (Arg.IsZExt) 932 Flags.setZExt(); 933 if (Arg.IsSExt) 934 Flags.setSExt(); 935 if (Arg.IsInReg) 936 Flags.setInReg(); 937 if (Arg.IsSRet) 938 Flags.setSRet(); 939 if (Arg.IsByVal) 940 Flags.setByVal(); 941 if (Arg.IsInAlloca) { 942 Flags.setInAlloca(); 943 // Set the byval flag for CCAssignFn callbacks that don't know about 944 // inalloca. This way we can know how many bytes we should've allocated 945 // and how many bytes a callee cleanup function will pop. If we port 946 // inalloca to more targets, we'll have to add custom inalloca handling in 947 // the various CC lowering callbacks. 948 Flags.setByVal(); 949 } 950 if (Arg.IsByVal || Arg.IsInAlloca) { 951 PointerType *Ty = cast<PointerType>(Arg.Ty); 952 Type *ElementTy = Ty->getElementType(); 953 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 954 // For ByVal, alignment should come from FE. BE will guess if this info is 955 // not there, but there are cases it cannot get right. 956 unsigned FrameAlign = Arg.Alignment; 957 if (!FrameAlign) 958 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 959 Flags.setByValSize(FrameSize); 960 Flags.setByValAlign(FrameAlign); 961 } 962 if (Arg.IsNest) 963 Flags.setNest(); 964 if (NeedsRegBlock) 965 Flags.setInConsecutiveRegs(); 966 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 967 Flags.setOrigAlign(OriginalAlignment); 968 969 CLI.OutVals.push_back(Arg.Val); 970 CLI.OutFlags.push_back(Flags); 971 } 972 973 if (!fastLowerCall(CLI)) 974 return false; 975 976 // Set all unused physreg defs as dead. 977 assert(CLI.Call && "No call instruction specified."); 978 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 979 980 if (CLI.NumResultRegs && CLI.CS) 981 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 982 983 return true; 984} 985 986bool FastISel::lowerCall(const CallInst *CI) { 987 ImmutableCallSite CS(CI); 988 989 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 990 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 991 Type *RetTy = FuncTy->getReturnType(); 992 993 ArgListTy Args; 994 ArgListEntry Entry; 995 Args.reserve(CS.arg_size()); 996 997 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 998 i != e; ++i) { 999 Value *V = *i; 1000 1001 // Skip empty types 1002 if (V->getType()->isEmptyTy()) 1003 continue; 1004 1005 Entry.Val = V; 1006 Entry.Ty = V->getType(); 1007 1008 // Skip the first return-type Attribute to get to params. 1009 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1010 Args.push_back(Entry); 1011 } 1012 1013 // Check if target-independent constraints permit a tail call here. 1014 // Target-dependent constraints are checked within fastLowerCall. 1015 bool IsTailCall = CI->isTailCall(); 1016 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1017 IsTailCall = false; 1018 1019 CallLoweringInfo CLI; 1020 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1021 .setTailCall(IsTailCall); 1022 1023 return lowerCallTo(CLI); 1024} 1025 1026bool FastISel::selectCall(const User *I) { 1027 const CallInst *Call = cast<CallInst>(I); 1028 1029 // Handle simple inline asms. 1030 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1031 // If the inline asm has side effects, then make sure that no local value 1032 // lives across by flushing the local value map. 1033 if (IA->hasSideEffects()) 1034 flushLocalValueMap(); 1035 1036 // Don't attempt to handle constraints. 1037 if (!IA->getConstraintString().empty()) 1038 return false; 1039 1040 unsigned ExtraInfo = 0; 1041 if (IA->hasSideEffects()) 1042 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1043 if (IA->isAlignStack()) 1044 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1045 1046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1047 TII.get(TargetOpcode::INLINEASM)) 1048 .addExternalSymbol(IA->getAsmString().c_str()) 1049 .addImm(ExtraInfo); 1050 return true; 1051 } 1052 1053 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1054 ComputeUsesVAFloatArgument(*Call, &MMI); 1055 1056 // Handle intrinsic function calls. 1057 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1058 return selectIntrinsicCall(II); 1059 1060 // Usually, it does not make sense to initialize a value, 1061 // make an unrelated function call and use the value, because 1062 // it tends to be spilled on the stack. So, we move the pointer 1063 // to the last local value to the beginning of the block, so that 1064 // all the values which have already been materialized, 1065 // appear after the call. It also makes sense to skip intrinsics 1066 // since they tend to be inlined. 1067 flushLocalValueMap(); 1068 1069 return lowerCall(Call); 1070} 1071 1072bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1073 switch (II->getIntrinsicID()) { 1074 default: 1075 break; 1076 // At -O0 we don't care about the lifetime intrinsics. 1077 case Intrinsic::lifetime_start: 1078 case Intrinsic::lifetime_end: 1079 // The donothing intrinsic does, well, nothing. 1080 case Intrinsic::donothing: 1081 return true; 1082 case Intrinsic::eh_actions: { 1083 unsigned ResultReg = getRegForValue(UndefValue::get(II->getType())); 1084 if (!ResultReg) 1085 return false; 1086 updateValueMap(II, ResultReg); 1087 return true; 1088 } 1089 case Intrinsic::dbg_declare: { 1090 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1091 DIVariable DIVar = DI->getVariable(); 1092 if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) { 1093 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1094 return true; 1095 } 1096 1097 const Value *Address = DI->getAddress(); 1098 if (!Address || isa<UndefValue>(Address)) { 1099 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1100 return true; 1101 } 1102 1103 unsigned Offset = 0; 1104 Optional<MachineOperand> Op; 1105 if (const auto *Arg = dyn_cast<Argument>(Address)) 1106 // Some arguments' frame index is recorded during argument lowering. 1107 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1108 if (Offset) 1109 Op = MachineOperand::CreateFI(Offset); 1110 if (!Op) 1111 if (unsigned Reg = lookUpRegForValue(Address)) 1112 Op = MachineOperand::CreateReg(Reg, false); 1113 1114 // If we have a VLA that has a "use" in a metadata node that's then used 1115 // here but it has no other uses, then we have a problem. E.g., 1116 // 1117 // int foo (const int *x) { 1118 // char a[*x]; 1119 // return 0; 1120 // } 1121 // 1122 // If we assign 'a' a vreg and fast isel later on has to use the selection 1123 // DAG isel, it will want to copy the value to the vreg. However, there are 1124 // no uses, which goes counter to what selection DAG isel expects. 1125 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1126 (!isa<AllocaInst>(Address) || 1127 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1128 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1129 false); 1130 1131 if (Op) { 1132 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1133 "Expected inlined-at fields to agree"); 1134 if (Op->isReg()) { 1135 Op->setIsDebug(true); 1136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1137 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1138 DI->getVariable(), DI->getExpression()); 1139 } else 1140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1141 TII.get(TargetOpcode::DBG_VALUE)) 1142 .addOperand(*Op) 1143 .addImm(0) 1144 .addMetadata(DI->getVariable()) 1145 .addMetadata(DI->getExpression()); 1146 } else { 1147 // We can't yet handle anything else here because it would require 1148 // generating code, thus altering codegen because of debug info. 1149 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1150 } 1151 return true; 1152 } 1153 case Intrinsic::dbg_value: { 1154 // This form of DBG_VALUE is target-independent. 1155 const DbgValueInst *DI = cast<DbgValueInst>(II); 1156 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1157 const Value *V = DI->getValue(); 1158 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1159 "Expected inlined-at fields to agree"); 1160 if (!V) { 1161 // Currently the optimizer can produce this; insert an undef to 1162 // help debugging. Probably the optimizer should not do this. 1163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1164 .addReg(0U) 1165 .addImm(DI->getOffset()) 1166 .addMetadata(DI->getVariable()) 1167 .addMetadata(DI->getExpression()); 1168 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1169 if (CI->getBitWidth() > 64) 1170 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1171 .addCImm(CI) 1172 .addImm(DI->getOffset()) 1173 .addMetadata(DI->getVariable()) 1174 .addMetadata(DI->getExpression()); 1175 else 1176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1177 .addImm(CI->getZExtValue()) 1178 .addImm(DI->getOffset()) 1179 .addMetadata(DI->getVariable()) 1180 .addMetadata(DI->getExpression()); 1181 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1183 .addFPImm(CF) 1184 .addImm(DI->getOffset()) 1185 .addMetadata(DI->getVariable()) 1186 .addMetadata(DI->getExpression()); 1187 } else if (unsigned Reg = lookUpRegForValue(V)) { 1188 // FIXME: This does not handle register-indirect values at offset 0. 1189 bool IsIndirect = DI->getOffset() != 0; 1190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1191 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1192 } else { 1193 // We can't yet handle anything else here because it would require 1194 // generating code, thus altering codegen because of debug info. 1195 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1196 } 1197 return true; 1198 } 1199 case Intrinsic::objectsize: { 1200 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1201 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1202 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1203 unsigned ResultReg = getRegForValue(ResCI); 1204 if (!ResultReg) 1205 return false; 1206 updateValueMap(II, ResultReg); 1207 return true; 1208 } 1209 case Intrinsic::expect: { 1210 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1211 if (!ResultReg) 1212 return false; 1213 updateValueMap(II, ResultReg); 1214 return true; 1215 } 1216 case Intrinsic::experimental_stackmap: 1217 return selectStackmap(II); 1218 case Intrinsic::experimental_patchpoint_void: 1219 case Intrinsic::experimental_patchpoint_i64: 1220 return selectPatchpoint(II); 1221 } 1222 1223 return fastLowerIntrinsicCall(II); 1224} 1225 1226bool FastISel::selectCast(const User *I, unsigned Opcode) { 1227 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1228 EVT DstVT = TLI.getValueType(I->getType()); 1229 1230 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1231 !DstVT.isSimple()) 1232 // Unhandled type. Halt "fast" selection and bail. 1233 return false; 1234 1235 // Check if the destination type is legal. 1236 if (!TLI.isTypeLegal(DstVT)) 1237 return false; 1238 1239 // Check if the source operand is legal. 1240 if (!TLI.isTypeLegal(SrcVT)) 1241 return false; 1242 1243 unsigned InputReg = getRegForValue(I->getOperand(0)); 1244 if (!InputReg) 1245 // Unhandled operand. Halt "fast" selection and bail. 1246 return false; 1247 1248 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1249 1250 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1251 Opcode, InputReg, InputRegIsKill); 1252 if (!ResultReg) 1253 return false; 1254 1255 updateValueMap(I, ResultReg); 1256 return true; 1257} 1258 1259bool FastISel::selectBitCast(const User *I) { 1260 // If the bitcast doesn't change the type, just use the operand value. 1261 if (I->getType() == I->getOperand(0)->getType()) { 1262 unsigned Reg = getRegForValue(I->getOperand(0)); 1263 if (!Reg) 1264 return false; 1265 updateValueMap(I, Reg); 1266 return true; 1267 } 1268 1269 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1270 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1271 EVT DstEVT = TLI.getValueType(I->getType()); 1272 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1273 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1274 // Unhandled type. Halt "fast" selection and bail. 1275 return false; 1276 1277 MVT SrcVT = SrcEVT.getSimpleVT(); 1278 MVT DstVT = DstEVT.getSimpleVT(); 1279 unsigned Op0 = getRegForValue(I->getOperand(0)); 1280 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1281 return false; 1282 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1283 1284 // First, try to perform the bitcast by inserting a reg-reg copy. 1285 unsigned ResultReg = 0; 1286 if (SrcVT == DstVT) { 1287 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1288 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1289 // Don't attempt a cross-class copy. It will likely fail. 1290 if (SrcClass == DstClass) { 1291 ResultReg = createResultReg(DstClass); 1292 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1293 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1294 } 1295 } 1296 1297 // If the reg-reg copy failed, select a BITCAST opcode. 1298 if (!ResultReg) 1299 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1300 1301 if (!ResultReg) 1302 return false; 1303 1304 updateValueMap(I, ResultReg); 1305 return true; 1306} 1307 1308bool FastISel::selectInstruction(const Instruction *I) { 1309 // Just before the terminator instruction, insert instructions to 1310 // feed PHI nodes in successor blocks. 1311 if (isa<TerminatorInst>(I)) 1312 if (!handlePHINodesInSuccessorBlocks(I->getParent())) 1313 return false; 1314 1315 DbgLoc = I->getDebugLoc(); 1316 1317 SavedInsertPt = FuncInfo.InsertPt; 1318 1319 if (const auto *Call = dyn_cast<CallInst>(I)) { 1320 const Function *F = Call->getCalledFunction(); 1321 LibFunc::Func Func; 1322 1323 // As a special case, don't handle calls to builtin library functions that 1324 // may be translated directly to target instructions. 1325 if (F && !F->hasLocalLinkage() && F->hasName() && 1326 LibInfo->getLibFunc(F->getName(), Func) && 1327 LibInfo->hasOptimizedCodeGen(Func)) 1328 return false; 1329 1330 // Don't handle Intrinsic::trap if a trap funciton is specified. 1331 if (F && F->getIntrinsicID() == Intrinsic::trap && 1332 !TM.Options.getTrapFunctionName().empty()) 1333 return false; 1334 } 1335 1336 // First, try doing target-independent selection. 1337 if (!SkipTargetIndependentISel) { 1338 if (selectOperator(I, I->getOpcode())) { 1339 ++NumFastIselSuccessIndependent; 1340 DbgLoc = DebugLoc(); 1341 return true; 1342 } 1343 // Remove dead code. 1344 recomputeInsertPt(); 1345 if (SavedInsertPt != FuncInfo.InsertPt) 1346 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1347 SavedInsertPt = FuncInfo.InsertPt; 1348 } 1349 // Next, try calling the target to attempt to handle the instruction. 1350 if (fastSelectInstruction(I)) { 1351 ++NumFastIselSuccessTarget; 1352 DbgLoc = DebugLoc(); 1353 return true; 1354 } 1355 // Remove dead code. 1356 recomputeInsertPt(); 1357 if (SavedInsertPt != FuncInfo.InsertPt) 1358 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1359 1360 DbgLoc = DebugLoc(); 1361 // Undo phi node updates, because they will be added again by SelectionDAG. 1362 if (isa<TerminatorInst>(I)) 1363 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1364 return false; 1365} 1366 1367/// Emit an unconditional branch to the given block, unless it is the immediate 1368/// (fall-through) successor, and update the CFG. 1369void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1370 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1371 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1372 // For more accurate line information if this is the only instruction 1373 // in the block then emit it, otherwise we have the unconditional 1374 // fall-through case, which needs no instructions. 1375 } else { 1376 // The unconditional branch case. 1377 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1378 SmallVector<MachineOperand, 0>(), DbgLoc); 1379 } 1380 uint32_t BranchWeight = 0; 1381 if (FuncInfo.BPI) 1382 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1383 MSucc->getBasicBlock()); 1384 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1385} 1386 1387/// Emit an FNeg operation. 1388bool FastISel::selectFNeg(const User *I) { 1389 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1390 if (!OpReg) 1391 return false; 1392 bool OpRegIsKill = hasTrivialKill(I); 1393 1394 // If the target has ISD::FNEG, use it. 1395 EVT VT = TLI.getValueType(I->getType()); 1396 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1397 OpReg, OpRegIsKill); 1398 if (ResultReg) { 1399 updateValueMap(I, ResultReg); 1400 return true; 1401 } 1402 1403 // Bitcast the value to integer, twiddle the sign bit with xor, 1404 // and then bitcast it back to floating-point. 1405 if (VT.getSizeInBits() > 64) 1406 return false; 1407 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1408 if (!TLI.isTypeLegal(IntVT)) 1409 return false; 1410 1411 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1412 ISD::BITCAST, OpReg, OpRegIsKill); 1413 if (!IntReg) 1414 return false; 1415 1416 unsigned IntResultReg = fastEmit_ri_( 1417 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1418 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1419 if (!IntResultReg) 1420 return false; 1421 1422 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1423 IntResultReg, /*IsKill=*/true); 1424 if (!ResultReg) 1425 return false; 1426 1427 updateValueMap(I, ResultReg); 1428 return true; 1429} 1430 1431bool FastISel::selectExtractValue(const User *U) { 1432 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1433 if (!EVI) 1434 return false; 1435 1436 // Make sure we only try to handle extracts with a legal result. But also 1437 // allow i1 because it's easy. 1438 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1439 if (!RealVT.isSimple()) 1440 return false; 1441 MVT VT = RealVT.getSimpleVT(); 1442 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1443 return false; 1444 1445 const Value *Op0 = EVI->getOperand(0); 1446 Type *AggTy = Op0->getType(); 1447 1448 // Get the base result register. 1449 unsigned ResultReg; 1450 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1451 if (I != FuncInfo.ValueMap.end()) 1452 ResultReg = I->second; 1453 else if (isa<Instruction>(Op0)) 1454 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1455 else 1456 return false; // fast-isel can't handle aggregate constants at the moment 1457 1458 // Get the actual result register, which is an offset from the base register. 1459 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1460 1461 SmallVector<EVT, 4> AggValueVTs; 1462 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1463 1464 for (unsigned i = 0; i < VTIndex; i++) 1465 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1466 1467 updateValueMap(EVI, ResultReg); 1468 return true; 1469} 1470 1471bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1472 switch (Opcode) { 1473 case Instruction::Add: 1474 return selectBinaryOp(I, ISD::ADD); 1475 case Instruction::FAdd: 1476 return selectBinaryOp(I, ISD::FADD); 1477 case Instruction::Sub: 1478 return selectBinaryOp(I, ISD::SUB); 1479 case Instruction::FSub: 1480 // FNeg is currently represented in LLVM IR as a special case of FSub. 1481 if (BinaryOperator::isFNeg(I)) 1482 return selectFNeg(I); 1483 return selectBinaryOp(I, ISD::FSUB); 1484 case Instruction::Mul: 1485 return selectBinaryOp(I, ISD::MUL); 1486 case Instruction::FMul: 1487 return selectBinaryOp(I, ISD::FMUL); 1488 case Instruction::SDiv: 1489 return selectBinaryOp(I, ISD::SDIV); 1490 case Instruction::UDiv: 1491 return selectBinaryOp(I, ISD::UDIV); 1492 case Instruction::FDiv: 1493 return selectBinaryOp(I, ISD::FDIV); 1494 case Instruction::SRem: 1495 return selectBinaryOp(I, ISD::SREM); 1496 case Instruction::URem: 1497 return selectBinaryOp(I, ISD::UREM); 1498 case Instruction::FRem: 1499 return selectBinaryOp(I, ISD::FREM); 1500 case Instruction::Shl: 1501 return selectBinaryOp(I, ISD::SHL); 1502 case Instruction::LShr: 1503 return selectBinaryOp(I, ISD::SRL); 1504 case Instruction::AShr: 1505 return selectBinaryOp(I, ISD::SRA); 1506 case Instruction::And: 1507 return selectBinaryOp(I, ISD::AND); 1508 case Instruction::Or: 1509 return selectBinaryOp(I, ISD::OR); 1510 case Instruction::Xor: 1511 return selectBinaryOp(I, ISD::XOR); 1512 1513 case Instruction::GetElementPtr: 1514 return selectGetElementPtr(I); 1515 1516 case Instruction::Br: { 1517 const BranchInst *BI = cast<BranchInst>(I); 1518 1519 if (BI->isUnconditional()) { 1520 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1521 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1522 fastEmitBranch(MSucc, BI->getDebugLoc()); 1523 return true; 1524 } 1525 1526 // Conditional branches are not handed yet. 1527 // Halt "fast" selection and bail. 1528 return false; 1529 } 1530 1531 case Instruction::Unreachable: 1532 if (TM.Options.TrapUnreachable) 1533 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1534 else 1535 return true; 1536 1537 case Instruction::Alloca: 1538 // FunctionLowering has the static-sized case covered. 1539 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1540 return true; 1541 1542 // Dynamic-sized alloca is not handled yet. 1543 return false; 1544 1545 case Instruction::Call: 1546 return selectCall(I); 1547 1548 case Instruction::BitCast: 1549 return selectBitCast(I); 1550 1551 case Instruction::FPToSI: 1552 return selectCast(I, ISD::FP_TO_SINT); 1553 case Instruction::ZExt: 1554 return selectCast(I, ISD::ZERO_EXTEND); 1555 case Instruction::SExt: 1556 return selectCast(I, ISD::SIGN_EXTEND); 1557 case Instruction::Trunc: 1558 return selectCast(I, ISD::TRUNCATE); 1559 case Instruction::SIToFP: 1560 return selectCast(I, ISD::SINT_TO_FP); 1561 1562 case Instruction::IntToPtr: // Deliberate fall-through. 1563 case Instruction::PtrToInt: { 1564 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1565 EVT DstVT = TLI.getValueType(I->getType()); 1566 if (DstVT.bitsGT(SrcVT)) 1567 return selectCast(I, ISD::ZERO_EXTEND); 1568 if (DstVT.bitsLT(SrcVT)) 1569 return selectCast(I, ISD::TRUNCATE); 1570 unsigned Reg = getRegForValue(I->getOperand(0)); 1571 if (!Reg) 1572 return false; 1573 updateValueMap(I, Reg); 1574 return true; 1575 } 1576 1577 case Instruction::ExtractValue: 1578 return selectExtractValue(I); 1579 1580 case Instruction::PHI: 1581 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1582 1583 default: 1584 // Unhandled instruction. Halt "fast" selection and bail. 1585 return false; 1586 } 1587} 1588 1589FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1590 const TargetLibraryInfo *LibInfo, 1591 bool SkipTargetIndependentISel) 1592 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1593 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1594 TM(FuncInfo.MF->getTarget()), DL(*TM.getDataLayout()), 1595 TII(*MF->getSubtarget().getInstrInfo()), 1596 TLI(*MF->getSubtarget().getTargetLowering()), 1597 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1598 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1599 1600FastISel::~FastISel() {} 1601 1602bool FastISel::fastLowerArguments() { return false; } 1603 1604bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1605 1606bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1607 return false; 1608} 1609 1610unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1611 1612unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1613 bool /*Op0IsKill*/) { 1614 return 0; 1615} 1616 1617unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1618 bool /*Op0IsKill*/, unsigned /*Op1*/, 1619 bool /*Op1IsKill*/) { 1620 return 0; 1621} 1622 1623unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1624 return 0; 1625} 1626 1627unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1628 const ConstantFP * /*FPImm*/) { 1629 return 0; 1630} 1631 1632unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1633 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1634 return 0; 1635} 1636 1637unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1638 bool /*Op0IsKill*/, 1639 const ConstantFP * /*FPImm*/) { 1640 return 0; 1641} 1642 1643unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1644 bool /*Op0IsKill*/, unsigned /*Op1*/, 1645 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1646 return 0; 1647} 1648 1649/// This method is a wrapper of fastEmit_ri. It first tries to emit an 1650/// instruction with an immediate operand using fastEmit_ri. 1651/// If that fails, it materializes the immediate into a register and try 1652/// fastEmit_rr instead. 1653unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1654 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1655 // If this is a multiply by a power of two, emit this as a shift left. 1656 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1657 Opcode = ISD::SHL; 1658 Imm = Log2_64(Imm); 1659 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1660 // div x, 8 -> srl x, 3 1661 Opcode = ISD::SRL; 1662 Imm = Log2_64(Imm); 1663 } 1664 1665 // Horrible hack (to be removed), check to make sure shift amounts are 1666 // in-range. 1667 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1668 Imm >= VT.getSizeInBits()) 1669 return 0; 1670 1671 // First check if immediate type is legal. If not, we can't use the ri form. 1672 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1673 if (ResultReg) 1674 return ResultReg; 1675 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1676 if (!MaterialReg) { 1677 // This is a bit ugly/slow, but failing here means falling out of 1678 // fast-isel, which would be very slow. 1679 IntegerType *ITy = 1680 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1681 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1682 if (!MaterialReg) 1683 return 0; 1684 } 1685 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, 1686 /*IsKill=*/true); 1687} 1688 1689unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1690 return MRI.createVirtualRegister(RC); 1691} 1692 1693unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1694 unsigned OpNum) { 1695 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1696 const TargetRegisterClass *RegClass = 1697 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1698 if (!MRI.constrainRegClass(Op, RegClass)) { 1699 // If it's not legal to COPY between the register classes, something 1700 // has gone very wrong before we got here. 1701 unsigned NewOp = createResultReg(RegClass); 1702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1703 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1704 return NewOp; 1705 } 1706 } 1707 return Op; 1708} 1709 1710unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1711 const TargetRegisterClass *RC) { 1712 unsigned ResultReg = createResultReg(RC); 1713 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1714 1715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1716 return ResultReg; 1717} 1718 1719unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1720 const TargetRegisterClass *RC, unsigned Op0, 1721 bool Op0IsKill) { 1722 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1723 1724 unsigned ResultReg = createResultReg(RC); 1725 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1726 1727 if (II.getNumDefs() >= 1) 1728 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1729 .addReg(Op0, getKillRegState(Op0IsKill)); 1730 else { 1731 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1732 .addReg(Op0, getKillRegState(Op0IsKill)); 1733 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1734 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1735 } 1736 1737 return ResultReg; 1738} 1739 1740unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1741 const TargetRegisterClass *RC, unsigned Op0, 1742 bool Op0IsKill, unsigned Op1, 1743 bool Op1IsKill) { 1744 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1745 1746 unsigned ResultReg = createResultReg(RC); 1747 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1748 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1749 1750 if (II.getNumDefs() >= 1) 1751 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1752 .addReg(Op0, getKillRegState(Op0IsKill)) 1753 .addReg(Op1, getKillRegState(Op1IsKill)); 1754 else { 1755 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1756 .addReg(Op0, getKillRegState(Op0IsKill)) 1757 .addReg(Op1, getKillRegState(Op1IsKill)); 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1759 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1760 } 1761 return ResultReg; 1762} 1763 1764unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1765 const TargetRegisterClass *RC, unsigned Op0, 1766 bool Op0IsKill, unsigned Op1, 1767 bool Op1IsKill, unsigned Op2, 1768 bool Op2IsKill) { 1769 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1770 1771 unsigned ResultReg = createResultReg(RC); 1772 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1773 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1774 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1775 1776 if (II.getNumDefs() >= 1) 1777 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1778 .addReg(Op0, getKillRegState(Op0IsKill)) 1779 .addReg(Op1, getKillRegState(Op1IsKill)) 1780 .addReg(Op2, getKillRegState(Op2IsKill)); 1781 else { 1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1783 .addReg(Op0, getKillRegState(Op0IsKill)) 1784 .addReg(Op1, getKillRegState(Op1IsKill)) 1785 .addReg(Op2, getKillRegState(Op2IsKill)); 1786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1787 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1788 } 1789 return ResultReg; 1790} 1791 1792unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1793 const TargetRegisterClass *RC, unsigned Op0, 1794 bool Op0IsKill, uint64_t Imm) { 1795 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1796 1797 unsigned ResultReg = createResultReg(RC); 1798 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1799 1800 if (II.getNumDefs() >= 1) 1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1802 .addReg(Op0, getKillRegState(Op0IsKill)) 1803 .addImm(Imm); 1804 else { 1805 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1806 .addReg(Op0, getKillRegState(Op0IsKill)) 1807 .addImm(Imm); 1808 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1809 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1810 } 1811 return ResultReg; 1812} 1813 1814unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1815 const TargetRegisterClass *RC, unsigned Op0, 1816 bool Op0IsKill, uint64_t Imm1, 1817 uint64_t Imm2) { 1818 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1819 1820 unsigned ResultReg = createResultReg(RC); 1821 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1822 1823 if (II.getNumDefs() >= 1) 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1825 .addReg(Op0, getKillRegState(Op0IsKill)) 1826 .addImm(Imm1) 1827 .addImm(Imm2); 1828 else { 1829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1830 .addReg(Op0, getKillRegState(Op0IsKill)) 1831 .addImm(Imm1) 1832 .addImm(Imm2); 1833 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1834 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1835 } 1836 return ResultReg; 1837} 1838 1839unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode, 1840 const TargetRegisterClass *RC, unsigned Op0, 1841 bool Op0IsKill, const ConstantFP *FPImm) { 1842 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1843 1844 unsigned ResultReg = createResultReg(RC); 1845 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1846 1847 if (II.getNumDefs() >= 1) 1848 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1849 .addReg(Op0, getKillRegState(Op0IsKill)) 1850 .addFPImm(FPImm); 1851 else { 1852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1853 .addReg(Op0, getKillRegState(Op0IsKill)) 1854 .addFPImm(FPImm); 1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1856 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1857 } 1858 return ResultReg; 1859} 1860 1861unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1862 const TargetRegisterClass *RC, unsigned Op0, 1863 bool Op0IsKill, unsigned Op1, 1864 bool Op1IsKill, uint64_t Imm) { 1865 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1866 1867 unsigned ResultReg = createResultReg(RC); 1868 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1869 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1870 1871 if (II.getNumDefs() >= 1) 1872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1873 .addReg(Op0, getKillRegState(Op0IsKill)) 1874 .addReg(Op1, getKillRegState(Op1IsKill)) 1875 .addImm(Imm); 1876 else { 1877 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1878 .addReg(Op0, getKillRegState(Op0IsKill)) 1879 .addReg(Op1, getKillRegState(Op1IsKill)) 1880 .addImm(Imm); 1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1882 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1883 } 1884 return ResultReg; 1885} 1886 1887unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode, 1888 const TargetRegisterClass *RC, 1889 unsigned Op0, bool Op0IsKill, unsigned Op1, 1890 bool Op1IsKill, uint64_t Imm1, 1891 uint64_t Imm2) { 1892 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1893 1894 unsigned ResultReg = createResultReg(RC); 1895 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1896 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1897 1898 if (II.getNumDefs() >= 1) 1899 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1900 .addReg(Op0, getKillRegState(Op0IsKill)) 1901 .addReg(Op1, getKillRegState(Op1IsKill)) 1902 .addImm(Imm1) 1903 .addImm(Imm2); 1904 else { 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1906 .addReg(Op0, getKillRegState(Op0IsKill)) 1907 .addReg(Op1, getKillRegState(Op1IsKill)) 1908 .addImm(Imm1) 1909 .addImm(Imm2); 1910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1911 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1912 } 1913 return ResultReg; 1914} 1915 1916unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1917 const TargetRegisterClass *RC, uint64_t Imm) { 1918 unsigned ResultReg = createResultReg(RC); 1919 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1920 1921 if (II.getNumDefs() >= 1) 1922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1923 .addImm(Imm); 1924 else { 1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1927 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1928 } 1929 return ResultReg; 1930} 1931 1932unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode, 1933 const TargetRegisterClass *RC, uint64_t Imm1, 1934 uint64_t Imm2) { 1935 unsigned ResultReg = createResultReg(RC); 1936 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1937 1938 if (II.getNumDefs() >= 1) 1939 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1940 .addImm(Imm1) 1941 .addImm(Imm2); 1942 else { 1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1) 1944 .addImm(Imm2); 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1946 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1947 } 1948 return ResultReg; 1949} 1950 1951unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1952 bool Op0IsKill, uint32_t Idx) { 1953 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1954 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1955 "Cannot yet extract from physregs"); 1956 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1957 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1959 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1960 return ResultReg; 1961} 1962 1963/// Emit MachineInstrs to compute the value of Op with all but the least 1964/// significant bit set to zero. 1965unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1966 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1967} 1968 1969/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1970/// Emit code to ensure constants are copied into registers when needed. 1971/// Remember the virtual registers that need to be added to the Machine PHI 1972/// nodes as input. We cannot just directly add them, because expansion 1973/// might result in multiple MBB's for one BB. As such, the start of the 1974/// BB might correspond to a different MBB than the end. 1975bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1976 const TerminatorInst *TI = LLVMBB->getTerminator(); 1977 1978 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1979 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1980 1981 // Check successor nodes' PHI nodes that expect a constant to be available 1982 // from this block. 1983 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1984 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1985 if (!isa<PHINode>(SuccBB->begin())) 1986 continue; 1987 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1988 1989 // If this terminator has multiple identical successors (common for 1990 // switches), only handle each succ once. 1991 if (!SuccsHandled.insert(SuccMBB).second) 1992 continue; 1993 1994 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1995 1996 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1997 // nodes and Machine PHI nodes, but the incoming operands have not been 1998 // emitted yet. 1999 for (BasicBlock::const_iterator I = SuccBB->begin(); 2000 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2001 2002 // Ignore dead phi's. 2003 if (PN->use_empty()) 2004 continue; 2005 2006 // Only handle legal types. Two interesting things to note here. First, 2007 // by bailing out early, we may leave behind some dead instructions, 2008 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2009 // own moves. Second, this check is necessary because FastISel doesn't 2010 // use CreateRegs to create registers, so it always creates 2011 // exactly one register for each non-void instruction. 2012 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2013 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2014 // Handle integer promotions, though, because they're common and easy. 2015 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2016 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2017 return false; 2018 } 2019 } 2020 2021 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2022 2023 // Set the DebugLoc for the copy. Prefer the location of the operand 2024 // if there is one; use the location of the PHI otherwise. 2025 DbgLoc = PN->getDebugLoc(); 2026 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2027 DbgLoc = Inst->getDebugLoc(); 2028 2029 unsigned Reg = getRegForValue(PHIOp); 2030 if (!Reg) { 2031 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2032 return false; 2033 } 2034 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2035 DbgLoc = DebugLoc(); 2036 } 2037 } 2038 2039 return true; 2040} 2041 2042bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2043 assert(LI->hasOneUse() && 2044 "tryToFoldLoad expected a LoadInst with a single use"); 2045 // We know that the load has a single use, but don't know what it is. If it 2046 // isn't one of the folded instructions, then we can't succeed here. Handle 2047 // this by scanning the single-use users of the load until we get to FoldInst. 2048 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2049 2050 const Instruction *TheUser = LI->user_back(); 2051 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2052 // Stay in the right block. 2053 TheUser->getParent() == FoldInst->getParent() && 2054 --MaxUsers) { // Don't scan too far. 2055 // If there are multiple or no uses of this instruction, then bail out. 2056 if (!TheUser->hasOneUse()) 2057 return false; 2058 2059 TheUser = TheUser->user_back(); 2060 } 2061 2062 // If we didn't find the fold instruction, then we failed to collapse the 2063 // sequence. 2064 if (TheUser != FoldInst) 2065 return false; 2066 2067 // Don't try to fold volatile loads. Target has to deal with alignment 2068 // constraints. 2069 if (LI->isVolatile()) 2070 return false; 2071 2072 // Figure out which vreg this is going into. If there is no assigned vreg yet 2073 // then there actually was no reference to it. Perhaps the load is referenced 2074 // by a dead instruction. 2075 unsigned LoadReg = getRegForValue(LI); 2076 if (!LoadReg) 2077 return false; 2078 2079 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2080 // may mean that the instruction got lowered to multiple MIs, or the use of 2081 // the loaded value ended up being multiple operands of the result. 2082 if (!MRI.hasOneUse(LoadReg)) 2083 return false; 2084 2085 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2086 MachineInstr *User = RI->getParent(); 2087 2088 // Set the insertion point properly. Folding the load can cause generation of 2089 // other random instructions (like sign extends) for addressing modes; make 2090 // sure they get inserted in a logical place before the new instruction. 2091 FuncInfo.InsertPt = User; 2092 FuncInfo.MBB = User->getParent(); 2093 2094 // Ask the target to try folding the load. 2095 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2096} 2097 2098bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2099 // Must be an add. 2100 if (!isa<AddOperator>(Add)) 2101 return false; 2102 // Type size needs to match. 2103 if (DL.getTypeSizeInBits(GEP->getType()) != 2104 DL.getTypeSizeInBits(Add->getType())) 2105 return false; 2106 // Must be in the same basic block. 2107 if (isa<Instruction>(Add) && 2108 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2109 return false; 2110 // Must have a constant operand. 2111 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2112} 2113 2114MachineMemOperand * 2115FastISel::createMachineMemOperandFor(const Instruction *I) const { 2116 const Value *Ptr; 2117 Type *ValTy; 2118 unsigned Alignment; 2119 unsigned Flags; 2120 bool IsVolatile; 2121 2122 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2123 Alignment = LI->getAlignment(); 2124 IsVolatile = LI->isVolatile(); 2125 Flags = MachineMemOperand::MOLoad; 2126 Ptr = LI->getPointerOperand(); 2127 ValTy = LI->getType(); 2128 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2129 Alignment = SI->getAlignment(); 2130 IsVolatile = SI->isVolatile(); 2131 Flags = MachineMemOperand::MOStore; 2132 Ptr = SI->getPointerOperand(); 2133 ValTy = SI->getValueOperand()->getType(); 2134 } else 2135 return nullptr; 2136 2137 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2138 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2139 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2140 2141 AAMDNodes AAInfo; 2142 I->getAAMetadata(AAInfo); 2143 2144 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2145 Alignment = DL.getABITypeAlignment(ValTy); 2146 2147 unsigned Size = DL.getTypeStoreSize(ValTy); 2148 2149 if (IsVolatile) 2150 Flags |= MachineMemOperand::MOVolatile; 2151 if (IsNonTemporal) 2152 Flags |= MachineMemOperand::MONonTemporal; 2153 if (IsInvariant) 2154 Flags |= MachineMemOperand::MOInvariant; 2155 2156 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2157 Alignment, AAInfo, Ranges); 2158} 2159 2160CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2161 // If both operands are the same, then try to optimize or fold the cmp. 2162 CmpInst::Predicate Predicate = CI->getPredicate(); 2163 if (CI->getOperand(0) != CI->getOperand(1)) 2164 return Predicate; 2165 2166 switch (Predicate) { 2167 default: llvm_unreachable("Invalid predicate!"); 2168 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2169 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2170 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2171 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2172 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2173 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2174 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2175 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2176 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2177 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2178 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2179 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2180 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2181 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2182 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2183 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2184 2185 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2186 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2187 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2188 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2189 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2190 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2191 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2192 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2193 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2194 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2195 } 2196 2197 return Predicate; 2198} 2199