1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SelectionDAGBuilder.h"
15#include "SDNodeDbgValue.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/GCMetadata.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/CodeGen/StackMaps.h"
38#include "llvm/CodeGen/WinEHFuncInfo.h"
39#include "llvm/IR/CallingConv.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugInfo.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalVariable.h"
46#include "llvm/IR/InlineAsm.h"
47#include "llvm/IR/Instructions.h"
48#include "llvm/IR/IntrinsicInst.h"
49#include "llvm/IR/Intrinsics.h"
50#include "llvm/IR/LLVMContext.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/Statepoint.h"
53#include "llvm/MC/MCSymbol.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Target/TargetFrameLowering.h"
60#include "llvm/Target/TargetInstrInfo.h"
61#include "llvm/Target/TargetIntrinsicInfo.h"
62#include "llvm/Target/TargetLowering.h"
63#include "llvm/Target/TargetOptions.h"
64#include "llvm/Target/TargetSelectionDAGInfo.h"
65#include "llvm/Target/TargetSubtargetInfo.h"
66#include <algorithm>
67using namespace llvm;
68
69#define DEBUG_TYPE "isel"
70
71/// LimitFloatPrecision - Generate low-precision inline sequences for
72/// some float libcalls (6, 8 or 12 bits).
73static unsigned LimitFloatPrecision;
74
75static cl::opt<unsigned, true>
76LimitFPPrecision("limit-float-precision",
77                 cl::desc("Generate low-precision inline sequences "
78                          "for some float libcalls"),
79                 cl::location(LimitFloatPrecision),
80                 cl::init(0));
81
82// Limit the width of DAG chains. This is important in general to prevent
83// prevent DAG-based analysis from blowing up. For example, alias analysis and
84// load clustering may not complete in reasonable time. It is difficult to
85// recognize and avoid this situation within each individual analysis, and
86// future analyses are likely to have the same behavior. Limiting DAG width is
87// the safe approach, and will be especially important with global DAGs.
88//
89// MaxParallelChains default is arbitrarily high to avoid affecting
90// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
91// sequence over this should have been converted to llvm.memcpy by the
92// frontend. It easy to induce this behavior with .ll code such as:
93// %buffer = alloca [4096 x i8]
94// %data = load [4096 x i8]* %argPtr
95// store [4096 x i8] %data, [4096 x i8]* %buffer
96static const unsigned MaxParallelChains = 64;
97
98static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
99                                      const SDValue *Parts, unsigned NumParts,
100                                      MVT PartVT, EVT ValueVT, const Value *V);
101
102/// getCopyFromParts - Create a value that contains the specified legal parts
103/// combined into the value they represent.  If the parts combine to a type
104/// larger then ValueVT then AssertOp can be used to specify whether the extra
105/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
106/// (ISD::AssertSext).
107static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
108                                const SDValue *Parts,
109                                unsigned NumParts, MVT PartVT, EVT ValueVT,
110                                const Value *V,
111                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
112  if (ValueVT.isVector())
113    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
114                                  PartVT, ValueVT, V);
115
116  assert(NumParts > 0 && "No parts to assemble!");
117  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
118  SDValue Val = Parts[0];
119
120  if (NumParts > 1) {
121    // Assemble the value from multiple parts.
122    if (ValueVT.isInteger()) {
123      unsigned PartBits = PartVT.getSizeInBits();
124      unsigned ValueBits = ValueVT.getSizeInBits();
125
126      // Assemble the power of 2 part.
127      unsigned RoundParts = NumParts & (NumParts - 1) ?
128        1 << Log2_32(NumParts) : NumParts;
129      unsigned RoundBits = PartBits * RoundParts;
130      EVT RoundVT = RoundBits == ValueBits ?
131        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
132      SDValue Lo, Hi;
133
134      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
135
136      if (RoundParts > 2) {
137        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
138                              PartVT, HalfVT, V);
139        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
140                              RoundParts / 2, PartVT, HalfVT, V);
141      } else {
142        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
143        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
144      }
145
146      if (TLI.isBigEndian())
147        std::swap(Lo, Hi);
148
149      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
150
151      if (RoundParts < NumParts) {
152        // Assemble the trailing non-power-of-2 part.
153        unsigned OddParts = NumParts - RoundParts;
154        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
155        Hi = getCopyFromParts(DAG, DL,
156                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
157
158        // Combine the round and odd parts.
159        Lo = Val;
160        if (TLI.isBigEndian())
161          std::swap(Lo, Hi);
162        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
163        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
164        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
165                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
166                                         TLI.getPointerTy()));
167        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
168        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
169      }
170    } else if (PartVT.isFloatingPoint()) {
171      // FP split into multiple FP parts (for ppcf128)
172      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
173             "Unexpected split");
174      SDValue Lo, Hi;
175      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
176      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
177      if (TLI.hasBigEndianPartOrdering(ValueVT))
178        std::swap(Lo, Hi);
179      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
180    } else {
181      // FP split into integer parts (soft fp)
182      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
183             !PartVT.isVector() && "Unexpected split");
184      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
185      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
186    }
187  }
188
189  // There is now one part, held in Val.  Correct it to match ValueVT.
190  EVT PartEVT = Val.getValueType();
191
192  if (PartEVT == ValueVT)
193    return Val;
194
195  if (PartEVT.isInteger() && ValueVT.isInteger()) {
196    if (ValueVT.bitsLT(PartEVT)) {
197      // For a truncate, see if we have any information to
198      // indicate whether the truncated bits will always be
199      // zero or sign-extension.
200      if (AssertOp != ISD::DELETED_NODE)
201        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
202                          DAG.getValueType(ValueVT));
203      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
204    }
205    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
206  }
207
208  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
209    // FP_ROUND's are always exact here.
210    if (ValueVT.bitsLT(Val.getValueType()))
211      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
212                         DAG.getTargetConstant(1, TLI.getPointerTy()));
213
214    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
215  }
216
217  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
218    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
219
220  llvm_unreachable("Unknown mismatch!");
221}
222
223static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
224                                              const Twine &ErrMsg) {
225  const Instruction *I = dyn_cast_or_null<Instruction>(V);
226  if (!V)
227    return Ctx.emitError(ErrMsg);
228
229  const char *AsmError = ", possible invalid constraint for vector type";
230  if (const CallInst *CI = dyn_cast<CallInst>(I))
231    if (isa<InlineAsm>(CI->getCalledValue()))
232      return Ctx.emitError(I, ErrMsg + AsmError);
233
234  return Ctx.emitError(I, ErrMsg);
235}
236
237/// getCopyFromPartsVector - Create a value that contains the specified legal
238/// parts combined into the value they represent.  If the parts combine to a
239/// type larger then ValueVT then AssertOp can be used to specify whether the
240/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
241/// ValueVT (ISD::AssertSext).
242static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
243                                      const SDValue *Parts, unsigned NumParts,
244                                      MVT PartVT, EVT ValueVT, const Value *V) {
245  assert(ValueVT.isVector() && "Not a vector value");
246  assert(NumParts > 0 && "No parts to assemble!");
247  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
248  SDValue Val = Parts[0];
249
250  // Handle a multi-element vector.
251  if (NumParts > 1) {
252    EVT IntermediateVT;
253    MVT RegisterVT;
254    unsigned NumIntermediates;
255    unsigned NumRegs =
256    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
257                               NumIntermediates, RegisterVT);
258    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
259    NumParts = NumRegs; // Silence a compiler warning.
260    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
261    assert(RegisterVT == Parts[0].getSimpleValueType() &&
262           "Part type doesn't match part!");
263
264    // Assemble the parts into intermediate operands.
265    SmallVector<SDValue, 8> Ops(NumIntermediates);
266    if (NumIntermediates == NumParts) {
267      // If the register was not expanded, truncate or copy the value,
268      // as appropriate.
269      for (unsigned i = 0; i != NumParts; ++i)
270        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
271                                  PartVT, IntermediateVT, V);
272    } else if (NumParts > 0) {
273      // If the intermediate type was expanded, build the intermediate
274      // operands from the parts.
275      assert(NumParts % NumIntermediates == 0 &&
276             "Must expand into a divisible number of parts!");
277      unsigned Factor = NumParts / NumIntermediates;
278      for (unsigned i = 0; i != NumIntermediates; ++i)
279        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
280                                  PartVT, IntermediateVT, V);
281    }
282
283    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
284    // intermediate operands.
285    Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
286                                                : ISD::BUILD_VECTOR,
287                      DL, ValueVT, Ops);
288  }
289
290  // There is now one part, held in Val.  Correct it to match ValueVT.
291  EVT PartEVT = Val.getValueType();
292
293  if (PartEVT == ValueVT)
294    return Val;
295
296  if (PartEVT.isVector()) {
297    // If the element type of the source/dest vectors are the same, but the
298    // parts vector has more elements than the value vector, then we have a
299    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
300    // elements we want.
301    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
302      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
303             "Cannot narrow, it would be a lossy transformation");
304      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
305                         DAG.getConstant(0, TLI.getVectorIdxTy()));
306    }
307
308    // Vector/Vector bitcast.
309    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
310      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
311
312    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
313      "Cannot handle this kind of promotion");
314    // Promoted vector extract
315    bool Smaller = ValueVT.bitsLE(PartEVT);
316    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
317                       DL, ValueVT, Val);
318
319  }
320
321  // Trivial bitcast if the types are the same size and the destination
322  // vector type is legal.
323  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
324      TLI.isTypeLegal(ValueVT))
325    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
326
327  // Handle cases such as i8 -> <1 x i1>
328  if (ValueVT.getVectorNumElements() != 1) {
329    diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
330                                      "non-trivial scalar-to-vector conversion");
331    return DAG.getUNDEF(ValueVT);
332  }
333
334  if (ValueVT.getVectorNumElements() == 1 &&
335      ValueVT.getVectorElementType() != PartEVT) {
336    bool Smaller = ValueVT.bitsLE(PartEVT);
337    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
338                       DL, ValueVT.getScalarType(), Val);
339  }
340
341  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
342}
343
344static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
345                                 SDValue Val, SDValue *Parts, unsigned NumParts,
346                                 MVT PartVT, const Value *V);
347
348/// getCopyToParts - Create a series of nodes that contain the specified value
349/// split into legal parts.  If the parts contain more bits than Val, then, for
350/// integers, ExtendKind can be used to specify how to generate the extra bits.
351static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
352                           SDValue Val, SDValue *Parts, unsigned NumParts,
353                           MVT PartVT, const Value *V,
354                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
355  EVT ValueVT = Val.getValueType();
356
357  // Handle the vector case separately.
358  if (ValueVT.isVector())
359    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
360
361  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
362  unsigned PartBits = PartVT.getSizeInBits();
363  unsigned OrigNumParts = NumParts;
364  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
365
366  if (NumParts == 0)
367    return;
368
369  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
370  EVT PartEVT = PartVT;
371  if (PartEVT == ValueVT) {
372    assert(NumParts == 1 && "No-op copy with multiple parts!");
373    Parts[0] = Val;
374    return;
375  }
376
377  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
378    // If the parts cover more bits than the value has, promote the value.
379    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
380      assert(NumParts == 1 && "Do not know what to promote to!");
381      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
382    } else {
383      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384             ValueVT.isInteger() &&
385             "Unknown mismatch!");
386      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
388      if (PartVT == MVT::x86mmx)
389        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390    }
391  } else if (PartBits == ValueVT.getSizeInBits()) {
392    // Different types of the same size.
393    assert(NumParts == 1 && PartEVT != ValueVT);
394    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
395  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
396    // If the parts cover less bits than value has, truncate the value.
397    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
398           ValueVT.isInteger() &&
399           "Unknown mismatch!");
400    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
401    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
402    if (PartVT == MVT::x86mmx)
403      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
404  }
405
406  // The value may have changed - recompute ValueVT.
407  ValueVT = Val.getValueType();
408  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
409         "Failed to tile the value with PartVT!");
410
411  if (NumParts == 1) {
412    if (PartEVT != ValueVT)
413      diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
414                                        "scalar-to-vector conversion failed");
415
416    Parts[0] = Val;
417    return;
418  }
419
420  // Expand the value into multiple parts.
421  if (NumParts & (NumParts - 1)) {
422    // The number of parts is not a power of 2.  Split off and copy the tail.
423    assert(PartVT.isInteger() && ValueVT.isInteger() &&
424           "Do not know what to expand to!");
425    unsigned RoundParts = 1 << Log2_32(NumParts);
426    unsigned RoundBits = RoundParts * PartBits;
427    unsigned OddParts = NumParts - RoundParts;
428    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
429                                 DAG.getIntPtrConstant(RoundBits));
430    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
431
432    if (TLI.isBigEndian())
433      // The odd parts were reversed by getCopyToParts - unreverse them.
434      std::reverse(Parts + RoundParts, Parts + NumParts);
435
436    NumParts = RoundParts;
437    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439  }
440
441  // The number of parts is a power of 2.  Repeatedly bisect the value using
442  // EXTRACT_ELEMENT.
443  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
444                         EVT::getIntegerVT(*DAG.getContext(),
445                                           ValueVT.getSizeInBits()),
446                         Val);
447
448  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
449    for (unsigned i = 0; i < NumParts; i += StepSize) {
450      unsigned ThisBits = StepSize * PartBits / 2;
451      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
452      SDValue &Part0 = Parts[i];
453      SDValue &Part1 = Parts[i+StepSize/2];
454
455      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
456                          ThisVT, Part0, DAG.getIntPtrConstant(1));
457      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
458                          ThisVT, Part0, DAG.getIntPtrConstant(0));
459
460      if (ThisBits == PartBits && ThisVT != PartVT) {
461        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
462        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
463      }
464    }
465  }
466
467  if (TLI.isBigEndian())
468    std::reverse(Parts, Parts + OrigNumParts);
469}
470
471
472/// getCopyToPartsVector - Create a series of nodes that contain the specified
473/// value split into legal parts.
474static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
475                                 SDValue Val, SDValue *Parts, unsigned NumParts,
476                                 MVT PartVT, const Value *V) {
477  EVT ValueVT = Val.getValueType();
478  assert(ValueVT.isVector() && "Not a vector");
479  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480
481  if (NumParts == 1) {
482    EVT PartEVT = PartVT;
483    if (PartEVT == ValueVT) {
484      // Nothing to do.
485    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
486      // Bitconvert vector->vector case.
487      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
488    } else if (PartVT.isVector() &&
489               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
490               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
491      EVT ElementVT = PartVT.getVectorElementType();
492      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
493      // undef elements.
494      SmallVector<SDValue, 16> Ops;
495      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
497                                  ElementVT, Val, DAG.getConstant(i,
498                                                  TLI.getVectorIdxTy())));
499
500      for (unsigned i = ValueVT.getVectorNumElements(),
501           e = PartVT.getVectorNumElements(); i != e; ++i)
502        Ops.push_back(DAG.getUNDEF(ElementVT));
503
504      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
505
506      // FIXME: Use CONCAT for 2x -> 4x.
507
508      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
509      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
510    } else if (PartVT.isVector() &&
511               PartEVT.getVectorElementType().bitsGE(
512                 ValueVT.getVectorElementType()) &&
513               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
514
515      // Promoted vector extract
516      bool Smaller = PartEVT.bitsLE(ValueVT);
517      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
518                        DL, PartVT, Val);
519    } else{
520      // Vector -> scalar conversion.
521      assert(ValueVT.getVectorNumElements() == 1 &&
522             "Only trivial vector-to-scalar conversions should get here!");
523      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
525
526      bool Smaller = ValueVT.bitsLE(PartVT);
527      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
528                         DL, PartVT, Val);
529    }
530
531    Parts[0] = Val;
532    return;
533  }
534
535  // Handle a multi-element vector.
536  EVT IntermediateVT;
537  MVT RegisterVT;
538  unsigned NumIntermediates;
539  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
540                                                IntermediateVT,
541                                                NumIntermediates, RegisterVT);
542  unsigned NumElements = ValueVT.getVectorNumElements();
543
544  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
545  NumParts = NumRegs; // Silence a compiler warning.
546  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
547
548  // Split the vector into intermediate operands.
549  SmallVector<SDValue, 8> Ops(NumIntermediates);
550  for (unsigned i = 0; i != NumIntermediates; ++i) {
551    if (IntermediateVT.isVector())
552      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
553                           IntermediateVT, Val,
554                   DAG.getConstant(i * (NumElements / NumIntermediates),
555                                   TLI.getVectorIdxTy()));
556    else
557      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
558                           IntermediateVT, Val,
559                           DAG.getConstant(i, TLI.getVectorIdxTy()));
560  }
561
562  // Split the intermediate operands into legal parts.
563  if (NumParts == NumIntermediates) {
564    // If the register was not expanded, promote or copy the value,
565    // as appropriate.
566    for (unsigned i = 0; i != NumParts; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
568  } else if (NumParts > 0) {
569    // If the intermediate type was expanded, split each the value into
570    // legal parts.
571    assert(NumIntermediates != 0 && "division by zero");
572    assert(NumParts % NumIntermediates == 0 &&
573           "Must expand into a divisible number of parts!");
574    unsigned Factor = NumParts / NumIntermediates;
575    for (unsigned i = 0; i != NumIntermediates; ++i)
576      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
577  }
578}
579
580namespace {
581  /// RegsForValue - This struct represents the registers (physical or virtual)
582  /// that a particular set of values is assigned, and the type information
583  /// about the value. The most common situation is to represent one value at a
584  /// time, but struct or array values are handled element-wise as multiple
585  /// values.  The splitting of aggregates is performed recursively, so that we
586  /// never have aggregate-typed registers. The values at this point do not
587  /// necessarily have legal types, so each value may require one or more
588  /// registers of some legal type.
589  ///
590  struct RegsForValue {
591    /// ValueVTs - The value types of the values, which may not be legal, and
592    /// may need be promoted or synthesized from one or more registers.
593    ///
594    SmallVector<EVT, 4> ValueVTs;
595
596    /// RegVTs - The value types of the registers. This is the same size as
597    /// ValueVTs and it records, for each value, what the type of the assigned
598    /// register or registers are. (Individual values are never synthesized
599    /// from more than one type of register.)
600    ///
601    /// With virtual registers, the contents of RegVTs is redundant with TLI's
602    /// getRegisterType member function, however when with physical registers
603    /// it is necessary to have a separate record of the types.
604    ///
605    SmallVector<MVT, 4> RegVTs;
606
607    /// Regs - This list holds the registers assigned to the values.
608    /// Each legal or promoted value requires one register, and each
609    /// expanded value requires multiple registers.
610    ///
611    SmallVector<unsigned, 4> Regs;
612
613    RegsForValue() {}
614
615    RegsForValue(const SmallVector<unsigned, 4> &regs,
616                 MVT regvt, EVT valuevt)
617      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
618
619    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
620                 unsigned Reg, Type *Ty) {
621      ComputeValueVTs(tli, Ty, ValueVTs);
622
623      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
624        EVT ValueVT = ValueVTs[Value];
625        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
626        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
627        for (unsigned i = 0; i != NumRegs; ++i)
628          Regs.push_back(Reg + i);
629        RegVTs.push_back(RegisterVT);
630        Reg += NumRegs;
631      }
632    }
633
634    /// append - Add the specified values to this one.
635    void append(const RegsForValue &RHS) {
636      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
637      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
638      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
639    }
640
641    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
642    /// this value and returns the result as a ValueVTs value.  This uses
643    /// Chain/Flag as the input and updates them for the output Chain/Flag.
644    /// If the Flag pointer is NULL, no flag is used.
645    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
646                            SDLoc dl,
647                            SDValue &Chain, SDValue *Flag,
648                            const Value *V = nullptr) const;
649
650    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
651    /// specified value into the registers specified by this object.  This uses
652    /// Chain/Flag as the input and updates them for the output Chain/Flag.
653    /// If the Flag pointer is NULL, no flag is used.
654    void
655    getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
656                  SDValue *Flag, const Value *V,
657                  ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
658
659    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660    /// operand list.  This adds the code marker, matching input operand index
661    /// (if applicable), and includes the number of values added into it.
662    void AddInlineAsmOperands(unsigned Kind,
663                              bool HasMatching, unsigned MatchingIdx,
664                              SelectionDAG &DAG,
665                              std::vector<SDValue> &Ops) const;
666  };
667}
668
669/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670/// this value and returns the result as a ValueVT value.  This uses
671/// Chain/Flag as the input and updates them for the output Chain/Flag.
672/// If the Flag pointer is NULL, no flag is used.
673SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674                                      FunctionLoweringInfo &FuncInfo,
675                                      SDLoc dl,
676                                      SDValue &Chain, SDValue *Flag,
677                                      const Value *V) const {
678  // A Value with type {} or [0 x %t] needs no registers.
679  if (ValueVTs.empty())
680    return SDValue();
681
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Assemble the legal parts into the final values.
685  SmallVector<SDValue, 4> Values(ValueVTs.size());
686  SmallVector<SDValue, 8> Parts;
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    // Copy the legal parts from the registers.
689    EVT ValueVT = ValueVTs[Value];
690    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691    MVT RegisterVT = RegVTs[Value];
692
693    Parts.resize(NumRegs);
694    for (unsigned i = 0; i != NumRegs; ++i) {
695      SDValue P;
696      if (!Flag) {
697        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
698      } else {
699        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700        *Flag = P.getValue(2);
701      }
702
703      Chain = P.getValue(1);
704      Parts[i] = P;
705
706      // If the source register was virtual and if we know something about it,
707      // add an assert node.
708      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709          !RegisterVT.isInteger() || RegisterVT.isVector())
710        continue;
711
712      const FunctionLoweringInfo::LiveOutInfo *LOI =
713        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
714      if (!LOI)
715        continue;
716
717      unsigned RegSize = RegisterVT.getSizeInBits();
718      unsigned NumSignBits = LOI->NumSignBits;
719      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
720
721      if (NumZeroBits == RegSize) {
722        // The current value is a zero.
723        // Explicitly express that as it would be easier for
724        // optimizations to kick in.
725        Parts[i] = DAG.getConstant(0, RegisterVT);
726        continue;
727      }
728
729      // FIXME: We capture more information than the dag can represent.  For
730      // now, just use the tightest assertzext/assertsext possible.
731      bool isSExt = true;
732      EVT FromVT(MVT::Other);
733      if (NumSignBits == RegSize)
734        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
735      else if (NumZeroBits >= RegSize-1)
736        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
737      else if (NumSignBits > RegSize-8)
738        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
739      else if (NumZeroBits >= RegSize-8)
740        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
741      else if (NumSignBits > RegSize-16)
742        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
743      else if (NumZeroBits >= RegSize-16)
744        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
745      else if (NumSignBits > RegSize-32)
746        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
747      else if (NumZeroBits >= RegSize-32)
748        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
749      else
750        continue;
751
752      // Add an assertion node.
753      assert(FromVT != MVT::Other);
754      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
755                             RegisterVT, P, DAG.getValueType(FromVT));
756    }
757
758    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
759                                     NumRegs, RegisterVT, ValueVT, V);
760    Part += NumRegs;
761    Parts.clear();
762  }
763
764  return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
765}
766
767/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
768/// specified value into the registers specified by this object.  This uses
769/// Chain/Flag as the input and updates them for the output Chain/Flag.
770/// If the Flag pointer is NULL, no flag is used.
771void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
772                                 SDValue &Chain, SDValue *Flag, const Value *V,
773                                 ISD::NodeType PreferredExtendType) const {
774  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
775  ISD::NodeType ExtendKind = PreferredExtendType;
776
777  // Get the list of the values's legal parts.
778  unsigned NumRegs = Regs.size();
779  SmallVector<SDValue, 8> Parts(NumRegs);
780  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
781    EVT ValueVT = ValueVTs[Value];
782    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
783    MVT RegisterVT = RegVTs[Value];
784
785    if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
786      ExtendKind = ISD::ZERO_EXTEND;
787
788    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
789                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
790    Part += NumParts;
791  }
792
793  // Copy the parts into the registers.
794  SmallVector<SDValue, 8> Chains(NumRegs);
795  for (unsigned i = 0; i != NumRegs; ++i) {
796    SDValue Part;
797    if (!Flag) {
798      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
799    } else {
800      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
801      *Flag = Part.getValue(1);
802    }
803
804    Chains[i] = Part.getValue(0);
805  }
806
807  if (NumRegs == 1 || Flag)
808    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
809    // flagged to it. That is the CopyToReg nodes and the user are considered
810    // a single scheduling unit. If we create a TokenFactor and return it as
811    // chain, then the TokenFactor is both a predecessor (operand) of the
812    // user as well as a successor (the TF operands are flagged to the user).
813    // c1, f1 = CopyToReg
814    // c2, f2 = CopyToReg
815    // c3     = TokenFactor c1, c2
816    // ...
817    //        = op c3, ..., f2
818    Chain = Chains[NumRegs-1];
819  else
820    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
821}
822
823/// AddInlineAsmOperands - Add this value to the specified inlineasm node
824/// operand list.  This adds the code marker and includes the number of
825/// values added into it.
826void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
827                                        unsigned MatchingIdx,
828                                        SelectionDAG &DAG,
829                                        std::vector<SDValue> &Ops) const {
830  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
831
832  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
833  if (HasMatching)
834    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
835  else if (!Regs.empty() &&
836           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
837    // Put the register class of the virtual registers in the flag word.  That
838    // way, later passes can recompute register class constraints for inline
839    // assembly as well as normal instructions.
840    // Don't do this for tied operands that can use the regclass information
841    // from the def.
842    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
843    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
844    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
845  }
846
847  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
848  Ops.push_back(Res);
849
850  unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
851  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
852    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
853    MVT RegisterVT = RegVTs[Value];
854    for (unsigned i = 0; i != NumRegs; ++i) {
855      assert(Reg < Regs.size() && "Mismatch in # registers expected");
856      unsigned TheReg = Regs[Reg++];
857      Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
858
859      if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
860        // If we clobbered the stack pointer, MFI should know about it.
861        assert(DAG.getMachineFunction().getFrameInfo()->
862            hasInlineAsmWithSPAdjust());
863      }
864    }
865  }
866}
867
868void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
869                               const TargetLibraryInfo *li) {
870  AA = &aa;
871  GFI = gfi;
872  LibInfo = li;
873  DL = DAG.getTarget().getDataLayout();
874  Context = DAG.getContext();
875  LPadToCallSiteMap.clear();
876}
877
878/// clear - Clear out the current SelectionDAG and the associated
879/// state and prepare this SelectionDAGBuilder object to be used
880/// for a new block. This doesn't clear out information about
881/// additional blocks that are needed to complete switch lowering
882/// or PHI node updating; that information is cleared out as it is
883/// consumed.
884void SelectionDAGBuilder::clear() {
885  NodeMap.clear();
886  UnusedArgNodeMap.clear();
887  PendingLoads.clear();
888  PendingExports.clear();
889  CurInst = nullptr;
890  HasTailCall = false;
891  SDNodeOrder = LowestSDNodeOrder;
892  StatepointLowering.clear();
893}
894
895/// clearDanglingDebugInfo - Clear the dangling debug information
896/// map. This function is separated from the clear so that debug
897/// information that is dangling in a basic block can be properly
898/// resolved in a different basic block. This allows the
899/// SelectionDAG to resolve dangling debug information attached
900/// to PHI nodes.
901void SelectionDAGBuilder::clearDanglingDebugInfo() {
902  DanglingDebugInfoMap.clear();
903}
904
905/// getRoot - Return the current virtual root of the Selection DAG,
906/// flushing any PendingLoad items. This must be done before emitting
907/// a store or any other node that may need to be ordered after any
908/// prior load instructions.
909///
910SDValue SelectionDAGBuilder::getRoot() {
911  if (PendingLoads.empty())
912    return DAG.getRoot();
913
914  if (PendingLoads.size() == 1) {
915    SDValue Root = PendingLoads[0];
916    DAG.setRoot(Root);
917    PendingLoads.clear();
918    return Root;
919  }
920
921  // Otherwise, we have to make a token factor node.
922  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
923                             PendingLoads);
924  PendingLoads.clear();
925  DAG.setRoot(Root);
926  return Root;
927}
928
929/// getControlRoot - Similar to getRoot, but instead of flushing all the
930/// PendingLoad items, flush all the PendingExports items. It is necessary
931/// to do this before emitting a terminator instruction.
932///
933SDValue SelectionDAGBuilder::getControlRoot() {
934  SDValue Root = DAG.getRoot();
935
936  if (PendingExports.empty())
937    return Root;
938
939  // Turn all of the CopyToReg chains into one factored node.
940  if (Root.getOpcode() != ISD::EntryToken) {
941    unsigned i = 0, e = PendingExports.size();
942    for (; i != e; ++i) {
943      assert(PendingExports[i].getNode()->getNumOperands() > 1);
944      if (PendingExports[i].getNode()->getOperand(0) == Root)
945        break;  // Don't add the root if we already indirectly depend on it.
946    }
947
948    if (i == e)
949      PendingExports.push_back(Root);
950  }
951
952  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
953                     PendingExports);
954  PendingExports.clear();
955  DAG.setRoot(Root);
956  return Root;
957}
958
959void SelectionDAGBuilder::visit(const Instruction &I) {
960  // Set up outgoing PHI node register values before emitting the terminator.
961  if (isa<TerminatorInst>(&I))
962    HandlePHINodesInSuccessorBlocks(I.getParent());
963
964  ++SDNodeOrder;
965
966  CurInst = &I;
967
968  visit(I.getOpcode(), I);
969
970  if (!isa<TerminatorInst>(&I) && !HasTailCall)
971    CopyToExportRegsIfNeeded(&I);
972
973  CurInst = nullptr;
974}
975
976void SelectionDAGBuilder::visitPHI(const PHINode &) {
977  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
978}
979
980void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
981  // Note: this doesn't use InstVisitor, because it has to work with
982  // ConstantExpr's in addition to instructions.
983  switch (Opcode) {
984  default: llvm_unreachable("Unknown instruction type encountered!");
985    // Build the switch statement using the Instruction.def file.
986#define HANDLE_INST(NUM, OPCODE, CLASS) \
987    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
988#include "llvm/IR/Instruction.def"
989  }
990}
991
992// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
993// generate the debug data structures now that we've seen its definition.
994void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
995                                                   SDValue Val) {
996  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
997  if (DDI.getDI()) {
998    const DbgValueInst *DI = DDI.getDI();
999    DebugLoc dl = DDI.getdl();
1000    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1001    MDLocalVariable *Variable = DI->getVariable();
1002    MDExpression *Expr = DI->getExpression();
1003    assert(Variable->isValidLocationForIntrinsic(dl) &&
1004           "Expected inlined-at fields to agree");
1005    uint64_t Offset = DI->getOffset();
1006    // A dbg.value for an alloca is always indirect.
1007    bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
1008    SDDbgValue *SDV;
1009    if (Val.getNode()) {
1010      if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
1011                                    Val)) {
1012        SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1013                              IsIndirect, Offset, dl, DbgSDNodeOrder);
1014        DAG.AddDbgValue(SDV, Val.getNode(), false);
1015      }
1016    } else
1017      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1018    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1019  }
1020}
1021
1022/// getCopyFromRegs - If there was virtual register allocated for the value V
1023/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1024SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1025  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1026  SDValue res;
1027
1028  if (It != FuncInfo.ValueMap.end()) {
1029    unsigned InReg = It->second;
1030    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
1031                     Ty);
1032    SDValue Chain = DAG.getEntryNode();
1033    res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1034    resolveDanglingDebugInfo(V, res);
1035  }
1036
1037  return res;
1038}
1039
1040/// getValue - Return an SDValue for the given Value.
1041SDValue SelectionDAGBuilder::getValue(const Value *V) {
1042  // If we already have an SDValue for this value, use it. It's important
1043  // to do this first, so that we don't create a CopyFromReg if we already
1044  // have a regular SDValue.
1045  SDValue &N = NodeMap[V];
1046  if (N.getNode()) return N;
1047
1048  // If there's a virtual register allocated and initialized for this
1049  // value, use it.
1050  SDValue copyFromReg = getCopyFromRegs(V, V->getType());
1051  if (copyFromReg.getNode()) {
1052    return copyFromReg;
1053  }
1054
1055  // Otherwise create a new SDValue and remember it.
1056  SDValue Val = getValueImpl(V);
1057  NodeMap[V] = Val;
1058  resolveDanglingDebugInfo(V, Val);
1059  return Val;
1060}
1061
1062/// getNonRegisterValue - Return an SDValue for the given Value, but
1063/// don't look in FuncInfo.ValueMap for a virtual register.
1064SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1065  // If we already have an SDValue for this value, use it.
1066  SDValue &N = NodeMap[V];
1067  if (N.getNode()) return N;
1068
1069  // Otherwise create a new SDValue and remember it.
1070  SDValue Val = getValueImpl(V);
1071  NodeMap[V] = Val;
1072  resolveDanglingDebugInfo(V, Val);
1073  return Val;
1074}
1075
1076/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1077/// Create an SDValue for the given value.
1078SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1079  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1080
1081  if (const Constant *C = dyn_cast<Constant>(V)) {
1082    EVT VT = TLI.getValueType(V->getType(), true);
1083
1084    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1085      return DAG.getConstant(*CI, VT);
1086
1087    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1088      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1089
1090    if (isa<ConstantPointerNull>(C)) {
1091      unsigned AS = V->getType()->getPointerAddressSpace();
1092      return DAG.getConstant(0, TLI.getPointerTy(AS));
1093    }
1094
1095    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1096      return DAG.getConstantFP(*CFP, VT);
1097
1098    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1099      return DAG.getUNDEF(VT);
1100
1101    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1102      visit(CE->getOpcode(), *CE);
1103      SDValue N1 = NodeMap[V];
1104      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1105      return N1;
1106    }
1107
1108    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1109      SmallVector<SDValue, 4> Constants;
1110      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1111           OI != OE; ++OI) {
1112        SDNode *Val = getValue(*OI).getNode();
1113        // If the operand is an empty aggregate, there are no values.
1114        if (!Val) continue;
1115        // Add each leaf value from the operand to the Constants list
1116        // to form a flattened list of all the values.
1117        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1118          Constants.push_back(SDValue(Val, i));
1119      }
1120
1121      return DAG.getMergeValues(Constants, getCurSDLoc());
1122    }
1123
1124    if (const ConstantDataSequential *CDS =
1125          dyn_cast<ConstantDataSequential>(C)) {
1126      SmallVector<SDValue, 4> Ops;
1127      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1128        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1129        // Add each leaf value from the operand to the Constants list
1130        // to form a flattened list of all the values.
1131        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1132          Ops.push_back(SDValue(Val, i));
1133      }
1134
1135      if (isa<ArrayType>(CDS->getType()))
1136        return DAG.getMergeValues(Ops, getCurSDLoc());
1137      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1138                                      VT, Ops);
1139    }
1140
1141    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1142      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1143             "Unknown struct or array constant!");
1144
1145      SmallVector<EVT, 4> ValueVTs;
1146      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1147      unsigned NumElts = ValueVTs.size();
1148      if (NumElts == 0)
1149        return SDValue(); // empty struct
1150      SmallVector<SDValue, 4> Constants(NumElts);
1151      for (unsigned i = 0; i != NumElts; ++i) {
1152        EVT EltVT = ValueVTs[i];
1153        if (isa<UndefValue>(C))
1154          Constants[i] = DAG.getUNDEF(EltVT);
1155        else if (EltVT.isFloatingPoint())
1156          Constants[i] = DAG.getConstantFP(0, EltVT);
1157        else
1158          Constants[i] = DAG.getConstant(0, EltVT);
1159      }
1160
1161      return DAG.getMergeValues(Constants, getCurSDLoc());
1162    }
1163
1164    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1165      return DAG.getBlockAddress(BA, VT);
1166
1167    VectorType *VecTy = cast<VectorType>(V->getType());
1168    unsigned NumElements = VecTy->getNumElements();
1169
1170    // Now that we know the number and type of the elements, get that number of
1171    // elements into the Ops array based on what kind of constant it is.
1172    SmallVector<SDValue, 16> Ops;
1173    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1174      for (unsigned i = 0; i != NumElements; ++i)
1175        Ops.push_back(getValue(CV->getOperand(i)));
1176    } else {
1177      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1178      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1179
1180      SDValue Op;
1181      if (EltVT.isFloatingPoint())
1182        Op = DAG.getConstantFP(0, EltVT);
1183      else
1184        Op = DAG.getConstant(0, EltVT);
1185      Ops.assign(NumElements, Op);
1186    }
1187
1188    // Create a BUILD_VECTOR node.
1189    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1190  }
1191
1192  // If this is a static alloca, generate it as the frameindex instead of
1193  // computation.
1194  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1195    DenseMap<const AllocaInst*, int>::iterator SI =
1196      FuncInfo.StaticAllocaMap.find(AI);
1197    if (SI != FuncInfo.StaticAllocaMap.end())
1198      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1199  }
1200
1201  // If this is an instruction which fast-isel has deferred, select it now.
1202  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1203    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1204    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1205    SDValue Chain = DAG.getEntryNode();
1206    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1207  }
1208
1209  llvm_unreachable("Can't get register for value!");
1210}
1211
1212void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1213  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1214  SDValue Chain = getControlRoot();
1215  SmallVector<ISD::OutputArg, 8> Outs;
1216  SmallVector<SDValue, 8> OutVals;
1217
1218  if (!FuncInfo.CanLowerReturn) {
1219    unsigned DemoteReg = FuncInfo.DemoteRegister;
1220    const Function *F = I.getParent()->getParent();
1221
1222    // Emit a store of the return value through the virtual register.
1223    // Leave Outs empty so that LowerReturn won't try to load return
1224    // registers the usual way.
1225    SmallVector<EVT, 1> PtrValueVTs;
1226    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1227                    PtrValueVTs);
1228
1229    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1230    SDValue RetOp = getValue(I.getOperand(0));
1231
1232    SmallVector<EVT, 4> ValueVTs;
1233    SmallVector<uint64_t, 4> Offsets;
1234    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1235    unsigned NumValues = ValueVTs.size();
1236
1237    SmallVector<SDValue, 4> Chains(NumValues);
1238    for (unsigned i = 0; i != NumValues; ++i) {
1239      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1240                                RetPtr.getValueType(), RetPtr,
1241                                DAG.getIntPtrConstant(Offsets[i]));
1242      Chains[i] =
1243        DAG.getStore(Chain, getCurSDLoc(),
1244                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1245                     // FIXME: better loc info would be nice.
1246                     Add, MachinePointerInfo(), false, false, 0);
1247    }
1248
1249    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1250                        MVT::Other, Chains);
1251  } else if (I.getNumOperands() != 0) {
1252    SmallVector<EVT, 4> ValueVTs;
1253    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1254    unsigned NumValues = ValueVTs.size();
1255    if (NumValues) {
1256      SDValue RetOp = getValue(I.getOperand(0));
1257
1258      const Function *F = I.getParent()->getParent();
1259
1260      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1261      if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1262                                          Attribute::SExt))
1263        ExtendKind = ISD::SIGN_EXTEND;
1264      else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1265                                               Attribute::ZExt))
1266        ExtendKind = ISD::ZERO_EXTEND;
1267
1268      LLVMContext &Context = F->getContext();
1269      bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1270                                                      Attribute::InReg);
1271
1272      for (unsigned j = 0; j != NumValues; ++j) {
1273        EVT VT = ValueVTs[j];
1274
1275        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1276          VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1277
1278        unsigned NumParts = TLI.getNumRegisters(Context, VT);
1279        MVT PartVT = TLI.getRegisterType(Context, VT);
1280        SmallVector<SDValue, 4> Parts(NumParts);
1281        getCopyToParts(DAG, getCurSDLoc(),
1282                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1283                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1284
1285        // 'inreg' on function refers to return value
1286        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1287        if (RetInReg)
1288          Flags.setInReg();
1289
1290        // Propagate extension type if any
1291        if (ExtendKind == ISD::SIGN_EXTEND)
1292          Flags.setSExt();
1293        else if (ExtendKind == ISD::ZERO_EXTEND)
1294          Flags.setZExt();
1295
1296        for (unsigned i = 0; i < NumParts; ++i) {
1297          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1298                                        VT, /*isfixed=*/true, 0, 0));
1299          OutVals.push_back(Parts[i]);
1300        }
1301      }
1302    }
1303  }
1304
1305  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1306  CallingConv::ID CallConv =
1307    DAG.getMachineFunction().getFunction()->getCallingConv();
1308  Chain = DAG.getTargetLoweringInfo().LowerReturn(
1309      Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1310
1311  // Verify that the target's LowerReturn behaved as expected.
1312  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1313         "LowerReturn didn't return a valid chain!");
1314
1315  // Update the DAG with the new chain value resulting from return lowering.
1316  DAG.setRoot(Chain);
1317}
1318
1319/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1320/// created for it, emit nodes to copy the value into the virtual
1321/// registers.
1322void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1323  // Skip empty types
1324  if (V->getType()->isEmptyTy())
1325    return;
1326
1327  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1328  if (VMI != FuncInfo.ValueMap.end()) {
1329    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1330    CopyValueToVirtualRegister(V, VMI->second);
1331  }
1332}
1333
1334/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1335/// the current basic block, add it to ValueMap now so that we'll get a
1336/// CopyTo/FromReg.
1337void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1338  // No need to export constants.
1339  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1340
1341  // Already exported?
1342  if (FuncInfo.isExportedInst(V)) return;
1343
1344  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1345  CopyValueToVirtualRegister(V, Reg);
1346}
1347
1348bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1349                                                     const BasicBlock *FromBB) {
1350  // The operands of the setcc have to be in this block.  We don't know
1351  // how to export them from some other block.
1352  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1353    // Can export from current BB.
1354    if (VI->getParent() == FromBB)
1355      return true;
1356
1357    // Is already exported, noop.
1358    return FuncInfo.isExportedInst(V);
1359  }
1360
1361  // If this is an argument, we can export it if the BB is the entry block or
1362  // if it is already exported.
1363  if (isa<Argument>(V)) {
1364    if (FromBB == &FromBB->getParent()->getEntryBlock())
1365      return true;
1366
1367    // Otherwise, can only export this if it is already exported.
1368    return FuncInfo.isExportedInst(V);
1369  }
1370
1371  // Otherwise, constants can always be exported.
1372  return true;
1373}
1374
1375/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1376uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1377                                            const MachineBasicBlock *Dst) const {
1378  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1379  if (!BPI)
1380    return 0;
1381  const BasicBlock *SrcBB = Src->getBasicBlock();
1382  const BasicBlock *DstBB = Dst->getBasicBlock();
1383  return BPI->getEdgeWeight(SrcBB, DstBB);
1384}
1385
1386void SelectionDAGBuilder::
1387addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1388                       uint32_t Weight /* = 0 */) {
1389  if (!Weight)
1390    Weight = getEdgeWeight(Src, Dst);
1391  Src->addSuccessor(Dst, Weight);
1392}
1393
1394
1395static bool InBlock(const Value *V, const BasicBlock *BB) {
1396  if (const Instruction *I = dyn_cast<Instruction>(V))
1397    return I->getParent() == BB;
1398  return true;
1399}
1400
1401/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1402/// This function emits a branch and is used at the leaves of an OR or an
1403/// AND operator tree.
1404///
1405void
1406SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1407                                                  MachineBasicBlock *TBB,
1408                                                  MachineBasicBlock *FBB,
1409                                                  MachineBasicBlock *CurBB,
1410                                                  MachineBasicBlock *SwitchBB,
1411                                                  uint32_t TWeight,
1412                                                  uint32_t FWeight) {
1413  const BasicBlock *BB = CurBB->getBasicBlock();
1414
1415  // If the leaf of the tree is a comparison, merge the condition into
1416  // the caseblock.
1417  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1418    // The operands of the cmp have to be in this block.  We don't know
1419    // how to export them from some other block.  If this is the first block
1420    // of the sequence, no exporting is needed.
1421    if (CurBB == SwitchBB ||
1422        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1423         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1424      ISD::CondCode Condition;
1425      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1426        Condition = getICmpCondCode(IC->getPredicate());
1427      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1428        Condition = getFCmpCondCode(FC->getPredicate());
1429        if (TM.Options.NoNaNsFPMath)
1430          Condition = getFCmpCodeWithoutNaN(Condition);
1431      } else {
1432        (void)Condition; // silence warning.
1433        llvm_unreachable("Unknown compare instruction");
1434      }
1435
1436      CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1437                   TBB, FBB, CurBB, TWeight, FWeight);
1438      SwitchCases.push_back(CB);
1439      return;
1440    }
1441  }
1442
1443  // Create a CaseBlock record representing this branch.
1444  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1445               nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1446  SwitchCases.push_back(CB);
1447}
1448
1449/// Scale down both weights to fit into uint32_t.
1450static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1451  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1452  uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1453  NewTrue = NewTrue / Scale;
1454  NewFalse = NewFalse / Scale;
1455}
1456
1457/// FindMergedConditions - If Cond is an expression like
1458void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1459                                               MachineBasicBlock *TBB,
1460                                               MachineBasicBlock *FBB,
1461                                               MachineBasicBlock *CurBB,
1462                                               MachineBasicBlock *SwitchBB,
1463                                               unsigned Opc, uint32_t TWeight,
1464                                               uint32_t FWeight) {
1465  // If this node is not part of the or/and tree, emit it as a branch.
1466  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1467  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1468      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1469      BOp->getParent() != CurBB->getBasicBlock() ||
1470      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1471      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1472    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1473                                 TWeight, FWeight);
1474    return;
1475  }
1476
1477  //  Create TmpBB after CurBB.
1478  MachineFunction::iterator BBI = CurBB;
1479  MachineFunction &MF = DAG.getMachineFunction();
1480  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1481  CurBB->getParent()->insert(++BBI, TmpBB);
1482
1483  if (Opc == Instruction::Or) {
1484    // Codegen X | Y as:
1485    // BB1:
1486    //   jmp_if_X TBB
1487    //   jmp TmpBB
1488    // TmpBB:
1489    //   jmp_if_Y TBB
1490    //   jmp FBB
1491    //
1492
1493    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1494    // The requirement is that
1495    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1496    //     = TrueProb for orignal BB.
1497    // Assuming the orignal weights are A and B, one choice is to set BB1's
1498    // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1499    // assumes that
1500    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1501    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1502    // TmpBB, but the math is more complicated.
1503
1504    uint64_t NewTrueWeight = TWeight;
1505    uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1506    ScaleWeights(NewTrueWeight, NewFalseWeight);
1507    // Emit the LHS condition.
1508    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1509                         NewTrueWeight, NewFalseWeight);
1510
1511    NewTrueWeight = TWeight;
1512    NewFalseWeight = 2 * (uint64_t)FWeight;
1513    ScaleWeights(NewTrueWeight, NewFalseWeight);
1514    // Emit the RHS condition into TmpBB.
1515    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1516                         NewTrueWeight, NewFalseWeight);
1517  } else {
1518    assert(Opc == Instruction::And && "Unknown merge op!");
1519    // Codegen X & Y as:
1520    // BB1:
1521    //   jmp_if_X TmpBB
1522    //   jmp FBB
1523    // TmpBB:
1524    //   jmp_if_Y TBB
1525    //   jmp FBB
1526    //
1527    //  This requires creation of TmpBB after CurBB.
1528
1529    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1530    // The requirement is that
1531    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1532    //     = FalseProb for orignal BB.
1533    // Assuming the orignal weights are A and B, one choice is to set BB1's
1534    // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1535    // assumes that
1536    //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1537
1538    uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1539    uint64_t NewFalseWeight = FWeight;
1540    ScaleWeights(NewTrueWeight, NewFalseWeight);
1541    // Emit the LHS condition.
1542    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1543                         NewTrueWeight, NewFalseWeight);
1544
1545    NewTrueWeight = 2 * (uint64_t)TWeight;
1546    NewFalseWeight = FWeight;
1547    ScaleWeights(NewTrueWeight, NewFalseWeight);
1548    // Emit the RHS condition into TmpBB.
1549    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1550                         NewTrueWeight, NewFalseWeight);
1551  }
1552}
1553
1554/// If the set of cases should be emitted as a series of branches, return true.
1555/// If we should emit this as a bunch of and/or'd together conditions, return
1556/// false.
1557bool
1558SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1559  if (Cases.size() != 2) return true;
1560
1561  // If this is two comparisons of the same values or'd or and'd together, they
1562  // will get folded into a single comparison, so don't emit two blocks.
1563  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1564       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1565      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1566       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1567    return false;
1568  }
1569
1570  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1571  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1572  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1573      Cases[0].CC == Cases[1].CC &&
1574      isa<Constant>(Cases[0].CmpRHS) &&
1575      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1576    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1577      return false;
1578    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1579      return false;
1580  }
1581
1582  return true;
1583}
1584
1585void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1586  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1587
1588  // Update machine-CFG edges.
1589  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1590
1591  if (I.isUnconditional()) {
1592    // Update machine-CFG edges.
1593    BrMBB->addSuccessor(Succ0MBB);
1594
1595    // If this is not a fall-through branch or optimizations are switched off,
1596    // emit the branch.
1597    if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1598      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1599                              MVT::Other, getControlRoot(),
1600                              DAG.getBasicBlock(Succ0MBB)));
1601
1602    return;
1603  }
1604
1605  // If this condition is one of the special cases we handle, do special stuff
1606  // now.
1607  const Value *CondVal = I.getCondition();
1608  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1609
1610  // If this is a series of conditions that are or'd or and'd together, emit
1611  // this as a sequence of branches instead of setcc's with and/or operations.
1612  // As long as jumps are not expensive, this should improve performance.
1613  // For example, instead of something like:
1614  //     cmp A, B
1615  //     C = seteq
1616  //     cmp D, E
1617  //     F = setle
1618  //     or C, F
1619  //     jnz foo
1620  // Emit:
1621  //     cmp A, B
1622  //     je foo
1623  //     cmp D, E
1624  //     jle foo
1625  //
1626  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1627    if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1628        BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1629                             BOp->getOpcode() == Instruction::Or)) {
1630      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1631                           BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1632                           getEdgeWeight(BrMBB, Succ1MBB));
1633      // If the compares in later blocks need to use values not currently
1634      // exported from this block, export them now.  This block should always
1635      // be the first entry.
1636      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1637
1638      // Allow some cases to be rejected.
1639      if (ShouldEmitAsBranches(SwitchCases)) {
1640        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1641          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1642          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1643        }
1644
1645        // Emit the branch for this block.
1646        visitSwitchCase(SwitchCases[0], BrMBB);
1647        SwitchCases.erase(SwitchCases.begin());
1648        return;
1649      }
1650
1651      // Okay, we decided not to do this, remove any inserted MBB's and clear
1652      // SwitchCases.
1653      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1654        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1655
1656      SwitchCases.clear();
1657    }
1658  }
1659
1660  // Create a CaseBlock record representing this branch.
1661  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1662               nullptr, Succ0MBB, Succ1MBB, BrMBB);
1663
1664  // Use visitSwitchCase to actually insert the fast branch sequence for this
1665  // cond branch.
1666  visitSwitchCase(CB, BrMBB);
1667}
1668
1669/// visitSwitchCase - Emits the necessary code to represent a single node in
1670/// the binary search tree resulting from lowering a switch instruction.
1671void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1672                                          MachineBasicBlock *SwitchBB) {
1673  SDValue Cond;
1674  SDValue CondLHS = getValue(CB.CmpLHS);
1675  SDLoc dl = getCurSDLoc();
1676
1677  // Build the setcc now.
1678  if (!CB.CmpMHS) {
1679    // Fold "(X == true)" to X and "(X == false)" to !X to
1680    // handle common cases produced by branch lowering.
1681    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1682        CB.CC == ISD::SETEQ)
1683      Cond = CondLHS;
1684    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1685             CB.CC == ISD::SETEQ) {
1686      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1687      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1688    } else
1689      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1690  } else {
1691    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1692
1693    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1694    const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1695
1696    SDValue CmpOp = getValue(CB.CmpMHS);
1697    EVT VT = CmpOp.getValueType();
1698
1699    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1700      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1701                          ISD::SETLE);
1702    } else {
1703      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1704                                VT, CmpOp, DAG.getConstant(Low, VT));
1705      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1706                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1707    }
1708  }
1709
1710  // Update successor info
1711  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1712  // TrueBB and FalseBB are always different unless the incoming IR is
1713  // degenerate. This only happens when running llc on weird IR.
1714  if (CB.TrueBB != CB.FalseBB)
1715    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1716
1717  // If the lhs block is the next block, invert the condition so that we can
1718  // fall through to the lhs instead of the rhs block.
1719  if (CB.TrueBB == NextBlock(SwitchBB)) {
1720    std::swap(CB.TrueBB, CB.FalseBB);
1721    SDValue True = DAG.getConstant(1, Cond.getValueType());
1722    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1723  }
1724
1725  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1726                               MVT::Other, getControlRoot(), Cond,
1727                               DAG.getBasicBlock(CB.TrueBB));
1728
1729  // Insert the false branch. Do this even if it's a fall through branch,
1730  // this makes it easier to do DAG optimizations which require inverting
1731  // the branch condition.
1732  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1733                       DAG.getBasicBlock(CB.FalseBB));
1734
1735  DAG.setRoot(BrCond);
1736}
1737
1738/// visitJumpTable - Emit JumpTable node in the current MBB
1739void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1740  // Emit the code for the jump table
1741  assert(JT.Reg != -1U && "Should lower JT Header first!");
1742  EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1743  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1744                                     JT.Reg, PTy);
1745  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1746  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1747                                    MVT::Other, Index.getValue(1),
1748                                    Table, Index);
1749  DAG.setRoot(BrJumpTable);
1750}
1751
1752/// visitJumpTableHeader - This function emits necessary code to produce index
1753/// in the JumpTable from switch case.
1754void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1755                                               JumpTableHeader &JTH,
1756                                               MachineBasicBlock *SwitchBB) {
1757  // Subtract the lowest switch case value from the value being switched on and
1758  // conditional branch to default mbb if the result is greater than the
1759  // difference between smallest and largest cases.
1760  SDValue SwitchOp = getValue(JTH.SValue);
1761  EVT VT = SwitchOp.getValueType();
1762  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1763                            DAG.getConstant(JTH.First, VT));
1764
1765  // The SDNode we just created, which holds the value being switched on minus
1766  // the smallest case value, needs to be copied to a virtual register so it
1767  // can be used as an index into the jump table in a subsequent basic block.
1768  // This value may be smaller or larger than the target's pointer type, and
1769  // therefore require extension or truncating.
1770  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1771  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1772
1773  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1774  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1775                                    JumpTableReg, SwitchOp);
1776  JT.Reg = JumpTableReg;
1777
1778  // Emit the range check for the jump table, and branch to the default block
1779  // for the switch statement if the value being switched on exceeds the largest
1780  // case in the switch.
1781  SDValue CMP =
1782      DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1783                                                         Sub.getValueType()),
1784                   Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
1785
1786  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1787                               MVT::Other, CopyTo, CMP,
1788                               DAG.getBasicBlock(JT.Default));
1789
1790  // Avoid emitting unnecessary branches to the next block.
1791  if (JT.MBB != NextBlock(SwitchBB))
1792    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1793                         DAG.getBasicBlock(JT.MBB));
1794
1795  DAG.setRoot(BrCond);
1796}
1797
1798/// Codegen a new tail for a stack protector check ParentMBB which has had its
1799/// tail spliced into a stack protector check success bb.
1800///
1801/// For a high level explanation of how this fits into the stack protector
1802/// generation see the comment on the declaration of class
1803/// StackProtectorDescriptor.
1804void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1805                                                  MachineBasicBlock *ParentBB) {
1806
1807  // First create the loads to the guard/stack slot for the comparison.
1808  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1809  EVT PtrTy = TLI.getPointerTy();
1810
1811  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1812  int FI = MFI->getStackProtectorIndex();
1813
1814  const Value *IRGuard = SPD.getGuard();
1815  SDValue GuardPtr = getValue(IRGuard);
1816  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1817
1818  unsigned Align =
1819    TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1820
1821  SDValue Guard;
1822
1823  // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1824  // guard value from the virtual register holding the value. Otherwise, emit a
1825  // volatile load to retrieve the stack guard value.
1826  unsigned GuardReg = SPD.getGuardReg();
1827
1828  if (GuardReg && TLI.useLoadStackGuardNode())
1829    Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
1830                               PtrTy);
1831  else
1832    Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1833                        GuardPtr, MachinePointerInfo(IRGuard, 0),
1834                        true, false, false, Align);
1835
1836  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1837                                  StackSlotPtr,
1838                                  MachinePointerInfo::getFixedStack(FI),
1839                                  true, false, false, Align);
1840
1841  // Perform the comparison via a subtract/getsetcc.
1842  EVT VT = Guard.getValueType();
1843  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1844
1845  SDValue Cmp =
1846      DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1847                                                         Sub.getValueType()),
1848                   Sub, DAG.getConstant(0, VT), ISD::SETNE);
1849
1850  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1851  // branch to failure MBB.
1852  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1853                               MVT::Other, StackSlot.getOperand(0),
1854                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1855  // Otherwise branch to success MBB.
1856  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1857                           MVT::Other, BrCond,
1858                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1859
1860  DAG.setRoot(Br);
1861}
1862
1863/// Codegen the failure basic block for a stack protector check.
1864///
1865/// A failure stack protector machine basic block consists simply of a call to
1866/// __stack_chk_fail().
1867///
1868/// For a high level explanation of how this fits into the stack protector
1869/// generation see the comment on the declaration of class
1870/// StackProtectorDescriptor.
1871void
1872SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1873  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1874  SDValue Chain =
1875      TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1876                      nullptr, 0, false, getCurSDLoc(), false, false).second;
1877  DAG.setRoot(Chain);
1878}
1879
1880/// visitBitTestHeader - This function emits necessary code to produce value
1881/// suitable for "bit tests"
1882void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1883                                             MachineBasicBlock *SwitchBB) {
1884  // Subtract the minimum value
1885  SDValue SwitchOp = getValue(B.SValue);
1886  EVT VT = SwitchOp.getValueType();
1887  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1888                            DAG.getConstant(B.First, VT));
1889
1890  // Check range
1891  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1892  SDValue RangeCmp =
1893      DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1894                                                         Sub.getValueType()),
1895                   Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
1896
1897  // Determine the type of the test operands.
1898  bool UsePtrType = false;
1899  if (!TLI.isTypeLegal(VT))
1900    UsePtrType = true;
1901  else {
1902    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1903      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1904        // Switch table case range are encoded into series of masks.
1905        // Just use pointer type, it's guaranteed to fit.
1906        UsePtrType = true;
1907        break;
1908      }
1909  }
1910  if (UsePtrType) {
1911    VT = TLI.getPointerTy();
1912    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1913  }
1914
1915  B.RegVT = VT.getSimpleVT();
1916  B.Reg = FuncInfo.CreateReg(B.RegVT);
1917  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1918                                    B.Reg, Sub);
1919
1920  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1921
1922  addSuccessorWithWeight(SwitchBB, B.Default);
1923  addSuccessorWithWeight(SwitchBB, MBB);
1924
1925  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1926                                MVT::Other, CopyTo, RangeCmp,
1927                                DAG.getBasicBlock(B.Default));
1928
1929  // Avoid emitting unnecessary branches to the next block.
1930  if (MBB != NextBlock(SwitchBB))
1931    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1932                          DAG.getBasicBlock(MBB));
1933
1934  DAG.setRoot(BrRange);
1935}
1936
1937/// visitBitTestCase - this function produces one "bit test"
1938void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1939                                           MachineBasicBlock* NextMBB,
1940                                           uint32_t BranchWeightToNext,
1941                                           unsigned Reg,
1942                                           BitTestCase &B,
1943                                           MachineBasicBlock *SwitchBB) {
1944  MVT VT = BB.RegVT;
1945  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946                                       Reg, VT);
1947  SDValue Cmp;
1948  unsigned PopCount = countPopulation(B.Mask);
1949  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1950  if (PopCount == 1) {
1951    // Testing for a single bit; just compare the shift count with what it
1952    // would need to be to shift a 1 bit in that position.
1953    Cmp = DAG.getSetCC(
1954        getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1955        DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
1956  } else if (PopCount == BB.Range) {
1957    // There is only one zero bit in the range, test for it directly.
1958    Cmp = DAG.getSetCC(
1959        getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1960        DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE);
1961  } else {
1962    // Make desired shift
1963    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1964                                    DAG.getConstant(1, VT), ShiftOp);
1965
1966    // Emit bit tests and jumps
1967    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1968                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1969    Cmp = DAG.getSetCC(getCurSDLoc(),
1970                       TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1971                       DAG.getConstant(0, VT), ISD::SETNE);
1972  }
1973
1974  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1975  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1976  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1977  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1978
1979  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1980                              MVT::Other, getControlRoot(),
1981                              Cmp, DAG.getBasicBlock(B.TargetBB));
1982
1983  // Avoid emitting unnecessary branches to the next block.
1984  if (NextMBB != NextBlock(SwitchBB))
1985    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1986                        DAG.getBasicBlock(NextMBB));
1987
1988  DAG.setRoot(BrAnd);
1989}
1990
1991void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1992  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1993
1994  // Retrieve successors.
1995  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1996  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1997
1998  const Value *Callee(I.getCalledValue());
1999  const Function *Fn = dyn_cast<Function>(Callee);
2000  if (isa<InlineAsm>(Callee))
2001    visitInlineAsm(&I);
2002  else if (Fn && Fn->isIntrinsic()) {
2003    switch (Fn->getIntrinsicID()) {
2004    default:
2005      llvm_unreachable("Cannot invoke this intrinsic");
2006    case Intrinsic::donothing:
2007      // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2008      break;
2009    case Intrinsic::experimental_patchpoint_void:
2010    case Intrinsic::experimental_patchpoint_i64:
2011      visitPatchpoint(&I, LandingPad);
2012      break;
2013    case Intrinsic::experimental_gc_statepoint:
2014      LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
2015      break;
2016    }
2017  } else
2018    LowerCallTo(&I, getValue(Callee), false, LandingPad);
2019
2020  // If the value of the invoke is used outside of its defining block, make it
2021  // available as a virtual register.
2022  // We already took care of the exported value for the statepoint instruction
2023  // during call to the LowerStatepoint.
2024  if (!isStatepoint(I)) {
2025    CopyToExportRegsIfNeeded(&I);
2026  }
2027
2028  // Update successor info
2029  addSuccessorWithWeight(InvokeMBB, Return);
2030  addSuccessorWithWeight(InvokeMBB, LandingPad);
2031
2032  // Drop into normal successor.
2033  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2034                          MVT::Other, getControlRoot(),
2035                          DAG.getBasicBlock(Return)));
2036}
2037
2038void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2039  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2040}
2041
2042void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2043  assert(FuncInfo.MBB->isLandingPad() &&
2044         "Call to landingpad not in landing pad!");
2045
2046  MachineBasicBlock *MBB = FuncInfo.MBB;
2047  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2048  AddLandingPadInfo(LP, MMI, MBB);
2049
2050  // If there aren't registers to copy the values into (e.g., during SjLj
2051  // exceptions), then don't bother to create these DAG nodes.
2052  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2053  if (TLI.getExceptionPointerRegister() == 0 &&
2054      TLI.getExceptionSelectorRegister() == 0)
2055    return;
2056
2057  SmallVector<EVT, 2> ValueVTs;
2058  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2059  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2060
2061  // Get the two live-in registers as SDValues. The physregs have already been
2062  // copied into virtual registers.
2063  SDValue Ops[2];
2064  if (FuncInfo.ExceptionPointerVirtReg) {
2065    Ops[0] = DAG.getZExtOrTrunc(
2066        DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2067                           FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2068        getCurSDLoc(), ValueVTs[0]);
2069  } else {
2070    Ops[0] = DAG.getConstant(0, TLI.getPointerTy());
2071  }
2072  Ops[1] = DAG.getZExtOrTrunc(
2073      DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2074                         FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2075      getCurSDLoc(), ValueVTs[1]);
2076
2077  // Merge into one.
2078  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2079                            DAG.getVTList(ValueVTs), Ops);
2080  setValue(&LP, Res);
2081}
2082
2083unsigned
2084SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
2085                                             MachineBasicBlock *LPadBB) {
2086  SDValue Chain = getControlRoot();
2087
2088  // Get the typeid that we will dispatch on later.
2089  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
2091  unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
2092  unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
2093  SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy());
2094  Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel);
2095
2096  // Branch to the main landing pad block.
2097  MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
2098  ClauseMBB->addSuccessor(LPadBB);
2099  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain,
2100                          DAG.getBasicBlock(LPadBB)));
2101  return VReg;
2102}
2103
2104/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2105/// small case ranges).
2106bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2107                                                 CaseRecVector& WorkList,
2108                                                 const Value* SV,
2109                                                 MachineBasicBlock *Default,
2110                                                 MachineBasicBlock *SwitchBB) {
2111  // Size is the number of Cases represented by this range.
2112  size_t Size = CR.Range.second - CR.Range.first;
2113  if (Size > 3)
2114    return false;
2115
2116  // Get the MachineFunction which holds the current MBB.  This is used when
2117  // inserting any additional MBBs necessary to represent the switch.
2118  MachineFunction *CurMF = FuncInfo.MF;
2119
2120  // Figure out which block is immediately after the current one.
2121  MachineBasicBlock *NextMBB = nullptr;
2122  MachineFunction::iterator BBI = CR.CaseBB;
2123  if (++BBI != FuncInfo.MF->end())
2124    NextMBB = BBI;
2125
2126  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2127  // If any two of the cases has the same destination, and if one value
2128  // is the same as the other, but has one bit unset that the other has set,
2129  // use bit manipulation to do two compares at once.  For example:
2130  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2131  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2132  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2133  if (Size == 2 && CR.CaseBB == SwitchBB) {
2134    Case &Small = *CR.Range.first;
2135    Case &Big = *(CR.Range.second-1);
2136
2137    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2138      const APInt& SmallValue = Small.Low->getValue();
2139      const APInt& BigValue = Big.Low->getValue();
2140
2141      // Check that there is only one bit different.
2142      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2143          (SmallValue | BigValue) == BigValue) {
2144        // Isolate the common bit.
2145        APInt CommonBit = BigValue & ~SmallValue;
2146        assert((SmallValue | CommonBit) == BigValue &&
2147               CommonBit.countPopulation() == 1 && "Not a common bit?");
2148
2149        SDValue CondLHS = getValue(SV);
2150        EVT VT = CondLHS.getValueType();
2151        SDLoc DL = getCurSDLoc();
2152
2153        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2154                                 DAG.getConstant(CommonBit, VT));
2155        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2156                                    Or, DAG.getConstant(BigValue, VT),
2157                                    ISD::SETEQ);
2158
2159        // Update successor info.
2160        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2161        addSuccessorWithWeight(SwitchBB, Small.BB,
2162                               Small.ExtraWeight + Big.ExtraWeight);
2163        addSuccessorWithWeight(SwitchBB, Default,
2164          // The default destination is the first successor in IR.
2165          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2166
2167        // Insert the true branch.
2168        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2169                                     getControlRoot(), Cond,
2170                                     DAG.getBasicBlock(Small.BB));
2171
2172        // Insert the false branch.
2173        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2174                             DAG.getBasicBlock(Default));
2175
2176        DAG.setRoot(BrCond);
2177        return true;
2178      }
2179    }
2180  }
2181
2182  // Order cases by weight so the most likely case will be checked first.
2183  uint32_t UnhandledWeights = 0;
2184  if (BPI) {
2185    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2186      uint32_t IWeight = I->ExtraWeight;
2187      UnhandledWeights += IWeight;
2188      for (CaseItr J = CR.Range.first; J < I; ++J) {
2189        uint32_t JWeight = J->ExtraWeight;
2190        if (IWeight > JWeight)
2191          std::swap(*I, *J);
2192      }
2193    }
2194  }
2195  // Rearrange the case blocks so that the last one falls through if possible.
2196  Case &BackCase = *(CR.Range.second-1);
2197  if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) {
2198    // The last case block won't fall through into 'NextMBB' if we emit the
2199    // branches in this order.  See if rearranging a case value would help.
2200    // We start at the bottom as it's the case with the least weight.
2201    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2202      if (I->BB == NextMBB) {
2203        std::swap(*I, BackCase);
2204        break;
2205      }
2206  }
2207
2208  // Create a CaseBlock record representing a conditional branch to
2209  // the Case's target mbb if the value being switched on SV is equal
2210  // to C.
2211  MachineBasicBlock *CurBlock = CR.CaseBB;
2212  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2213    MachineBasicBlock *FallThrough;
2214    if (I != E-1) {
2215      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2216      CurMF->insert(BBI, FallThrough);
2217
2218      // Put SV in a virtual register to make it available from the new blocks.
2219      ExportFromCurrentBlock(SV);
2220    } else {
2221      // If the last case doesn't match, go to the default block.
2222      FallThrough = Default;
2223    }
2224
2225    const Value *RHS, *LHS, *MHS;
2226    ISD::CondCode CC;
2227    if (I->High == I->Low) {
2228      // This is just small small case range :) containing exactly 1 case
2229      CC = ISD::SETEQ;
2230      LHS = SV; RHS = I->High; MHS = nullptr;
2231    } else {
2232      CC = ISD::SETLE;
2233      LHS = I->Low; MHS = SV; RHS = I->High;
2234    }
2235
2236    // The false weight should be sum of all un-handled cases.
2237    UnhandledWeights -= I->ExtraWeight;
2238    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2239                 /* me */ CurBlock,
2240                 /* trueweight */ I->ExtraWeight,
2241                 /* falseweight */ UnhandledWeights);
2242
2243    // If emitting the first comparison, just call visitSwitchCase to emit the
2244    // code into the current block.  Otherwise, push the CaseBlock onto the
2245    // vector to be later processed by SDISel, and insert the node's MBB
2246    // before the next MBB.
2247    if (CurBlock == SwitchBB)
2248      visitSwitchCase(CB, SwitchBB);
2249    else
2250      SwitchCases.push_back(CB);
2251
2252    CurBlock = FallThrough;
2253  }
2254
2255  return true;
2256}
2257
2258static inline bool areJTsAllowed(const TargetLowering &TLI) {
2259  return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2260         TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
2261}
2262
2263static APInt ComputeRange(const APInt &First, const APInt &Last) {
2264  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2265  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2266  return (LastExt - FirstExt + 1ULL);
2267}
2268
2269/// handleJTSwitchCase - Emit jumptable for current switch case range
2270bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2271                                             CaseRecVector &WorkList,
2272                                             const Value *SV,
2273                                             MachineBasicBlock *Default,
2274                                             MachineBasicBlock *SwitchBB) {
2275  Case& FrontCase = *CR.Range.first;
2276  Case& BackCase  = *(CR.Range.second-1);
2277
2278  const APInt &First = FrontCase.Low->getValue();
2279  const APInt &Last  = BackCase.High->getValue();
2280
2281  APInt TSize(First.getBitWidth(), 0);
2282  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2283    TSize += I->size();
2284
2285  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2286  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2287    return false;
2288
2289  APInt Range = ComputeRange(First, Last);
2290  // The density is TSize / Range. Require at least 40%.
2291  // It should not be possible for IntTSize to saturate for sane code, but make
2292  // sure we handle Range saturation correctly.
2293  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2294  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2295  if (IntTSize * 10 < IntRange * 4)
2296    return false;
2297
2298  DEBUG(dbgs() << "Lowering jump table\n"
2299               << "First entry: " << First << ". Last entry: " << Last << '\n'
2300               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2301
2302  // Get the MachineFunction which holds the current MBB.  This is used when
2303  // inserting any additional MBBs necessary to represent the switch.
2304  MachineFunction *CurMF = FuncInfo.MF;
2305
2306  // Figure out which block is immediately after the current one.
2307  MachineFunction::iterator BBI = CR.CaseBB;
2308  ++BBI;
2309
2310  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2311
2312  // Create a new basic block to hold the code for loading the address
2313  // of the jump table, and jumping to it.  Update successor information;
2314  // we will either branch to the default case for the switch, or the jump
2315  // table.
2316  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2317  CurMF->insert(BBI, JumpTableBB);
2318
2319  addSuccessorWithWeight(CR.CaseBB, Default);
2320  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2321
2322  // Build a vector of destination BBs, corresponding to each target
2323  // of the jump table. If the value of the jump table slot corresponds to
2324  // a case statement, push the case's BB onto the vector, otherwise, push
2325  // the default BB.
2326  std::vector<MachineBasicBlock*> DestBBs;
2327  APInt TEI = First;
2328  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2329    const APInt &Low = I->Low->getValue();
2330    const APInt &High = I->High->getValue();
2331
2332    if (Low.sle(TEI) && TEI.sle(High)) {
2333      DestBBs.push_back(I->BB);
2334      if (TEI==High)
2335        ++I;
2336    } else {
2337      DestBBs.push_back(Default);
2338    }
2339  }
2340
2341  // Calculate weight for each unique destination in CR.
2342  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2343  if (FuncInfo.BPI) {
2344    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2345      DestWeights[I->BB] += I->ExtraWeight;
2346  }
2347
2348  // Update successor info. Add one edge to each unique successor.
2349  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2350  for (MachineBasicBlock *DestBB : DestBBs) {
2351    if (!SuccsHandled[DestBB->getNumber()]) {
2352      SuccsHandled[DestBB->getNumber()] = true;
2353      auto I = DestWeights.find(DestBB);
2354      addSuccessorWithWeight(JumpTableBB, DestBB,
2355                             I != DestWeights.end() ? I->second : 0);
2356    }
2357  }
2358
2359  // Create a jump table index for this jump table.
2360  unsigned JTEncoding = TLI.getJumpTableEncoding();
2361  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2362                       ->createJumpTableIndex(DestBBs);
2363
2364  // Set the jump table information so that we can codegen it as a second
2365  // MachineBasicBlock
2366  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2367  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2368  if (CR.CaseBB == SwitchBB)
2369    visitJumpTableHeader(JT, JTH, SwitchBB);
2370
2371  JTCases.push_back(JumpTableBlock(JTH, JT));
2372  return true;
2373}
2374
2375/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2376/// 2 subtrees.
2377bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2378                                                  CaseRecVector& WorkList,
2379                                                  const Value* SV,
2380                                                  MachineBasicBlock* SwitchBB) {
2381  Case& FrontCase = *CR.Range.first;
2382  Case& BackCase  = *(CR.Range.second-1);
2383
2384  // Size is the number of Cases represented by this range.
2385  unsigned Size = CR.Range.second - CR.Range.first;
2386
2387  const APInt &First = FrontCase.Low->getValue();
2388  const APInt &Last  = BackCase.High->getValue();
2389  double FMetric = 0;
2390  CaseItr Pivot = CR.Range.first + Size/2;
2391
2392  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2393  // (heuristically) allow us to emit JumpTable's later.
2394  APInt TSize(First.getBitWidth(), 0);
2395  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2396       I!=E; ++I)
2397    TSize += I->size();
2398
2399  APInt LSize = FrontCase.size();
2400  APInt RSize = TSize-LSize;
2401  DEBUG(dbgs() << "Selecting best pivot: \n"
2402               << "First: " << First << ", Last: " << Last <<'\n'
2403               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2404  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2405  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2406       J!=E; ++I, ++J) {
2407    const APInt &LEnd = I->High->getValue();
2408    const APInt &RBegin = J->Low->getValue();
2409    APInt Range = ComputeRange(LEnd, RBegin);
2410    assert((Range - 2ULL).isNonNegative() &&
2411           "Invalid case distance");
2412    // Use volatile double here to avoid excess precision issues on some hosts,
2413    // e.g. that use 80-bit X87 registers.
2414    // Only consider the density of sub-ranges that actually have sufficient
2415    // entries to be lowered as a jump table.
2416    volatile double LDensity =
2417        LSize.ult(TLI.getMinimumJumpTableEntries())
2418            ? 0.0
2419            : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble();
2420    volatile double RDensity =
2421        RSize.ult(TLI.getMinimumJumpTableEntries())
2422            ? 0.0
2423            : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble();
2424    volatile double Metric = Range.logBase2() * (LDensity + RDensity);
2425    // Should always split in some non-trivial place
2426    DEBUG(dbgs() <<"=>Step\n"
2427                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2428                 << "LDensity: " << LDensity
2429                 << ", RDensity: " << RDensity << '\n'
2430                 << "Metric: " << Metric << '\n');
2431    if (FMetric < Metric) {
2432      Pivot = J;
2433      FMetric = Metric;
2434      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2435    }
2436
2437    LSize += J->size();
2438    RSize -= J->size();
2439  }
2440
2441  if (FMetric == 0 || !areJTsAllowed(TLI))
2442    Pivot = CR.Range.first + Size/2;
2443  splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB);
2444  return true;
2445}
2446
2447void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot,
2448                                          CaseRecVector &WorkList,
2449                                          const Value *SV,
2450                                          MachineBasicBlock *SwitchBB) {
2451  // Get the MachineFunction which holds the current MBB.  This is used when
2452  // inserting any additional MBBs necessary to represent the switch.
2453  MachineFunction *CurMF = FuncInfo.MF;
2454
2455  // Figure out which block is immediately after the current one.
2456  MachineFunction::iterator BBI = CR.CaseBB;
2457  ++BBI;
2458
2459  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2460
2461  CaseRange LHSR(CR.Range.first, Pivot);
2462  CaseRange RHSR(Pivot, CR.Range.second);
2463  const ConstantInt *C = Pivot->Low;
2464  MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2465
2466  // We know that we branch to the LHS if the Value being switched on is
2467  // less than the Pivot value, C.  We use this to optimize our binary
2468  // tree a bit, by recognizing that if SV is greater than or equal to the
2469  // LHS's Case Value, and that Case Value is exactly one less than the
2470  // Pivot's Value, then we can branch directly to the LHS's Target,
2471  // rather than creating a leaf node for it.
2472  if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE &&
2473      C->getValue() == (CR.GE->getValue() + 1LL)) {
2474    TrueBB = LHSR.first->BB;
2475  } else {
2476    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2477    CurMF->insert(BBI, TrueBB);
2478    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2479
2480    // Put SV in a virtual register to make it available from the new blocks.
2481    ExportFromCurrentBlock(SV);
2482  }
2483
2484  // Similar to the optimization above, if the Value being switched on is
2485  // known to be less than the Constant CR.LT, and the current Case Value
2486  // is CR.LT - 1, then we can branch directly to the target block for
2487  // the current Case Value, rather than emitting a RHS leaf node for it.
2488  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2489      RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) {
2490    FalseBB = RHSR.first->BB;
2491  } else {
2492    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2493    CurMF->insert(BBI, FalseBB);
2494    WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR));
2495
2496    // Put SV in a virtual register to make it available from the new blocks.
2497    ExportFromCurrentBlock(SV);
2498  }
2499
2500  // Create a CaseBlock record representing a conditional branch to
2501  // the LHS node if the value being switched on SV is less than C.
2502  // Otherwise, branch to LHS.
2503  CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2504
2505  if (CR.CaseBB == SwitchBB)
2506    visitSwitchCase(CB, SwitchBB);
2507  else
2508    SwitchCases.push_back(CB);
2509}
2510
2511/// handleBitTestsSwitchCase - if current case range has few destination and
2512/// range span less, than machine word bitwidth, encode case range into series
2513/// of masks and emit bit tests with these masks.
2514bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2515                                                   CaseRecVector& WorkList,
2516                                                   const Value* SV,
2517                                                   MachineBasicBlock* Default,
2518                                                   MachineBasicBlock* SwitchBB) {
2519  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2520  EVT PTy = TLI.getPointerTy();
2521  unsigned IntPtrBits = PTy.getSizeInBits();
2522
2523  Case& FrontCase = *CR.Range.first;
2524  Case& BackCase  = *(CR.Range.second-1);
2525
2526  // Get the MachineFunction which holds the current MBB.  This is used when
2527  // inserting any additional MBBs necessary to represent the switch.
2528  MachineFunction *CurMF = FuncInfo.MF;
2529
2530  // If target does not have legal shift left, do not emit bit tests at all.
2531  if (!TLI.isOperationLegal(ISD::SHL, PTy))
2532    return false;
2533
2534  size_t numCmps = 0;
2535  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2536    // Single case counts one, case range - two.
2537    numCmps += (I->Low == I->High ? 1 : 2);
2538  }
2539
2540  // Count unique destinations
2541  SmallSet<MachineBasicBlock*, 4> Dests;
2542  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2543    Dests.insert(I->BB);
2544    if (Dests.size() > 3)
2545      // Don't bother the code below, if there are too much unique destinations
2546      return false;
2547  }
2548  DEBUG(dbgs() << "Total number of unique destinations: "
2549        << Dests.size() << '\n'
2550        << "Total number of comparisons: " << numCmps << '\n');
2551
2552  // Compute span of values.
2553  const APInt& minValue = FrontCase.Low->getValue();
2554  const APInt& maxValue = BackCase.High->getValue();
2555  APInt cmpRange = maxValue - minValue;
2556
2557  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2558               << "Low bound: " << minValue << '\n'
2559               << "High bound: " << maxValue << '\n');
2560
2561  if (cmpRange.uge(IntPtrBits) ||
2562      (!(Dests.size() == 1 && numCmps >= 3) &&
2563       !(Dests.size() == 2 && numCmps >= 5) &&
2564       !(Dests.size() >= 3 && numCmps >= 6)))
2565    return false;
2566
2567  DEBUG(dbgs() << "Emitting bit tests\n");
2568  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2569
2570  // Optimize the case where all the case values fit in a
2571  // word without having to subtract minValue. In this case,
2572  // we can optimize away the subtraction.
2573  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2574    cmpRange = maxValue;
2575  } else {
2576    lowBound = minValue;
2577  }
2578
2579  CaseBitsVector CasesBits;
2580  unsigned i, count = 0;
2581
2582  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2583    MachineBasicBlock* Dest = I->BB;
2584    for (i = 0; i < count; ++i)
2585      if (Dest == CasesBits[i].BB)
2586        break;
2587
2588    if (i == count) {
2589      assert((count < 3) && "Too much destinations to test!");
2590      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2591      count++;
2592    }
2593
2594    const APInt& lowValue = I->Low->getValue();
2595    const APInt& highValue = I->High->getValue();
2596
2597    uint64_t lo = (lowValue - lowBound).getZExtValue();
2598    uint64_t hi = (highValue - lowBound).getZExtValue();
2599    CasesBits[i].ExtraWeight += I->ExtraWeight;
2600
2601    for (uint64_t j = lo; j <= hi; j++) {
2602      CasesBits[i].Mask |=  1ULL << j;
2603      CasesBits[i].Bits++;
2604    }
2605
2606  }
2607  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2608
2609  BitTestInfo BTC;
2610
2611  // Figure out which block is immediately after the current one.
2612  MachineFunction::iterator BBI = CR.CaseBB;
2613  ++BBI;
2614
2615  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2616
2617  DEBUG(dbgs() << "Cases:\n");
2618  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2619    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2620                 << ", Bits: " << CasesBits[i].Bits
2621                 << ", BB: " << CasesBits[i].BB << '\n');
2622
2623    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2624    CurMF->insert(BBI, CaseBB);
2625    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2626                              CaseBB,
2627                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2628
2629    // Put SV in a virtual register to make it available from the new blocks.
2630    ExportFromCurrentBlock(SV);
2631  }
2632
2633  BitTestBlock BTB(lowBound, cmpRange, SV,
2634                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2635                   CR.CaseBB, Default, std::move(BTC));
2636
2637  if (CR.CaseBB == SwitchBB)
2638    visitBitTestHeader(BTB, SwitchBB);
2639
2640  BitTestCases.push_back(std::move(BTB));
2641
2642  return true;
2643}
2644
2645void SelectionDAGBuilder::Clusterify(CaseVector &Cases, const SwitchInst *SI) {
2646  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2647
2648  // Extract cases from the switch and sort them.
2649  typedef std::pair<const ConstantInt*, unsigned> CasePair;
2650  std::vector<CasePair> Sorted;
2651  Sorted.reserve(SI->getNumCases());
2652  for (auto I : SI->cases())
2653    Sorted.push_back(std::make_pair(I.getCaseValue(), I.getSuccessorIndex()));
2654  std::sort(Sorted.begin(), Sorted.end(), [](CasePair a, CasePair b) {
2655    return a.first->getValue().slt(b.first->getValue());
2656  });
2657
2658  // Merge adjacent cases with the same destination, build Cases vector.
2659  assert(Cases.empty() && "Cases should be empty before Clusterify;");
2660  Cases.reserve(SI->getNumCases());
2661  MachineBasicBlock *PreviousSucc = nullptr;
2662  for (CasePair &CP : Sorted) {
2663    const ConstantInt *CaseVal = CP.first;
2664    unsigned SuccIndex = CP.second;
2665    MachineBasicBlock *Succ = FuncInfo.MBBMap[SI->getSuccessor(SuccIndex)];
2666    uint32_t Weight = BPI ? BPI->getEdgeWeight(SI->getParent(), SuccIndex) : 0;
2667
2668    if (PreviousSucc == Succ &&
2669        (CaseVal->getValue() - Cases.back().High->getValue()) == 1) {
2670      // If this case has the same successor and is a neighbour, merge it into
2671      // the previous cluster.
2672      Cases.back().High = CaseVal;
2673      Cases.back().ExtraWeight += Weight;
2674    } else {
2675      Cases.push_back(Case(CaseVal, CaseVal, Succ, Weight));
2676    }
2677
2678    PreviousSucc = Succ;
2679  }
2680
2681  DEBUG({
2682      size_t numCmps = 0;
2683      for (auto &I : Cases)
2684        // A range counts double, since it requires two compares.
2685        numCmps += I.Low != I.High ? 2 : 1;
2686
2687      dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2688             << ". Total compares: " << numCmps << '\n';
2689    });
2690}
2691
2692void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2693                                           MachineBasicBlock *Last) {
2694  // Update JTCases.
2695  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2696    if (JTCases[i].first.HeaderBB == First)
2697      JTCases[i].first.HeaderBB = Last;
2698
2699  // Update BitTestCases.
2700  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2701    if (BitTestCases[i].Parent == First)
2702      BitTestCases[i].Parent = Last;
2703}
2704
2705void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2706  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2707
2708  // Create a vector of Cases, sorted so that we can efficiently create a binary
2709  // search tree from them.
2710  CaseVector Cases;
2711  Clusterify(Cases, &SI);
2712
2713  // Get the default destination MBB.
2714  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2715
2716  if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
2717      !Cases.empty()) {
2718    // Replace an unreachable default destination with the most popular case
2719    // destination.
2720    DenseMap<const BasicBlock *, unsigned> Popularity;
2721    unsigned MaxPop = 0;
2722    const BasicBlock *MaxBB = nullptr;
2723    for (auto I : SI.cases()) {
2724      const BasicBlock *BB = I.getCaseSuccessor();
2725      if (++Popularity[BB] > MaxPop) {
2726        MaxPop = Popularity[BB];
2727        MaxBB = BB;
2728      }
2729    }
2730
2731    // Set new default.
2732    assert(MaxPop > 0);
2733    assert(MaxBB);
2734    Default = FuncInfo.MBBMap[MaxBB];
2735
2736    // Remove cases that were pointing to the destination that is now the default.
2737    Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
2738                               [&](const Case &C) { return C.BB == Default; }),
2739                Cases.end());
2740  }
2741
2742  // If there is only the default destination, go there directly.
2743  if (Cases.empty()) {
2744    // Update machine-CFG edges.
2745    SwitchMBB->addSuccessor(Default);
2746
2747    // If this is not a fall-through branch, emit the branch.
2748    if (Default != NextBlock(SwitchMBB)) {
2749      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2750                              getControlRoot(), DAG.getBasicBlock(Default)));
2751    }
2752    return;
2753  }
2754
2755  // Get the Value to be switched on.
2756  const Value *SV = SI.getCondition();
2757
2758  // Push the initial CaseRec onto the worklist
2759  CaseRecVector WorkList;
2760  WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2761                             CaseRange(Cases.begin(),Cases.end())));
2762
2763  while (!WorkList.empty()) {
2764    // Grab a record representing a case range to process off the worklist
2765    CaseRec CR = WorkList.back();
2766    WorkList.pop_back();
2767
2768    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2769      continue;
2770
2771    // If the range has few cases (two or less) emit a series of specific
2772    // tests.
2773    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2774      continue;
2775
2776    // If the switch has more than N blocks, and is at least 40% dense, and the
2777    // target supports indirect branches, then emit a jump table rather than
2778    // lowering the switch to a binary tree of conditional branches.
2779    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2780    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2781      continue;
2782
2783    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2784    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2785    handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
2786  }
2787}
2788
2789void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2790  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2791
2792  // Update machine-CFG edges with unique successors.
2793  SmallSet<BasicBlock*, 32> Done;
2794  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2795    BasicBlock *BB = I.getSuccessor(i);
2796    bool Inserted = Done.insert(BB).second;
2797    if (!Inserted)
2798        continue;
2799
2800    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2801    addSuccessorWithWeight(IndirectBrMBB, Succ);
2802  }
2803
2804  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2805                          MVT::Other, getControlRoot(),
2806                          getValue(I.getAddress())));
2807}
2808
2809void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2810  if (DAG.getTarget().Options.TrapUnreachable)
2811    DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2812}
2813
2814void SelectionDAGBuilder::visitFSub(const User &I) {
2815  // -0.0 - X --> fneg
2816  Type *Ty = I.getType();
2817  if (isa<Constant>(I.getOperand(0)) &&
2818      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2819    SDValue Op2 = getValue(I.getOperand(1));
2820    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2821                             Op2.getValueType(), Op2));
2822    return;
2823  }
2824
2825  visitBinary(I, ISD::FSUB);
2826}
2827
2828void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2829  SDValue Op1 = getValue(I.getOperand(0));
2830  SDValue Op2 = getValue(I.getOperand(1));
2831
2832  bool nuw = false;
2833  bool nsw = false;
2834  bool exact = false;
2835  if (const OverflowingBinaryOperator *OFBinOp =
2836          dyn_cast<const OverflowingBinaryOperator>(&I)) {
2837    nuw = OFBinOp->hasNoUnsignedWrap();
2838    nsw = OFBinOp->hasNoSignedWrap();
2839  }
2840  if (const PossiblyExactOperator *ExactOp =
2841          dyn_cast<const PossiblyExactOperator>(&I))
2842    exact = ExactOp->isExact();
2843
2844  SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2845                                     Op1, Op2, nuw, nsw, exact);
2846  setValue(&I, BinNodeValue);
2847}
2848
2849void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2850  SDValue Op1 = getValue(I.getOperand(0));
2851  SDValue Op2 = getValue(I.getOperand(1));
2852
2853  EVT ShiftTy =
2854      DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2855
2856  // Coerce the shift amount to the right type if we can.
2857  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2858    unsigned ShiftSize = ShiftTy.getSizeInBits();
2859    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2860    SDLoc DL = getCurSDLoc();
2861
2862    // If the operand is smaller than the shift count type, promote it.
2863    if (ShiftSize > Op2Size)
2864      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2865
2866    // If the operand is larger than the shift count type but the shift
2867    // count type has enough bits to represent any shift value, truncate
2868    // it now. This is a common case and it exposes the truncate to
2869    // optimization early.
2870    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2871      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2872    // Otherwise we'll need to temporarily settle for some other convenient
2873    // type.  Type legalization will make adjustments once the shiftee is split.
2874    else
2875      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2876  }
2877
2878  bool nuw = false;
2879  bool nsw = false;
2880  bool exact = false;
2881
2882  if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2883
2884    if (const OverflowingBinaryOperator *OFBinOp =
2885            dyn_cast<const OverflowingBinaryOperator>(&I)) {
2886      nuw = OFBinOp->hasNoUnsignedWrap();
2887      nsw = OFBinOp->hasNoSignedWrap();
2888    }
2889    if (const PossiblyExactOperator *ExactOp =
2890            dyn_cast<const PossiblyExactOperator>(&I))
2891      exact = ExactOp->isExact();
2892  }
2893
2894  SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2895                            nuw, nsw, exact);
2896  setValue(&I, Res);
2897}
2898
2899void SelectionDAGBuilder::visitSDiv(const User &I) {
2900  SDValue Op1 = getValue(I.getOperand(0));
2901  SDValue Op2 = getValue(I.getOperand(1));
2902
2903  // Turn exact SDivs into multiplications.
2904  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2905  // exact bit.
2906  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2907      !isa<ConstantSDNode>(Op1) &&
2908      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2909    setValue(&I, DAG.getTargetLoweringInfo()
2910                     .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2911  else
2912    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2913                             Op1, Op2));
2914}
2915
2916void SelectionDAGBuilder::visitICmp(const User &I) {
2917  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2918  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2919    predicate = IC->getPredicate();
2920  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2921    predicate = ICmpInst::Predicate(IC->getPredicate());
2922  SDValue Op1 = getValue(I.getOperand(0));
2923  SDValue Op2 = getValue(I.getOperand(1));
2924  ISD::CondCode Opcode = getICmpCondCode(predicate);
2925
2926  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2927  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2928}
2929
2930void SelectionDAGBuilder::visitFCmp(const User &I) {
2931  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2932  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2933    predicate = FC->getPredicate();
2934  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2935    predicate = FCmpInst::Predicate(FC->getPredicate());
2936  SDValue Op1 = getValue(I.getOperand(0));
2937  SDValue Op2 = getValue(I.getOperand(1));
2938  ISD::CondCode Condition = getFCmpCondCode(predicate);
2939  if (TM.Options.NoNaNsFPMath)
2940    Condition = getFCmpCodeWithoutNaN(Condition);
2941  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2942  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2943}
2944
2945void SelectionDAGBuilder::visitSelect(const User &I) {
2946  SmallVector<EVT, 4> ValueVTs;
2947  ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2948  unsigned NumValues = ValueVTs.size();
2949  if (NumValues == 0) return;
2950
2951  SmallVector<SDValue, 4> Values(NumValues);
2952  SDValue Cond     = getValue(I.getOperand(0));
2953  SDValue TrueVal  = getValue(I.getOperand(1));
2954  SDValue FalseVal = getValue(I.getOperand(2));
2955  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2956    ISD::VSELECT : ISD::SELECT;
2957
2958  for (unsigned i = 0; i != NumValues; ++i)
2959    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2960                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2961                            Cond,
2962                            SDValue(TrueVal.getNode(),
2963                                    TrueVal.getResNo() + i),
2964                            SDValue(FalseVal.getNode(),
2965                                    FalseVal.getResNo() + i));
2966
2967  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2968                           DAG.getVTList(ValueVTs), Values));
2969}
2970
2971void SelectionDAGBuilder::visitTrunc(const User &I) {
2972  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2973  SDValue N = getValue(I.getOperand(0));
2974  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2975  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2976}
2977
2978void SelectionDAGBuilder::visitZExt(const User &I) {
2979  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2980  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2981  SDValue N = getValue(I.getOperand(0));
2982  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2983  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2984}
2985
2986void SelectionDAGBuilder::visitSExt(const User &I) {
2987  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2988  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2989  SDValue N = getValue(I.getOperand(0));
2990  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2991  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2992}
2993
2994void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2995  // FPTrunc is never a no-op cast, no need to check
2996  SDValue N = getValue(I.getOperand(0));
2997  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2998  EVT DestVT = TLI.getValueType(I.getType());
2999  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
3000                           DAG.getTargetConstant(0, TLI.getPointerTy())));
3001}
3002
3003void SelectionDAGBuilder::visitFPExt(const User &I) {
3004  // FPExt is never a no-op cast, no need to check
3005  SDValue N = getValue(I.getOperand(0));
3006  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3007  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3008}
3009
3010void SelectionDAGBuilder::visitFPToUI(const User &I) {
3011  // FPToUI is never a no-op cast, no need to check
3012  SDValue N = getValue(I.getOperand(0));
3013  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3014  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3015}
3016
3017void SelectionDAGBuilder::visitFPToSI(const User &I) {
3018  // FPToSI is never a no-op cast, no need to check
3019  SDValue N = getValue(I.getOperand(0));
3020  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3021  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3022}
3023
3024void SelectionDAGBuilder::visitUIToFP(const User &I) {
3025  // UIToFP is never a no-op cast, no need to check
3026  SDValue N = getValue(I.getOperand(0));
3027  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3028  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3029}
3030
3031void SelectionDAGBuilder::visitSIToFP(const User &I) {
3032  // SIToFP is never a no-op cast, no need to check
3033  SDValue N = getValue(I.getOperand(0));
3034  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3035  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3036}
3037
3038void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3039  // What to do depends on the size of the integer and the size of the pointer.
3040  // We can either truncate, zero extend, or no-op, accordingly.
3041  SDValue N = getValue(I.getOperand(0));
3042  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3043  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3044}
3045
3046void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3047  // What to do depends on the size of the integer and the size of the pointer.
3048  // We can either truncate, zero extend, or no-op, accordingly.
3049  SDValue N = getValue(I.getOperand(0));
3050  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3051  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3052}
3053
3054void SelectionDAGBuilder::visitBitCast(const User &I) {
3055  SDValue N = getValue(I.getOperand(0));
3056  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3057
3058  // BitCast assures us that source and destination are the same size so this is
3059  // either a BITCAST or a no-op.
3060  if (DestVT != N.getValueType())
3061    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3062                             DestVT, N)); // convert types.
3063  // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3064  // might fold any kind of constant expression to an integer constant and that
3065  // is not what we are looking for. Only regcognize a bitcast of a genuine
3066  // constant integer as an opaque constant.
3067  else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3068    setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3069                                 /*isOpaque*/true));
3070  else
3071    setValue(&I, N);            // noop cast.
3072}
3073
3074void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3075  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3076  const Value *SV = I.getOperand(0);
3077  SDValue N = getValue(SV);
3078  EVT DestVT = TLI.getValueType(I.getType());
3079
3080  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3081  unsigned DestAS = I.getType()->getPointerAddressSpace();
3082
3083  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3084    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3085
3086  setValue(&I, N);
3087}
3088
3089void SelectionDAGBuilder::visitInsertElement(const User &I) {
3090  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3091  SDValue InVec = getValue(I.getOperand(0));
3092  SDValue InVal = getValue(I.getOperand(1));
3093  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3094                                     getCurSDLoc(), TLI.getVectorIdxTy());
3095  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3096                           TLI.getValueType(I.getType()), InVec, InVal, InIdx));
3097}
3098
3099void SelectionDAGBuilder::visitExtractElement(const User &I) {
3100  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3101  SDValue InVec = getValue(I.getOperand(0));
3102  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3103                                     getCurSDLoc(), TLI.getVectorIdxTy());
3104  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3105                           TLI.getValueType(I.getType()), InVec, InIdx));
3106}
3107
3108// Utility for visitShuffleVector - Return true if every element in Mask,
3109// beginning from position Pos and ending in Pos+Size, falls within the
3110// specified sequential range [L, L+Pos). or is undef.
3111static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3112                                unsigned Pos, unsigned Size, int Low) {
3113  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3114    if (Mask[i] >= 0 && Mask[i] != Low)
3115      return false;
3116  return true;
3117}
3118
3119void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3120  SDValue Src1 = getValue(I.getOperand(0));
3121  SDValue Src2 = getValue(I.getOperand(1));
3122
3123  SmallVector<int, 8> Mask;
3124  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3125  unsigned MaskNumElts = Mask.size();
3126
3127  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3128  EVT VT = TLI.getValueType(I.getType());
3129  EVT SrcVT = Src1.getValueType();
3130  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3131
3132  if (SrcNumElts == MaskNumElts) {
3133    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3134                                      &Mask[0]));
3135    return;
3136  }
3137
3138  // Normalize the shuffle vector since mask and vector length don't match.
3139  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3140    // Mask is longer than the source vectors and is a multiple of the source
3141    // vectors.  We can use concatenate vector to make the mask and vectors
3142    // lengths match.
3143    if (SrcNumElts*2 == MaskNumElts) {
3144      // First check for Src1 in low and Src2 in high
3145      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3146          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3147        // The shuffle is concatenating two vectors together.
3148        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3149                                 VT, Src1, Src2));
3150        return;
3151      }
3152      // Then check for Src2 in low and Src1 in high
3153      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3154          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3155        // The shuffle is concatenating two vectors together.
3156        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3157                                 VT, Src2, Src1));
3158        return;
3159      }
3160    }
3161
3162    // Pad both vectors with undefs to make them the same length as the mask.
3163    unsigned NumConcat = MaskNumElts / SrcNumElts;
3164    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3165    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3166    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3167
3168    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3169    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3170    MOps1[0] = Src1;
3171    MOps2[0] = Src2;
3172
3173    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3174                                                  getCurSDLoc(), VT, MOps1);
3175    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3176                                                  getCurSDLoc(), VT, MOps2);
3177
3178    // Readjust mask for new input vector length.
3179    SmallVector<int, 8> MappedOps;
3180    for (unsigned i = 0; i != MaskNumElts; ++i) {
3181      int Idx = Mask[i];
3182      if (Idx >= (int)SrcNumElts)
3183        Idx -= SrcNumElts - MaskNumElts;
3184      MappedOps.push_back(Idx);
3185    }
3186
3187    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3188                                      &MappedOps[0]));
3189    return;
3190  }
3191
3192  if (SrcNumElts > MaskNumElts) {
3193    // Analyze the access pattern of the vector to see if we can extract
3194    // two subvectors and do the shuffle. The analysis is done by calculating
3195    // the range of elements the mask access on both vectors.
3196    int MinRange[2] = { static_cast<int>(SrcNumElts),
3197                        static_cast<int>(SrcNumElts)};
3198    int MaxRange[2] = {-1, -1};
3199
3200    for (unsigned i = 0; i != MaskNumElts; ++i) {
3201      int Idx = Mask[i];
3202      unsigned Input = 0;
3203      if (Idx < 0)
3204        continue;
3205
3206      if (Idx >= (int)SrcNumElts) {
3207        Input = 1;
3208        Idx -= SrcNumElts;
3209      }
3210      if (Idx > MaxRange[Input])
3211        MaxRange[Input] = Idx;
3212      if (Idx < MinRange[Input])
3213        MinRange[Input] = Idx;
3214    }
3215
3216    // Check if the access is smaller than the vector size and can we find
3217    // a reasonable extract index.
3218    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3219                                   // Extract.
3220    int StartIdx[2];  // StartIdx to extract from
3221    for (unsigned Input = 0; Input < 2; ++Input) {
3222      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3223        RangeUse[Input] = 0; // Unused
3224        StartIdx[Input] = 0;
3225        continue;
3226      }
3227
3228      // Find a good start index that is a multiple of the mask length. Then
3229      // see if the rest of the elements are in range.
3230      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3231      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3232          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3233        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3234    }
3235
3236    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3237      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3238      return;
3239    }
3240    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3241      // Extract appropriate subvector and generate a vector shuffle
3242      for (unsigned Input = 0; Input < 2; ++Input) {
3243        SDValue &Src = Input == 0 ? Src1 : Src2;
3244        if (RangeUse[Input] == 0)
3245          Src = DAG.getUNDEF(VT);
3246        else
3247          Src = DAG.getNode(
3248              ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
3249              DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
3250      }
3251
3252      // Calculate new mask.
3253      SmallVector<int, 8> MappedOps;
3254      for (unsigned i = 0; i != MaskNumElts; ++i) {
3255        int Idx = Mask[i];
3256        if (Idx >= 0) {
3257          if (Idx < (int)SrcNumElts)
3258            Idx -= StartIdx[0];
3259          else
3260            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3261        }
3262        MappedOps.push_back(Idx);
3263      }
3264
3265      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3266                                        &MappedOps[0]));
3267      return;
3268    }
3269  }
3270
3271  // We can't use either concat vectors or extract subvectors so fall back to
3272  // replacing the shuffle with extract and build vector.
3273  // to insert and build vector.
3274  EVT EltVT = VT.getVectorElementType();
3275  EVT IdxVT = TLI.getVectorIdxTy();
3276  SmallVector<SDValue,8> Ops;
3277  for (unsigned i = 0; i != MaskNumElts; ++i) {
3278    int Idx = Mask[i];
3279    SDValue Res;
3280
3281    if (Idx < 0) {
3282      Res = DAG.getUNDEF(EltVT);
3283    } else {
3284      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3285      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3286
3287      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3288                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3289    }
3290
3291    Ops.push_back(Res);
3292  }
3293
3294  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3295}
3296
3297void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3298  const Value *Op0 = I.getOperand(0);
3299  const Value *Op1 = I.getOperand(1);
3300  Type *AggTy = I.getType();
3301  Type *ValTy = Op1->getType();
3302  bool IntoUndef = isa<UndefValue>(Op0);
3303  bool FromUndef = isa<UndefValue>(Op1);
3304
3305  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3306
3307  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3308  SmallVector<EVT, 4> AggValueVTs;
3309  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3310  SmallVector<EVT, 4> ValValueVTs;
3311  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3312
3313  unsigned NumAggValues = AggValueVTs.size();
3314  unsigned NumValValues = ValValueVTs.size();
3315  SmallVector<SDValue, 4> Values(NumAggValues);
3316
3317  // Ignore an insertvalue that produces an empty object
3318  if (!NumAggValues) {
3319    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3320    return;
3321  }
3322
3323  SDValue Agg = getValue(Op0);
3324  unsigned i = 0;
3325  // Copy the beginning value(s) from the original aggregate.
3326  for (; i != LinearIndex; ++i)
3327    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3328                SDValue(Agg.getNode(), Agg.getResNo() + i);
3329  // Copy values from the inserted value(s).
3330  if (NumValValues) {
3331    SDValue Val = getValue(Op1);
3332    for (; i != LinearIndex + NumValValues; ++i)
3333      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3334                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3335  }
3336  // Copy remaining value(s) from the original aggregate.
3337  for (; i != NumAggValues; ++i)
3338    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3339                SDValue(Agg.getNode(), Agg.getResNo() + i);
3340
3341  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3342                           DAG.getVTList(AggValueVTs), Values));
3343}
3344
3345void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3346  const Value *Op0 = I.getOperand(0);
3347  Type *AggTy = Op0->getType();
3348  Type *ValTy = I.getType();
3349  bool OutOfUndef = isa<UndefValue>(Op0);
3350
3351  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3352
3353  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3354  SmallVector<EVT, 4> ValValueVTs;
3355  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3356
3357  unsigned NumValValues = ValValueVTs.size();
3358
3359  // Ignore a extractvalue that produces an empty object
3360  if (!NumValValues) {
3361    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3362    return;
3363  }
3364
3365  SmallVector<SDValue, 4> Values(NumValValues);
3366
3367  SDValue Agg = getValue(Op0);
3368  // Copy out the selected value(s).
3369  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3370    Values[i - LinearIndex] =
3371      OutOfUndef ?
3372        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3373        SDValue(Agg.getNode(), Agg.getResNo() + i);
3374
3375  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3376                           DAG.getVTList(ValValueVTs), Values));
3377}
3378
3379void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3380  Value *Op0 = I.getOperand(0);
3381  // Note that the pointer operand may be a vector of pointers. Take the scalar
3382  // element which holds a pointer.
3383  Type *Ty = Op0->getType()->getScalarType();
3384  unsigned AS = Ty->getPointerAddressSpace();
3385  SDValue N = getValue(Op0);
3386
3387  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3388       OI != E; ++OI) {
3389    const Value *Idx = *OI;
3390    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3391      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3392      if (Field) {
3393        // N = N + Offset
3394        uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3395        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3396                        DAG.getConstant(Offset, N.getValueType()));
3397      }
3398
3399      Ty = StTy->getElementType(Field);
3400    } else {
3401      Ty = cast<SequentialType>(Ty)->getElementType();
3402      MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
3403      unsigned PtrSize = PtrTy.getSizeInBits();
3404      APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3405
3406      // If this is a constant subscript, handle it quickly.
3407      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
3408        if (CI->isZero())
3409          continue;
3410        APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3411        SDValue OffsVal = DAG.getConstant(Offs, PtrTy);
3412        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal);
3413        continue;
3414      }
3415
3416      // N = N + Idx * ElementSize;
3417      SDValue IdxN = getValue(Idx);
3418
3419      // If the index is smaller or larger than intptr_t, truncate or extend
3420      // it.
3421      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3422
3423      // If this is a multiply by a power of two, turn it into a shl
3424      // immediately.  This is a very common case.
3425      if (ElementSize != 1) {
3426        if (ElementSize.isPowerOf2()) {
3427          unsigned Amt = ElementSize.logBase2();
3428          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3429                             N.getValueType(), IdxN,
3430                             DAG.getConstant(Amt, IdxN.getValueType()));
3431        } else {
3432          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3433          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3434                             N.getValueType(), IdxN, Scale);
3435        }
3436      }
3437
3438      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3439                      N.getValueType(), N, IdxN);
3440    }
3441  }
3442
3443  setValue(&I, N);
3444}
3445
3446void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3447  // If this is a fixed sized alloca in the entry block of the function,
3448  // allocate it statically on the stack.
3449  if (FuncInfo.StaticAllocaMap.count(&I))
3450    return;   // getValue will auto-populate this.
3451
3452  Type *Ty = I.getAllocatedType();
3453  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3454  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3455  unsigned Align =
3456      std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3457               I.getAlignment());
3458
3459  SDValue AllocSize = getValue(I.getArraySize());
3460
3461  EVT IntPtr = TLI.getPointerTy();
3462  if (AllocSize.getValueType() != IntPtr)
3463    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3464
3465  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3466                          AllocSize,
3467                          DAG.getConstant(TySize, IntPtr));
3468
3469  // Handle alignment.  If the requested alignment is less than or equal to
3470  // the stack alignment, ignore it.  If the size is greater than or equal to
3471  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3472  unsigned StackAlign =
3473      DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3474  if (Align <= StackAlign)
3475    Align = 0;
3476
3477  // Round the size of the allocation up to the stack alignment size
3478  // by add SA-1 to the size.
3479  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3480                          AllocSize.getValueType(), AllocSize,
3481                          DAG.getIntPtrConstant(StackAlign-1));
3482
3483  // Mask out the low bits for alignment purposes.
3484  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3485                          AllocSize.getValueType(), AllocSize,
3486                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3487
3488  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3489  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3490  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3491  setValue(&I, DSA);
3492  DAG.setRoot(DSA.getValue(1));
3493
3494  assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3495}
3496
3497void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3498  if (I.isAtomic())
3499    return visitAtomicLoad(I);
3500
3501  const Value *SV = I.getOperand(0);
3502  SDValue Ptr = getValue(SV);
3503
3504  Type *Ty = I.getType();
3505
3506  bool isVolatile = I.isVolatile();
3507  bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3508  bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3509  unsigned Alignment = I.getAlignment();
3510
3511  AAMDNodes AAInfo;
3512  I.getAAMetadata(AAInfo);
3513  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3514
3515  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516  SmallVector<EVT, 4> ValueVTs;
3517  SmallVector<uint64_t, 4> Offsets;
3518  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3519  unsigned NumValues = ValueVTs.size();
3520  if (NumValues == 0)
3521    return;
3522
3523  SDValue Root;
3524  bool ConstantMemory = false;
3525  if (isVolatile || NumValues > MaxParallelChains)
3526    // Serialize volatile loads with other side effects.
3527    Root = getRoot();
3528  else if (AA->pointsToConstantMemory(
3529             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
3530    // Do not serialize (non-volatile) loads of constant memory with anything.
3531    Root = DAG.getEntryNode();
3532    ConstantMemory = true;
3533  } else {
3534    // Do not serialize non-volatile loads against each other.
3535    Root = DAG.getRoot();
3536  }
3537
3538  if (isVolatile)
3539    Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3540
3541  SmallVector<SDValue, 4> Values(NumValues);
3542  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3543                                          NumValues));
3544  EVT PtrVT = Ptr.getValueType();
3545  unsigned ChainI = 0;
3546  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3547    // Serializing loads here may result in excessive register pressure, and
3548    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3549    // could recover a bit by hoisting nodes upward in the chain by recognizing
3550    // they are side-effect free or do not alias. The optimizer should really
3551    // avoid this case by converting large object/array copies to llvm.memcpy
3552    // (MaxParallelChains should always remain as failsafe).
3553    if (ChainI == MaxParallelChains) {
3554      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3555      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3556                                  makeArrayRef(Chains.data(), ChainI));
3557      Root = Chain;
3558      ChainI = 0;
3559    }
3560    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3561                            PtrVT, Ptr,
3562                            DAG.getConstant(Offsets[i], PtrVT));
3563    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3564                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3565                            isNonTemporal, isInvariant, Alignment, AAInfo,
3566                            Ranges);
3567
3568    Values[i] = L;
3569    Chains[ChainI] = L.getValue(1);
3570  }
3571
3572  if (!ConstantMemory) {
3573    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3574                                makeArrayRef(Chains.data(), ChainI));
3575    if (isVolatile)
3576      DAG.setRoot(Chain);
3577    else
3578      PendingLoads.push_back(Chain);
3579  }
3580
3581  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3582                           DAG.getVTList(ValueVTs), Values));
3583}
3584
3585void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3586  if (I.isAtomic())
3587    return visitAtomicStore(I);
3588
3589  const Value *SrcV = I.getOperand(0);
3590  const Value *PtrV = I.getOperand(1);
3591
3592  SmallVector<EVT, 4> ValueVTs;
3593  SmallVector<uint64_t, 4> Offsets;
3594  ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
3595                  ValueVTs, &Offsets);
3596  unsigned NumValues = ValueVTs.size();
3597  if (NumValues == 0)
3598    return;
3599
3600  // Get the lowered operands. Note that we do this after
3601  // checking if NumResults is zero, because with zero results
3602  // the operands won't have values in the map.
3603  SDValue Src = getValue(SrcV);
3604  SDValue Ptr = getValue(PtrV);
3605
3606  SDValue Root = getRoot();
3607  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3608                                          NumValues));
3609  EVT PtrVT = Ptr.getValueType();
3610  bool isVolatile = I.isVolatile();
3611  bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3612  unsigned Alignment = I.getAlignment();
3613
3614  AAMDNodes AAInfo;
3615  I.getAAMetadata(AAInfo);
3616
3617  unsigned ChainI = 0;
3618  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3619    // See visitLoad comments.
3620    if (ChainI == MaxParallelChains) {
3621      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3622                                  makeArrayRef(Chains.data(), ChainI));
3623      Root = Chain;
3624      ChainI = 0;
3625    }
3626    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3627                              DAG.getConstant(Offsets[i], PtrVT));
3628    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3629                              SDValue(Src.getNode(), Src.getResNo() + i),
3630                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3631                              isVolatile, isNonTemporal, Alignment, AAInfo);
3632    Chains[ChainI] = St;
3633  }
3634
3635  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3636                                  makeArrayRef(Chains.data(), ChainI));
3637  DAG.setRoot(StoreNode);
3638}
3639
3640void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3641  SDLoc sdl = getCurSDLoc();
3642
3643  // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
3644  Value  *PtrOperand = I.getArgOperand(1);
3645  SDValue Ptr = getValue(PtrOperand);
3646  SDValue Src0 = getValue(I.getArgOperand(0));
3647  SDValue Mask = getValue(I.getArgOperand(3));
3648  EVT VT = Src0.getValueType();
3649  unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3650  if (!Alignment)
3651    Alignment = DAG.getEVTAlignment(VT);
3652
3653  AAMDNodes AAInfo;
3654  I.getAAMetadata(AAInfo);
3655
3656  MachineMemOperand *MMO =
3657    DAG.getMachineFunction().
3658    getMachineMemOperand(MachinePointerInfo(PtrOperand),
3659                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3660                          Alignment, AAInfo);
3661  SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3662                                         MMO, false);
3663  DAG.setRoot(StoreNode);
3664  setValue(&I, StoreNode);
3665}
3666
3667void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3668  SDLoc sdl = getCurSDLoc();
3669
3670  // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3671  Value  *PtrOperand = I.getArgOperand(0);
3672  SDValue Ptr = getValue(PtrOperand);
3673  SDValue Src0 = getValue(I.getArgOperand(3));
3674  SDValue Mask = getValue(I.getArgOperand(2));
3675
3676  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3677  EVT VT = TLI.getValueType(I.getType());
3678  unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3679  if (!Alignment)
3680    Alignment = DAG.getEVTAlignment(VT);
3681
3682  AAMDNodes AAInfo;
3683  I.getAAMetadata(AAInfo);
3684  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3685
3686  SDValue InChain = DAG.getRoot();
3687  if (AA->pointsToConstantMemory(
3688      AliasAnalysis::Location(PtrOperand,
3689                              AA->getTypeStoreSize(I.getType()),
3690                              AAInfo))) {
3691    // Do not serialize (non-volatile) loads of constant memory with anything.
3692    InChain = DAG.getEntryNode();
3693  }
3694
3695  MachineMemOperand *MMO =
3696    DAG.getMachineFunction().
3697    getMachineMemOperand(MachinePointerInfo(PtrOperand),
3698                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3699                          Alignment, AAInfo, Ranges);
3700
3701  SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3702                                   ISD::NON_EXTLOAD);
3703  SDValue OutChain = Load.getValue(1);
3704  DAG.setRoot(OutChain);
3705  setValue(&I, Load);
3706}
3707
3708void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3709  SDLoc dl = getCurSDLoc();
3710  AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3711  AtomicOrdering FailureOrder = I.getFailureOrdering();
3712  SynchronizationScope Scope = I.getSynchScope();
3713
3714  SDValue InChain = getRoot();
3715
3716  MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3717  SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3718  SDValue L = DAG.getAtomicCmpSwap(
3719      ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3720      getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3721      getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3722      /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3723
3724  SDValue OutChain = L.getValue(2);
3725
3726  setValue(&I, L);
3727  DAG.setRoot(OutChain);
3728}
3729
3730void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3731  SDLoc dl = getCurSDLoc();
3732  ISD::NodeType NT;
3733  switch (I.getOperation()) {
3734  default: llvm_unreachable("Unknown atomicrmw operation");
3735  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3736  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3737  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3738  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3739  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3740  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3741  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3742  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3743  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3744  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3745  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3746  }
3747  AtomicOrdering Order = I.getOrdering();
3748  SynchronizationScope Scope = I.getSynchScope();
3749
3750  SDValue InChain = getRoot();
3751
3752  SDValue L =
3753    DAG.getAtomic(NT, dl,
3754                  getValue(I.getValOperand()).getSimpleValueType(),
3755                  InChain,
3756                  getValue(I.getPointerOperand()),
3757                  getValue(I.getValOperand()),
3758                  I.getPointerOperand(),
3759                  /* Alignment=*/ 0, Order, Scope);
3760
3761  SDValue OutChain = L.getValue(1);
3762
3763  setValue(&I, L);
3764  DAG.setRoot(OutChain);
3765}
3766
3767void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3768  SDLoc dl = getCurSDLoc();
3769  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3770  SDValue Ops[3];
3771  Ops[0] = getRoot();
3772  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3773  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3774  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3775}
3776
3777void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3778  SDLoc dl = getCurSDLoc();
3779  AtomicOrdering Order = I.getOrdering();
3780  SynchronizationScope Scope = I.getSynchScope();
3781
3782  SDValue InChain = getRoot();
3783
3784  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3785  EVT VT = TLI.getValueType(I.getType());
3786
3787  if (I.getAlignment() < VT.getSizeInBits() / 8)
3788    report_fatal_error("Cannot generate unaligned atomic load");
3789
3790  MachineMemOperand *MMO =
3791      DAG.getMachineFunction().
3792      getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3793                           MachineMemOperand::MOVolatile |
3794                           MachineMemOperand::MOLoad,
3795                           VT.getStoreSize(),
3796                           I.getAlignment() ? I.getAlignment() :
3797                                              DAG.getEVTAlignment(VT));
3798
3799  InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3800  SDValue L =
3801      DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3802                    getValue(I.getPointerOperand()), MMO,
3803                    Order, Scope);
3804
3805  SDValue OutChain = L.getValue(1);
3806
3807  setValue(&I, L);
3808  DAG.setRoot(OutChain);
3809}
3810
3811void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3812  SDLoc dl = getCurSDLoc();
3813
3814  AtomicOrdering Order = I.getOrdering();
3815  SynchronizationScope Scope = I.getSynchScope();
3816
3817  SDValue InChain = getRoot();
3818
3819  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3820  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3821
3822  if (I.getAlignment() < VT.getSizeInBits() / 8)
3823    report_fatal_error("Cannot generate unaligned atomic store");
3824
3825  SDValue OutChain =
3826    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3827                  InChain,
3828                  getValue(I.getPointerOperand()),
3829                  getValue(I.getValueOperand()),
3830                  I.getPointerOperand(), I.getAlignment(),
3831                  Order, Scope);
3832
3833  DAG.setRoot(OutChain);
3834}
3835
3836/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3837/// node.
3838void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3839                                               unsigned Intrinsic) {
3840  bool HasChain = !I.doesNotAccessMemory();
3841  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3842
3843  // Build the operand list.
3844  SmallVector<SDValue, 8> Ops;
3845  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3846    if (OnlyLoad) {
3847      // We don't need to serialize loads against other loads.
3848      Ops.push_back(DAG.getRoot());
3849    } else {
3850      Ops.push_back(getRoot());
3851    }
3852  }
3853
3854  // Info is set by getTgtMemInstrinsic
3855  TargetLowering::IntrinsicInfo Info;
3856  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3857  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3858
3859  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3860  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3861      Info.opc == ISD::INTRINSIC_W_CHAIN)
3862    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3863
3864  // Add all operands of the call to the operand list.
3865  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3866    SDValue Op = getValue(I.getArgOperand(i));
3867    Ops.push_back(Op);
3868  }
3869
3870  SmallVector<EVT, 4> ValueVTs;
3871  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3872
3873  if (HasChain)
3874    ValueVTs.push_back(MVT::Other);
3875
3876  SDVTList VTs = DAG.getVTList(ValueVTs);
3877
3878  // Create the node.
3879  SDValue Result;
3880  if (IsTgtIntrinsic) {
3881    // This is target intrinsic that touches memory
3882    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3883                                     VTs, Ops, Info.memVT,
3884                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3885                                     Info.align, Info.vol,
3886                                     Info.readMem, Info.writeMem, Info.size);
3887  } else if (!HasChain) {
3888    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3889  } else if (!I.getType()->isVoidTy()) {
3890    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3891  } else {
3892    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3893  }
3894
3895  if (HasChain) {
3896    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3897    if (OnlyLoad)
3898      PendingLoads.push_back(Chain);
3899    else
3900      DAG.setRoot(Chain);
3901  }
3902
3903  if (!I.getType()->isVoidTy()) {
3904    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3905      EVT VT = TLI.getValueType(PTy);
3906      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3907    }
3908
3909    setValue(&I, Result);
3910  }
3911}
3912
3913/// GetSignificand - Get the significand and build it into a floating-point
3914/// number with exponent of 1:
3915///
3916///   Op = (Op & 0x007fffff) | 0x3f800000;
3917///
3918/// where Op is the hexadecimal representation of floating point value.
3919static SDValue
3920GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3921  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3922                           DAG.getConstant(0x007fffff, MVT::i32));
3923  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3924                           DAG.getConstant(0x3f800000, MVT::i32));
3925  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3926}
3927
3928/// GetExponent - Get the exponent:
3929///
3930///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3931///
3932/// where Op is the hexadecimal representation of floating point value.
3933static SDValue
3934GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3935            SDLoc dl) {
3936  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3937                           DAG.getConstant(0x7f800000, MVT::i32));
3938  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3939                           DAG.getConstant(23, TLI.getPointerTy()));
3940  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3941                           DAG.getConstant(127, MVT::i32));
3942  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3943}
3944
3945/// getF32Constant - Get 32-bit floating point constant.
3946static SDValue
3947getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3948  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3949                           MVT::f32);
3950}
3951
3952static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3953                                       SelectionDAG &DAG) {
3954  //   IntegerPartOfX = ((int32_t)(t0);
3955  SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3956
3957  //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3958  SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3959  SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3960
3961  //   IntegerPartOfX <<= 23;
3962  IntegerPartOfX = DAG.getNode(
3963      ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3964      DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy()));
3965
3966  SDValue TwoToFractionalPartOfX;
3967  if (LimitFloatPrecision <= 6) {
3968    // For floating-point precision of 6:
3969    //
3970    //   TwoToFractionalPartOfX =
3971    //     0.997535578f +
3972    //       (0.735607626f + 0.252464424f * x) * x;
3973    //
3974    // error 0.0144103317, which is 6 bits
3975    SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3976                             getF32Constant(DAG, 0x3e814304));
3977    SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3978                             getF32Constant(DAG, 0x3f3c50c8));
3979    SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3980    TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3981                                         getF32Constant(DAG, 0x3f7f5e7e));
3982  } else if (LimitFloatPrecision <= 12) {
3983    // For floating-point precision of 12:
3984    //
3985    //   TwoToFractionalPartOfX =
3986    //     0.999892986f +
3987    //       (0.696457318f +
3988    //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3989    //
3990    // error 0.000107046256, which is 13 to 14 bits
3991    SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3992                             getF32Constant(DAG, 0x3da235e3));
3993    SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3994                             getF32Constant(DAG, 0x3e65b8f3));
3995    SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3996    SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3997                             getF32Constant(DAG, 0x3f324b07));
3998    SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3999    TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4000                                         getF32Constant(DAG, 0x3f7ff8fd));
4001  } else { // LimitFloatPrecision <= 18
4002    // For floating-point precision of 18:
4003    //
4004    //   TwoToFractionalPartOfX =
4005    //     0.999999982f +
4006    //       (0.693148872f +
4007    //         (0.240227044f +
4008    //           (0.554906021e-1f +
4009    //             (0.961591928e-2f +
4010    //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4011    // error 2.47208000*10^(-7), which is better than 18 bits
4012    SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                             getF32Constant(DAG, 0x3924b03e));
4014    SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4015                             getF32Constant(DAG, 0x3ab24b87));
4016    SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4017    SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4018                             getF32Constant(DAG, 0x3c1d8c17));
4019    SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4020    SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4021                             getF32Constant(DAG, 0x3d634a1d));
4022    SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4023    SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4024                             getF32Constant(DAG, 0x3e75fe14));
4025    SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4026    SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4027                              getF32Constant(DAG, 0x3f317234));
4028    SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4029    TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4030                                         getF32Constant(DAG, 0x3f800000));
4031  }
4032
4033  // Add the exponent into the result in integer domain.
4034  SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4035  return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4036                     DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4037}
4038
4039/// expandExp - Lower an exp intrinsic. Handles the special sequences for
4040/// limited-precision mode.
4041static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4042                         const TargetLowering &TLI) {
4043  if (Op.getValueType() == MVT::f32 &&
4044      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4045
4046    // Put the exponent in the right bit position for later addition to the
4047    // final result:
4048    //
4049    //   #define LOG2OFe 1.4426950f
4050    //   t0 = Op * LOG2OFe
4051    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4052                             getF32Constant(DAG, 0x3fb8aa3b));
4053    return getLimitedPrecisionExp2(t0, dl, DAG);
4054  }
4055
4056  // No special expansion.
4057  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4058}
4059
4060/// expandLog - Lower a log intrinsic. Handles the special sequences for
4061/// limited-precision mode.
4062static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4063                         const TargetLowering &TLI) {
4064  if (Op.getValueType() == MVT::f32 &&
4065      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4066    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4067
4068    // Scale the exponent by log(2) [0.69314718f].
4069    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4070    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4071                                        getF32Constant(DAG, 0x3f317218));
4072
4073    // Get the significand and build it into a floating-point number with
4074    // exponent of 1.
4075    SDValue X = GetSignificand(DAG, Op1, dl);
4076
4077    SDValue LogOfMantissa;
4078    if (LimitFloatPrecision <= 6) {
4079      // For floating-point precision of 6:
4080      //
4081      //   LogofMantissa =
4082      //     -1.1609546f +
4083      //       (1.4034025f - 0.23903021f * x) * x;
4084      //
4085      // error 0.0034276066, which is better than 8 bits
4086      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4087                               getF32Constant(DAG, 0xbe74c456));
4088      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4089                               getF32Constant(DAG, 0x3fb3a2b1));
4090      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4091      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4092                                  getF32Constant(DAG, 0x3f949a29));
4093    } else if (LimitFloatPrecision <= 12) {
4094      // For floating-point precision of 12:
4095      //
4096      //   LogOfMantissa =
4097      //     -1.7417939f +
4098      //       (2.8212026f +
4099      //         (-1.4699568f +
4100      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4101      //
4102      // error 0.000061011436, which is 14 bits
4103      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4104                               getF32Constant(DAG, 0xbd67b6d6));
4105      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4106                               getF32Constant(DAG, 0x3ee4f4b8));
4107      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4108      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4109                               getF32Constant(DAG, 0x3fbc278b));
4110      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                               getF32Constant(DAG, 0x40348e95));
4113      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4114      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4115                                  getF32Constant(DAG, 0x3fdef31a));
4116    } else { // LimitFloatPrecision <= 18
4117      // For floating-point precision of 18:
4118      //
4119      //   LogOfMantissa =
4120      //     -2.1072184f +
4121      //       (4.2372794f +
4122      //         (-3.7029485f +
4123      //           (2.2781945f +
4124      //             (-0.87823314f +
4125      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4126      //
4127      // error 0.0000023660568, which is better than 18 bits
4128      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                               getF32Constant(DAG, 0xbc91e5ac));
4130      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4131                               getF32Constant(DAG, 0x3e4350aa));
4132      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4133      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4134                               getF32Constant(DAG, 0x3f60d3e3));
4135      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4137                               getF32Constant(DAG, 0x4011cdf0));
4138      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4139      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4140                               getF32Constant(DAG, 0x406cfd1c));
4141      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4142      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4143                               getF32Constant(DAG, 0x408797cb));
4144      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4145      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4146                                  getF32Constant(DAG, 0x4006dcab));
4147    }
4148
4149    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4150  }
4151
4152  // No special expansion.
4153  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4154}
4155
4156/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4157/// limited-precision mode.
4158static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4159                          const TargetLowering &TLI) {
4160  if (Op.getValueType() == MVT::f32 &&
4161      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4162    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4163
4164    // Get the exponent.
4165    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4166
4167    // Get the significand and build it into a floating-point number with
4168    // exponent of 1.
4169    SDValue X = GetSignificand(DAG, Op1, dl);
4170
4171    // Different possible minimax approximations of significand in
4172    // floating-point for various degrees of accuracy over [1,2].
4173    SDValue Log2ofMantissa;
4174    if (LimitFloatPrecision <= 6) {
4175      // For floating-point precision of 6:
4176      //
4177      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4178      //
4179      // error 0.0049451742, which is more than 7 bits
4180      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4181                               getF32Constant(DAG, 0xbeb08fe0));
4182      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4183                               getF32Constant(DAG, 0x40019463));
4184      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4185      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4186                                   getF32Constant(DAG, 0x3fd6633d));
4187    } else if (LimitFloatPrecision <= 12) {
4188      // For floating-point precision of 12:
4189      //
4190      //   Log2ofMantissa =
4191      //     -2.51285454f +
4192      //       (4.07009056f +
4193      //         (-2.12067489f +
4194      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4195      //
4196      // error 0.0000876136000, which is better than 13 bits
4197      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4198                               getF32Constant(DAG, 0xbda7262e));
4199      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4200                               getF32Constant(DAG, 0x3f25280b));
4201      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4202      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4203                               getF32Constant(DAG, 0x4007b923));
4204      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4205      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4206                               getF32Constant(DAG, 0x40823e2f));
4207      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4208      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4209                                   getF32Constant(DAG, 0x4020d29c));
4210    } else { // LimitFloatPrecision <= 18
4211      // For floating-point precision of 18:
4212      //
4213      //   Log2ofMantissa =
4214      //     -3.0400495f +
4215      //       (6.1129976f +
4216      //         (-5.3420409f +
4217      //           (3.2865683f +
4218      //             (-1.2669343f +
4219      //               (0.27515199f -
4220      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4221      //
4222      // error 0.0000018516, which is better than 18 bits
4223      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4224                               getF32Constant(DAG, 0xbcd2769e));
4225      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4226                               getF32Constant(DAG, 0x3e8ce0b9));
4227      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4228      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4229                               getF32Constant(DAG, 0x3fa22ae7));
4230      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4231      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4232                               getF32Constant(DAG, 0x40525723));
4233      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4234      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4235                               getF32Constant(DAG, 0x40aaf200));
4236      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4237      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4238                               getF32Constant(DAG, 0x40c39dad));
4239      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4240      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4241                                   getF32Constant(DAG, 0x4042902c));
4242    }
4243
4244    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4245  }
4246
4247  // No special expansion.
4248  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4249}
4250
4251/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4252/// limited-precision mode.
4253static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4254                           const TargetLowering &TLI) {
4255  if (Op.getValueType() == MVT::f32 &&
4256      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4257    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4258
4259    // Scale the exponent by log10(2) [0.30102999f].
4260    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4261    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4262                                        getF32Constant(DAG, 0x3e9a209a));
4263
4264    // Get the significand and build it into a floating-point number with
4265    // exponent of 1.
4266    SDValue X = GetSignificand(DAG, Op1, dl);
4267
4268    SDValue Log10ofMantissa;
4269    if (LimitFloatPrecision <= 6) {
4270      // For floating-point precision of 6:
4271      //
4272      //   Log10ofMantissa =
4273      //     -0.50419619f +
4274      //       (0.60948995f - 0.10380950f * x) * x;
4275      //
4276      // error 0.0014886165, which is 6 bits
4277      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4278                               getF32Constant(DAG, 0xbdd49a13));
4279      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4280                               getF32Constant(DAG, 0x3f1c0789));
4281      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4282      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4283                                    getF32Constant(DAG, 0x3f011300));
4284    } else if (LimitFloatPrecision <= 12) {
4285      // For floating-point precision of 12:
4286      //
4287      //   Log10ofMantissa =
4288      //     -0.64831180f +
4289      //       (0.91751397f +
4290      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4291      //
4292      // error 0.00019228036, which is better than 12 bits
4293      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4294                               getF32Constant(DAG, 0x3d431f31));
4295      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4296                               getF32Constant(DAG, 0x3ea21fb2));
4297      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4298      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4299                               getF32Constant(DAG, 0x3f6ae232));
4300      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4301      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4302                                    getF32Constant(DAG, 0x3f25f7c3));
4303    } else { // LimitFloatPrecision <= 18
4304      // For floating-point precision of 18:
4305      //
4306      //   Log10ofMantissa =
4307      //     -0.84299375f +
4308      //       (1.5327582f +
4309      //         (-1.0688956f +
4310      //           (0.49102474f +
4311      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4312      //
4313      // error 0.0000037995730, which is better than 18 bits
4314      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4315                               getF32Constant(DAG, 0x3c5d51ce));
4316      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4317                               getF32Constant(DAG, 0x3e00685a));
4318      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4319      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4320                               getF32Constant(DAG, 0x3efb6798));
4321      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4322      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4323                               getF32Constant(DAG, 0x3f88d192));
4324      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4325      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4326                               getF32Constant(DAG, 0x3fc4316c));
4327      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4328      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4329                                    getF32Constant(DAG, 0x3f57ce70));
4330    }
4331
4332    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4333  }
4334
4335  // No special expansion.
4336  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4337}
4338
4339/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4340/// limited-precision mode.
4341static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4342                          const TargetLowering &TLI) {
4343  if (Op.getValueType() == MVT::f32 &&
4344      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4345    return getLimitedPrecisionExp2(Op, dl, DAG);
4346
4347  // No special expansion.
4348  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4349}
4350
4351/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4352/// limited-precision mode with x == 10.0f.
4353static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4354                         SelectionDAG &DAG, const TargetLowering &TLI) {
4355  bool IsExp10 = false;
4356  if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4357      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4358    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4359      APFloat Ten(10.0f);
4360      IsExp10 = LHSC->isExactlyValue(Ten);
4361    }
4362  }
4363
4364  if (IsExp10) {
4365    // Put the exponent in the right bit position for later addition to the
4366    // final result:
4367    //
4368    //   #define LOG2OF10 3.3219281f
4369    //   t0 = Op * LOG2OF10;
4370    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4371                             getF32Constant(DAG, 0x40549a78));
4372    return getLimitedPrecisionExp2(t0, dl, DAG);
4373  }
4374
4375  // No special expansion.
4376  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4377}
4378
4379
4380/// ExpandPowI - Expand a llvm.powi intrinsic.
4381static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4382                          SelectionDAG &DAG) {
4383  // If RHS is a constant, we can expand this out to a multiplication tree,
4384  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4385  // optimizing for size, we only want to do this if the expansion would produce
4386  // a small number of multiplies, otherwise we do the full expansion.
4387  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4388    // Get the exponent as a positive value.
4389    unsigned Val = RHSC->getSExtValue();
4390    if ((int)Val < 0) Val = -Val;
4391
4392    // powi(x, 0) -> 1.0
4393    if (Val == 0)
4394      return DAG.getConstantFP(1.0, LHS.getValueType());
4395
4396    const Function *F = DAG.getMachineFunction().getFunction();
4397    if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
4398        // If optimizing for size, don't insert too many multiplies.  This
4399        // inserts up to 5 multiplies.
4400        countPopulation(Val) + Log2_32(Val) < 7) {
4401      // We use the simple binary decomposition method to generate the multiply
4402      // sequence.  There are more optimal ways to do this (for example,
4403      // powi(x,15) generates one more multiply than it should), but this has
4404      // the benefit of being both really simple and much better than a libcall.
4405      SDValue Res;  // Logically starts equal to 1.0
4406      SDValue CurSquare = LHS;
4407      while (Val) {
4408        if (Val & 1) {
4409          if (Res.getNode())
4410            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4411          else
4412            Res = CurSquare;  // 1.0*CurSquare.
4413        }
4414
4415        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4416                                CurSquare, CurSquare);
4417        Val >>= 1;
4418      }
4419
4420      // If the original was negative, invert the result, producing 1/(x*x*x).
4421      if (RHSC->getSExtValue() < 0)
4422        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4423                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4424      return Res;
4425    }
4426  }
4427
4428  // Otherwise, expand to a libcall.
4429  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4430}
4431
4432// getTruncatedArgReg - Find underlying register used for an truncated
4433// argument.
4434static unsigned getTruncatedArgReg(const SDValue &N) {
4435  if (N.getOpcode() != ISD::TRUNCATE)
4436    return 0;
4437
4438  const SDValue &Ext = N.getOperand(0);
4439  if (Ext.getOpcode() == ISD::AssertZext ||
4440      Ext.getOpcode() == ISD::AssertSext) {
4441    const SDValue &CFR = Ext.getOperand(0);
4442    if (CFR.getOpcode() == ISD::CopyFromReg)
4443      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4444    if (CFR.getOpcode() == ISD::TRUNCATE)
4445      return getTruncatedArgReg(CFR);
4446  }
4447  return 0;
4448}
4449
4450/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4451/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4452/// At the end of instruction selection, they will be inserted to the entry BB.
4453bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4454    const Value *V, MDLocalVariable *Variable, MDExpression *Expr,
4455    MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4456  const Argument *Arg = dyn_cast<Argument>(V);
4457  if (!Arg)
4458    return false;
4459
4460  MachineFunction &MF = DAG.getMachineFunction();
4461  const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4462
4463  // Ignore inlined function arguments here.
4464  //
4465  // FIXME: Should we be checking DL->inlinedAt() to determine this?
4466  DIVariable DV(Variable);
4467  if (!DV->getScope()->getSubprogram()->describes(MF.getFunction()))
4468    return false;
4469
4470  Optional<MachineOperand> Op;
4471  // Some arguments' frame index is recorded during argument lowering.
4472  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4473    Op = MachineOperand::CreateFI(FI);
4474
4475  if (!Op && N.getNode()) {
4476    unsigned Reg;
4477    if (N.getOpcode() == ISD::CopyFromReg)
4478      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4479    else
4480      Reg = getTruncatedArgReg(N);
4481    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4482      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4483      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4484      if (PR)
4485        Reg = PR;
4486    }
4487    if (Reg)
4488      Op = MachineOperand::CreateReg(Reg, false);
4489  }
4490
4491  if (!Op) {
4492    // Check if ValueMap has reg number.
4493    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4494    if (VMI != FuncInfo.ValueMap.end())
4495      Op = MachineOperand::CreateReg(VMI->second, false);
4496  }
4497
4498  if (!Op && N.getNode())
4499    // Check if frame index is available.
4500    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4501      if (FrameIndexSDNode *FINode =
4502          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4503        Op = MachineOperand::CreateFI(FINode->getIndex());
4504
4505  if (!Op)
4506    return false;
4507
4508  assert(Variable->isValidLocationForIntrinsic(DL) &&
4509         "Expected inlined-at fields to agree");
4510  if (Op->isReg())
4511    FuncInfo.ArgDbgValues.push_back(
4512        BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4513                Op->getReg(), Offset, Variable, Expr));
4514  else
4515    FuncInfo.ArgDbgValues.push_back(
4516        BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4517            .addOperand(*Op)
4518            .addImm(Offset)
4519            .addMetadata(Variable)
4520            .addMetadata(Expr));
4521
4522  return true;
4523}
4524
4525// VisualStudio defines setjmp as _setjmp
4526#if defined(_MSC_VER) && defined(setjmp) && \
4527                         !defined(setjmp_undefined_for_msvc)
4528#  pragma push_macro("setjmp")
4529#  undef setjmp
4530#  define setjmp_undefined_for_msvc
4531#endif
4532
4533/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4534/// we want to emit this as a call to a named external function, return the name
4535/// otherwise lower it and return null.
4536const char *
4537SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4538  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4539  SDLoc sdl = getCurSDLoc();
4540  DebugLoc dl = getCurDebugLoc();
4541  SDValue Res;
4542
4543  switch (Intrinsic) {
4544  default:
4545    // By default, turn this into a target intrinsic node.
4546    visitTargetIntrinsic(I, Intrinsic);
4547    return nullptr;
4548  case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4549  case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4550  case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4551  case Intrinsic::returnaddress:
4552    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4553                             getValue(I.getArgOperand(0))));
4554    return nullptr;
4555  case Intrinsic::frameaddress:
4556    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4557                             getValue(I.getArgOperand(0))));
4558    return nullptr;
4559  case Intrinsic::read_register: {
4560    Value *Reg = I.getArgOperand(0);
4561    SDValue RegName =
4562        DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4563    EVT VT = TLI.getValueType(I.getType());
4564    setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4565    return nullptr;
4566  }
4567  case Intrinsic::write_register: {
4568    Value *Reg = I.getArgOperand(0);
4569    Value *RegValue = I.getArgOperand(1);
4570    SDValue Chain = getValue(RegValue).getOperand(0);
4571    SDValue RegName =
4572        DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4573    DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4574                            RegName, getValue(RegValue)));
4575    return nullptr;
4576  }
4577  case Intrinsic::setjmp:
4578    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4579  case Intrinsic::longjmp:
4580    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4581  case Intrinsic::memcpy: {
4582    // FIXME: this definition of "user defined address space" is x86-specific
4583    // Assert for address < 256 since we support only user defined address
4584    // spaces.
4585    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4586           < 256 &&
4587           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4588           < 256 &&
4589           "Unknown address space");
4590    SDValue Op1 = getValue(I.getArgOperand(0));
4591    SDValue Op2 = getValue(I.getArgOperand(1));
4592    SDValue Op3 = getValue(I.getArgOperand(2));
4593    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4594    if (!Align)
4595      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4596    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4597    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4598    SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4599                               false, isTC,
4600                               MachinePointerInfo(I.getArgOperand(0)),
4601                               MachinePointerInfo(I.getArgOperand(1)));
4602    updateDAGForMaybeTailCall(MC);
4603    return nullptr;
4604  }
4605  case Intrinsic::memset: {
4606    // FIXME: this definition of "user defined address space" is x86-specific
4607    // Assert for address < 256 since we support only user defined address
4608    // spaces.
4609    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4610           < 256 &&
4611           "Unknown address space");
4612    SDValue Op1 = getValue(I.getArgOperand(0));
4613    SDValue Op2 = getValue(I.getArgOperand(1));
4614    SDValue Op3 = getValue(I.getArgOperand(2));
4615    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4616    if (!Align)
4617      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4618    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4619    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4620    SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4621                               isTC, MachinePointerInfo(I.getArgOperand(0)));
4622    updateDAGForMaybeTailCall(MS);
4623    return nullptr;
4624  }
4625  case Intrinsic::memmove: {
4626    // FIXME: this definition of "user defined address space" is x86-specific
4627    // Assert for address < 256 since we support only user defined address
4628    // spaces.
4629    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4630           < 256 &&
4631           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4632           < 256 &&
4633           "Unknown address space");
4634    SDValue Op1 = getValue(I.getArgOperand(0));
4635    SDValue Op2 = getValue(I.getArgOperand(1));
4636    SDValue Op3 = getValue(I.getArgOperand(2));
4637    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4638    if (!Align)
4639      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4640    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4641    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4642    SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4643                                isTC, MachinePointerInfo(I.getArgOperand(0)),
4644                                MachinePointerInfo(I.getArgOperand(1)));
4645    updateDAGForMaybeTailCall(MM);
4646    return nullptr;
4647  }
4648  case Intrinsic::dbg_declare: {
4649    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4650    MDLocalVariable *Variable = DI.getVariable();
4651    MDExpression *Expression = DI.getExpression();
4652    const Value *Address = DI.getAddress();
4653    DIVariable DIVar = Variable;
4654    if (!Address || !DIVar) {
4655      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4656      return nullptr;
4657    }
4658
4659    // Check if address has undef value.
4660    if (isa<UndefValue>(Address) ||
4661        (Address->use_empty() && !isa<Argument>(Address))) {
4662      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4663      return nullptr;
4664    }
4665
4666    SDValue &N = NodeMap[Address];
4667    if (!N.getNode() && isa<Argument>(Address))
4668      // Check unused arguments map.
4669      N = UnusedArgNodeMap[Address];
4670    SDDbgValue *SDV;
4671    if (N.getNode()) {
4672      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4673        Address = BCI->getOperand(0);
4674      // Parameters are handled specially.
4675      bool isParameter =
4676        (DIVariable(Variable)->getTag() == dwarf::DW_TAG_arg_variable ||
4677         isa<Argument>(Address));
4678
4679      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4680
4681      if (isParameter && !AI) {
4682        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4683        if (FINode)
4684          // Byval parameter.  We have a frame index at this point.
4685          SDV = DAG.getFrameIndexDbgValue(
4686              Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4687        else {
4688          // Address is an argument, so try to emit its dbg value using
4689          // virtual register info from the FuncInfo.ValueMap.
4690          EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4691                                   N);
4692          return nullptr;
4693        }
4694      } else if (AI)
4695        SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4696                              true, 0, dl, SDNodeOrder);
4697      else {
4698        // Can't do anything with other non-AI cases yet.
4699        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4700        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4701        DEBUG(Address->dump());
4702        return nullptr;
4703      }
4704      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4705    } else {
4706      // If Address is an argument then try to emit its dbg value using
4707      // virtual register info from the FuncInfo.ValueMap.
4708      if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4709                                    N)) {
4710        // If variable is pinned by a alloca in dominating bb then
4711        // use StaticAllocaMap.
4712        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4713          if (AI->getParent() != DI.getParent()) {
4714            DenseMap<const AllocaInst*, int>::iterator SI =
4715              FuncInfo.StaticAllocaMap.find(AI);
4716            if (SI != FuncInfo.StaticAllocaMap.end()) {
4717              SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4718                                              0, dl, SDNodeOrder);
4719              DAG.AddDbgValue(SDV, nullptr, false);
4720              return nullptr;
4721            }
4722          }
4723        }
4724        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4725      }
4726    }
4727    return nullptr;
4728  }
4729  case Intrinsic::dbg_value: {
4730    const DbgValueInst &DI = cast<DbgValueInst>(I);
4731    DIVariable DIVar = DI.getVariable();
4732    if (!DIVar)
4733      return nullptr;
4734
4735    MDLocalVariable *Variable = DI.getVariable();
4736    MDExpression *Expression = DI.getExpression();
4737    uint64_t Offset = DI.getOffset();
4738    const Value *V = DI.getValue();
4739    if (!V)
4740      return nullptr;
4741
4742    SDDbgValue *SDV;
4743    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4744      SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4745                                    SDNodeOrder);
4746      DAG.AddDbgValue(SDV, nullptr, false);
4747    } else {
4748      // Do not use getValue() in here; we don't want to generate code at
4749      // this point if it hasn't been done yet.
4750      SDValue N = NodeMap[V];
4751      if (!N.getNode() && isa<Argument>(V))
4752        // Check unused arguments map.
4753        N = UnusedArgNodeMap[V];
4754      if (N.getNode()) {
4755        // A dbg.value for an alloca is always indirect.
4756        bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4757        if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4758                                      IsIndirect, N)) {
4759          SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4760                                IsIndirect, Offset, dl, SDNodeOrder);
4761          DAG.AddDbgValue(SDV, N.getNode(), false);
4762        }
4763      } else if (!V->use_empty() ) {
4764        // Do not call getValue(V) yet, as we don't want to generate code.
4765        // Remember it for later.
4766        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4767        DanglingDebugInfoMap[V] = DDI;
4768      } else {
4769        // We may expand this to cover more cases.  One case where we have no
4770        // data available is an unreferenced parameter.
4771        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4772      }
4773    }
4774
4775    // Build a debug info table entry.
4776    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4777      V = BCI->getOperand(0);
4778    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4779    // Don't handle byval struct arguments or VLAs, for example.
4780    if (!AI) {
4781      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4782      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4783      return nullptr;
4784    }
4785    DenseMap<const AllocaInst*, int>::iterator SI =
4786      FuncInfo.StaticAllocaMap.find(AI);
4787    if (SI == FuncInfo.StaticAllocaMap.end())
4788      return nullptr; // VLAs.
4789    return nullptr;
4790  }
4791
4792  case Intrinsic::eh_typeid_for: {
4793    // Find the type id for the given typeinfo.
4794    GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4795    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4796    Res = DAG.getConstant(TypeID, MVT::i32);
4797    setValue(&I, Res);
4798    return nullptr;
4799  }
4800
4801  case Intrinsic::eh_return_i32:
4802  case Intrinsic::eh_return_i64:
4803    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4804    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4805                            MVT::Other,
4806                            getControlRoot(),
4807                            getValue(I.getArgOperand(0)),
4808                            getValue(I.getArgOperand(1))));
4809    return nullptr;
4810  case Intrinsic::eh_unwind_init:
4811    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4812    return nullptr;
4813  case Intrinsic::eh_dwarf_cfa: {
4814    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4815                                        TLI.getPointerTy());
4816    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4817                                 CfaArg.getValueType(),
4818                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4819                                             CfaArg.getValueType()),
4820                                 CfaArg);
4821    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4822                             DAG.getConstant(0, TLI.getPointerTy()));
4823    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4824                             FA, Offset));
4825    return nullptr;
4826  }
4827  case Intrinsic::eh_sjlj_callsite: {
4828    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4829    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4830    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4831    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4832
4833    MMI.setCurrentCallSite(CI->getZExtValue());
4834    return nullptr;
4835  }
4836  case Intrinsic::eh_sjlj_functioncontext: {
4837    // Get and store the index of the function context.
4838    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4839    AllocaInst *FnCtx =
4840      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4841    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4842    MFI->setFunctionContextIndex(FI);
4843    return nullptr;
4844  }
4845  case Intrinsic::eh_sjlj_setjmp: {
4846    SDValue Ops[2];
4847    Ops[0] = getRoot();
4848    Ops[1] = getValue(I.getArgOperand(0));
4849    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4850                             DAG.getVTList(MVT::i32, MVT::Other), Ops);
4851    setValue(&I, Op.getValue(0));
4852    DAG.setRoot(Op.getValue(1));
4853    return nullptr;
4854  }
4855  case Intrinsic::eh_sjlj_longjmp: {
4856    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4857                            getRoot(), getValue(I.getArgOperand(0))));
4858    return nullptr;
4859  }
4860
4861  case Intrinsic::masked_load:
4862    visitMaskedLoad(I);
4863    return nullptr;
4864  case Intrinsic::masked_store:
4865    visitMaskedStore(I);
4866    return nullptr;
4867  case Intrinsic::x86_mmx_pslli_w:
4868  case Intrinsic::x86_mmx_pslli_d:
4869  case Intrinsic::x86_mmx_pslli_q:
4870  case Intrinsic::x86_mmx_psrli_w:
4871  case Intrinsic::x86_mmx_psrli_d:
4872  case Intrinsic::x86_mmx_psrli_q:
4873  case Intrinsic::x86_mmx_psrai_w:
4874  case Intrinsic::x86_mmx_psrai_d: {
4875    SDValue ShAmt = getValue(I.getArgOperand(1));
4876    if (isa<ConstantSDNode>(ShAmt)) {
4877      visitTargetIntrinsic(I, Intrinsic);
4878      return nullptr;
4879    }
4880    unsigned NewIntrinsic = 0;
4881    EVT ShAmtVT = MVT::v2i32;
4882    switch (Intrinsic) {
4883    case Intrinsic::x86_mmx_pslli_w:
4884      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4885      break;
4886    case Intrinsic::x86_mmx_pslli_d:
4887      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4888      break;
4889    case Intrinsic::x86_mmx_pslli_q:
4890      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4891      break;
4892    case Intrinsic::x86_mmx_psrli_w:
4893      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4894      break;
4895    case Intrinsic::x86_mmx_psrli_d:
4896      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4897      break;
4898    case Intrinsic::x86_mmx_psrli_q:
4899      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4900      break;
4901    case Intrinsic::x86_mmx_psrai_w:
4902      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4903      break;
4904    case Intrinsic::x86_mmx_psrai_d:
4905      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4906      break;
4907    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4908    }
4909
4910    // The vector shift intrinsics with scalars uses 32b shift amounts but
4911    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4912    // to be zero.
4913    // We must do this early because v2i32 is not a legal type.
4914    SDValue ShOps[2];
4915    ShOps[0] = ShAmt;
4916    ShOps[1] = DAG.getConstant(0, MVT::i32);
4917    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4918    EVT DestVT = TLI.getValueType(I.getType());
4919    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4920    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4921                       DAG.getConstant(NewIntrinsic, MVT::i32),
4922                       getValue(I.getArgOperand(0)), ShAmt);
4923    setValue(&I, Res);
4924    return nullptr;
4925  }
4926  case Intrinsic::convertff:
4927  case Intrinsic::convertfsi:
4928  case Intrinsic::convertfui:
4929  case Intrinsic::convertsif:
4930  case Intrinsic::convertuif:
4931  case Intrinsic::convertss:
4932  case Intrinsic::convertsu:
4933  case Intrinsic::convertus:
4934  case Intrinsic::convertuu: {
4935    ISD::CvtCode Code = ISD::CVT_INVALID;
4936    switch (Intrinsic) {
4937    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4938    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4939    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4940    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4941    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4942    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4943    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4944    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4945    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4946    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4947    }
4948    EVT DestVT = TLI.getValueType(I.getType());
4949    const Value *Op1 = I.getArgOperand(0);
4950    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4951                               DAG.getValueType(DestVT),
4952                               DAG.getValueType(getValue(Op1).getValueType()),
4953                               getValue(I.getArgOperand(1)),
4954                               getValue(I.getArgOperand(2)),
4955                               Code);
4956    setValue(&I, Res);
4957    return nullptr;
4958  }
4959  case Intrinsic::powi:
4960    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4961                            getValue(I.getArgOperand(1)), DAG));
4962    return nullptr;
4963  case Intrinsic::log:
4964    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4965    return nullptr;
4966  case Intrinsic::log2:
4967    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4968    return nullptr;
4969  case Intrinsic::log10:
4970    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4971    return nullptr;
4972  case Intrinsic::exp:
4973    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4974    return nullptr;
4975  case Intrinsic::exp2:
4976    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4977    return nullptr;
4978  case Intrinsic::pow:
4979    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4980                           getValue(I.getArgOperand(1)), DAG, TLI));
4981    return nullptr;
4982  case Intrinsic::sqrt:
4983  case Intrinsic::fabs:
4984  case Intrinsic::sin:
4985  case Intrinsic::cos:
4986  case Intrinsic::floor:
4987  case Intrinsic::ceil:
4988  case Intrinsic::trunc:
4989  case Intrinsic::rint:
4990  case Intrinsic::nearbyint:
4991  case Intrinsic::round: {
4992    unsigned Opcode;
4993    switch (Intrinsic) {
4994    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4995    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4996    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4997    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4998    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4999    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5000    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5001    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5002    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5003    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5004    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5005    }
5006
5007    setValue(&I, DAG.getNode(Opcode, sdl,
5008                             getValue(I.getArgOperand(0)).getValueType(),
5009                             getValue(I.getArgOperand(0))));
5010    return nullptr;
5011  }
5012  case Intrinsic::minnum:
5013    setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5014                             getValue(I.getArgOperand(0)).getValueType(),
5015                             getValue(I.getArgOperand(0)),
5016                             getValue(I.getArgOperand(1))));
5017    return nullptr;
5018  case Intrinsic::maxnum:
5019    setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5020                             getValue(I.getArgOperand(0)).getValueType(),
5021                             getValue(I.getArgOperand(0)),
5022                             getValue(I.getArgOperand(1))));
5023    return nullptr;
5024  case Intrinsic::copysign:
5025    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5026                             getValue(I.getArgOperand(0)).getValueType(),
5027                             getValue(I.getArgOperand(0)),
5028                             getValue(I.getArgOperand(1))));
5029    return nullptr;
5030  case Intrinsic::fma:
5031    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5032                             getValue(I.getArgOperand(0)).getValueType(),
5033                             getValue(I.getArgOperand(0)),
5034                             getValue(I.getArgOperand(1)),
5035                             getValue(I.getArgOperand(2))));
5036    return nullptr;
5037  case Intrinsic::fmuladd: {
5038    EVT VT = TLI.getValueType(I.getType());
5039    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5040        TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5041      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5042                               getValue(I.getArgOperand(0)).getValueType(),
5043                               getValue(I.getArgOperand(0)),
5044                               getValue(I.getArgOperand(1)),
5045                               getValue(I.getArgOperand(2))));
5046    } else {
5047      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5048                                getValue(I.getArgOperand(0)).getValueType(),
5049                                getValue(I.getArgOperand(0)),
5050                                getValue(I.getArgOperand(1)));
5051      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5052                                getValue(I.getArgOperand(0)).getValueType(),
5053                                Mul,
5054                                getValue(I.getArgOperand(2)));
5055      setValue(&I, Add);
5056    }
5057    return nullptr;
5058  }
5059  case Intrinsic::convert_to_fp16:
5060    setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5061                             DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5062                                         getValue(I.getArgOperand(0)),
5063                                         DAG.getTargetConstant(0, MVT::i32))));
5064    return nullptr;
5065  case Intrinsic::convert_from_fp16:
5066    setValue(&I,
5067             DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
5068                         DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5069                                     getValue(I.getArgOperand(0)))));
5070    return nullptr;
5071  case Intrinsic::pcmarker: {
5072    SDValue Tmp = getValue(I.getArgOperand(0));
5073    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5074    return nullptr;
5075  }
5076  case Intrinsic::readcyclecounter: {
5077    SDValue Op = getRoot();
5078    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5079                      DAG.getVTList(MVT::i64, MVT::Other), Op);
5080    setValue(&I, Res);
5081    DAG.setRoot(Res.getValue(1));
5082    return nullptr;
5083  }
5084  case Intrinsic::bswap:
5085    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5086                             getValue(I.getArgOperand(0)).getValueType(),
5087                             getValue(I.getArgOperand(0))));
5088    return nullptr;
5089  case Intrinsic::cttz: {
5090    SDValue Arg = getValue(I.getArgOperand(0));
5091    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5092    EVT Ty = Arg.getValueType();
5093    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5094                             sdl, Ty, Arg));
5095    return nullptr;
5096  }
5097  case Intrinsic::ctlz: {
5098    SDValue Arg = getValue(I.getArgOperand(0));
5099    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5100    EVT Ty = Arg.getValueType();
5101    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5102                             sdl, Ty, Arg));
5103    return nullptr;
5104  }
5105  case Intrinsic::ctpop: {
5106    SDValue Arg = getValue(I.getArgOperand(0));
5107    EVT Ty = Arg.getValueType();
5108    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5109    return nullptr;
5110  }
5111  case Intrinsic::stacksave: {
5112    SDValue Op = getRoot();
5113    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5114                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
5115    setValue(&I, Res);
5116    DAG.setRoot(Res.getValue(1));
5117    return nullptr;
5118  }
5119  case Intrinsic::stackrestore: {
5120    Res = getValue(I.getArgOperand(0));
5121    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5122    return nullptr;
5123  }
5124  case Intrinsic::stackprotector: {
5125    // Emit code into the DAG to store the stack guard onto the stack.
5126    MachineFunction &MF = DAG.getMachineFunction();
5127    MachineFrameInfo *MFI = MF.getFrameInfo();
5128    EVT PtrTy = TLI.getPointerTy();
5129    SDValue Src, Chain = getRoot();
5130    const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5131    const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5132
5133    // See if Ptr is a bitcast. If it is, look through it and see if we can get
5134    // global variable __stack_chk_guard.
5135    if (!GV)
5136      if (const Operator *BC = dyn_cast<Operator>(Ptr))
5137        if (BC->getOpcode() == Instruction::BitCast)
5138          GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5139
5140    if (GV && TLI.useLoadStackGuardNode()) {
5141      // Emit a LOAD_STACK_GUARD node.
5142      MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5143                                               sdl, PtrTy, Chain);
5144      MachinePointerInfo MPInfo(GV);
5145      MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5146      unsigned Flags = MachineMemOperand::MOLoad |
5147                       MachineMemOperand::MOInvariant;
5148      *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5149                                         PtrTy.getSizeInBits() / 8,
5150                                         DAG.getEVTAlignment(PtrTy));
5151      Node->setMemRefs(MemRefs, MemRefs + 1);
5152
5153      // Copy the guard value to a virtual register so that it can be
5154      // retrieved in the epilogue.
5155      Src = SDValue(Node, 0);
5156      const TargetRegisterClass *RC =
5157          TLI.getRegClassFor(Src.getSimpleValueType());
5158      unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5159
5160      SPDescriptor.setGuardReg(Reg);
5161      Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5162    } else {
5163      Src = getValue(I.getArgOperand(0));   // The guard's value.
5164    }
5165
5166    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5167
5168    int FI = FuncInfo.StaticAllocaMap[Slot];
5169    MFI->setStackProtectorIndex(FI);
5170
5171    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5172
5173    // Store the stack protector onto the stack.
5174    Res = DAG.getStore(Chain, sdl, Src, FIN,
5175                       MachinePointerInfo::getFixedStack(FI),
5176                       true, false, 0);
5177    setValue(&I, Res);
5178    DAG.setRoot(Res);
5179    return nullptr;
5180  }
5181  case Intrinsic::objectsize: {
5182    // If we don't know by now, we're never going to know.
5183    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5184
5185    assert(CI && "Non-constant type in __builtin_object_size?");
5186
5187    SDValue Arg = getValue(I.getCalledValue());
5188    EVT Ty = Arg.getValueType();
5189
5190    if (CI->isZero())
5191      Res = DAG.getConstant(-1ULL, Ty);
5192    else
5193      Res = DAG.getConstant(0, Ty);
5194
5195    setValue(&I, Res);
5196    return nullptr;
5197  }
5198  case Intrinsic::annotation:
5199  case Intrinsic::ptr_annotation:
5200    // Drop the intrinsic, but forward the value
5201    setValue(&I, getValue(I.getOperand(0)));
5202    return nullptr;
5203  case Intrinsic::assume:
5204  case Intrinsic::var_annotation:
5205    // Discard annotate attributes and assumptions
5206    return nullptr;
5207
5208  case Intrinsic::init_trampoline: {
5209    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5210
5211    SDValue Ops[6];
5212    Ops[0] = getRoot();
5213    Ops[1] = getValue(I.getArgOperand(0));
5214    Ops[2] = getValue(I.getArgOperand(1));
5215    Ops[3] = getValue(I.getArgOperand(2));
5216    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5217    Ops[5] = DAG.getSrcValue(F);
5218
5219    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5220
5221    DAG.setRoot(Res);
5222    return nullptr;
5223  }
5224  case Intrinsic::adjust_trampoline: {
5225    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5226                             TLI.getPointerTy(),
5227                             getValue(I.getArgOperand(0))));
5228    return nullptr;
5229  }
5230  case Intrinsic::gcroot:
5231    if (GFI) {
5232      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5233      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5234
5235      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5236      GFI->addStackRoot(FI->getIndex(), TypeMap);
5237    }
5238    return nullptr;
5239  case Intrinsic::gcread:
5240  case Intrinsic::gcwrite:
5241    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5242  case Intrinsic::flt_rounds:
5243    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5244    return nullptr;
5245
5246  case Intrinsic::expect: {
5247    // Just replace __builtin_expect(exp, c) with EXP.
5248    setValue(&I, getValue(I.getArgOperand(0)));
5249    return nullptr;
5250  }
5251
5252  case Intrinsic::debugtrap:
5253  case Intrinsic::trap: {
5254    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5255    if (TrapFuncName.empty()) {
5256      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5257        ISD::TRAP : ISD::DEBUGTRAP;
5258      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5259      return nullptr;
5260    }
5261    TargetLowering::ArgListTy Args;
5262
5263    TargetLowering::CallLoweringInfo CLI(DAG);
5264    CLI.setDebugLoc(sdl).setChain(getRoot())
5265      .setCallee(CallingConv::C, I.getType(),
5266                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5267                 std::move(Args), 0);
5268
5269    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5270    DAG.setRoot(Result.second);
5271    return nullptr;
5272  }
5273
5274  case Intrinsic::uadd_with_overflow:
5275  case Intrinsic::sadd_with_overflow:
5276  case Intrinsic::usub_with_overflow:
5277  case Intrinsic::ssub_with_overflow:
5278  case Intrinsic::umul_with_overflow:
5279  case Intrinsic::smul_with_overflow: {
5280    ISD::NodeType Op;
5281    switch (Intrinsic) {
5282    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5283    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5284    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5285    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5286    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5287    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5288    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5289    }
5290    SDValue Op1 = getValue(I.getArgOperand(0));
5291    SDValue Op2 = getValue(I.getArgOperand(1));
5292
5293    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5294    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5295    return nullptr;
5296  }
5297  case Intrinsic::prefetch: {
5298    SDValue Ops[5];
5299    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5300    Ops[0] = getRoot();
5301    Ops[1] = getValue(I.getArgOperand(0));
5302    Ops[2] = getValue(I.getArgOperand(1));
5303    Ops[3] = getValue(I.getArgOperand(2));
5304    Ops[4] = getValue(I.getArgOperand(3));
5305    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5306                                        DAG.getVTList(MVT::Other), Ops,
5307                                        EVT::getIntegerVT(*Context, 8),
5308                                        MachinePointerInfo(I.getArgOperand(0)),
5309                                        0, /* align */
5310                                        false, /* volatile */
5311                                        rw==0, /* read */
5312                                        rw==1)); /* write */
5313    return nullptr;
5314  }
5315  case Intrinsic::lifetime_start:
5316  case Intrinsic::lifetime_end: {
5317    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5318    // Stack coloring is not enabled in O0, discard region information.
5319    if (TM.getOptLevel() == CodeGenOpt::None)
5320      return nullptr;
5321
5322    SmallVector<Value *, 4> Allocas;
5323    GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5324
5325    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5326           E = Allocas.end(); Object != E; ++Object) {
5327      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5328
5329      // Could not find an Alloca.
5330      if (!LifetimeObject)
5331        continue;
5332
5333      // First check that the Alloca is static, otherwise it won't have a
5334      // valid frame index.
5335      auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5336      if (SI == FuncInfo.StaticAllocaMap.end())
5337        return nullptr;
5338
5339      int FI = SI->second;
5340
5341      SDValue Ops[2];
5342      Ops[0] = getRoot();
5343      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5344      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5345
5346      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5347      DAG.setRoot(Res);
5348    }
5349    return nullptr;
5350  }
5351  case Intrinsic::invariant_start:
5352    // Discard region information.
5353    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5354    return nullptr;
5355  case Intrinsic::invariant_end:
5356    // Discard region information.
5357    return nullptr;
5358  case Intrinsic::stackprotectorcheck: {
5359    // Do not actually emit anything for this basic block. Instead we initialize
5360    // the stack protector descriptor and export the guard variable so we can
5361    // access it in FinishBasicBlock.
5362    const BasicBlock *BB = I.getParent();
5363    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5364    ExportFromCurrentBlock(SPDescriptor.getGuard());
5365
5366    // Flush our exports since we are going to process a terminator.
5367    (void)getControlRoot();
5368    return nullptr;
5369  }
5370  case Intrinsic::clear_cache:
5371    return TLI.getClearCacheBuiltinName();
5372  case Intrinsic::eh_actions:
5373    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5374    return nullptr;
5375  case Intrinsic::donothing:
5376    // ignore
5377    return nullptr;
5378  case Intrinsic::experimental_stackmap: {
5379    visitStackmap(I);
5380    return nullptr;
5381  }
5382  case Intrinsic::experimental_patchpoint_void:
5383  case Intrinsic::experimental_patchpoint_i64: {
5384    visitPatchpoint(&I);
5385    return nullptr;
5386  }
5387  case Intrinsic::experimental_gc_statepoint: {
5388    visitStatepoint(I);
5389    return nullptr;
5390  }
5391  case Intrinsic::experimental_gc_result_int:
5392  case Intrinsic::experimental_gc_result_float:
5393  case Intrinsic::experimental_gc_result_ptr:
5394  case Intrinsic::experimental_gc_result: {
5395    visitGCResult(I);
5396    return nullptr;
5397  }
5398  case Intrinsic::experimental_gc_relocate: {
5399    visitGCRelocate(I);
5400    return nullptr;
5401  }
5402  case Intrinsic::instrprof_increment:
5403    llvm_unreachable("instrprof failed to lower an increment");
5404
5405  case Intrinsic::frameescape: {
5406    MachineFunction &MF = DAG.getMachineFunction();
5407    const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5408
5409    // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission
5410    // is the same on all targets.
5411    for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5412      Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5413      if (isa<ConstantPointerNull>(Arg))
5414        continue; // Skip null pointers. They represent a hole in index space.
5415      AllocaInst *Slot = cast<AllocaInst>(Arg);
5416      assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5417             "can only escape static allocas");
5418      int FI = FuncInfo.StaticAllocaMap[Slot];
5419      MCSymbol *FrameAllocSym =
5420          MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5421              GlobalValue::getRealLinkageName(MF.getName()), Idx);
5422      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5423              TII->get(TargetOpcode::FRAME_ALLOC))
5424          .addSym(FrameAllocSym)
5425          .addFrameIndex(FI);
5426    }
5427
5428    return nullptr;
5429  }
5430
5431  case Intrinsic::framerecover: {
5432    // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx)
5433    MachineFunction &MF = DAG.getMachineFunction();
5434    MVT PtrVT = TLI.getPointerTy(0);
5435
5436    // Get the symbol that defines the frame offset.
5437    auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5438    auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5439    unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5440    MCSymbol *FrameAllocSym =
5441        MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5442            GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5443
5444    // Create a TargetExternalSymbol for the label to avoid any target lowering
5445    // that would make this PC relative.
5446    StringRef Name = FrameAllocSym->getName();
5447    assert(Name.data()[Name.size()] == '\0' && "not null terminated");
5448    SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
5449    SDValue OffsetVal =
5450        DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
5451
5452    // Add the offset to the FP.
5453    Value *FP = I.getArgOperand(1);
5454    SDValue FPVal = getValue(FP);
5455    SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5456    setValue(&I, Add);
5457
5458    return nullptr;
5459  }
5460  case Intrinsic::eh_begincatch:
5461  case Intrinsic::eh_endcatch:
5462    llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
5463  }
5464}
5465
5466std::pair<SDValue, SDValue>
5467SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5468                                    MachineBasicBlock *LandingPad) {
5469  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5470  MCSymbol *BeginLabel = nullptr;
5471
5472  if (LandingPad) {
5473    // Insert a label before the invoke call to mark the try range.  This can be
5474    // used to detect deletion of the invoke via the MachineModuleInfo.
5475    BeginLabel = MMI.getContext().CreateTempSymbol();
5476
5477    // For SjLj, keep track of which landing pads go with which invokes
5478    // so as to maintain the ordering of pads in the LSDA.
5479    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5480    if (CallSiteIndex) {
5481      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5482      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5483
5484      // Now that the call site is handled, stop tracking it.
5485      MMI.setCurrentCallSite(0);
5486    }
5487
5488    // Both PendingLoads and PendingExports must be flushed here;
5489    // this call might not return.
5490    (void)getRoot();
5491    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5492
5493    CLI.setChain(getRoot());
5494  }
5495  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5496  std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5497
5498  assert((CLI.IsTailCall || Result.second.getNode()) &&
5499         "Non-null chain expected with non-tail call!");
5500  assert((Result.second.getNode() || !Result.first.getNode()) &&
5501         "Null value expected with tail call!");
5502
5503  if (!Result.second.getNode()) {
5504    // As a special case, a null chain means that a tail call has been emitted
5505    // and the DAG root is already updated.
5506    HasTailCall = true;
5507
5508    // Since there's no actual continuation from this block, nothing can be
5509    // relying on us setting vregs for them.
5510    PendingExports.clear();
5511  } else {
5512    DAG.setRoot(Result.second);
5513  }
5514
5515  if (LandingPad) {
5516    // Insert a label at the end of the invoke call to mark the try range.  This
5517    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5518    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5519    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5520
5521    // Inform MachineModuleInfo of range.
5522    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5523  }
5524
5525  return Result;
5526}
5527
5528void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5529                                      bool isTailCall,
5530                                      MachineBasicBlock *LandingPad) {
5531  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5532  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5533  Type *RetTy = FTy->getReturnType();
5534
5535  TargetLowering::ArgListTy Args;
5536  TargetLowering::ArgListEntry Entry;
5537  Args.reserve(CS.arg_size());
5538
5539  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5540       i != e; ++i) {
5541    const Value *V = *i;
5542
5543    // Skip empty types
5544    if (V->getType()->isEmptyTy())
5545      continue;
5546
5547    SDValue ArgNode = getValue(V);
5548    Entry.Node = ArgNode; Entry.Ty = V->getType();
5549
5550    // Skip the first return-type Attribute to get to params.
5551    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5552    Args.push_back(Entry);
5553
5554    // If we have an explicit sret argument that is an Instruction, (i.e., it
5555    // might point to function-local memory), we can't meaningfully tail-call.
5556    if (Entry.isSRet && isa<Instruction>(V))
5557      isTailCall = false;
5558  }
5559
5560  // Check if target-independent constraints permit a tail call here.
5561  // Target-dependent constraints are checked within TLI->LowerCallTo.
5562  if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5563    isTailCall = false;
5564
5565  TargetLowering::CallLoweringInfo CLI(DAG);
5566  CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5567    .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5568    .setTailCall(isTailCall);
5569  std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5570
5571  if (Result.first.getNode())
5572    setValue(CS.getInstruction(), Result.first);
5573}
5574
5575/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5576/// value is equal or not-equal to zero.
5577static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5578  for (const User *U : V->users()) {
5579    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5580      if (IC->isEquality())
5581        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5582          if (C->isNullValue())
5583            continue;
5584    // Unknown instruction.
5585    return false;
5586  }
5587  return true;
5588}
5589
5590static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5591                             Type *LoadTy,
5592                             SelectionDAGBuilder &Builder) {
5593
5594  // Check to see if this load can be trivially constant folded, e.g. if the
5595  // input is from a string literal.
5596  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5597    // Cast pointer to the type we really want to load.
5598    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5599                                         PointerType::getUnqual(LoadTy));
5600
5601    if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5602            const_cast<Constant *>(LoadInput), *Builder.DL))
5603      return Builder.getValue(LoadCst);
5604  }
5605
5606  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5607  // still constant memory, the input chain can be the entry node.
5608  SDValue Root;
5609  bool ConstantMemory = false;
5610
5611  // Do not serialize (non-volatile) loads of constant memory with anything.
5612  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5613    Root = Builder.DAG.getEntryNode();
5614    ConstantMemory = true;
5615  } else {
5616    // Do not serialize non-volatile loads against each other.
5617    Root = Builder.DAG.getRoot();
5618  }
5619
5620  SDValue Ptr = Builder.getValue(PtrVal);
5621  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5622                                        Ptr, MachinePointerInfo(PtrVal),
5623                                        false /*volatile*/,
5624                                        false /*nontemporal*/,
5625                                        false /*isinvariant*/, 1 /* align=1 */);
5626
5627  if (!ConstantMemory)
5628    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5629  return LoadVal;
5630}
5631
5632/// processIntegerCallValue - Record the value for an instruction that
5633/// produces an integer result, converting the type where necessary.
5634void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5635                                                  SDValue Value,
5636                                                  bool IsSigned) {
5637  EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5638  if (IsSigned)
5639    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5640  else
5641    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5642  setValue(&I, Value);
5643}
5644
5645/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5646/// If so, return true and lower it, otherwise return false and it will be
5647/// lowered like a normal call.
5648bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5649  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5650  if (I.getNumArgOperands() != 3)
5651    return false;
5652
5653  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5654  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5655      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5656      !I.getType()->isIntegerTy())
5657    return false;
5658
5659  const Value *Size = I.getArgOperand(2);
5660  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5661  if (CSize && CSize->getZExtValue() == 0) {
5662    EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5663    setValue(&I, DAG.getConstant(0, CallVT));
5664    return true;
5665  }
5666
5667  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5668  std::pair<SDValue, SDValue> Res =
5669    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5670                                getValue(LHS), getValue(RHS), getValue(Size),
5671                                MachinePointerInfo(LHS),
5672                                MachinePointerInfo(RHS));
5673  if (Res.first.getNode()) {
5674    processIntegerCallValue(I, Res.first, true);
5675    PendingLoads.push_back(Res.second);
5676    return true;
5677  }
5678
5679  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5680  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5681  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5682    bool ActuallyDoIt = true;
5683    MVT LoadVT;
5684    Type *LoadTy;
5685    switch (CSize->getZExtValue()) {
5686    default:
5687      LoadVT = MVT::Other;
5688      LoadTy = nullptr;
5689      ActuallyDoIt = false;
5690      break;
5691    case 2:
5692      LoadVT = MVT::i16;
5693      LoadTy = Type::getInt16Ty(CSize->getContext());
5694      break;
5695    case 4:
5696      LoadVT = MVT::i32;
5697      LoadTy = Type::getInt32Ty(CSize->getContext());
5698      break;
5699    case 8:
5700      LoadVT = MVT::i64;
5701      LoadTy = Type::getInt64Ty(CSize->getContext());
5702      break;
5703        /*
5704    case 16:
5705      LoadVT = MVT::v4i32;
5706      LoadTy = Type::getInt32Ty(CSize->getContext());
5707      LoadTy = VectorType::get(LoadTy, 4);
5708      break;
5709         */
5710    }
5711
5712    // This turns into unaligned loads.  We only do this if the target natively
5713    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5714    // we'll only produce a small number of byte loads.
5715
5716    // Require that we can find a legal MVT, and only do this if the target
5717    // supports unaligned loads of that type.  Expanding into byte loads would
5718    // bloat the code.
5719    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5720    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5721      unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5722      unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5723      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5724      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5725      // TODO: Check alignment of src and dest ptrs.
5726      if (!TLI.isTypeLegal(LoadVT) ||
5727          !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5728          !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5729        ActuallyDoIt = false;
5730    }
5731
5732    if (ActuallyDoIt) {
5733      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5734      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5735
5736      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5737                                 ISD::SETNE);
5738      processIntegerCallValue(I, Res, false);
5739      return true;
5740    }
5741  }
5742
5743
5744  return false;
5745}
5746
5747/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5748/// form.  If so, return true and lower it, otherwise return false and it
5749/// will be lowered like a normal call.
5750bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5751  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5752  if (I.getNumArgOperands() != 3)
5753    return false;
5754
5755  const Value *Src = I.getArgOperand(0);
5756  const Value *Char = I.getArgOperand(1);
5757  const Value *Length = I.getArgOperand(2);
5758  if (!Src->getType()->isPointerTy() ||
5759      !Char->getType()->isIntegerTy() ||
5760      !Length->getType()->isIntegerTy() ||
5761      !I.getType()->isPointerTy())
5762    return false;
5763
5764  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5765  std::pair<SDValue, SDValue> Res =
5766    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5767                                getValue(Src), getValue(Char), getValue(Length),
5768                                MachinePointerInfo(Src));
5769  if (Res.first.getNode()) {
5770    setValue(&I, Res.first);
5771    PendingLoads.push_back(Res.second);
5772    return true;
5773  }
5774
5775  return false;
5776}
5777
5778/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5779/// optimized form.  If so, return true and lower it, otherwise return false
5780/// and it will be lowered like a normal call.
5781bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5782  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5783  if (I.getNumArgOperands() != 2)
5784    return false;
5785
5786  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5787  if (!Arg0->getType()->isPointerTy() ||
5788      !Arg1->getType()->isPointerTy() ||
5789      !I.getType()->isPointerTy())
5790    return false;
5791
5792  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5793  std::pair<SDValue, SDValue> Res =
5794    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5795                                getValue(Arg0), getValue(Arg1),
5796                                MachinePointerInfo(Arg0),
5797                                MachinePointerInfo(Arg1), isStpcpy);
5798  if (Res.first.getNode()) {
5799    setValue(&I, Res.first);
5800    DAG.setRoot(Res.second);
5801    return true;
5802  }
5803
5804  return false;
5805}
5806
5807/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5808/// If so, return true and lower it, otherwise return false and it will be
5809/// lowered like a normal call.
5810bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5811  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5812  if (I.getNumArgOperands() != 2)
5813    return false;
5814
5815  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5816  if (!Arg0->getType()->isPointerTy() ||
5817      !Arg1->getType()->isPointerTy() ||
5818      !I.getType()->isIntegerTy())
5819    return false;
5820
5821  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5822  std::pair<SDValue, SDValue> Res =
5823    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5824                                getValue(Arg0), getValue(Arg1),
5825                                MachinePointerInfo(Arg0),
5826                                MachinePointerInfo(Arg1));
5827  if (Res.first.getNode()) {
5828    processIntegerCallValue(I, Res.first, true);
5829    PendingLoads.push_back(Res.second);
5830    return true;
5831  }
5832
5833  return false;
5834}
5835
5836/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5837/// form.  If so, return true and lower it, otherwise return false and it
5838/// will be lowered like a normal call.
5839bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5840  // Verify that the prototype makes sense.  size_t strlen(char *)
5841  if (I.getNumArgOperands() != 1)
5842    return false;
5843
5844  const Value *Arg0 = I.getArgOperand(0);
5845  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5846    return false;
5847
5848  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5849  std::pair<SDValue, SDValue> Res =
5850    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5851                                getValue(Arg0), MachinePointerInfo(Arg0));
5852  if (Res.first.getNode()) {
5853    processIntegerCallValue(I, Res.first, false);
5854    PendingLoads.push_back(Res.second);
5855    return true;
5856  }
5857
5858  return false;
5859}
5860
5861/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5862/// form.  If so, return true and lower it, otherwise return false and it
5863/// will be lowered like a normal call.
5864bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5865  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5866  if (I.getNumArgOperands() != 2)
5867    return false;
5868
5869  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5870  if (!Arg0->getType()->isPointerTy() ||
5871      !Arg1->getType()->isIntegerTy() ||
5872      !I.getType()->isIntegerTy())
5873    return false;
5874
5875  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5876  std::pair<SDValue, SDValue> Res =
5877    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5878                                 getValue(Arg0), getValue(Arg1),
5879                                 MachinePointerInfo(Arg0));
5880  if (Res.first.getNode()) {
5881    processIntegerCallValue(I, Res.first, false);
5882    PendingLoads.push_back(Res.second);
5883    return true;
5884  }
5885
5886  return false;
5887}
5888
5889/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5890/// operation (as expected), translate it to an SDNode with the specified opcode
5891/// and return true.
5892bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5893                                              unsigned Opcode) {
5894  // Sanity check that it really is a unary floating-point call.
5895  if (I.getNumArgOperands() != 1 ||
5896      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5897      I.getType() != I.getArgOperand(0)->getType() ||
5898      !I.onlyReadsMemory())
5899    return false;
5900
5901  SDValue Tmp = getValue(I.getArgOperand(0));
5902  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5903  return true;
5904}
5905
5906/// visitBinaryFloatCall - If a call instruction is a binary floating-point
5907/// operation (as expected), translate it to an SDNode with the specified opcode
5908/// and return true.
5909bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5910                                               unsigned Opcode) {
5911  // Sanity check that it really is a binary floating-point call.
5912  if (I.getNumArgOperands() != 2 ||
5913      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5914      I.getType() != I.getArgOperand(0)->getType() ||
5915      I.getType() != I.getArgOperand(1)->getType() ||
5916      !I.onlyReadsMemory())
5917    return false;
5918
5919  SDValue Tmp0 = getValue(I.getArgOperand(0));
5920  SDValue Tmp1 = getValue(I.getArgOperand(1));
5921  EVT VT = Tmp0.getValueType();
5922  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5923  return true;
5924}
5925
5926void SelectionDAGBuilder::visitCall(const CallInst &I) {
5927  // Handle inline assembly differently.
5928  if (isa<InlineAsm>(I.getCalledValue())) {
5929    visitInlineAsm(&I);
5930    return;
5931  }
5932
5933  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5934  ComputeUsesVAFloatArgument(I, &MMI);
5935
5936  const char *RenameFn = nullptr;
5937  if (Function *F = I.getCalledFunction()) {
5938    if (F->isDeclaration()) {
5939      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5940        if (unsigned IID = II->getIntrinsicID(F)) {
5941          RenameFn = visitIntrinsicCall(I, IID);
5942          if (!RenameFn)
5943            return;
5944        }
5945      }
5946      if (unsigned IID = F->getIntrinsicID()) {
5947        RenameFn = visitIntrinsicCall(I, IID);
5948        if (!RenameFn)
5949          return;
5950      }
5951    }
5952
5953    // Check for well-known libc/libm calls.  If the function is internal, it
5954    // can't be a library call.
5955    LibFunc::Func Func;
5956    if (!F->hasLocalLinkage() && F->hasName() &&
5957        LibInfo->getLibFunc(F->getName(), Func) &&
5958        LibInfo->hasOptimizedCodeGen(Func)) {
5959      switch (Func) {
5960      default: break;
5961      case LibFunc::copysign:
5962      case LibFunc::copysignf:
5963      case LibFunc::copysignl:
5964        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5965            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5966            I.getType() == I.getArgOperand(0)->getType() &&
5967            I.getType() == I.getArgOperand(1)->getType() &&
5968            I.onlyReadsMemory()) {
5969          SDValue LHS = getValue(I.getArgOperand(0));
5970          SDValue RHS = getValue(I.getArgOperand(1));
5971          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5972                                   LHS.getValueType(), LHS, RHS));
5973          return;
5974        }
5975        break;
5976      case LibFunc::fabs:
5977      case LibFunc::fabsf:
5978      case LibFunc::fabsl:
5979        if (visitUnaryFloatCall(I, ISD::FABS))
5980          return;
5981        break;
5982      case LibFunc::fmin:
5983      case LibFunc::fminf:
5984      case LibFunc::fminl:
5985        if (visitBinaryFloatCall(I, ISD::FMINNUM))
5986          return;
5987        break;
5988      case LibFunc::fmax:
5989      case LibFunc::fmaxf:
5990      case LibFunc::fmaxl:
5991        if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5992          return;
5993        break;
5994      case LibFunc::sin:
5995      case LibFunc::sinf:
5996      case LibFunc::sinl:
5997        if (visitUnaryFloatCall(I, ISD::FSIN))
5998          return;
5999        break;
6000      case LibFunc::cos:
6001      case LibFunc::cosf:
6002      case LibFunc::cosl:
6003        if (visitUnaryFloatCall(I, ISD::FCOS))
6004          return;
6005        break;
6006      case LibFunc::sqrt:
6007      case LibFunc::sqrtf:
6008      case LibFunc::sqrtl:
6009      case LibFunc::sqrt_finite:
6010      case LibFunc::sqrtf_finite:
6011      case LibFunc::sqrtl_finite:
6012        if (visitUnaryFloatCall(I, ISD::FSQRT))
6013          return;
6014        break;
6015      case LibFunc::floor:
6016      case LibFunc::floorf:
6017      case LibFunc::floorl:
6018        if (visitUnaryFloatCall(I, ISD::FFLOOR))
6019          return;
6020        break;
6021      case LibFunc::nearbyint:
6022      case LibFunc::nearbyintf:
6023      case LibFunc::nearbyintl:
6024        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6025          return;
6026        break;
6027      case LibFunc::ceil:
6028      case LibFunc::ceilf:
6029      case LibFunc::ceill:
6030        if (visitUnaryFloatCall(I, ISD::FCEIL))
6031          return;
6032        break;
6033      case LibFunc::rint:
6034      case LibFunc::rintf:
6035      case LibFunc::rintl:
6036        if (visitUnaryFloatCall(I, ISD::FRINT))
6037          return;
6038        break;
6039      case LibFunc::round:
6040      case LibFunc::roundf:
6041      case LibFunc::roundl:
6042        if (visitUnaryFloatCall(I, ISD::FROUND))
6043          return;
6044        break;
6045      case LibFunc::trunc:
6046      case LibFunc::truncf:
6047      case LibFunc::truncl:
6048        if (visitUnaryFloatCall(I, ISD::FTRUNC))
6049          return;
6050        break;
6051      case LibFunc::log2:
6052      case LibFunc::log2f:
6053      case LibFunc::log2l:
6054        if (visitUnaryFloatCall(I, ISD::FLOG2))
6055          return;
6056        break;
6057      case LibFunc::exp2:
6058      case LibFunc::exp2f:
6059      case LibFunc::exp2l:
6060        if (visitUnaryFloatCall(I, ISD::FEXP2))
6061          return;
6062        break;
6063      case LibFunc::memcmp:
6064        if (visitMemCmpCall(I))
6065          return;
6066        break;
6067      case LibFunc::memchr:
6068        if (visitMemChrCall(I))
6069          return;
6070        break;
6071      case LibFunc::strcpy:
6072        if (visitStrCpyCall(I, false))
6073          return;
6074        break;
6075      case LibFunc::stpcpy:
6076        if (visitStrCpyCall(I, true))
6077          return;
6078        break;
6079      case LibFunc::strcmp:
6080        if (visitStrCmpCall(I))
6081          return;
6082        break;
6083      case LibFunc::strlen:
6084        if (visitStrLenCall(I))
6085          return;
6086        break;
6087      case LibFunc::strnlen:
6088        if (visitStrNLenCall(I))
6089          return;
6090        break;
6091      }
6092    }
6093  }
6094
6095  SDValue Callee;
6096  if (!RenameFn)
6097    Callee = getValue(I.getCalledValue());
6098  else
6099    Callee = DAG.getExternalSymbol(RenameFn,
6100                                   DAG.getTargetLoweringInfo().getPointerTy());
6101
6102  // Check if we can potentially perform a tail call. More detailed checking is
6103  // be done within LowerCallTo, after more information about the call is known.
6104  LowerCallTo(&I, Callee, I.isTailCall());
6105}
6106
6107namespace {
6108
6109/// AsmOperandInfo - This contains information for each constraint that we are
6110/// lowering.
6111class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6112public:
6113  /// CallOperand - If this is the result output operand or a clobber
6114  /// this is null, otherwise it is the incoming operand to the CallInst.
6115  /// This gets modified as the asm is processed.
6116  SDValue CallOperand;
6117
6118  /// AssignedRegs - If this is a register or register class operand, this
6119  /// contains the set of register corresponding to the operand.
6120  RegsForValue AssignedRegs;
6121
6122  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6123    : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6124  }
6125
6126  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6127  /// corresponds to.  If there is no Value* for this operand, it returns
6128  /// MVT::Other.
6129  EVT getCallOperandValEVT(LLVMContext &Context,
6130                           const TargetLowering &TLI,
6131                           const DataLayout *DL) const {
6132    if (!CallOperandVal) return MVT::Other;
6133
6134    if (isa<BasicBlock>(CallOperandVal))
6135      return TLI.getPointerTy();
6136
6137    llvm::Type *OpTy = CallOperandVal->getType();
6138
6139    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6140    // If this is an indirect operand, the operand is a pointer to the
6141    // accessed type.
6142    if (isIndirect) {
6143      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6144      if (!PtrTy)
6145        report_fatal_error("Indirect operand for inline asm not a pointer!");
6146      OpTy = PtrTy->getElementType();
6147    }
6148
6149    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6150    if (StructType *STy = dyn_cast<StructType>(OpTy))
6151      if (STy->getNumElements() == 1)
6152        OpTy = STy->getElementType(0);
6153
6154    // If OpTy is not a single value, it may be a struct/union that we
6155    // can tile with integers.
6156    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6157      unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6158      switch (BitSize) {
6159      default: break;
6160      case 1:
6161      case 8:
6162      case 16:
6163      case 32:
6164      case 64:
6165      case 128:
6166        OpTy = IntegerType::get(Context, BitSize);
6167        break;
6168      }
6169    }
6170
6171    return TLI.getValueType(OpTy, true);
6172  }
6173};
6174
6175typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6176
6177} // end anonymous namespace
6178
6179/// GetRegistersForValue - Assign registers (virtual or physical) for the
6180/// specified operand.  We prefer to assign virtual registers, to allow the
6181/// register allocator to handle the assignment process.  However, if the asm
6182/// uses features that we can't model on machineinstrs, we have SDISel do the
6183/// allocation.  This produces generally horrible, but correct, code.
6184///
6185///   OpInfo describes the operand.
6186///
6187static void GetRegistersForValue(SelectionDAG &DAG,
6188                                 const TargetLowering &TLI,
6189                                 SDLoc DL,
6190                                 SDISelAsmOperandInfo &OpInfo) {
6191  LLVMContext &Context = *DAG.getContext();
6192
6193  MachineFunction &MF = DAG.getMachineFunction();
6194  SmallVector<unsigned, 4> Regs;
6195
6196  // If this is a constraint for a single physreg, or a constraint for a
6197  // register class, find it.
6198  std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6199      TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6200                                       OpInfo.ConstraintCode,
6201                                       OpInfo.ConstraintVT);
6202
6203  unsigned NumRegs = 1;
6204  if (OpInfo.ConstraintVT != MVT::Other) {
6205    // If this is a FP input in an integer register (or visa versa) insert a bit
6206    // cast of the input value.  More generally, handle any case where the input
6207    // value disagrees with the register class we plan to stick this in.
6208    if (OpInfo.Type == InlineAsm::isInput &&
6209        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6210      // Try to convert to the first EVT that the reg class contains.  If the
6211      // types are identical size, use a bitcast to convert (e.g. two differing
6212      // vector types).
6213      MVT RegVT = *PhysReg.second->vt_begin();
6214      if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6215        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6216                                         RegVT, OpInfo.CallOperand);
6217        OpInfo.ConstraintVT = RegVT;
6218      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6219        // If the input is a FP value and we want it in FP registers, do a
6220        // bitcast to the corresponding integer type.  This turns an f64 value
6221        // into i64, which can be passed with two i32 values on a 32-bit
6222        // machine.
6223        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6224        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6225                                         RegVT, OpInfo.CallOperand);
6226        OpInfo.ConstraintVT = RegVT;
6227      }
6228    }
6229
6230    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6231  }
6232
6233  MVT RegVT;
6234  EVT ValueVT = OpInfo.ConstraintVT;
6235
6236  // If this is a constraint for a specific physical register, like {r17},
6237  // assign it now.
6238  if (unsigned AssignedReg = PhysReg.first) {
6239    const TargetRegisterClass *RC = PhysReg.second;
6240    if (OpInfo.ConstraintVT == MVT::Other)
6241      ValueVT = *RC->vt_begin();
6242
6243    // Get the actual register value type.  This is important, because the user
6244    // may have asked for (e.g.) the AX register in i32 type.  We need to
6245    // remember that AX is actually i16 to get the right extension.
6246    RegVT = *RC->vt_begin();
6247
6248    // This is a explicit reference to a physical register.
6249    Regs.push_back(AssignedReg);
6250
6251    // If this is an expanded reference, add the rest of the regs to Regs.
6252    if (NumRegs != 1) {
6253      TargetRegisterClass::iterator I = RC->begin();
6254      for (; *I != AssignedReg; ++I)
6255        assert(I != RC->end() && "Didn't find reg!");
6256
6257      // Already added the first reg.
6258      --NumRegs; ++I;
6259      for (; NumRegs; --NumRegs, ++I) {
6260        assert(I != RC->end() && "Ran out of registers to allocate!");
6261        Regs.push_back(*I);
6262      }
6263    }
6264
6265    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6266    return;
6267  }
6268
6269  // Otherwise, if this was a reference to an LLVM register class, create vregs
6270  // for this reference.
6271  if (const TargetRegisterClass *RC = PhysReg.second) {
6272    RegVT = *RC->vt_begin();
6273    if (OpInfo.ConstraintVT == MVT::Other)
6274      ValueVT = RegVT;
6275
6276    // Create the appropriate number of virtual registers.
6277    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6278    for (; NumRegs; --NumRegs)
6279      Regs.push_back(RegInfo.createVirtualRegister(RC));
6280
6281    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6282    return;
6283  }
6284
6285  // Otherwise, we couldn't allocate enough registers for this.
6286}
6287
6288/// visitInlineAsm - Handle a call to an InlineAsm object.
6289///
6290void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6291  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6292
6293  /// ConstraintOperands - Information about all of the constraints.
6294  SDISelAsmOperandInfoVector ConstraintOperands;
6295
6296  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6297  TargetLowering::AsmOperandInfoVector TargetConstraints =
6298      TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS);
6299
6300  bool hasMemory = false;
6301
6302  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6303  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6304  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6305    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6306    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6307
6308    MVT OpVT = MVT::Other;
6309
6310    // Compute the value type for each operand.
6311    switch (OpInfo.Type) {
6312    case InlineAsm::isOutput:
6313      // Indirect outputs just consume an argument.
6314      if (OpInfo.isIndirect) {
6315        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6316        break;
6317      }
6318
6319      // The return value of the call is this value.  As such, there is no
6320      // corresponding argument.
6321      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6322      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6323        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
6324      } else {
6325        assert(ResNo == 0 && "Asm only has one result!");
6326        OpVT = TLI.getSimpleValueType(CS.getType());
6327      }
6328      ++ResNo;
6329      break;
6330    case InlineAsm::isInput:
6331      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6332      break;
6333    case InlineAsm::isClobber:
6334      // Nothing to do.
6335      break;
6336    }
6337
6338    // If this is an input or an indirect output, process the call argument.
6339    // BasicBlocks are labels, currently appearing only in asm's.
6340    if (OpInfo.CallOperandVal) {
6341      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6342        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6343      } else {
6344        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6345      }
6346
6347      OpVT =
6348          OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
6349    }
6350
6351    OpInfo.ConstraintVT = OpVT;
6352
6353    // Indirect operand accesses access memory.
6354    if (OpInfo.isIndirect)
6355      hasMemory = true;
6356    else {
6357      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6358        TargetLowering::ConstraintType
6359          CType = TLI.getConstraintType(OpInfo.Codes[j]);
6360        if (CType == TargetLowering::C_Memory) {
6361          hasMemory = true;
6362          break;
6363        }
6364      }
6365    }
6366  }
6367
6368  SDValue Chain, Flag;
6369
6370  // We won't need to flush pending loads if this asm doesn't touch
6371  // memory and is nonvolatile.
6372  if (hasMemory || IA->hasSideEffects())
6373    Chain = getRoot();
6374  else
6375    Chain = DAG.getRoot();
6376
6377  // Second pass over the constraints: compute which constraint option to use
6378  // and assign registers to constraints that want a specific physreg.
6379  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6380    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6381
6382    // If this is an output operand with a matching input operand, look up the
6383    // matching input. If their types mismatch, e.g. one is an integer, the
6384    // other is floating point, or their sizes are different, flag it as an
6385    // error.
6386    if (OpInfo.hasMatchingInput()) {
6387      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6388
6389      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6390	const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6391        std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6392            TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6393                                             OpInfo.ConstraintVT);
6394        std::pair<unsigned, const TargetRegisterClass *> InputRC =
6395            TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6396                                             Input.ConstraintVT);
6397        if ((OpInfo.ConstraintVT.isInteger() !=
6398             Input.ConstraintVT.isInteger()) ||
6399            (MatchRC.second != InputRC.second)) {
6400          report_fatal_error("Unsupported asm: input constraint"
6401                             " with a matching output constraint of"
6402                             " incompatible type!");
6403        }
6404        Input.ConstraintVT = OpInfo.ConstraintVT;
6405      }
6406    }
6407
6408    // Compute the constraint code and ConstraintType to use.
6409    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6410
6411    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6412        OpInfo.Type == InlineAsm::isClobber)
6413      continue;
6414
6415    // If this is a memory input, and if the operand is not indirect, do what we
6416    // need to to provide an address for the memory input.
6417    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6418        !OpInfo.isIndirect) {
6419      assert((OpInfo.isMultipleAlternative ||
6420              (OpInfo.Type == InlineAsm::isInput)) &&
6421             "Can only indirectify direct input operands!");
6422
6423      // Memory operands really want the address of the value.  If we don't have
6424      // an indirect input, put it in the constpool if we can, otherwise spill
6425      // it to a stack slot.
6426      // TODO: This isn't quite right. We need to handle these according to
6427      // the addressing mode that the constraint wants. Also, this may take
6428      // an additional register for the computation and we don't want that
6429      // either.
6430
6431      // If the operand is a float, integer, or vector constant, spill to a
6432      // constant pool entry to get its address.
6433      const Value *OpVal = OpInfo.CallOperandVal;
6434      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6435          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6436        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6437                                                 TLI.getPointerTy());
6438      } else {
6439        // Otherwise, create a stack slot and emit a store to it before the
6440        // asm.
6441        Type *Ty = OpVal->getType();
6442        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
6443        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6444        MachineFunction &MF = DAG.getMachineFunction();
6445        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6446        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6447        Chain = DAG.getStore(Chain, getCurSDLoc(),
6448                             OpInfo.CallOperand, StackSlot,
6449                             MachinePointerInfo::getFixedStack(SSFI),
6450                             false, false, 0);
6451        OpInfo.CallOperand = StackSlot;
6452      }
6453
6454      // There is no longer a Value* corresponding to this operand.
6455      OpInfo.CallOperandVal = nullptr;
6456
6457      // It is now an indirect operand.
6458      OpInfo.isIndirect = true;
6459    }
6460
6461    // If this constraint is for a specific register, allocate it before
6462    // anything else.
6463    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6464      GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6465  }
6466
6467  // Second pass - Loop over all of the operands, assigning virtual or physregs
6468  // to register class operands.
6469  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6470    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6471
6472    // C_Register operands have already been allocated, Other/Memory don't need
6473    // to be.
6474    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6475      GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6476  }
6477
6478  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6479  std::vector<SDValue> AsmNodeOperands;
6480  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6481  AsmNodeOperands.push_back(
6482          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6483                                      TLI.getPointerTy()));
6484
6485  // If we have a !srcloc metadata node associated with it, we want to attach
6486  // this to the ultimately generated inline asm machineinstr.  To do this, we
6487  // pass in the third operand as this (potentially null) inline asm MDNode.
6488  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6489  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6490
6491  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6492  // bits as operand 3.
6493  unsigned ExtraInfo = 0;
6494  if (IA->hasSideEffects())
6495    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6496  if (IA->isAlignStack())
6497    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6498  // Set the asm dialect.
6499  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6500
6501  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6502  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6503    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6504
6505    // Compute the constraint code and ConstraintType to use.
6506    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6507
6508    // Ideally, we would only check against memory constraints.  However, the
6509    // meaning of an other constraint can be target-specific and we can't easily
6510    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6511    // for other constriants as well.
6512    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6513        OpInfo.ConstraintType == TargetLowering::C_Other) {
6514      if (OpInfo.Type == InlineAsm::isInput)
6515        ExtraInfo |= InlineAsm::Extra_MayLoad;
6516      else if (OpInfo.Type == InlineAsm::isOutput)
6517        ExtraInfo |= InlineAsm::Extra_MayStore;
6518      else if (OpInfo.Type == InlineAsm::isClobber)
6519        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6520    }
6521  }
6522
6523  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6524                                                  TLI.getPointerTy()));
6525
6526  // Loop over all of the inputs, copying the operand values into the
6527  // appropriate registers and processing the output regs.
6528  RegsForValue RetValRegs;
6529
6530  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6531  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6532
6533  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6534    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6535
6536    switch (OpInfo.Type) {
6537    case InlineAsm::isOutput: {
6538      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6539          OpInfo.ConstraintType != TargetLowering::C_Register) {
6540        // Memory output, or 'other' output (e.g. 'X' constraint).
6541        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6542
6543        unsigned ConstraintID =
6544            TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6545        assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6546               "Failed to convert memory constraint code to constraint id.");
6547
6548        // Add information to the INLINEASM node to know about this output.
6549        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6550        OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6551        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32));
6552        AsmNodeOperands.push_back(OpInfo.CallOperand);
6553        break;
6554      }
6555
6556      // Otherwise, this is a register or register class output.
6557
6558      // Copy the output from the appropriate register.  Find a register that
6559      // we can use.
6560      if (OpInfo.AssignedRegs.Regs.empty()) {
6561        LLVMContext &Ctx = *DAG.getContext();
6562        Ctx.emitError(CS.getInstruction(),
6563                      "couldn't allocate output register for constraint '" +
6564                          Twine(OpInfo.ConstraintCode) + "'");
6565        return;
6566      }
6567
6568      // If this is an indirect operand, store through the pointer after the
6569      // asm.
6570      if (OpInfo.isIndirect) {
6571        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6572                                                      OpInfo.CallOperandVal));
6573      } else {
6574        // This is the result value of the call.
6575        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6576        // Concatenate this output onto the outputs list.
6577        RetValRegs.append(OpInfo.AssignedRegs);
6578      }
6579
6580      // Add information to the INLINEASM node to know that this register is
6581      // set.
6582      OpInfo.AssignedRegs
6583          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6584                                    ? InlineAsm::Kind_RegDefEarlyClobber
6585                                    : InlineAsm::Kind_RegDef,
6586                                false, 0, DAG, AsmNodeOperands);
6587      break;
6588    }
6589    case InlineAsm::isInput: {
6590      SDValue InOperandVal = OpInfo.CallOperand;
6591
6592      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6593        // If this is required to match an output register we have already set,
6594        // just use its register.
6595        unsigned OperandNo = OpInfo.getMatchedOperand();
6596
6597        // Scan until we find the definition we already emitted of this operand.
6598        // When we find it, create a RegsForValue operand.
6599        unsigned CurOp = InlineAsm::Op_FirstOperand;
6600        for (; OperandNo; --OperandNo) {
6601          // Advance to the next operand.
6602          unsigned OpFlag =
6603            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6604          assert((InlineAsm::isRegDefKind(OpFlag) ||
6605                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6606                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6607          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6608        }
6609
6610        unsigned OpFlag =
6611          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6612        if (InlineAsm::isRegDefKind(OpFlag) ||
6613            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6614          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6615          if (OpInfo.isIndirect) {
6616            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6617            LLVMContext &Ctx = *DAG.getContext();
6618            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6619                                               " don't know how to handle tied "
6620                                               "indirect register inputs");
6621            return;
6622          }
6623
6624          RegsForValue MatchedRegs;
6625          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6626          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6627          MatchedRegs.RegVTs.push_back(RegVT);
6628          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6629          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6630               i != e; ++i) {
6631            if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6632              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6633            else {
6634              LLVMContext &Ctx = *DAG.getContext();
6635              Ctx.emitError(CS.getInstruction(),
6636                            "inline asm error: This value"
6637                            " type register class is not natively supported!");
6638              return;
6639            }
6640          }
6641          // Use the produced MatchedRegs object to
6642          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6643                                    Chain, &Flag, CS.getInstruction());
6644          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6645                                           true, OpInfo.getMatchedOperand(),
6646                                           DAG, AsmNodeOperands);
6647          break;
6648        }
6649
6650        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6651        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6652               "Unexpected number of operands");
6653        // Add information to the INLINEASM node to know about this input.
6654        // See InlineAsm.h isUseOperandTiedToDef.
6655        OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6656        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6657                                                    OpInfo.getMatchedOperand());
6658        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6659                                                        TLI.getPointerTy()));
6660        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6661        break;
6662      }
6663
6664      // Treat indirect 'X' constraint as memory.
6665      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6666          OpInfo.isIndirect)
6667        OpInfo.ConstraintType = TargetLowering::C_Memory;
6668
6669      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6670        std::vector<SDValue> Ops;
6671        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6672                                          Ops, DAG);
6673        if (Ops.empty()) {
6674          LLVMContext &Ctx = *DAG.getContext();
6675          Ctx.emitError(CS.getInstruction(),
6676                        "invalid operand for inline asm constraint '" +
6677                            Twine(OpInfo.ConstraintCode) + "'");
6678          return;
6679        }
6680
6681        // Add information to the INLINEASM node to know about this input.
6682        unsigned ResOpType =
6683          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6684        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6685                                                        TLI.getPointerTy()));
6686        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6687        break;
6688      }
6689
6690      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6691        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6692        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6693               "Memory operands expect pointer values");
6694
6695        unsigned ConstraintID =
6696            TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6697        assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6698               "Failed to convert memory constraint code to constraint id.");
6699
6700        // Add information to the INLINEASM node to know about this input.
6701        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6702        ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6703        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32));
6704        AsmNodeOperands.push_back(InOperandVal);
6705        break;
6706      }
6707
6708      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6709              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6710             "Unknown constraint type!");
6711
6712      // TODO: Support this.
6713      if (OpInfo.isIndirect) {
6714        LLVMContext &Ctx = *DAG.getContext();
6715        Ctx.emitError(CS.getInstruction(),
6716                      "Don't know how to handle indirect register inputs yet "
6717                      "for constraint '" +
6718                          Twine(OpInfo.ConstraintCode) + "'");
6719        return;
6720      }
6721
6722      // Copy the input into the appropriate registers.
6723      if (OpInfo.AssignedRegs.Regs.empty()) {
6724        LLVMContext &Ctx = *DAG.getContext();
6725        Ctx.emitError(CS.getInstruction(),
6726                      "couldn't allocate input reg for constraint '" +
6727                          Twine(OpInfo.ConstraintCode) + "'");
6728        return;
6729      }
6730
6731      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6732                                        Chain, &Flag, CS.getInstruction());
6733
6734      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6735                                               DAG, AsmNodeOperands);
6736      break;
6737    }
6738    case InlineAsm::isClobber: {
6739      // Add the clobbered value to the operand list, so that the register
6740      // allocator is aware that the physreg got clobbered.
6741      if (!OpInfo.AssignedRegs.Regs.empty())
6742        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6743                                                 false, 0, DAG,
6744                                                 AsmNodeOperands);
6745      break;
6746    }
6747    }
6748  }
6749
6750  // Finish up input operands.  Set the input chain and add the flag last.
6751  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6752  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6753
6754  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6755                      DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6756  Flag = Chain.getValue(1);
6757
6758  // If this asm returns a register value, copy the result from that register
6759  // and set it as the value of the call.
6760  if (!RetValRegs.Regs.empty()) {
6761    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6762                                             Chain, &Flag, CS.getInstruction());
6763
6764    // FIXME: Why don't we do this for inline asms with MRVs?
6765    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6766      EVT ResultType = TLI.getValueType(CS.getType());
6767
6768      // If any of the results of the inline asm is a vector, it may have the
6769      // wrong width/num elts.  This can happen for register classes that can
6770      // contain multiple different value types.  The preg or vreg allocated may
6771      // not have the same VT as was expected.  Convert it to the right type
6772      // with bit_convert.
6773      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6774        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6775                          ResultType, Val);
6776
6777      } else if (ResultType != Val.getValueType() &&
6778                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6779        // If a result value was tied to an input value, the computed result may
6780        // have a wider width than the expected result.  Extract the relevant
6781        // portion.
6782        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6783      }
6784
6785      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6786    }
6787
6788    setValue(CS.getInstruction(), Val);
6789    // Don't need to use this as a chain in this case.
6790    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6791      return;
6792  }
6793
6794  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6795
6796  // Process indirect outputs, first output all of the flagged copies out of
6797  // physregs.
6798  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6799    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6800    const Value *Ptr = IndirectStoresToEmit[i].second;
6801    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6802                                             Chain, &Flag, IA);
6803    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6804  }
6805
6806  // Emit the non-flagged stores from the physregs.
6807  SmallVector<SDValue, 8> OutChains;
6808  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6809    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6810                               StoresToEmit[i].first,
6811                               getValue(StoresToEmit[i].second),
6812                               MachinePointerInfo(StoresToEmit[i].second),
6813                               false, false, 0);
6814    OutChains.push_back(Val);
6815  }
6816
6817  if (!OutChains.empty())
6818    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6819
6820  DAG.setRoot(Chain);
6821}
6822
6823void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6824  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6825                          MVT::Other, getRoot(),
6826                          getValue(I.getArgOperand(0)),
6827                          DAG.getSrcValue(I.getArgOperand(0))));
6828}
6829
6830void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6831  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6832  const DataLayout &DL = *TLI.getDataLayout();
6833  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6834                           getRoot(), getValue(I.getOperand(0)),
6835                           DAG.getSrcValue(I.getOperand(0)),
6836                           DL.getABITypeAlignment(I.getType()));
6837  setValue(&I, V);
6838  DAG.setRoot(V.getValue(1));
6839}
6840
6841void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6842  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6843                          MVT::Other, getRoot(),
6844                          getValue(I.getArgOperand(0)),
6845                          DAG.getSrcValue(I.getArgOperand(0))));
6846}
6847
6848void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6849  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6850                          MVT::Other, getRoot(),
6851                          getValue(I.getArgOperand(0)),
6852                          getValue(I.getArgOperand(1)),
6853                          DAG.getSrcValue(I.getArgOperand(0)),
6854                          DAG.getSrcValue(I.getArgOperand(1))));
6855}
6856
6857/// \brief Lower an argument list according to the target calling convention.
6858///
6859/// \return A tuple of <return-value, token-chain>
6860///
6861/// This is a helper for lowering intrinsics that follow a target calling
6862/// convention or require stack pointer adjustment. Only a subset of the
6863/// intrinsic's operands need to participate in the calling convention.
6864std::pair<SDValue, SDValue>
6865SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
6866                                       unsigned NumArgs, SDValue Callee,
6867                                       bool UseVoidTy,
6868                                       MachineBasicBlock *LandingPad,
6869                                       bool IsPatchPoint) {
6870  TargetLowering::ArgListTy Args;
6871  Args.reserve(NumArgs);
6872
6873  // Populate the argument list.
6874  // Attributes for args start at offset 1, after the return attribute.
6875  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6876       ArgI != ArgE; ++ArgI) {
6877    const Value *V = CS->getOperand(ArgI);
6878
6879    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6880
6881    TargetLowering::ArgListEntry Entry;
6882    Entry.Node = getValue(V);
6883    Entry.Ty = V->getType();
6884    Entry.setAttributes(&CS, AttrI);
6885    Args.push_back(Entry);
6886  }
6887
6888  Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6889  TargetLowering::CallLoweringInfo CLI(DAG);
6890  CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6891    .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
6892    .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6893
6894  return lowerInvokable(CLI, LandingPad);
6895}
6896
6897/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6898/// or patchpoint target node's operand list.
6899///
6900/// Constants are converted to TargetConstants purely as an optimization to
6901/// avoid constant materialization and register allocation.
6902///
6903/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6904/// generate addess computation nodes, and so ExpandISelPseudo can convert the
6905/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6906/// address materialization and register allocation, but may also be required
6907/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6908/// alloca in the entry block, then the runtime may assume that the alloca's
6909/// StackMap location can be read immediately after compilation and that the
6910/// location is valid at any point during execution (this is similar to the
6911/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6912/// only available in a register, then the runtime would need to trap when
6913/// execution reaches the StackMap in order to read the alloca's location.
6914static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6915                                SmallVectorImpl<SDValue> &Ops,
6916                                SelectionDAGBuilder &Builder) {
6917  for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6918    SDValue OpVal = Builder.getValue(CS.getArgument(i));
6919    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6920      Ops.push_back(
6921        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6922      Ops.push_back(
6923        Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6924    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6925      const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6926      Ops.push_back(
6927        Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6928    } else
6929      Ops.push_back(OpVal);
6930  }
6931}
6932
6933/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6934void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6935  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6936  //                                  [live variables...])
6937
6938  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6939
6940  SDValue Chain, InFlag, Callee, NullPtr;
6941  SmallVector<SDValue, 32> Ops;
6942
6943  SDLoc DL = getCurSDLoc();
6944  Callee = getValue(CI.getCalledValue());
6945  NullPtr = DAG.getIntPtrConstant(0, true);
6946
6947  // The stackmap intrinsic only records the live variables (the arguemnts
6948  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6949  // intrinsic, this won't be lowered to a function call. This means we don't
6950  // have to worry about calling conventions and target specific lowering code.
6951  // Instead we perform the call lowering right here.
6952  //
6953  // chain, flag = CALLSEQ_START(chain, 0)
6954  // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6955  // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6956  //
6957  Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6958  InFlag = Chain.getValue(1);
6959
6960  // Add the <id> and <numBytes> constants.
6961  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6962  Ops.push_back(DAG.getTargetConstant(
6963                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6964  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6965  Ops.push_back(DAG.getTargetConstant(
6966                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6967
6968  // Push live variables for the stack map.
6969  addStackMapLiveVars(&CI, 2, Ops, *this);
6970
6971  // We are not pushing any register mask info here on the operands list,
6972  // because the stackmap doesn't clobber anything.
6973
6974  // Push the chain and the glue flag.
6975  Ops.push_back(Chain);
6976  Ops.push_back(InFlag);
6977
6978  // Create the STACKMAP node.
6979  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6980  SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6981  Chain = SDValue(SM, 0);
6982  InFlag = Chain.getValue(1);
6983
6984  Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6985
6986  // Stackmaps don't generate values, so nothing goes into the NodeMap.
6987
6988  // Set the root to the target-lowered call chain.
6989  DAG.setRoot(Chain);
6990
6991  // Inform the Frame Information that we have a stackmap in this function.
6992  FuncInfo.MF->getFrameInfo()->setHasStackMap();
6993}
6994
6995/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6996void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6997                                          MachineBasicBlock *LandingPad) {
6998  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6999  //                                                 i32 <numBytes>,
7000  //                                                 i8* <target>,
7001  //                                                 i32 <numArgs>,
7002  //                                                 [Args...],
7003  //                                                 [live variables...])
7004
7005  CallingConv::ID CC = CS.getCallingConv();
7006  bool IsAnyRegCC = CC == CallingConv::AnyReg;
7007  bool HasDef = !CS->getType()->isVoidTy();
7008  SDValue Callee = getValue(CS->getOperand(2)); // <target>
7009
7010  // Get the real number of arguments participating in the call <numArgs>
7011  SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7012  unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7013
7014  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7015  // Intrinsics include all meta-operands up to but not including CC.
7016  unsigned NumMetaOpers = PatchPointOpers::CCPos;
7017  assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7018         "Not enough arguments provided to the patchpoint intrinsic");
7019
7020  // For AnyRegCC the arguments are lowered later on manually.
7021  unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7022  std::pair<SDValue, SDValue> Result =
7023    lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
7024                      LandingPad, true);
7025
7026  SDNode *CallEnd = Result.second.getNode();
7027  if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7028    CallEnd = CallEnd->getOperand(0).getNode();
7029
7030  /// Get a call instruction from the call sequence chain.
7031  /// Tail calls are not allowed.
7032  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7033         "Expected a callseq node.");
7034  SDNode *Call = CallEnd->getOperand(0).getNode();
7035  bool HasGlue = Call->getGluedNode();
7036
7037  // Replace the target specific call node with the patchable intrinsic.
7038  SmallVector<SDValue, 8> Ops;
7039
7040  // Add the <id> and <numBytes> constants.
7041  SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7042  Ops.push_back(DAG.getTargetConstant(
7043                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7044  SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7045  Ops.push_back(DAG.getTargetConstant(
7046                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7047
7048  // Assume that the Callee is a constant address.
7049  // FIXME: handle function symbols in the future.
7050  Ops.push_back(
7051    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7052                          /*isTarget=*/true));
7053
7054  // Adjust <numArgs> to account for any arguments that have been passed on the
7055  // stack instead.
7056  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7057  unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7058  NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7059  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7060
7061  // Add the calling convention
7062  Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7063
7064  // Add the arguments we omitted previously. The register allocator should
7065  // place these in any free register.
7066  if (IsAnyRegCC)
7067    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7068      Ops.push_back(getValue(CS.getArgument(i)));
7069
7070  // Push the arguments from the call instruction up to the register mask.
7071  SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7072  Ops.append(Call->op_begin() + 2, e);
7073
7074  // Push live variables for the stack map.
7075  addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
7076
7077  // Push the register mask info.
7078  if (HasGlue)
7079    Ops.push_back(*(Call->op_end()-2));
7080  else
7081    Ops.push_back(*(Call->op_end()-1));
7082
7083  // Push the chain (this is originally the first operand of the call, but
7084  // becomes now the last or second to last operand).
7085  Ops.push_back(*(Call->op_begin()));
7086
7087  // Push the glue flag (last operand).
7088  if (HasGlue)
7089    Ops.push_back(*(Call->op_end()-1));
7090
7091  SDVTList NodeTys;
7092  if (IsAnyRegCC && HasDef) {
7093    // Create the return types based on the intrinsic definition
7094    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7095    SmallVector<EVT, 3> ValueVTs;
7096    ComputeValueVTs(TLI, CS->getType(), ValueVTs);
7097    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7098
7099    // There is always a chain and a glue type at the end
7100    ValueVTs.push_back(MVT::Other);
7101    ValueVTs.push_back(MVT::Glue);
7102    NodeTys = DAG.getVTList(ValueVTs);
7103  } else
7104    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7105
7106  // Replace the target specific call node with a PATCHPOINT node.
7107  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7108                                         getCurSDLoc(), NodeTys, Ops);
7109
7110  // Update the NodeMap.
7111  if (HasDef) {
7112    if (IsAnyRegCC)
7113      setValue(CS.getInstruction(), SDValue(MN, 0));
7114    else
7115      setValue(CS.getInstruction(), Result.first);
7116  }
7117
7118  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7119  // call sequence. Furthermore the location of the chain and glue can change
7120  // when the AnyReg calling convention is used and the intrinsic returns a
7121  // value.
7122  if (IsAnyRegCC && HasDef) {
7123    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7124    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7125    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7126  } else
7127    DAG.ReplaceAllUsesWith(Call, MN);
7128  DAG.DeleteNode(Call);
7129
7130  // Inform the Frame Information that we have a patchpoint in this function.
7131  FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7132}
7133
7134/// Returns an AttributeSet representing the attributes applied to the return
7135/// value of the given call.
7136static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7137  SmallVector<Attribute::AttrKind, 2> Attrs;
7138  if (CLI.RetSExt)
7139    Attrs.push_back(Attribute::SExt);
7140  if (CLI.RetZExt)
7141    Attrs.push_back(Attribute::ZExt);
7142  if (CLI.IsInReg)
7143    Attrs.push_back(Attribute::InReg);
7144
7145  return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7146                           Attrs);
7147}
7148
7149/// TargetLowering::LowerCallTo - This is the default LowerCallTo
7150/// implementation, which just calls LowerCall.
7151/// FIXME: When all targets are
7152/// migrated to using LowerCall, this hook should be integrated into SDISel.
7153std::pair<SDValue, SDValue>
7154TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7155  // Handle the incoming return values from the call.
7156  CLI.Ins.clear();
7157  Type *OrigRetTy = CLI.RetTy;
7158  SmallVector<EVT, 4> RetTys;
7159  SmallVector<uint64_t, 4> Offsets;
7160  ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7161
7162  SmallVector<ISD::OutputArg, 4> Outs;
7163  GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7164
7165  bool CanLowerReturn =
7166      this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7167                           CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7168
7169  SDValue DemoteStackSlot;
7170  int DemoteStackIdx = -100;
7171  if (!CanLowerReturn) {
7172    // FIXME: equivalent assert?
7173    // assert(!CS.hasInAllocaArgument() &&
7174    //        "sret demotion is incompatible with inalloca");
7175    uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7176    unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7177    MachineFunction &MF = CLI.DAG.getMachineFunction();
7178    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7179    Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7180
7181    DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7182    ArgListEntry Entry;
7183    Entry.Node = DemoteStackSlot;
7184    Entry.Ty = StackSlotPtrType;
7185    Entry.isSExt = false;
7186    Entry.isZExt = false;
7187    Entry.isInReg = false;
7188    Entry.isSRet = true;
7189    Entry.isNest = false;
7190    Entry.isByVal = false;
7191    Entry.isReturned = false;
7192    Entry.Alignment = Align;
7193    CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7194    CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7195
7196    // sret demotion isn't compatible with tail-calls, since the sret argument
7197    // points into the callers stack frame.
7198    CLI.IsTailCall = false;
7199  } else {
7200    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7201      EVT VT = RetTys[I];
7202      MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7203      unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7204      for (unsigned i = 0; i != NumRegs; ++i) {
7205        ISD::InputArg MyFlags;
7206        MyFlags.VT = RegisterVT;
7207        MyFlags.ArgVT = VT;
7208        MyFlags.Used = CLI.IsReturnValueUsed;
7209        if (CLI.RetSExt)
7210          MyFlags.Flags.setSExt();
7211        if (CLI.RetZExt)
7212          MyFlags.Flags.setZExt();
7213        if (CLI.IsInReg)
7214          MyFlags.Flags.setInReg();
7215        CLI.Ins.push_back(MyFlags);
7216      }
7217    }
7218  }
7219
7220  // Handle all of the outgoing arguments.
7221  CLI.Outs.clear();
7222  CLI.OutVals.clear();
7223  ArgListTy &Args = CLI.getArgs();
7224  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7225    SmallVector<EVT, 4> ValueVTs;
7226    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7227    Type *FinalType = Args[i].Ty;
7228    if (Args[i].isByVal)
7229      FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7230    bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7231        FinalType, CLI.CallConv, CLI.IsVarArg);
7232    for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7233         ++Value) {
7234      EVT VT = ValueVTs[Value];
7235      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7236      SDValue Op = SDValue(Args[i].Node.getNode(),
7237                           Args[i].Node.getResNo() + Value);
7238      ISD::ArgFlagsTy Flags;
7239      unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7240
7241      if (Args[i].isZExt)
7242        Flags.setZExt();
7243      if (Args[i].isSExt)
7244        Flags.setSExt();
7245      if (Args[i].isInReg)
7246        Flags.setInReg();
7247      if (Args[i].isSRet)
7248        Flags.setSRet();
7249      if (Args[i].isByVal)
7250        Flags.setByVal();
7251      if (Args[i].isInAlloca) {
7252        Flags.setInAlloca();
7253        // Set the byval flag for CCAssignFn callbacks that don't know about
7254        // inalloca.  This way we can know how many bytes we should've allocated
7255        // and how many bytes a callee cleanup function will pop.  If we port
7256        // inalloca to more targets, we'll have to add custom inalloca handling
7257        // in the various CC lowering callbacks.
7258        Flags.setByVal();
7259      }
7260      if (Args[i].isByVal || Args[i].isInAlloca) {
7261        PointerType *Ty = cast<PointerType>(Args[i].Ty);
7262        Type *ElementTy = Ty->getElementType();
7263        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7264        // For ByVal, alignment should come from FE.  BE will guess if this
7265        // info is not there but there are cases it cannot get right.
7266        unsigned FrameAlign;
7267        if (Args[i].Alignment)
7268          FrameAlign = Args[i].Alignment;
7269        else
7270          FrameAlign = getByValTypeAlignment(ElementTy);
7271        Flags.setByValAlign(FrameAlign);
7272      }
7273      if (Args[i].isNest)
7274        Flags.setNest();
7275      if (NeedsRegBlock)
7276        Flags.setInConsecutiveRegs();
7277      Flags.setOrigAlign(OriginalAlignment);
7278
7279      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7280      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7281      SmallVector<SDValue, 4> Parts(NumParts);
7282      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7283
7284      if (Args[i].isSExt)
7285        ExtendKind = ISD::SIGN_EXTEND;
7286      else if (Args[i].isZExt)
7287        ExtendKind = ISD::ZERO_EXTEND;
7288
7289      // Conservatively only handle 'returned' on non-vectors for now
7290      if (Args[i].isReturned && !Op.getValueType().isVector()) {
7291        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7292               "unexpected use of 'returned'");
7293        // Before passing 'returned' to the target lowering code, ensure that
7294        // either the register MVT and the actual EVT are the same size or that
7295        // the return value and argument are extended in the same way; in these
7296        // cases it's safe to pass the argument register value unchanged as the
7297        // return register value (although it's at the target's option whether
7298        // to do so)
7299        // TODO: allow code generation to take advantage of partially preserved
7300        // registers rather than clobbering the entire register when the
7301        // parameter extension method is not compatible with the return
7302        // extension method
7303        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7304            (ExtendKind != ISD::ANY_EXTEND &&
7305             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7306        Flags.setReturned();
7307      }
7308
7309      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7310                     CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7311
7312      for (unsigned j = 0; j != NumParts; ++j) {
7313        // if it isn't first piece, alignment must be 1
7314        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7315                               i < CLI.NumFixedArgs,
7316                               i, j*Parts[j].getValueType().getStoreSize());
7317        if (NumParts > 1 && j == 0)
7318          MyFlags.Flags.setSplit();
7319        else if (j != 0)
7320          MyFlags.Flags.setOrigAlign(1);
7321
7322        CLI.Outs.push_back(MyFlags);
7323        CLI.OutVals.push_back(Parts[j]);
7324      }
7325
7326      if (NeedsRegBlock && Value == NumValues - 1)
7327        CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7328    }
7329  }
7330
7331  SmallVector<SDValue, 4> InVals;
7332  CLI.Chain = LowerCall(CLI, InVals);
7333
7334  // Verify that the target's LowerCall behaved as expected.
7335  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7336         "LowerCall didn't return a valid chain!");
7337  assert((!CLI.IsTailCall || InVals.empty()) &&
7338         "LowerCall emitted a return value for a tail call!");
7339  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7340         "LowerCall didn't emit the correct number of values!");
7341
7342  // For a tail call, the return value is merely live-out and there aren't
7343  // any nodes in the DAG representing it. Return a special value to
7344  // indicate that a tail call has been emitted and no more Instructions
7345  // should be processed in the current block.
7346  if (CLI.IsTailCall) {
7347    CLI.DAG.setRoot(CLI.Chain);
7348    return std::make_pair(SDValue(), SDValue());
7349  }
7350
7351  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7352          assert(InVals[i].getNode() &&
7353                 "LowerCall emitted a null value!");
7354          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7355                 "LowerCall emitted a value with the wrong type!");
7356        });
7357
7358  SmallVector<SDValue, 4> ReturnValues;
7359  if (!CanLowerReturn) {
7360    // The instruction result is the result of loading from the
7361    // hidden sret parameter.
7362    SmallVector<EVT, 1> PVTs;
7363    Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7364
7365    ComputeValueVTs(*this, PtrRetTy, PVTs);
7366    assert(PVTs.size() == 1 && "Pointers should fit in one register");
7367    EVT PtrVT = PVTs[0];
7368
7369    unsigned NumValues = RetTys.size();
7370    ReturnValues.resize(NumValues);
7371    SmallVector<SDValue, 4> Chains(NumValues);
7372
7373    for (unsigned i = 0; i < NumValues; ++i) {
7374      SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7375                                    CLI.DAG.getConstant(Offsets[i], PtrVT));
7376      SDValue L = CLI.DAG.getLoad(
7377          RetTys[i], CLI.DL, CLI.Chain, Add,
7378          MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7379          false, false, 1);
7380      ReturnValues[i] = L;
7381      Chains[i] = L.getValue(1);
7382    }
7383
7384    CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7385  } else {
7386    // Collect the legal value parts into potentially illegal values
7387    // that correspond to the original function's return values.
7388    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7389    if (CLI.RetSExt)
7390      AssertOp = ISD::AssertSext;
7391    else if (CLI.RetZExt)
7392      AssertOp = ISD::AssertZext;
7393    unsigned CurReg = 0;
7394    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7395      EVT VT = RetTys[I];
7396      MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7397      unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7398
7399      ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7400                                              NumRegs, RegisterVT, VT, nullptr,
7401                                              AssertOp));
7402      CurReg += NumRegs;
7403    }
7404
7405    // For a function returning void, there is no return value. We can't create
7406    // such a node, so we just return a null return value in that case. In
7407    // that case, nothing will actually look at the value.
7408    if (ReturnValues.empty())
7409      return std::make_pair(SDValue(), CLI.Chain);
7410  }
7411
7412  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7413                                CLI.DAG.getVTList(RetTys), ReturnValues);
7414  return std::make_pair(Res, CLI.Chain);
7415}
7416
7417void TargetLowering::LowerOperationWrapper(SDNode *N,
7418                                           SmallVectorImpl<SDValue> &Results,
7419                                           SelectionDAG &DAG) const {
7420  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7421  if (Res.getNode())
7422    Results.push_back(Res);
7423}
7424
7425SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7426  llvm_unreachable("LowerOperation not implemented for this target!");
7427}
7428
7429void
7430SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7431  SDValue Op = getNonRegisterValue(V);
7432  assert((Op.getOpcode() != ISD::CopyFromReg ||
7433          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7434         "Copy from a reg to the same reg!");
7435  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7436
7437  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7438  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
7439  SDValue Chain = DAG.getEntryNode();
7440
7441  ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7442                              FuncInfo.PreferredExtendType.end())
7443                                 ? ISD::ANY_EXTEND
7444                                 : FuncInfo.PreferredExtendType[V];
7445  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7446  PendingExports.push_back(Chain);
7447}
7448
7449#include "llvm/CodeGen/SelectionDAGISel.h"
7450
7451/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7452/// entry block, return true.  This includes arguments used by switches, since
7453/// the switch may expand into multiple basic blocks.
7454static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7455  // With FastISel active, we may be splitting blocks, so force creation
7456  // of virtual registers for all non-dead arguments.
7457  if (FastISel)
7458    return A->use_empty();
7459
7460  const BasicBlock *Entry = A->getParent()->begin();
7461  for (const User *U : A->users())
7462    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7463      return false;  // Use not in entry block.
7464
7465  return true;
7466}
7467
7468void SelectionDAGISel::LowerArguments(const Function &F) {
7469  SelectionDAG &DAG = SDB->DAG;
7470  SDLoc dl = SDB->getCurSDLoc();
7471  const DataLayout *DL = TLI->getDataLayout();
7472  SmallVector<ISD::InputArg, 16> Ins;
7473
7474  if (!FuncInfo->CanLowerReturn) {
7475    // Put in an sret pointer parameter before all the other parameters.
7476    SmallVector<EVT, 1> ValueVTs;
7477    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7478
7479    // NOTE: Assuming that a pointer will never break down to more than one VT
7480    // or one register.
7481    ISD::ArgFlagsTy Flags;
7482    Flags.setSRet();
7483    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7484    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7485                         ISD::InputArg::NoArgIndex, 0);
7486    Ins.push_back(RetArg);
7487  }
7488
7489  // Set up the incoming argument description vector.
7490  unsigned Idx = 1;
7491  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7492       I != E; ++I, ++Idx) {
7493    SmallVector<EVT, 4> ValueVTs;
7494    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7495    bool isArgValueUsed = !I->use_empty();
7496    unsigned PartBase = 0;
7497    Type *FinalType = I->getType();
7498    if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7499      FinalType = cast<PointerType>(FinalType)->getElementType();
7500    bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7501        FinalType, F.getCallingConv(), F.isVarArg());
7502    for (unsigned Value = 0, NumValues = ValueVTs.size();
7503         Value != NumValues; ++Value) {
7504      EVT VT = ValueVTs[Value];
7505      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7506      ISD::ArgFlagsTy Flags;
7507      unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7508
7509      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7510        Flags.setZExt();
7511      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7512        Flags.setSExt();
7513      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7514        Flags.setInReg();
7515      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7516        Flags.setSRet();
7517      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7518        Flags.setByVal();
7519      if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7520        Flags.setInAlloca();
7521        // Set the byval flag for CCAssignFn callbacks that don't know about
7522        // inalloca.  This way we can know how many bytes we should've allocated
7523        // and how many bytes a callee cleanup function will pop.  If we port
7524        // inalloca to more targets, we'll have to add custom inalloca handling
7525        // in the various CC lowering callbacks.
7526        Flags.setByVal();
7527      }
7528      if (Flags.isByVal() || Flags.isInAlloca()) {
7529        PointerType *Ty = cast<PointerType>(I->getType());
7530        Type *ElementTy = Ty->getElementType();
7531        Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7532        // For ByVal, alignment should be passed from FE.  BE will guess if
7533        // this info is not there but there are cases it cannot get right.
7534        unsigned FrameAlign;
7535        if (F.getParamAlignment(Idx))
7536          FrameAlign = F.getParamAlignment(Idx);
7537        else
7538          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7539        Flags.setByValAlign(FrameAlign);
7540      }
7541      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7542        Flags.setNest();
7543      if (NeedsRegBlock)
7544        Flags.setInConsecutiveRegs();
7545      Flags.setOrigAlign(OriginalAlignment);
7546
7547      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7548      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7549      for (unsigned i = 0; i != NumRegs; ++i) {
7550        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7551                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7552        if (NumRegs > 1 && i == 0)
7553          MyFlags.Flags.setSplit();
7554        // if it isn't first piece, alignment must be 1
7555        else if (i > 0)
7556          MyFlags.Flags.setOrigAlign(1);
7557        Ins.push_back(MyFlags);
7558      }
7559      if (NeedsRegBlock && Value == NumValues - 1)
7560        Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7561      PartBase += VT.getStoreSize();
7562    }
7563  }
7564
7565  // Call the target to set up the argument values.
7566  SmallVector<SDValue, 8> InVals;
7567  SDValue NewRoot = TLI->LowerFormalArguments(
7568      DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7569
7570  // Verify that the target's LowerFormalArguments behaved as expected.
7571  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7572         "LowerFormalArguments didn't return a valid chain!");
7573  assert(InVals.size() == Ins.size() &&
7574         "LowerFormalArguments didn't emit the correct number of values!");
7575  DEBUG({
7576      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7577        assert(InVals[i].getNode() &&
7578               "LowerFormalArguments emitted a null value!");
7579        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7580               "LowerFormalArguments emitted a value with the wrong type!");
7581      }
7582    });
7583
7584  // Update the DAG with the new chain value resulting from argument lowering.
7585  DAG.setRoot(NewRoot);
7586
7587  // Set up the argument values.
7588  unsigned i = 0;
7589  Idx = 1;
7590  if (!FuncInfo->CanLowerReturn) {
7591    // Create a virtual register for the sret pointer, and put in a copy
7592    // from the sret argument into it.
7593    SmallVector<EVT, 1> ValueVTs;
7594    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7595    MVT VT = ValueVTs[0].getSimpleVT();
7596    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7597    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7598    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7599                                        RegVT, VT, nullptr, AssertOp);
7600
7601    MachineFunction& MF = SDB->DAG.getMachineFunction();
7602    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7603    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7604    FuncInfo->DemoteRegister = SRetReg;
7605    NewRoot =
7606        SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7607    DAG.setRoot(NewRoot);
7608
7609    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7610    // Idx indexes LLVM arguments.  Don't touch it.
7611    ++i;
7612  }
7613
7614  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7615      ++I, ++Idx) {
7616    SmallVector<SDValue, 4> ArgValues;
7617    SmallVector<EVT, 4> ValueVTs;
7618    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7619    unsigned NumValues = ValueVTs.size();
7620
7621    // If this argument is unused then remember its value. It is used to generate
7622    // debugging information.
7623    if (I->use_empty() && NumValues) {
7624      SDB->setUnusedArgValue(I, InVals[i]);
7625
7626      // Also remember any frame index for use in FastISel.
7627      if (FrameIndexSDNode *FI =
7628          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7629        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7630    }
7631
7632    for (unsigned Val = 0; Val != NumValues; ++Val) {
7633      EVT VT = ValueVTs[Val];
7634      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7635      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7636
7637      if (!I->use_empty()) {
7638        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7639        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7640          AssertOp = ISD::AssertSext;
7641        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7642          AssertOp = ISD::AssertZext;
7643
7644        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7645                                             NumParts, PartVT, VT,
7646                                             nullptr, AssertOp));
7647      }
7648
7649      i += NumParts;
7650    }
7651
7652    // We don't need to do anything else for unused arguments.
7653    if (ArgValues.empty())
7654      continue;
7655
7656    // Note down frame index.
7657    if (FrameIndexSDNode *FI =
7658        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7659      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7660
7661    SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7662                                     SDB->getCurSDLoc());
7663
7664    SDB->setValue(I, Res);
7665    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7666      if (LoadSDNode *LNode =
7667          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7668        if (FrameIndexSDNode *FI =
7669            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7670        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7671    }
7672
7673    // If this argument is live outside of the entry block, insert a copy from
7674    // wherever we got it to the vreg that other BB's will reference it as.
7675    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7676      // If we can, though, try to skip creating an unnecessary vreg.
7677      // FIXME: This isn't very clean... it would be nice to make this more
7678      // general.  It's also subtly incompatible with the hacks FastISel
7679      // uses with vregs.
7680      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7681      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7682        FuncInfo->ValueMap[I] = Reg;
7683        continue;
7684      }
7685    }
7686    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7687      FuncInfo->InitializeRegForValue(I);
7688      SDB->CopyToExportRegsIfNeeded(I);
7689    }
7690  }
7691
7692  assert(i == InVals.size() && "Argument register count mismatch!");
7693
7694  // Finally, if the target has anything special to do, allow it to do so.
7695  EmitFunctionEntryCode();
7696}
7697
7698/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7699/// ensure constants are generated when needed.  Remember the virtual registers
7700/// that need to be added to the Machine PHI nodes as input.  We cannot just
7701/// directly add them, because expansion might result in multiple MBB's for one
7702/// BB.  As such, the start of the BB might correspond to a different MBB than
7703/// the end.
7704///
7705void
7706SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7707  const TerminatorInst *TI = LLVMBB->getTerminator();
7708
7709  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7710
7711  // Check PHI nodes in successors that expect a value to be available from this
7712  // block.
7713  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7714    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7715    if (!isa<PHINode>(SuccBB->begin())) continue;
7716    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7717
7718    // If this terminator has multiple identical successors (common for
7719    // switches), only handle each succ once.
7720    if (!SuccsHandled.insert(SuccMBB).second)
7721      continue;
7722
7723    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7724
7725    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7726    // nodes and Machine PHI nodes, but the incoming operands have not been
7727    // emitted yet.
7728    for (BasicBlock::const_iterator I = SuccBB->begin();
7729         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7730      // Ignore dead phi's.
7731      if (PN->use_empty()) continue;
7732
7733      // Skip empty types
7734      if (PN->getType()->isEmptyTy())
7735        continue;
7736
7737      unsigned Reg;
7738      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7739
7740      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7741        unsigned &RegOut = ConstantsOut[C];
7742        if (RegOut == 0) {
7743          RegOut = FuncInfo.CreateRegs(C->getType());
7744          CopyValueToVirtualRegister(C, RegOut);
7745        }
7746        Reg = RegOut;
7747      } else {
7748        DenseMap<const Value *, unsigned>::iterator I =
7749          FuncInfo.ValueMap.find(PHIOp);
7750        if (I != FuncInfo.ValueMap.end())
7751          Reg = I->second;
7752        else {
7753          assert(isa<AllocaInst>(PHIOp) &&
7754                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7755                 "Didn't codegen value into a register!??");
7756          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7757          CopyValueToVirtualRegister(PHIOp, Reg);
7758        }
7759      }
7760
7761      // Remember that this register needs to added to the machine PHI node as
7762      // the input for this MBB.
7763      SmallVector<EVT, 4> ValueVTs;
7764      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7765      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
7766      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7767        EVT VT = ValueVTs[vti];
7768        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7769        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7770          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7771        Reg += NumRegisters;
7772      }
7773    }
7774  }
7775
7776  ConstantsOut.clear();
7777}
7778
7779/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7780/// is 0.
7781MachineBasicBlock *
7782SelectionDAGBuilder::StackProtectorDescriptor::
7783AddSuccessorMBB(const BasicBlock *BB,
7784                MachineBasicBlock *ParentMBB,
7785                bool IsLikely,
7786                MachineBasicBlock *SuccMBB) {
7787  // If SuccBB has not been created yet, create it.
7788  if (!SuccMBB) {
7789    MachineFunction *MF = ParentMBB->getParent();
7790    MachineFunction::iterator BBI = ParentMBB;
7791    SuccMBB = MF->CreateMachineBasicBlock(BB);
7792    MF->insert(++BBI, SuccMBB);
7793  }
7794  // Add it as a successor of ParentMBB.
7795  ParentMBB->addSuccessor(
7796      SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7797  return SuccMBB;
7798}
7799
7800MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7801  MachineFunction::iterator I = MBB;
7802  if (++I == FuncInfo.MF->end())
7803    return nullptr;
7804  return I;
7805}
7806
7807/// During lowering new call nodes can be created (such as memset, etc.).
7808/// Those will become new roots of the current DAG, but complications arise
7809/// when they are tail calls. In such cases, the call lowering will update
7810/// the root, but the builder still needs to know that a tail call has been
7811/// lowered in order to avoid generating an additional return.
7812void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7813  // If the node is null, we do have a tail call.
7814  if (MaybeTC.getNode() != nullptr)
7815    DAG.setRoot(MaybeTC);
7816  else
7817    HasTailCall = true;
7818}
7819
7820