1//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the writing of the LLVM IR as a set of C++ calls to the 11// LLVM IR interface. The input module is assumed to be verified. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CPPTargetMachine.h" 16#include "llvm/ADT/SmallPtrSet.h" 17#include "llvm/ADT/StringExtras.h" 18#include "llvm/ADT/STLExtras.h" 19#include "llvm/Config/config.h" 20#include "llvm/IR/CallingConv.h" 21#include "llvm/IR/Constants.h" 22#include "llvm/IR/DerivedTypes.h" 23#include "llvm/IR/InlineAsm.h" 24#include "llvm/IR/Instruction.h" 25#include "llvm/IR/Instructions.h" 26#include "llvm/IR/LegacyPassManager.h" 27#include "llvm/IR/Module.h" 28#include "llvm/MC/MCAsmInfo.h" 29#include "llvm/MC/MCInstrInfo.h" 30#include "llvm/MC/MCSubtargetInfo.h" 31#include "llvm/Pass.h" 32#include "llvm/Support/CommandLine.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/FormattedStream.h" 35#include "llvm/Support/TargetRegistry.h" 36#include <algorithm> 37#include <cctype> 38#include <cstdio> 39#include <map> 40#include <set> 41using namespace llvm; 42 43static cl::opt<std::string> 44FuncName("cppfname", cl::desc("Specify the name of the generated function"), 45 cl::value_desc("function name")); 46 47enum WhatToGenerate { 48 GenProgram, 49 GenModule, 50 GenContents, 51 GenFunction, 52 GenFunctions, 53 GenInline, 54 GenVariable, 55 GenType 56}; 57 58static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional, 59 cl::desc("Choose what kind of output to generate"), 60 cl::init(GenProgram), 61 cl::values( 62 clEnumValN(GenProgram, "program", "Generate a complete program"), 63 clEnumValN(GenModule, "module", "Generate a module definition"), 64 clEnumValN(GenContents, "contents", "Generate contents of a module"), 65 clEnumValN(GenFunction, "function", "Generate a function definition"), 66 clEnumValN(GenFunctions,"functions", "Generate all function definitions"), 67 clEnumValN(GenInline, "inline", "Generate an inline function"), 68 clEnumValN(GenVariable, "variable", "Generate a variable definition"), 69 clEnumValN(GenType, "type", "Generate a type definition"), 70 clEnumValEnd 71 ) 72); 73 74static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional, 75 cl::desc("Specify the name of the thing to generate"), 76 cl::init("!bad!")); 77 78extern "C" void LLVMInitializeCppBackendTarget() { 79 // Register the target. 80 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget); 81} 82 83namespace { 84 typedef std::vector<Type*> TypeList; 85 typedef std::map<Type*,std::string> TypeMap; 86 typedef std::map<const Value*,std::string> ValueMap; 87 typedef std::set<std::string> NameSet; 88 typedef std::set<Type*> TypeSet; 89 typedef std::set<const Value*> ValueSet; 90 typedef std::map<const Value*,std::string> ForwardRefMap; 91 92 /// CppWriter - This class is the main chunk of code that converts an LLVM 93 /// module to a C++ translation unit. 94 class CppWriter : public ModulePass { 95 std::unique_ptr<formatted_raw_ostream> OutOwner; 96 formatted_raw_ostream &Out; 97 const Module *TheModule; 98 uint64_t uniqueNum; 99 TypeMap TypeNames; 100 ValueMap ValueNames; 101 NameSet UsedNames; 102 TypeSet DefinedTypes; 103 ValueSet DefinedValues; 104 ForwardRefMap ForwardRefs; 105 bool is_inline; 106 unsigned indent_level; 107 108 public: 109 static char ID; 110 explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o) 111 : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0), 112 is_inline(false), indent_level(0) {} 113 114 const char *getPassName() const override { return "C++ backend"; } 115 116 bool runOnModule(Module &M) override; 117 118 void printProgram(const std::string& fname, const std::string& modName ); 119 void printModule(const std::string& fname, const std::string& modName ); 120 void printContents(const std::string& fname, const std::string& modName ); 121 void printFunction(const std::string& fname, const std::string& funcName ); 122 void printFunctions(); 123 void printInline(const std::string& fname, const std::string& funcName ); 124 void printVariable(const std::string& fname, const std::string& varName ); 125 void printType(const std::string& fname, const std::string& typeName ); 126 127 void error(const std::string& msg); 128 129 130 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0); 131 inline void in() { indent_level++; } 132 inline void out() { if (indent_level >0) indent_level--; } 133 134 private: 135 void printLinkageType(GlobalValue::LinkageTypes LT); 136 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes); 137 void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType); 138 void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM); 139 void printCallingConv(CallingConv::ID cc); 140 void printEscapedString(const std::string& str); 141 void printCFP(const ConstantFP* CFP); 142 143 std::string getCppName(Type* val); 144 inline void printCppName(Type* val); 145 146 std::string getCppName(const Value* val); 147 inline void printCppName(const Value* val); 148 149 void printAttributes(const AttributeSet &PAL, const std::string &name); 150 void printType(Type* Ty); 151 void printTypes(const Module* M); 152 153 void printConstant(const Constant *CPV); 154 void printConstants(const Module* M); 155 156 void printVariableUses(const GlobalVariable *GV); 157 void printVariableHead(const GlobalVariable *GV); 158 void printVariableBody(const GlobalVariable *GV); 159 160 void printFunctionUses(const Function *F); 161 void printFunctionHead(const Function *F); 162 void printFunctionBody(const Function *F); 163 void printInstruction(const Instruction *I, const std::string& bbname); 164 std::string getOpName(const Value*); 165 166 void printModuleBody(); 167 }; 168} // end anonymous namespace. 169 170formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) { 171 Out << '\n'; 172 if (delta >= 0 || indent_level >= unsigned(-delta)) 173 indent_level += delta; 174 Out.indent(indent_level); 175 return Out; 176} 177 178static inline void sanitize(std::string &str) { 179 for (size_t i = 0; i < str.length(); ++i) 180 if (!isalnum(str[i]) && str[i] != '_') 181 str[i] = '_'; 182} 183 184static std::string getTypePrefix(Type *Ty) { 185 switch (Ty->getTypeID()) { 186 case Type::VoidTyID: return "void_"; 187 case Type::IntegerTyID: 188 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_"; 189 case Type::FloatTyID: return "float_"; 190 case Type::DoubleTyID: return "double_"; 191 case Type::LabelTyID: return "label_"; 192 case Type::FunctionTyID: return "func_"; 193 case Type::StructTyID: return "struct_"; 194 case Type::ArrayTyID: return "array_"; 195 case Type::PointerTyID: return "ptr_"; 196 case Type::VectorTyID: return "packed_"; 197 default: return "other_"; 198 } 199} 200 201void CppWriter::error(const std::string& msg) { 202 report_fatal_error(msg); 203} 204 205static inline std::string ftostr(const APFloat& V) { 206 std::string Buf; 207 if (&V.getSemantics() == &APFloat::IEEEdouble) { 208 raw_string_ostream(Buf) << V.convertToDouble(); 209 return Buf; 210 } else if (&V.getSemantics() == &APFloat::IEEEsingle) { 211 raw_string_ostream(Buf) << (double)V.convertToFloat(); 212 return Buf; 213 } 214 return "<unknown format in ftostr>"; // error 215} 216 217// printCFP - Print a floating point constant .. very carefully :) 218// This makes sure that conversion to/from floating yields the same binary 219// result so that we don't lose precision. 220void CppWriter::printCFP(const ConstantFP *CFP) { 221 bool ignored; 222 APFloat APF = APFloat(CFP->getValueAPF()); // copy 223 if (CFP->getType() == Type::getFloatTy(CFP->getContext())) 224 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); 225 Out << "ConstantFP::get(mod->getContext(), "; 226 Out << "APFloat("; 227#if HAVE_PRINTF_A 228 char Buffer[100]; 229 sprintf(Buffer, "%A", APF.convertToDouble()); 230 if ((!strncmp(Buffer, "0x", 2) || 231 !strncmp(Buffer, "-0x", 3) || 232 !strncmp(Buffer, "+0x", 3)) && 233 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) { 234 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 235 Out << "BitsToDouble(" << Buffer << ")"; 236 else 237 Out << "BitsToFloat((float)" << Buffer << ")"; 238 Out << ")"; 239 } else { 240#endif 241 std::string StrVal = ftostr(CFP->getValueAPF()); 242 243 while (StrVal[0] == ' ') 244 StrVal.erase(StrVal.begin()); 245 246 // Check to make sure that the stringized number is not some string like 247 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex. 248 if (((StrVal[0] >= '0' && StrVal[0] <= '9') || 249 ((StrVal[0] == '-' || StrVal[0] == '+') && 250 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 251 (CFP->isExactlyValue(atof(StrVal.c_str())))) { 252 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 253 Out << StrVal; 254 else 255 Out << StrVal << "f"; 256 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 257 Out << "BitsToDouble(0x" 258 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue()) 259 << "ULL) /* " << StrVal << " */"; 260 else 261 Out << "BitsToFloat(0x" 262 << utohexstr((uint32_t)CFP->getValueAPF(). 263 bitcastToAPInt().getZExtValue()) 264 << "U) /* " << StrVal << " */"; 265 Out << ")"; 266#if HAVE_PRINTF_A 267 } 268#endif 269 Out << ")"; 270} 271 272void CppWriter::printCallingConv(CallingConv::ID cc){ 273 // Print the calling convention. 274 switch (cc) { 275 case CallingConv::C: Out << "CallingConv::C"; break; 276 case CallingConv::Fast: Out << "CallingConv::Fast"; break; 277 case CallingConv::Cold: Out << "CallingConv::Cold"; break; 278 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; 279 default: Out << cc; break; 280 } 281} 282 283void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { 284 switch (LT) { 285 case GlobalValue::InternalLinkage: 286 Out << "GlobalValue::InternalLinkage"; break; 287 case GlobalValue::PrivateLinkage: 288 Out << "GlobalValue::PrivateLinkage"; break; 289 case GlobalValue::AvailableExternallyLinkage: 290 Out << "GlobalValue::AvailableExternallyLinkage "; break; 291 case GlobalValue::LinkOnceAnyLinkage: 292 Out << "GlobalValue::LinkOnceAnyLinkage "; break; 293 case GlobalValue::LinkOnceODRLinkage: 294 Out << "GlobalValue::LinkOnceODRLinkage "; break; 295 case GlobalValue::WeakAnyLinkage: 296 Out << "GlobalValue::WeakAnyLinkage"; break; 297 case GlobalValue::WeakODRLinkage: 298 Out << "GlobalValue::WeakODRLinkage"; break; 299 case GlobalValue::AppendingLinkage: 300 Out << "GlobalValue::AppendingLinkage"; break; 301 case GlobalValue::ExternalLinkage: 302 Out << "GlobalValue::ExternalLinkage"; break; 303 case GlobalValue::ExternalWeakLinkage: 304 Out << "GlobalValue::ExternalWeakLinkage"; break; 305 case GlobalValue::CommonLinkage: 306 Out << "GlobalValue::CommonLinkage"; break; 307 } 308} 309 310void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) { 311 switch (VisType) { 312 case GlobalValue::DefaultVisibility: 313 Out << "GlobalValue::DefaultVisibility"; 314 break; 315 case GlobalValue::HiddenVisibility: 316 Out << "GlobalValue::HiddenVisibility"; 317 break; 318 case GlobalValue::ProtectedVisibility: 319 Out << "GlobalValue::ProtectedVisibility"; 320 break; 321 } 322} 323 324void CppWriter::printDLLStorageClassType( 325 GlobalValue::DLLStorageClassTypes DSCType) { 326 switch (DSCType) { 327 case GlobalValue::DefaultStorageClass: 328 Out << "GlobalValue::DefaultStorageClass"; 329 break; 330 case GlobalValue::DLLImportStorageClass: 331 Out << "GlobalValue::DLLImportStorageClass"; 332 break; 333 case GlobalValue::DLLExportStorageClass: 334 Out << "GlobalValue::DLLExportStorageClass"; 335 break; 336 } 337} 338 339void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) { 340 switch (TLM) { 341 case GlobalVariable::NotThreadLocal: 342 Out << "GlobalVariable::NotThreadLocal"; 343 break; 344 case GlobalVariable::GeneralDynamicTLSModel: 345 Out << "GlobalVariable::GeneralDynamicTLSModel"; 346 break; 347 case GlobalVariable::LocalDynamicTLSModel: 348 Out << "GlobalVariable::LocalDynamicTLSModel"; 349 break; 350 case GlobalVariable::InitialExecTLSModel: 351 Out << "GlobalVariable::InitialExecTLSModel"; 352 break; 353 case GlobalVariable::LocalExecTLSModel: 354 Out << "GlobalVariable::LocalExecTLSModel"; 355 break; 356 } 357} 358 359// printEscapedString - Print each character of the specified string, escaping 360// it if it is not printable or if it is an escape char. 361void CppWriter::printEscapedString(const std::string &Str) { 362 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 363 unsigned char C = Str[i]; 364 if (isprint(C) && C != '"' && C != '\\') { 365 Out << C; 366 } else { 367 Out << "\\x" 368 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) 369 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); 370 } 371 } 372} 373 374std::string CppWriter::getCppName(Type* Ty) { 375 switch (Ty->getTypeID()) { 376 default: 377 break; 378 case Type::VoidTyID: 379 return "Type::getVoidTy(mod->getContext())"; 380 case Type::IntegerTyID: { 381 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 382 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")"; 383 } 384 case Type::X86_FP80TyID: 385 return "Type::getX86_FP80Ty(mod->getContext())"; 386 case Type::FloatTyID: 387 return "Type::getFloatTy(mod->getContext())"; 388 case Type::DoubleTyID: 389 return "Type::getDoubleTy(mod->getContext())"; 390 case Type::LabelTyID: 391 return "Type::getLabelTy(mod->getContext())"; 392 case Type::X86_MMXTyID: 393 return "Type::getX86_MMXTy(mod->getContext())"; 394 } 395 396 // Now, see if we've seen the type before and return that 397 TypeMap::iterator I = TypeNames.find(Ty); 398 if (I != TypeNames.end()) 399 return I->second; 400 401 // Okay, let's build a new name for this type. Start with a prefix 402 const char* prefix = nullptr; 403 switch (Ty->getTypeID()) { 404 case Type::FunctionTyID: prefix = "FuncTy_"; break; 405 case Type::StructTyID: prefix = "StructTy_"; break; 406 case Type::ArrayTyID: prefix = "ArrayTy_"; break; 407 case Type::PointerTyID: prefix = "PointerTy_"; break; 408 case Type::VectorTyID: prefix = "VectorTy_"; break; 409 default: prefix = "OtherTy_"; break; // prevent breakage 410 } 411 412 // See if the type has a name in the symboltable and build accordingly 413 std::string name; 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (STy->hasName()) 416 name = STy->getName(); 417 418 if (name.empty()) 419 name = utostr(uniqueNum++); 420 421 name = std::string(prefix) + name; 422 sanitize(name); 423 424 // Save the name 425 return TypeNames[Ty] = name; 426} 427 428void CppWriter::printCppName(Type* Ty) { 429 printEscapedString(getCppName(Ty)); 430} 431 432std::string CppWriter::getCppName(const Value* val) { 433 std::string name; 434 ValueMap::iterator I = ValueNames.find(val); 435 if (I != ValueNames.end() && I->first == val) 436 return I->second; 437 438 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) { 439 name = std::string("gvar_") + 440 getTypePrefix(GV->getType()->getElementType()); 441 } else if (isa<Function>(val)) { 442 name = std::string("func_"); 443 } else if (const Constant* C = dyn_cast<Constant>(val)) { 444 name = std::string("const_") + getTypePrefix(C->getType()); 445 } else if (const Argument* Arg = dyn_cast<Argument>(val)) { 446 if (is_inline) { 447 unsigned argNum = std::distance(Arg->getParent()->arg_begin(), 448 Function::const_arg_iterator(Arg)) + 1; 449 name = std::string("arg_") + utostr(argNum); 450 NameSet::iterator NI = UsedNames.find(name); 451 if (NI != UsedNames.end()) 452 name += std::string("_") + utostr(uniqueNum++); 453 UsedNames.insert(name); 454 return ValueNames[val] = name; 455 } else { 456 name = getTypePrefix(val->getType()); 457 } 458 } else { 459 name = getTypePrefix(val->getType()); 460 } 461 if (val->hasName()) 462 name += val->getName(); 463 else 464 name += utostr(uniqueNum++); 465 sanitize(name); 466 NameSet::iterator NI = UsedNames.find(name); 467 if (NI != UsedNames.end()) 468 name += std::string("_") + utostr(uniqueNum++); 469 UsedNames.insert(name); 470 return ValueNames[val] = name; 471} 472 473void CppWriter::printCppName(const Value* val) { 474 printEscapedString(getCppName(val)); 475} 476 477void CppWriter::printAttributes(const AttributeSet &PAL, 478 const std::string &name) { 479 Out << "AttributeSet " << name << "_PAL;"; 480 nl(Out); 481 if (!PAL.isEmpty()) { 482 Out << '{'; in(); nl(Out); 483 Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out); 484 Out << "AttributeSet PAS;"; in(); nl(Out); 485 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) { 486 unsigned index = PAL.getSlotIndex(i); 487 AttrBuilder attrs(PAL.getSlotAttributes(i), index); 488 Out << "{"; in(); nl(Out); 489 Out << "AttrBuilder B;"; nl(Out); 490 491#define HANDLE_ATTR(X) \ 492 if (attrs.contains(Attribute::X)) { \ 493 Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \ 494 attrs.removeAttribute(Attribute::X); \ 495 } 496 497 HANDLE_ATTR(SExt); 498 HANDLE_ATTR(ZExt); 499 HANDLE_ATTR(NoReturn); 500 HANDLE_ATTR(InReg); 501 HANDLE_ATTR(StructRet); 502 HANDLE_ATTR(NoUnwind); 503 HANDLE_ATTR(NoAlias); 504 HANDLE_ATTR(ByVal); 505 HANDLE_ATTR(InAlloca); 506 HANDLE_ATTR(Nest); 507 HANDLE_ATTR(ReadNone); 508 HANDLE_ATTR(ReadOnly); 509 HANDLE_ATTR(NoInline); 510 HANDLE_ATTR(AlwaysInline); 511 HANDLE_ATTR(OptimizeNone); 512 HANDLE_ATTR(OptimizeForSize); 513 HANDLE_ATTR(StackProtect); 514 HANDLE_ATTR(StackProtectReq); 515 HANDLE_ATTR(StackProtectStrong); 516 HANDLE_ATTR(NoCapture); 517 HANDLE_ATTR(NoRedZone); 518 HANDLE_ATTR(NoImplicitFloat); 519 HANDLE_ATTR(Naked); 520 HANDLE_ATTR(InlineHint); 521 HANDLE_ATTR(ReturnsTwice); 522 HANDLE_ATTR(UWTable); 523 HANDLE_ATTR(NonLazyBind); 524 HANDLE_ATTR(MinSize); 525#undef HANDLE_ATTR 526 527 if (attrs.contains(Attribute::StackAlignment)) { 528 Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')'; 529 nl(Out); 530 attrs.removeAttribute(Attribute::StackAlignment); 531 } 532 533 Out << "PAS = AttributeSet::get(mod->getContext(), "; 534 if (index == ~0U) 535 Out << "~0U,"; 536 else 537 Out << index << "U,"; 538 Out << " B);"; out(); nl(Out); 539 Out << "}"; out(); nl(Out); 540 nl(Out); 541 Out << "Attrs.push_back(PAS);"; nl(Out); 542 } 543 Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);"; 544 nl(Out); 545 out(); nl(Out); 546 Out << '}'; nl(Out); 547 } 548} 549 550void CppWriter::printType(Type* Ty) { 551 // We don't print definitions for primitive types 552 if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() || 553 Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy()) 554 return; 555 556 // If we already defined this type, we don't need to define it again. 557 if (DefinedTypes.find(Ty) != DefinedTypes.end()) 558 return; 559 560 // Everything below needs the name for the type so get it now. 561 std::string typeName(getCppName(Ty)); 562 563 // Print the type definition 564 switch (Ty->getTypeID()) { 565 case Type::FunctionTyID: { 566 FunctionType* FT = cast<FunctionType>(Ty); 567 Out << "std::vector<Type*>" << typeName << "_args;"; 568 nl(Out); 569 FunctionType::param_iterator PI = FT->param_begin(); 570 FunctionType::param_iterator PE = FT->param_end(); 571 for (; PI != PE; ++PI) { 572 Type* argTy = static_cast<Type*>(*PI); 573 printType(argTy); 574 std::string argName(getCppName(argTy)); 575 Out << typeName << "_args.push_back(" << argName; 576 Out << ");"; 577 nl(Out); 578 } 579 printType(FT->getReturnType()); 580 std::string retTypeName(getCppName(FT->getReturnType())); 581 Out << "FunctionType* " << typeName << " = FunctionType::get("; 582 in(); nl(Out) << "/*Result=*/" << retTypeName; 583 Out << ","; 584 nl(Out) << "/*Params=*/" << typeName << "_args,"; 585 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");"; 586 out(); 587 nl(Out); 588 break; 589 } 590 case Type::StructTyID: { 591 StructType* ST = cast<StructType>(Ty); 592 if (!ST->isLiteral()) { 593 Out << "StructType *" << typeName << " = mod->getTypeByName(\""; 594 printEscapedString(ST->getName()); 595 Out << "\");"; 596 nl(Out); 597 Out << "if (!" << typeName << ") {"; 598 nl(Out); 599 Out << typeName << " = "; 600 Out << "StructType::create(mod->getContext(), \""; 601 printEscapedString(ST->getName()); 602 Out << "\");"; 603 nl(Out); 604 Out << "}"; 605 nl(Out); 606 // Indicate that this type is now defined. 607 DefinedTypes.insert(Ty); 608 } 609 610 Out << "std::vector<Type*>" << typeName << "_fields;"; 611 nl(Out); 612 StructType::element_iterator EI = ST->element_begin(); 613 StructType::element_iterator EE = ST->element_end(); 614 for (; EI != EE; ++EI) { 615 Type* fieldTy = static_cast<Type*>(*EI); 616 printType(fieldTy); 617 std::string fieldName(getCppName(fieldTy)); 618 Out << typeName << "_fields.push_back(" << fieldName; 619 Out << ");"; 620 nl(Out); 621 } 622 623 if (ST->isLiteral()) { 624 Out << "StructType *" << typeName << " = "; 625 Out << "StructType::get(" << "mod->getContext(), "; 626 } else { 627 Out << "if (" << typeName << "->isOpaque()) {"; 628 nl(Out); 629 Out << typeName << "->setBody("; 630 } 631 632 Out << typeName << "_fields, /*isPacked=*/" 633 << (ST->isPacked() ? "true" : "false") << ");"; 634 nl(Out); 635 if (!ST->isLiteral()) { 636 Out << "}"; 637 nl(Out); 638 } 639 break; 640 } 641 case Type::ArrayTyID: { 642 ArrayType* AT = cast<ArrayType>(Ty); 643 Type* ET = AT->getElementType(); 644 printType(ET); 645 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 646 std::string elemName(getCppName(ET)); 647 Out << "ArrayType* " << typeName << " = ArrayType::get(" 648 << elemName 649 << ", " << utostr(AT->getNumElements()) << ");"; 650 nl(Out); 651 } 652 break; 653 } 654 case Type::PointerTyID: { 655 PointerType* PT = cast<PointerType>(Ty); 656 Type* ET = PT->getElementType(); 657 printType(ET); 658 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 659 std::string elemName(getCppName(ET)); 660 Out << "PointerType* " << typeName << " = PointerType::get(" 661 << elemName 662 << ", " << utostr(PT->getAddressSpace()) << ");"; 663 nl(Out); 664 } 665 break; 666 } 667 case Type::VectorTyID: { 668 VectorType* PT = cast<VectorType>(Ty); 669 Type* ET = PT->getElementType(); 670 printType(ET); 671 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 672 std::string elemName(getCppName(ET)); 673 Out << "VectorType* " << typeName << " = VectorType::get(" 674 << elemName 675 << ", " << utostr(PT->getNumElements()) << ");"; 676 nl(Out); 677 } 678 break; 679 } 680 default: 681 error("Invalid TypeID"); 682 } 683 684 // Indicate that this type is now defined. 685 DefinedTypes.insert(Ty); 686 687 // Finally, separate the type definition from other with a newline. 688 nl(Out); 689} 690 691void CppWriter::printTypes(const Module* M) { 692 // Add all of the global variables to the value table. 693 for (Module::const_global_iterator I = TheModule->global_begin(), 694 E = TheModule->global_end(); I != E; ++I) { 695 if (I->hasInitializer()) 696 printType(I->getInitializer()->getType()); 697 printType(I->getType()); 698 } 699 700 // Add all the functions to the table 701 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 702 FI != FE; ++FI) { 703 printType(FI->getReturnType()); 704 printType(FI->getFunctionType()); 705 // Add all the function arguments 706 for (Function::const_arg_iterator AI = FI->arg_begin(), 707 AE = FI->arg_end(); AI != AE; ++AI) { 708 printType(AI->getType()); 709 } 710 711 // Add all of the basic blocks and instructions 712 for (Function::const_iterator BB = FI->begin(), 713 E = FI->end(); BB != E; ++BB) { 714 printType(BB->getType()); 715 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 716 ++I) { 717 printType(I->getType()); 718 for (unsigned i = 0; i < I->getNumOperands(); ++i) 719 printType(I->getOperand(i)->getType()); 720 } 721 } 722 } 723} 724 725 726// printConstant - Print out a constant pool entry... 727void CppWriter::printConstant(const Constant *CV) { 728 // First, if the constant is actually a GlobalValue (variable or function) 729 // or its already in the constant list then we've printed it already and we 730 // can just return. 731 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end()) 732 return; 733 734 std::string constName(getCppName(CV)); 735 std::string typeName(getCppName(CV->getType())); 736 737 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 738 std::string constValue = CI->getValue().toString(10, true); 739 Out << "ConstantInt* " << constName 740 << " = ConstantInt::get(mod->getContext(), APInt(" 741 << cast<IntegerType>(CI->getType())->getBitWidth() 742 << ", StringRef(\"" << constValue << "\"), 10));"; 743 } else if (isa<ConstantAggregateZero>(CV)) { 744 Out << "ConstantAggregateZero* " << constName 745 << " = ConstantAggregateZero::get(" << typeName << ");"; 746 } else if (isa<ConstantPointerNull>(CV)) { 747 Out << "ConstantPointerNull* " << constName 748 << " = ConstantPointerNull::get(" << typeName << ");"; 749 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 750 Out << "ConstantFP* " << constName << " = "; 751 printCFP(CFP); 752 Out << ";"; 753 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 754 Out << "std::vector<Constant*> " << constName << "_elems;"; 755 nl(Out); 756 unsigned N = CA->getNumOperands(); 757 for (unsigned i = 0; i < N; ++i) { 758 printConstant(CA->getOperand(i)); // recurse to print operands 759 Out << constName << "_elems.push_back(" 760 << getCppName(CA->getOperand(i)) << ");"; 761 nl(Out); 762 } 763 Out << "Constant* " << constName << " = ConstantArray::get(" 764 << typeName << ", " << constName << "_elems);"; 765 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 766 Out << "std::vector<Constant*> " << constName << "_fields;"; 767 nl(Out); 768 unsigned N = CS->getNumOperands(); 769 for (unsigned i = 0; i < N; i++) { 770 printConstant(CS->getOperand(i)); 771 Out << constName << "_fields.push_back(" 772 << getCppName(CS->getOperand(i)) << ");"; 773 nl(Out); 774 } 775 Out << "Constant* " << constName << " = ConstantStruct::get(" 776 << typeName << ", " << constName << "_fields);"; 777 } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) { 778 Out << "std::vector<Constant*> " << constName << "_elems;"; 779 nl(Out); 780 unsigned N = CVec->getNumOperands(); 781 for (unsigned i = 0; i < N; ++i) { 782 printConstant(CVec->getOperand(i)); 783 Out << constName << "_elems.push_back(" 784 << getCppName(CVec->getOperand(i)) << ");"; 785 nl(Out); 786 } 787 Out << "Constant* " << constName << " = ConstantVector::get(" 788 << typeName << ", " << constName << "_elems);"; 789 } else if (isa<UndefValue>(CV)) { 790 Out << "UndefValue* " << constName << " = UndefValue::get(" 791 << typeName << ");"; 792 } else if (const ConstantDataSequential *CDS = 793 dyn_cast<ConstantDataSequential>(CV)) { 794 if (CDS->isString()) { 795 Out << "Constant *" << constName << 796 " = ConstantDataArray::getString(mod->getContext(), \""; 797 StringRef Str = CDS->getAsString(); 798 bool nullTerminate = false; 799 if (Str.back() == 0) { 800 Str = Str.drop_back(); 801 nullTerminate = true; 802 } 803 printEscapedString(Str); 804 // Determine if we want null termination or not. 805 if (nullTerminate) 806 Out << "\", true);"; 807 else 808 Out << "\", false);";// No null terminator 809 } else { 810 // TODO: Could generate more efficient code generating CDS calls instead. 811 Out << "std::vector<Constant*> " << constName << "_elems;"; 812 nl(Out); 813 for (unsigned i = 0; i != CDS->getNumElements(); ++i) { 814 Constant *Elt = CDS->getElementAsConstant(i); 815 printConstant(Elt); 816 Out << constName << "_elems.push_back(" << getCppName(Elt) << ");"; 817 nl(Out); 818 } 819 Out << "Constant* " << constName; 820 821 if (isa<ArrayType>(CDS->getType())) 822 Out << " = ConstantArray::get("; 823 else 824 Out << " = ConstantVector::get("; 825 Out << typeName << ", " << constName << "_elems);"; 826 } 827 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 828 if (CE->getOpcode() == Instruction::GetElementPtr) { 829 Out << "std::vector<Constant*> " << constName << "_indices;"; 830 nl(Out); 831 printConstant(CE->getOperand(0)); 832 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { 833 printConstant(CE->getOperand(i)); 834 Out << constName << "_indices.push_back(" 835 << getCppName(CE->getOperand(i)) << ");"; 836 nl(Out); 837 } 838 Out << "Constant* " << constName 839 << " = ConstantExpr::getGetElementPtr(" 840 << getCppName(CE->getOperand(0)) << ", " 841 << constName << "_indices);"; 842 } else if (CE->isCast()) { 843 printConstant(CE->getOperand(0)); 844 Out << "Constant* " << constName << " = ConstantExpr::getCast("; 845 switch (CE->getOpcode()) { 846 default: llvm_unreachable("Invalid cast opcode"); 847 case Instruction::Trunc: Out << "Instruction::Trunc"; break; 848 case Instruction::ZExt: Out << "Instruction::ZExt"; break; 849 case Instruction::SExt: Out << "Instruction::SExt"; break; 850 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break; 851 case Instruction::FPExt: Out << "Instruction::FPExt"; break; 852 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break; 853 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break; 854 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break; 855 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break; 856 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break; 857 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break; 858 case Instruction::BitCast: Out << "Instruction::BitCast"; break; 859 } 860 Out << ", " << getCppName(CE->getOperand(0)) << ", " 861 << getCppName(CE->getType()) << ");"; 862 } else { 863 unsigned N = CE->getNumOperands(); 864 for (unsigned i = 0; i < N; ++i ) { 865 printConstant(CE->getOperand(i)); 866 } 867 Out << "Constant* " << constName << " = ConstantExpr::"; 868 switch (CE->getOpcode()) { 869 case Instruction::Add: Out << "getAdd("; break; 870 case Instruction::FAdd: Out << "getFAdd("; break; 871 case Instruction::Sub: Out << "getSub("; break; 872 case Instruction::FSub: Out << "getFSub("; break; 873 case Instruction::Mul: Out << "getMul("; break; 874 case Instruction::FMul: Out << "getFMul("; break; 875 case Instruction::UDiv: Out << "getUDiv("; break; 876 case Instruction::SDiv: Out << "getSDiv("; break; 877 case Instruction::FDiv: Out << "getFDiv("; break; 878 case Instruction::URem: Out << "getURem("; break; 879 case Instruction::SRem: Out << "getSRem("; break; 880 case Instruction::FRem: Out << "getFRem("; break; 881 case Instruction::And: Out << "getAnd("; break; 882 case Instruction::Or: Out << "getOr("; break; 883 case Instruction::Xor: Out << "getXor("; break; 884 case Instruction::ICmp: 885 Out << "getICmp(ICmpInst::ICMP_"; 886 switch (CE->getPredicate()) { 887 case ICmpInst::ICMP_EQ: Out << "EQ"; break; 888 case ICmpInst::ICMP_NE: Out << "NE"; break; 889 case ICmpInst::ICMP_SLT: Out << "SLT"; break; 890 case ICmpInst::ICMP_ULT: Out << "ULT"; break; 891 case ICmpInst::ICMP_SGT: Out << "SGT"; break; 892 case ICmpInst::ICMP_UGT: Out << "UGT"; break; 893 case ICmpInst::ICMP_SLE: Out << "SLE"; break; 894 case ICmpInst::ICMP_ULE: Out << "ULE"; break; 895 case ICmpInst::ICMP_SGE: Out << "SGE"; break; 896 case ICmpInst::ICMP_UGE: Out << "UGE"; break; 897 default: error("Invalid ICmp Predicate"); 898 } 899 break; 900 case Instruction::FCmp: 901 Out << "getFCmp(FCmpInst::FCMP_"; 902 switch (CE->getPredicate()) { 903 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break; 904 case FCmpInst::FCMP_ORD: Out << "ORD"; break; 905 case FCmpInst::FCMP_UNO: Out << "UNO"; break; 906 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break; 907 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break; 908 case FCmpInst::FCMP_ONE: Out << "ONE"; break; 909 case FCmpInst::FCMP_UNE: Out << "UNE"; break; 910 case FCmpInst::FCMP_OLT: Out << "OLT"; break; 911 case FCmpInst::FCMP_ULT: Out << "ULT"; break; 912 case FCmpInst::FCMP_OGT: Out << "OGT"; break; 913 case FCmpInst::FCMP_UGT: Out << "UGT"; break; 914 case FCmpInst::FCMP_OLE: Out << "OLE"; break; 915 case FCmpInst::FCMP_ULE: Out << "ULE"; break; 916 case FCmpInst::FCMP_OGE: Out << "OGE"; break; 917 case FCmpInst::FCMP_UGE: Out << "UGE"; break; 918 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break; 919 default: error("Invalid FCmp Predicate"); 920 } 921 break; 922 case Instruction::Shl: Out << "getShl("; break; 923 case Instruction::LShr: Out << "getLShr("; break; 924 case Instruction::AShr: Out << "getAShr("; break; 925 case Instruction::Select: Out << "getSelect("; break; 926 case Instruction::ExtractElement: Out << "getExtractElement("; break; 927 case Instruction::InsertElement: Out << "getInsertElement("; break; 928 case Instruction::ShuffleVector: Out << "getShuffleVector("; break; 929 default: 930 error("Invalid constant expression"); 931 break; 932 } 933 Out << getCppName(CE->getOperand(0)); 934 for (unsigned i = 1; i < CE->getNumOperands(); ++i) 935 Out << ", " << getCppName(CE->getOperand(i)); 936 Out << ");"; 937 } 938 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 939 Out << "Constant* " << constName << " = "; 940 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");"; 941 } else { 942 error("Bad Constant"); 943 Out << "Constant* " << constName << " = 0; "; 944 } 945 nl(Out); 946} 947 948void CppWriter::printConstants(const Module* M) { 949 // Traverse all the global variables looking for constant initializers 950 for (Module::const_global_iterator I = TheModule->global_begin(), 951 E = TheModule->global_end(); I != E; ++I) 952 if (I->hasInitializer()) 953 printConstant(I->getInitializer()); 954 955 // Traverse the LLVM functions looking for constants 956 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 957 FI != FE; ++FI) { 958 // Add all of the basic blocks and instructions 959 for (Function::const_iterator BB = FI->begin(), 960 E = FI->end(); BB != E; ++BB) { 961 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 962 ++I) { 963 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 964 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { 965 printConstant(C); 966 } 967 } 968 } 969 } 970 } 971} 972 973void CppWriter::printVariableUses(const GlobalVariable *GV) { 974 nl(Out) << "// Type Definitions"; 975 nl(Out); 976 printType(GV->getType()); 977 if (GV->hasInitializer()) { 978 const Constant *Init = GV->getInitializer(); 979 printType(Init->getType()); 980 if (const Function *F = dyn_cast<Function>(Init)) { 981 nl(Out)<< "/ Function Declarations"; nl(Out); 982 printFunctionHead(F); 983 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { 984 nl(Out) << "// Global Variable Declarations"; nl(Out); 985 printVariableHead(gv); 986 987 nl(Out) << "// Global Variable Definitions"; nl(Out); 988 printVariableBody(gv); 989 } else { 990 nl(Out) << "// Constant Definitions"; nl(Out); 991 printConstant(Init); 992 } 993 } 994} 995 996void CppWriter::printVariableHead(const GlobalVariable *GV) { 997 nl(Out) << "GlobalVariable* " << getCppName(GV); 998 if (is_inline) { 999 Out << " = mod->getGlobalVariable(mod->getContext(), "; 1000 printEscapedString(GV->getName()); 1001 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)"; 1002 nl(Out) << "if (!" << getCppName(GV) << ") {"; 1003 in(); nl(Out) << getCppName(GV); 1004 } 1005 Out << " = new GlobalVariable(/*Module=*/*mod, "; 1006 nl(Out) << "/*Type=*/"; 1007 printCppName(GV->getType()->getElementType()); 1008 Out << ","; 1009 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false"); 1010 Out << ","; 1011 nl(Out) << "/*Linkage=*/"; 1012 printLinkageType(GV->getLinkage()); 1013 Out << ","; 1014 nl(Out) << "/*Initializer=*/0, "; 1015 if (GV->hasInitializer()) { 1016 Out << "// has initializer, specified below"; 1017 } 1018 nl(Out) << "/*Name=*/\""; 1019 printEscapedString(GV->getName()); 1020 Out << "\");"; 1021 nl(Out); 1022 1023 if (GV->hasSection()) { 1024 printCppName(GV); 1025 Out << "->setSection(\""; 1026 printEscapedString(GV->getSection()); 1027 Out << "\");"; 1028 nl(Out); 1029 } 1030 if (GV->getAlignment()) { 1031 printCppName(GV); 1032 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");"; 1033 nl(Out); 1034 } 1035 if (GV->getVisibility() != GlobalValue::DefaultVisibility) { 1036 printCppName(GV); 1037 Out << "->setVisibility("; 1038 printVisibilityType(GV->getVisibility()); 1039 Out << ");"; 1040 nl(Out); 1041 } 1042 if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 1043 printCppName(GV); 1044 Out << "->setDLLStorageClass("; 1045 printDLLStorageClassType(GV->getDLLStorageClass()); 1046 Out << ");"; 1047 nl(Out); 1048 } 1049 if (GV->isThreadLocal()) { 1050 printCppName(GV); 1051 Out << "->setThreadLocalMode("; 1052 printThreadLocalMode(GV->getThreadLocalMode()); 1053 Out << ");"; 1054 nl(Out); 1055 } 1056 if (is_inline) { 1057 out(); Out << "}"; nl(Out); 1058 } 1059} 1060 1061void CppWriter::printVariableBody(const GlobalVariable *GV) { 1062 if (GV->hasInitializer()) { 1063 printCppName(GV); 1064 Out << "->setInitializer("; 1065 Out << getCppName(GV->getInitializer()) << ");"; 1066 nl(Out); 1067 } 1068} 1069 1070std::string CppWriter::getOpName(const Value* V) { 1071 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end()) 1072 return getCppName(V); 1073 1074 // See if its alread in the map of forward references, if so just return the 1075 // name we already set up for it 1076 ForwardRefMap::const_iterator I = ForwardRefs.find(V); 1077 if (I != ForwardRefs.end()) 1078 return I->second; 1079 1080 // This is a new forward reference. Generate a unique name for it 1081 std::string result(std::string("fwdref_") + utostr(uniqueNum++)); 1082 1083 // Yes, this is a hack. An Argument is the smallest instantiable value that 1084 // we can make as a placeholder for the real value. We'll replace these 1085 // Argument instances later. 1086 Out << "Argument* " << result << " = new Argument(" 1087 << getCppName(V->getType()) << ");"; 1088 nl(Out); 1089 ForwardRefs[V] = result; 1090 return result; 1091} 1092 1093static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) { 1094 switch (Ordering) { 1095 case NotAtomic: return "NotAtomic"; 1096 case Unordered: return "Unordered"; 1097 case Monotonic: return "Monotonic"; 1098 case Acquire: return "Acquire"; 1099 case Release: return "Release"; 1100 case AcquireRelease: return "AcquireRelease"; 1101 case SequentiallyConsistent: return "SequentiallyConsistent"; 1102 } 1103 llvm_unreachable("Unknown ordering"); 1104} 1105 1106static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) { 1107 switch (SynchScope) { 1108 case SingleThread: return "SingleThread"; 1109 case CrossThread: return "CrossThread"; 1110 } 1111 llvm_unreachable("Unknown synch scope"); 1112} 1113 1114// printInstruction - This member is called for each Instruction in a function. 1115void CppWriter::printInstruction(const Instruction *I, 1116 const std::string& bbname) { 1117 std::string iName(getCppName(I)); 1118 1119 // Before we emit this instruction, we need to take care of generating any 1120 // forward references. So, we get the names of all the operands in advance 1121 const unsigned Ops(I->getNumOperands()); 1122 std::string* opNames = new std::string[Ops]; 1123 for (unsigned i = 0; i < Ops; i++) 1124 opNames[i] = getOpName(I->getOperand(i)); 1125 1126 switch (I->getOpcode()) { 1127 default: 1128 error("Invalid instruction"); 1129 break; 1130 1131 case Instruction::Ret: { 1132 const ReturnInst* ret = cast<ReturnInst>(I); 1133 Out << "ReturnInst::Create(mod->getContext(), " 1134 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");"; 1135 break; 1136 } 1137 case Instruction::Br: { 1138 const BranchInst* br = cast<BranchInst>(I); 1139 Out << "BranchInst::Create(" ; 1140 if (br->getNumOperands() == 3) { 1141 Out << opNames[2] << ", " 1142 << opNames[1] << ", " 1143 << opNames[0] << ", "; 1144 1145 } else if (br->getNumOperands() == 1) { 1146 Out << opNames[0] << ", "; 1147 } else { 1148 error("Branch with 2 operands?"); 1149 } 1150 Out << bbname << ");"; 1151 break; 1152 } 1153 case Instruction::Switch: { 1154 const SwitchInst *SI = cast<SwitchInst>(I); 1155 Out << "SwitchInst* " << iName << " = SwitchInst::Create(" 1156 << getOpName(SI->getCondition()) << ", " 1157 << getOpName(SI->getDefaultDest()) << ", " 1158 << SI->getNumCases() << ", " << bbname << ");"; 1159 nl(Out); 1160 for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); 1161 i != e; ++i) { 1162 const ConstantInt* CaseVal = i.getCaseValue(); 1163 const BasicBlock *BB = i.getCaseSuccessor(); 1164 Out << iName << "->addCase(" 1165 << getOpName(CaseVal) << ", " 1166 << getOpName(BB) << ");"; 1167 nl(Out); 1168 } 1169 break; 1170 } 1171 case Instruction::IndirectBr: { 1172 const IndirectBrInst *IBI = cast<IndirectBrInst>(I); 1173 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create(" 1174 << opNames[0] << ", " << IBI->getNumDestinations() << ");"; 1175 nl(Out); 1176 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) { 1177 Out << iName << "->addDestination(" << opNames[i] << ");"; 1178 nl(Out); 1179 } 1180 break; 1181 } 1182 case Instruction::Resume: { 1183 Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");"; 1184 break; 1185 } 1186 case Instruction::Invoke: { 1187 const InvokeInst* inv = cast<InvokeInst>(I); 1188 Out << "std::vector<Value*> " << iName << "_params;"; 1189 nl(Out); 1190 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) { 1191 Out << iName << "_params.push_back(" 1192 << getOpName(inv->getArgOperand(i)) << ");"; 1193 nl(Out); 1194 } 1195 // FIXME: This shouldn't use magic numbers -3, -2, and -1. 1196 Out << "InvokeInst *" << iName << " = InvokeInst::Create(" 1197 << getOpName(inv->getCalledValue()) << ", " 1198 << getOpName(inv->getNormalDest()) << ", " 1199 << getOpName(inv->getUnwindDest()) << ", " 1200 << iName << "_params, \""; 1201 printEscapedString(inv->getName()); 1202 Out << "\", " << bbname << ");"; 1203 nl(Out) << iName << "->setCallingConv("; 1204 printCallingConv(inv->getCallingConv()); 1205 Out << ");"; 1206 printAttributes(inv->getAttributes(), iName); 1207 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1208 nl(Out); 1209 break; 1210 } 1211 case Instruction::Unreachable: { 1212 Out << "new UnreachableInst(" 1213 << "mod->getContext(), " 1214 << bbname << ");"; 1215 break; 1216 } 1217 case Instruction::Add: 1218 case Instruction::FAdd: 1219 case Instruction::Sub: 1220 case Instruction::FSub: 1221 case Instruction::Mul: 1222 case Instruction::FMul: 1223 case Instruction::UDiv: 1224 case Instruction::SDiv: 1225 case Instruction::FDiv: 1226 case Instruction::URem: 1227 case Instruction::SRem: 1228 case Instruction::FRem: 1229 case Instruction::And: 1230 case Instruction::Or: 1231 case Instruction::Xor: 1232 case Instruction::Shl: 1233 case Instruction::LShr: 1234 case Instruction::AShr:{ 1235 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create("; 1236 switch (I->getOpcode()) { 1237 case Instruction::Add: Out << "Instruction::Add"; break; 1238 case Instruction::FAdd: Out << "Instruction::FAdd"; break; 1239 case Instruction::Sub: Out << "Instruction::Sub"; break; 1240 case Instruction::FSub: Out << "Instruction::FSub"; break; 1241 case Instruction::Mul: Out << "Instruction::Mul"; break; 1242 case Instruction::FMul: Out << "Instruction::FMul"; break; 1243 case Instruction::UDiv:Out << "Instruction::UDiv"; break; 1244 case Instruction::SDiv:Out << "Instruction::SDiv"; break; 1245 case Instruction::FDiv:Out << "Instruction::FDiv"; break; 1246 case Instruction::URem:Out << "Instruction::URem"; break; 1247 case Instruction::SRem:Out << "Instruction::SRem"; break; 1248 case Instruction::FRem:Out << "Instruction::FRem"; break; 1249 case Instruction::And: Out << "Instruction::And"; break; 1250 case Instruction::Or: Out << "Instruction::Or"; break; 1251 case Instruction::Xor: Out << "Instruction::Xor"; break; 1252 case Instruction::Shl: Out << "Instruction::Shl"; break; 1253 case Instruction::LShr:Out << "Instruction::LShr"; break; 1254 case Instruction::AShr:Out << "Instruction::AShr"; break; 1255 default: Out << "Instruction::BadOpCode"; break; 1256 } 1257 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1258 printEscapedString(I->getName()); 1259 Out << "\", " << bbname << ");"; 1260 break; 1261 } 1262 case Instruction::FCmp: { 1263 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", "; 1264 switch (cast<FCmpInst>(I)->getPredicate()) { 1265 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break; 1266 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break; 1267 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break; 1268 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break; 1269 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break; 1270 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break; 1271 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break; 1272 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break; 1273 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break; 1274 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break; 1275 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break; 1276 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break; 1277 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break; 1278 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break; 1279 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break; 1280 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break; 1281 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break; 1282 } 1283 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1284 printEscapedString(I->getName()); 1285 Out << "\");"; 1286 break; 1287 } 1288 case Instruction::ICmp: { 1289 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", "; 1290 switch (cast<ICmpInst>(I)->getPredicate()) { 1291 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break; 1292 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break; 1293 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break; 1294 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break; 1295 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break; 1296 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break; 1297 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break; 1298 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break; 1299 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break; 1300 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break; 1301 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break; 1302 } 1303 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1304 printEscapedString(I->getName()); 1305 Out << "\");"; 1306 break; 1307 } 1308 case Instruction::Alloca: { 1309 const AllocaInst* allocaI = cast<AllocaInst>(I); 1310 Out << "AllocaInst* " << iName << " = new AllocaInst(" 1311 << getCppName(allocaI->getAllocatedType()) << ", "; 1312 if (allocaI->isArrayAllocation()) 1313 Out << opNames[0] << ", "; 1314 Out << "\""; 1315 printEscapedString(allocaI->getName()); 1316 Out << "\", " << bbname << ");"; 1317 if (allocaI->getAlignment()) 1318 nl(Out) << iName << "->setAlignment(" 1319 << allocaI->getAlignment() << ");"; 1320 break; 1321 } 1322 case Instruction::Load: { 1323 const LoadInst* load = cast<LoadInst>(I); 1324 Out << "LoadInst* " << iName << " = new LoadInst(" 1325 << opNames[0] << ", \""; 1326 printEscapedString(load->getName()); 1327 Out << "\", " << (load->isVolatile() ? "true" : "false" ) 1328 << ", " << bbname << ");"; 1329 if (load->getAlignment()) 1330 nl(Out) << iName << "->setAlignment(" 1331 << load->getAlignment() << ");"; 1332 if (load->isAtomic()) { 1333 StringRef Ordering = ConvertAtomicOrdering(load->getOrdering()); 1334 StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope()); 1335 nl(Out) << iName << "->setAtomic(" 1336 << Ordering << ", " << CrossThread << ");"; 1337 } 1338 break; 1339 } 1340 case Instruction::Store: { 1341 const StoreInst* store = cast<StoreInst>(I); 1342 Out << "StoreInst* " << iName << " = new StoreInst(" 1343 << opNames[0] << ", " 1344 << opNames[1] << ", " 1345 << (store->isVolatile() ? "true" : "false") 1346 << ", " << bbname << ");"; 1347 if (store->getAlignment()) 1348 nl(Out) << iName << "->setAlignment(" 1349 << store->getAlignment() << ");"; 1350 if (store->isAtomic()) { 1351 StringRef Ordering = ConvertAtomicOrdering(store->getOrdering()); 1352 StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope()); 1353 nl(Out) << iName << "->setAtomic(" 1354 << Ordering << ", " << CrossThread << ");"; 1355 } 1356 break; 1357 } 1358 case Instruction::GetElementPtr: { 1359 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); 1360 if (gep->getNumOperands() <= 2) { 1361 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create(" 1362 << opNames[0]; 1363 if (gep->getNumOperands() == 2) 1364 Out << ", " << opNames[1]; 1365 } else { 1366 Out << "std::vector<Value*> " << iName << "_indices;"; 1367 nl(Out); 1368 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { 1369 Out << iName << "_indices.push_back(" 1370 << opNames[i] << ");"; 1371 nl(Out); 1372 } 1373 Out << "Instruction* " << iName << " = GetElementPtrInst::Create(" 1374 << opNames[0] << ", " << iName << "_indices"; 1375 } 1376 Out << ", \""; 1377 printEscapedString(gep->getName()); 1378 Out << "\", " << bbname << ");"; 1379 break; 1380 } 1381 case Instruction::PHI: { 1382 const PHINode* phi = cast<PHINode>(I); 1383 1384 Out << "PHINode* " << iName << " = PHINode::Create(" 1385 << getCppName(phi->getType()) << ", " 1386 << phi->getNumIncomingValues() << ", \""; 1387 printEscapedString(phi->getName()); 1388 Out << "\", " << bbname << ");"; 1389 nl(Out); 1390 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) { 1391 Out << iName << "->addIncoming(" 1392 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", " 1393 << getOpName(phi->getIncomingBlock(i)) << ");"; 1394 nl(Out); 1395 } 1396 break; 1397 } 1398 case Instruction::Trunc: 1399 case Instruction::ZExt: 1400 case Instruction::SExt: 1401 case Instruction::FPTrunc: 1402 case Instruction::FPExt: 1403 case Instruction::FPToUI: 1404 case Instruction::FPToSI: 1405 case Instruction::UIToFP: 1406 case Instruction::SIToFP: 1407 case Instruction::PtrToInt: 1408 case Instruction::IntToPtr: 1409 case Instruction::BitCast: { 1410 const CastInst* cst = cast<CastInst>(I); 1411 Out << "CastInst* " << iName << " = new "; 1412 switch (I->getOpcode()) { 1413 case Instruction::Trunc: Out << "TruncInst"; break; 1414 case Instruction::ZExt: Out << "ZExtInst"; break; 1415 case Instruction::SExt: Out << "SExtInst"; break; 1416 case Instruction::FPTrunc: Out << "FPTruncInst"; break; 1417 case Instruction::FPExt: Out << "FPExtInst"; break; 1418 case Instruction::FPToUI: Out << "FPToUIInst"; break; 1419 case Instruction::FPToSI: Out << "FPToSIInst"; break; 1420 case Instruction::UIToFP: Out << "UIToFPInst"; break; 1421 case Instruction::SIToFP: Out << "SIToFPInst"; break; 1422 case Instruction::PtrToInt: Out << "PtrToIntInst"; break; 1423 case Instruction::IntToPtr: Out << "IntToPtrInst"; break; 1424 case Instruction::BitCast: Out << "BitCastInst"; break; 1425 default: llvm_unreachable("Unreachable"); 1426 } 1427 Out << "(" << opNames[0] << ", " 1428 << getCppName(cst->getType()) << ", \""; 1429 printEscapedString(cst->getName()); 1430 Out << "\", " << bbname << ");"; 1431 break; 1432 } 1433 case Instruction::Call: { 1434 const CallInst* call = cast<CallInst>(I); 1435 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) { 1436 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get(" 1437 << getCppName(ila->getFunctionType()) << ", \"" 1438 << ila->getAsmString() << "\", \"" 1439 << ila->getConstraintString() << "\"," 1440 << (ila->hasSideEffects() ? "true" : "false") << ");"; 1441 nl(Out); 1442 } 1443 if (call->getNumArgOperands() > 1) { 1444 Out << "std::vector<Value*> " << iName << "_params;"; 1445 nl(Out); 1446 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) { 1447 Out << iName << "_params.push_back(" << opNames[i] << ");"; 1448 nl(Out); 1449 } 1450 Out << "CallInst* " << iName << " = CallInst::Create(" 1451 << opNames[call->getNumArgOperands()] << ", " 1452 << iName << "_params, \""; 1453 } else if (call->getNumArgOperands() == 1) { 1454 Out << "CallInst* " << iName << " = CallInst::Create(" 1455 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \""; 1456 } else { 1457 Out << "CallInst* " << iName << " = CallInst::Create(" 1458 << opNames[call->getNumArgOperands()] << ", \""; 1459 } 1460 printEscapedString(call->getName()); 1461 Out << "\", " << bbname << ");"; 1462 nl(Out) << iName << "->setCallingConv("; 1463 printCallingConv(call->getCallingConv()); 1464 Out << ");"; 1465 nl(Out) << iName << "->setTailCall(" 1466 << (call->isTailCall() ? "true" : "false"); 1467 Out << ");"; 1468 nl(Out); 1469 printAttributes(call->getAttributes(), iName); 1470 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1471 nl(Out); 1472 break; 1473 } 1474 case Instruction::Select: { 1475 const SelectInst* sel = cast<SelectInst>(I); 1476 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create("; 1477 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1478 printEscapedString(sel->getName()); 1479 Out << "\", " << bbname << ");"; 1480 break; 1481 } 1482 case Instruction::UserOp1: 1483 /// FALL THROUGH 1484 case Instruction::UserOp2: { 1485 /// FIXME: What should be done here? 1486 break; 1487 } 1488 case Instruction::VAArg: { 1489 const VAArgInst* va = cast<VAArgInst>(I); 1490 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst(" 1491 << opNames[0] << ", " << getCppName(va->getType()) << ", \""; 1492 printEscapedString(va->getName()); 1493 Out << "\", " << bbname << ");"; 1494 break; 1495 } 1496 case Instruction::ExtractElement: { 1497 const ExtractElementInst* eei = cast<ExtractElementInst>(I); 1498 Out << "ExtractElementInst* " << getCppName(eei) 1499 << " = new ExtractElementInst(" << opNames[0] 1500 << ", " << opNames[1] << ", \""; 1501 printEscapedString(eei->getName()); 1502 Out << "\", " << bbname << ");"; 1503 break; 1504 } 1505 case Instruction::InsertElement: { 1506 const InsertElementInst* iei = cast<InsertElementInst>(I); 1507 Out << "InsertElementInst* " << getCppName(iei) 1508 << " = InsertElementInst::Create(" << opNames[0] 1509 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1510 printEscapedString(iei->getName()); 1511 Out << "\", " << bbname << ");"; 1512 break; 1513 } 1514 case Instruction::ShuffleVector: { 1515 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I); 1516 Out << "ShuffleVectorInst* " << getCppName(svi) 1517 << " = new ShuffleVectorInst(" << opNames[0] 1518 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1519 printEscapedString(svi->getName()); 1520 Out << "\", " << bbname << ");"; 1521 break; 1522 } 1523 case Instruction::ExtractValue: { 1524 const ExtractValueInst *evi = cast<ExtractValueInst>(I); 1525 Out << "std::vector<unsigned> " << iName << "_indices;"; 1526 nl(Out); 1527 for (unsigned i = 0; i < evi->getNumIndices(); ++i) { 1528 Out << iName << "_indices.push_back(" 1529 << evi->idx_begin()[i] << ");"; 1530 nl(Out); 1531 } 1532 Out << "ExtractValueInst* " << getCppName(evi) 1533 << " = ExtractValueInst::Create(" << opNames[0] 1534 << ", " 1535 << iName << "_indices, \""; 1536 printEscapedString(evi->getName()); 1537 Out << "\", " << bbname << ");"; 1538 break; 1539 } 1540 case Instruction::InsertValue: { 1541 const InsertValueInst *ivi = cast<InsertValueInst>(I); 1542 Out << "std::vector<unsigned> " << iName << "_indices;"; 1543 nl(Out); 1544 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) { 1545 Out << iName << "_indices.push_back(" 1546 << ivi->idx_begin()[i] << ");"; 1547 nl(Out); 1548 } 1549 Out << "InsertValueInst* " << getCppName(ivi) 1550 << " = InsertValueInst::Create(" << opNames[0] 1551 << ", " << opNames[1] << ", " 1552 << iName << "_indices, \""; 1553 printEscapedString(ivi->getName()); 1554 Out << "\", " << bbname << ");"; 1555 break; 1556 } 1557 case Instruction::Fence: { 1558 const FenceInst *fi = cast<FenceInst>(I); 1559 StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering()); 1560 StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope()); 1561 Out << "FenceInst* " << iName 1562 << " = new FenceInst(mod->getContext(), " 1563 << Ordering << ", " << CrossThread << ", " << bbname 1564 << ");"; 1565 break; 1566 } 1567 case Instruction::AtomicCmpXchg: { 1568 const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I); 1569 StringRef SuccessOrdering = 1570 ConvertAtomicOrdering(cxi->getSuccessOrdering()); 1571 StringRef FailureOrdering = 1572 ConvertAtomicOrdering(cxi->getFailureOrdering()); 1573 StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope()); 1574 Out << "AtomicCmpXchgInst* " << iName 1575 << " = new AtomicCmpXchgInst(" 1576 << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", " 1577 << SuccessOrdering << ", " << FailureOrdering << ", " 1578 << CrossThread << ", " << bbname 1579 << ");"; 1580 nl(Out) << iName << "->setName(\""; 1581 printEscapedString(cxi->getName()); 1582 Out << "\");"; 1583 nl(Out) << iName << "->setVolatile(" 1584 << (cxi->isVolatile() ? "true" : "false") << ");"; 1585 nl(Out) << iName << "->setWeak(" 1586 << (cxi->isWeak() ? "true" : "false") << ");"; 1587 break; 1588 } 1589 case Instruction::AtomicRMW: { 1590 const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I); 1591 StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering()); 1592 StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope()); 1593 StringRef Operation; 1594 switch (rmwi->getOperation()) { 1595 case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break; 1596 case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break; 1597 case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break; 1598 case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break; 1599 case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break; 1600 case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break; 1601 case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break; 1602 case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break; 1603 case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break; 1604 case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break; 1605 case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break; 1606 case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation"); 1607 } 1608 Out << "AtomicRMWInst* " << iName 1609 << " = new AtomicRMWInst(" 1610 << Operation << ", " 1611 << opNames[0] << ", " << opNames[1] << ", " 1612 << Ordering << ", " << CrossThread << ", " << bbname 1613 << ");"; 1614 nl(Out) << iName << "->setName(\""; 1615 printEscapedString(rmwi->getName()); 1616 Out << "\");"; 1617 nl(Out) << iName << "->setVolatile(" 1618 << (rmwi->isVolatile() ? "true" : "false") << ");"; 1619 break; 1620 } 1621 case Instruction::LandingPad: { 1622 const LandingPadInst *lpi = cast<LandingPadInst>(I); 1623 Out << "LandingPadInst* " << iName << " = LandingPadInst::Create("; 1624 printCppName(lpi->getType()); 1625 Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \""; 1626 printEscapedString(lpi->getName()); 1627 Out << "\", " << bbname << ");"; 1628 nl(Out) << iName << "->setCleanup(" 1629 << (lpi->isCleanup() ? "true" : "false") 1630 << ");"; 1631 for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i) 1632 nl(Out) << iName << "->addClause(" << opNames[i+1] << ");"; 1633 break; 1634 } 1635 } 1636 DefinedValues.insert(I); 1637 nl(Out); 1638 delete [] opNames; 1639} 1640 1641// Print out the types, constants and declarations needed by one function 1642void CppWriter::printFunctionUses(const Function* F) { 1643 nl(Out) << "// Type Definitions"; nl(Out); 1644 if (!is_inline) { 1645 // Print the function's return type 1646 printType(F->getReturnType()); 1647 1648 // Print the function's function type 1649 printType(F->getFunctionType()); 1650 1651 // Print the types of each of the function's arguments 1652 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1653 AI != AE; ++AI) { 1654 printType(AI->getType()); 1655 } 1656 } 1657 1658 // Print type definitions for every type referenced by an instruction and 1659 // make a note of any global values or constants that are referenced 1660 SmallPtrSet<GlobalValue*,64> gvs; 1661 SmallPtrSet<Constant*,64> consts; 1662 for (Function::const_iterator BB = F->begin(), BE = F->end(); 1663 BB != BE; ++BB){ 1664 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1665 I != E; ++I) { 1666 // Print the type of the instruction itself 1667 printType(I->getType()); 1668 1669 // Print the type of each of the instruction's operands 1670 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 1671 Value* operand = I->getOperand(i); 1672 printType(operand->getType()); 1673 1674 // If the operand references a GVal or Constant, make a note of it 1675 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1676 gvs.insert(GV); 1677 if (GenerationType != GenFunction) 1678 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1679 if (GVar->hasInitializer()) 1680 consts.insert(GVar->getInitializer()); 1681 } else if (Constant* C = dyn_cast<Constant>(operand)) { 1682 consts.insert(C); 1683 for (unsigned j = 0; j < C->getNumOperands(); ++j) { 1684 // If the operand references a GVal or Constant, make a note of it 1685 Value* operand = C->getOperand(j); 1686 printType(operand->getType()); 1687 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1688 gvs.insert(GV); 1689 if (GenerationType != GenFunction) 1690 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1691 if (GVar->hasInitializer()) 1692 consts.insert(GVar->getInitializer()); 1693 } 1694 } 1695 } 1696 } 1697 } 1698 } 1699 1700 // Print the function declarations for any functions encountered 1701 nl(Out) << "// Function Declarations"; nl(Out); 1702 for (auto *GV : gvs) { 1703 if (Function *Fun = dyn_cast<Function>(GV)) { 1704 if (!is_inline || Fun != F) 1705 printFunctionHead(Fun); 1706 } 1707 } 1708 1709 // Print the global variable declarations for any variables encountered 1710 nl(Out) << "// Global Variable Declarations"; nl(Out); 1711 for (auto *GV : gvs) { 1712 if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV)) 1713 printVariableHead(F); 1714 } 1715 1716 // Print the constants found 1717 nl(Out) << "// Constant Definitions"; nl(Out); 1718 for (const auto *C : consts) { 1719 printConstant(C); 1720 } 1721 1722 // Process the global variables definitions now that all the constants have 1723 // been emitted. These definitions just couple the gvars with their constant 1724 // initializers. 1725 if (GenerationType != GenFunction) { 1726 nl(Out) << "// Global Variable Definitions"; nl(Out); 1727 for (auto *GV : gvs) { 1728 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) 1729 printVariableBody(Var); 1730 } 1731 } 1732} 1733 1734void CppWriter::printFunctionHead(const Function* F) { 1735 nl(Out) << "Function* " << getCppName(F); 1736 Out << " = mod->getFunction(\""; 1737 printEscapedString(F->getName()); 1738 Out << "\");"; 1739 nl(Out) << "if (!" << getCppName(F) << ") {"; 1740 nl(Out) << getCppName(F); 1741 1742 Out<< " = Function::Create("; 1743 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ","; 1744 nl(Out) << "/*Linkage=*/"; 1745 printLinkageType(F->getLinkage()); 1746 Out << ","; 1747 nl(Out) << "/*Name=*/\""; 1748 printEscapedString(F->getName()); 1749 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : ""); 1750 nl(Out,-1); 1751 printCppName(F); 1752 Out << "->setCallingConv("; 1753 printCallingConv(F->getCallingConv()); 1754 Out << ");"; 1755 nl(Out); 1756 if (F->hasSection()) { 1757 printCppName(F); 1758 Out << "->setSection(\"" << F->getSection() << "\");"; 1759 nl(Out); 1760 } 1761 if (F->getAlignment()) { 1762 printCppName(F); 1763 Out << "->setAlignment(" << F->getAlignment() << ");"; 1764 nl(Out); 1765 } 1766 if (F->getVisibility() != GlobalValue::DefaultVisibility) { 1767 printCppName(F); 1768 Out << "->setVisibility("; 1769 printVisibilityType(F->getVisibility()); 1770 Out << ");"; 1771 nl(Out); 1772 } 1773 if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 1774 printCppName(F); 1775 Out << "->setDLLStorageClass("; 1776 printDLLStorageClassType(F->getDLLStorageClass()); 1777 Out << ");"; 1778 nl(Out); 1779 } 1780 if (F->hasGC()) { 1781 printCppName(F); 1782 Out << "->setGC(\"" << F->getGC() << "\");"; 1783 nl(Out); 1784 } 1785 Out << "}"; 1786 nl(Out); 1787 printAttributes(F->getAttributes(), getCppName(F)); 1788 printCppName(F); 1789 Out << "->setAttributes(" << getCppName(F) << "_PAL);"; 1790 nl(Out); 1791} 1792 1793void CppWriter::printFunctionBody(const Function *F) { 1794 if (F->isDeclaration()) 1795 return; // external functions have no bodies. 1796 1797 // Clear the DefinedValues and ForwardRefs maps because we can't have 1798 // cross-function forward refs 1799 ForwardRefs.clear(); 1800 DefinedValues.clear(); 1801 1802 // Create all the argument values 1803 if (!is_inline) { 1804 if (!F->arg_empty()) { 1805 Out << "Function::arg_iterator args = " << getCppName(F) 1806 << "->arg_begin();"; 1807 nl(Out); 1808 } 1809 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1810 AI != AE; ++AI) { 1811 Out << "Value* " << getCppName(AI) << " = args++;"; 1812 nl(Out); 1813 if (AI->hasName()) { 1814 Out << getCppName(AI) << "->setName(\""; 1815 printEscapedString(AI->getName()); 1816 Out << "\");"; 1817 nl(Out); 1818 } 1819 } 1820 } 1821 1822 // Create all the basic blocks 1823 nl(Out); 1824 for (Function::const_iterator BI = F->begin(), BE = F->end(); 1825 BI != BE; ++BI) { 1826 std::string bbname(getCppName(BI)); 1827 Out << "BasicBlock* " << bbname << 1828 " = BasicBlock::Create(mod->getContext(), \""; 1829 if (BI->hasName()) 1830 printEscapedString(BI->getName()); 1831 Out << "\"," << getCppName(BI->getParent()) << ",0);"; 1832 nl(Out); 1833 } 1834 1835 // Output all of its basic blocks... for the function 1836 for (Function::const_iterator BI = F->begin(), BE = F->end(); 1837 BI != BE; ++BI) { 1838 std::string bbname(getCppName(BI)); 1839 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")"; 1840 nl(Out); 1841 1842 // Output all of the instructions in the basic block... 1843 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); 1844 I != E; ++I) { 1845 printInstruction(I,bbname); 1846 } 1847 } 1848 1849 // Loop over the ForwardRefs and resolve them now that all instructions 1850 // are generated. 1851 if (!ForwardRefs.empty()) { 1852 nl(Out) << "// Resolve Forward References"; 1853 nl(Out); 1854 } 1855 1856 while (!ForwardRefs.empty()) { 1857 ForwardRefMap::iterator I = ForwardRefs.begin(); 1858 Out << I->second << "->replaceAllUsesWith(" 1859 << getCppName(I->first) << "); delete " << I->second << ";"; 1860 nl(Out); 1861 ForwardRefs.erase(I); 1862 } 1863} 1864 1865void CppWriter::printInline(const std::string& fname, 1866 const std::string& func) { 1867 const Function* F = TheModule->getFunction(func); 1868 if (!F) { 1869 error(std::string("Function '") + func + "' not found in input module"); 1870 return; 1871 } 1872 if (F->isDeclaration()) { 1873 error(std::string("Function '") + func + "' is external!"); 1874 return; 1875 } 1876 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *" 1877 << getCppName(F); 1878 unsigned arg_count = 1; 1879 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1880 AI != AE; ++AI) { 1881 Out << ", Value* arg_" << arg_count++; 1882 } 1883 Out << ") {"; 1884 nl(Out); 1885 is_inline = true; 1886 printFunctionUses(F); 1887 printFunctionBody(F); 1888 is_inline = false; 1889 Out << "return " << getCppName(F->begin()) << ";"; 1890 nl(Out) << "}"; 1891 nl(Out); 1892} 1893 1894void CppWriter::printModuleBody() { 1895 // Print out all the type definitions 1896 nl(Out) << "// Type Definitions"; nl(Out); 1897 printTypes(TheModule); 1898 1899 // Functions can call each other and global variables can reference them so 1900 // define all the functions first before emitting their function bodies. 1901 nl(Out) << "// Function Declarations"; nl(Out); 1902 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 1903 I != E; ++I) 1904 printFunctionHead(I); 1905 1906 // Process the global variables declarations. We can't initialze them until 1907 // after the constants are printed so just print a header for each global 1908 nl(Out) << "// Global Variable Declarations\n"; nl(Out); 1909 for (Module::const_global_iterator I = TheModule->global_begin(), 1910 E = TheModule->global_end(); I != E; ++I) { 1911 printVariableHead(I); 1912 } 1913 1914 // Print out all the constants definitions. Constants don't recurse except 1915 // through GlobalValues. All GlobalValues have been declared at this point 1916 // so we can proceed to generate the constants. 1917 nl(Out) << "// Constant Definitions"; nl(Out); 1918 printConstants(TheModule); 1919 1920 // Process the global variables definitions now that all the constants have 1921 // been emitted. These definitions just couple the gvars with their constant 1922 // initializers. 1923 nl(Out) << "// Global Variable Definitions"; nl(Out); 1924 for (Module::const_global_iterator I = TheModule->global_begin(), 1925 E = TheModule->global_end(); I != E; ++I) { 1926 printVariableBody(I); 1927 } 1928 1929 // Finally, we can safely put out all of the function bodies. 1930 nl(Out) << "// Function Definitions"; nl(Out); 1931 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 1932 I != E; ++I) { 1933 if (!I->isDeclaration()) { 1934 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I) 1935 << ")"; 1936 nl(Out) << "{"; 1937 nl(Out,1); 1938 printFunctionBody(I); 1939 nl(Out,-1) << "}"; 1940 nl(Out); 1941 } 1942 } 1943} 1944 1945void CppWriter::printProgram(const std::string& fname, 1946 const std::string& mName) { 1947 Out << "#include <llvm/Pass.h>\n"; 1948 1949 Out << "#include <llvm/ADT/SmallVector.h>\n"; 1950 Out << "#include <llvm/Analysis/Verifier.h>\n"; 1951 Out << "#include <llvm/IR/BasicBlock.h>\n"; 1952 Out << "#include <llvm/IR/CallingConv.h>\n"; 1953 Out << "#include <llvm/IR/Constants.h>\n"; 1954 Out << "#include <llvm/IR/DerivedTypes.h>\n"; 1955 Out << "#include <llvm/IR/Function.h>\n"; 1956 Out << "#include <llvm/IR/GlobalVariable.h>\n"; 1957 Out << "#include <llvm/IR/IRPrintingPasses.h>\n"; 1958 Out << "#include <llvm/IR/InlineAsm.h>\n"; 1959 Out << "#include <llvm/IR/Instructions.h>\n"; 1960 Out << "#include <llvm/IR/LLVMContext.h>\n"; 1961 Out << "#include <llvm/IR/LegacyPassManager.h>\n"; 1962 Out << "#include <llvm/IR/Module.h>\n"; 1963 Out << "#include <llvm/Support/FormattedStream.h>\n"; 1964 Out << "#include <llvm/Support/MathExtras.h>\n"; 1965 Out << "#include <algorithm>\n"; 1966 Out << "using namespace llvm;\n\n"; 1967 Out << "Module* " << fname << "();\n\n"; 1968 Out << "int main(int argc, char**argv) {\n"; 1969 Out << " Module* Mod = " << fname << "();\n"; 1970 Out << " verifyModule(*Mod, PrintMessageAction);\n"; 1971 Out << " PassManager PM;\n"; 1972 Out << " PM.add(createPrintModulePass(&outs()));\n"; 1973 Out << " PM.run(*Mod);\n"; 1974 Out << " return 0;\n"; 1975 Out << "}\n\n"; 1976 printModule(fname,mName); 1977} 1978 1979void CppWriter::printModule(const std::string& fname, 1980 const std::string& mName) { 1981 nl(Out) << "Module* " << fname << "() {"; 1982 nl(Out,1) << "// Module Construction"; 1983 nl(Out) << "Module* mod = new Module(\""; 1984 printEscapedString(mName); 1985 Out << "\", getGlobalContext());"; 1986 if (!TheModule->getTargetTriple().empty()) { 1987 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr() 1988 << "\");"; 1989 } 1990 if (!TheModule->getTargetTriple().empty()) { 1991 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple() 1992 << "\");"; 1993 } 1994 1995 if (!TheModule->getModuleInlineAsm().empty()) { 1996 nl(Out) << "mod->setModuleInlineAsm(\""; 1997 printEscapedString(TheModule->getModuleInlineAsm()); 1998 Out << "\");"; 1999 } 2000 nl(Out); 2001 2002 printModuleBody(); 2003 nl(Out) << "return mod;"; 2004 nl(Out,-1) << "}"; 2005 nl(Out); 2006} 2007 2008void CppWriter::printContents(const std::string& fname, 2009 const std::string& mName) { 2010 Out << "\nModule* " << fname << "(Module *mod) {\n"; 2011 Out << "\nmod->setModuleIdentifier(\""; 2012 printEscapedString(mName); 2013 Out << "\");\n"; 2014 printModuleBody(); 2015 Out << "\nreturn mod;\n"; 2016 Out << "\n}\n"; 2017} 2018 2019void CppWriter::printFunction(const std::string& fname, 2020 const std::string& funcName) { 2021 const Function* F = TheModule->getFunction(funcName); 2022 if (!F) { 2023 error(std::string("Function '") + funcName + "' not found in input module"); 2024 return; 2025 } 2026 Out << "\nFunction* " << fname << "(Module *mod) {\n"; 2027 printFunctionUses(F); 2028 printFunctionHead(F); 2029 printFunctionBody(F); 2030 Out << "return " << getCppName(F) << ";\n"; 2031 Out << "}\n"; 2032} 2033 2034void CppWriter::printFunctions() { 2035 const Module::FunctionListType &funcs = TheModule->getFunctionList(); 2036 Module::const_iterator I = funcs.begin(); 2037 Module::const_iterator IE = funcs.end(); 2038 2039 for (; I != IE; ++I) { 2040 const Function &func = *I; 2041 if (!func.isDeclaration()) { 2042 std::string name("define_"); 2043 name += func.getName(); 2044 printFunction(name, func.getName()); 2045 } 2046 } 2047} 2048 2049void CppWriter::printVariable(const std::string& fname, 2050 const std::string& varName) { 2051 const GlobalVariable* GV = TheModule->getNamedGlobal(varName); 2052 2053 if (!GV) { 2054 error(std::string("Variable '") + varName + "' not found in input module"); 2055 return; 2056 } 2057 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n"; 2058 printVariableUses(GV); 2059 printVariableHead(GV); 2060 printVariableBody(GV); 2061 Out << "return " << getCppName(GV) << ";\n"; 2062 Out << "}\n"; 2063} 2064 2065void CppWriter::printType(const std::string &fname, 2066 const std::string &typeName) { 2067 Type* Ty = TheModule->getTypeByName(typeName); 2068 if (!Ty) { 2069 error(std::string("Type '") + typeName + "' not found in input module"); 2070 return; 2071 } 2072 Out << "\nType* " << fname << "(Module *mod) {\n"; 2073 printType(Ty); 2074 Out << "return " << getCppName(Ty) << ";\n"; 2075 Out << "}\n"; 2076} 2077 2078bool CppWriter::runOnModule(Module &M) { 2079 TheModule = &M; 2080 2081 // Emit a header 2082 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n"; 2083 2084 // Get the name of the function we're supposed to generate 2085 std::string fname = FuncName.getValue(); 2086 2087 // Get the name of the thing we are to generate 2088 std::string tgtname = NameToGenerate.getValue(); 2089 if (GenerationType == GenModule || 2090 GenerationType == GenContents || 2091 GenerationType == GenProgram || 2092 GenerationType == GenFunctions) { 2093 if (tgtname == "!bad!") { 2094 if (M.getModuleIdentifier() == "-") 2095 tgtname = "<stdin>"; 2096 else 2097 tgtname = M.getModuleIdentifier(); 2098 } 2099 } else if (tgtname == "!bad!") 2100 error("You must use the -for option with -gen-{function,variable,type}"); 2101 2102 switch (WhatToGenerate(GenerationType)) { 2103 case GenProgram: 2104 if (fname.empty()) 2105 fname = "makeLLVMModule"; 2106 printProgram(fname,tgtname); 2107 break; 2108 case GenModule: 2109 if (fname.empty()) 2110 fname = "makeLLVMModule"; 2111 printModule(fname,tgtname); 2112 break; 2113 case GenContents: 2114 if (fname.empty()) 2115 fname = "makeLLVMModuleContents"; 2116 printContents(fname,tgtname); 2117 break; 2118 case GenFunction: 2119 if (fname.empty()) 2120 fname = "makeLLVMFunction"; 2121 printFunction(fname,tgtname); 2122 break; 2123 case GenFunctions: 2124 printFunctions(); 2125 break; 2126 case GenInline: 2127 if (fname.empty()) 2128 fname = "makeLLVMInline"; 2129 printInline(fname,tgtname); 2130 break; 2131 case GenVariable: 2132 if (fname.empty()) 2133 fname = "makeLLVMVariable"; 2134 printVariable(fname,tgtname); 2135 break; 2136 case GenType: 2137 if (fname.empty()) 2138 fname = "makeLLVMType"; 2139 printType(fname,tgtname); 2140 break; 2141 } 2142 2143 return false; 2144} 2145 2146char CppWriter::ID = 0; 2147 2148//===----------------------------------------------------------------------===// 2149// External Interface declaration 2150//===----------------------------------------------------------------------===// 2151 2152bool CPPTargetMachine::addPassesToEmitFile( 2153 PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType, 2154 bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) { 2155 if (FileType != TargetMachine::CGFT_AssemblyFile) 2156 return true; 2157 auto FOut = llvm::make_unique<formatted_raw_ostream>(o); 2158 PM.add(new CppWriter(std::move(FOut))); 2159 return false; 2160} 2161