1//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that Mips uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14#include "MipsISelLowering.h"
15#include "InstPrinter/MipsInstPrinter.h"
16#include "MCTargetDesc/MipsBaseInfo.h"
17#include "MipsCCState.h"
18#include "MipsMachineFunction.h"
19#include "MipsSubtarget.h"
20#include "MipsTargetMachine.h"
21#include "MipsTargetObjectFile.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringSwitch.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAGISel.h"
31#include "llvm/CodeGen/ValueTypes.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include <cctype>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "mips-lower"
44
45STATISTIC(NumTailCalls, "Number of tail calls");
46
47static cl::opt<bool>
48LargeGOT("mxgot", cl::Hidden,
49         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
50
51static cl::opt<bool>
52NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
53               cl::desc("MIPS: Don't trap on integer division by zero."),
54               cl::init(false));
55
56cl::opt<bool>
57EnableMipsFastISel("mips-fast-isel", cl::Hidden,
58  cl::desc("Allow mips-fast-isel to be used"),
59  cl::init(false));
60
61static const MCPhysReg Mips64DPRegs[8] = {
62  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64};
65
66// If I is a shifted mask, set the size (Size) and the first bit of the
67// mask (Pos), and return true.
68// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70  if (!isShiftedMask_64(I))
71    return false;
72
73  Size = countPopulation(I);
74  Pos = countTrailingZeros(I);
75  return true;
76}
77
78SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81}
82
83SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
84                                          SelectionDAG &DAG,
85                                          unsigned Flag) const {
86  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
87}
88
89SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
90                                          SelectionDAG &DAG,
91                                          unsigned Flag) const {
92  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
93}
94
95SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
96                                          SelectionDAG &DAG,
97                                          unsigned Flag) const {
98  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
99}
100
101SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
102                                          SelectionDAG &DAG,
103                                          unsigned Flag) const {
104  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
105}
106
107SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
108                                          SelectionDAG &DAG,
109                                          unsigned Flag) const {
110  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                   N->getOffset(), Flag);
112}
113
114const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
115  switch (Opcode) {
116  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
117  case MipsISD::TailCall:          return "MipsISD::TailCall";
118  case MipsISD::Hi:                return "MipsISD::Hi";
119  case MipsISD::Lo:                return "MipsISD::Lo";
120  case MipsISD::GPRel:             return "MipsISD::GPRel";
121  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
122  case MipsISD::Ret:               return "MipsISD::Ret";
123  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
124  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
125  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
126  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
127  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
128  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
129  case MipsISD::MFHI:              return "MipsISD::MFHI";
130  case MipsISD::MFLO:              return "MipsISD::MFLO";
131  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
132  case MipsISD::Mult:              return "MipsISD::Mult";
133  case MipsISD::Multu:             return "MipsISD::Multu";
134  case MipsISD::MAdd:              return "MipsISD::MAdd";
135  case MipsISD::MAddu:             return "MipsISD::MAddu";
136  case MipsISD::MSub:              return "MipsISD::MSub";
137  case MipsISD::MSubu:             return "MipsISD::MSubu";
138  case MipsISD::DivRem:            return "MipsISD::DivRem";
139  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
140  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
141  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
142  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
143  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
144  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
145  case MipsISD::Sync:              return "MipsISD::Sync";
146  case MipsISD::Ext:               return "MipsISD::Ext";
147  case MipsISD::Ins:               return "MipsISD::Ins";
148  case MipsISD::LWL:               return "MipsISD::LWL";
149  case MipsISD::LWR:               return "MipsISD::LWR";
150  case MipsISD::SWL:               return "MipsISD::SWL";
151  case MipsISD::SWR:               return "MipsISD::SWR";
152  case MipsISD::LDL:               return "MipsISD::LDL";
153  case MipsISD::LDR:               return "MipsISD::LDR";
154  case MipsISD::SDL:               return "MipsISD::SDL";
155  case MipsISD::SDR:               return "MipsISD::SDR";
156  case MipsISD::EXTP:              return "MipsISD::EXTP";
157  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
158  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
159  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
160  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
161  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
162  case MipsISD::SHILO:             return "MipsISD::SHILO";
163  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
164  case MipsISD::MULT:              return "MipsISD::MULT";
165  case MipsISD::MULTU:             return "MipsISD::MULTU";
166  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
167  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
168  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
169  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
170  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
171  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
172  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
173  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
174  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
175  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
176  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
177  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
178  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
179  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
180  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
181  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
182  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
183  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
184  case MipsISD::VSMAX:             return "MipsISD::VSMAX";
185  case MipsISD::VSMIN:             return "MipsISD::VSMIN";
186  case MipsISD::VUMAX:             return "MipsISD::VUMAX";
187  case MipsISD::VUMIN:             return "MipsISD::VUMIN";
188  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
189  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
190  case MipsISD::VNOR:              return "MipsISD::VNOR";
191  case MipsISD::VSHF:              return "MipsISD::VSHF";
192  case MipsISD::SHF:               return "MipsISD::SHF";
193  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
194  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
195  case MipsISD::ILVL:              return "MipsISD::ILVL";
196  case MipsISD::ILVR:              return "MipsISD::ILVR";
197  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
198  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
199  case MipsISD::INSVE:             return "MipsISD::INSVE";
200  default:                         return nullptr;
201  }
202}
203
204MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
205                                       const MipsSubtarget &STI)
206    : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
207  // Mips does not have i1 type, so use i32 for
208  // setcc operations results (slt, sgt, ...).
209  setBooleanContents(ZeroOrOneBooleanContent);
210  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
211  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
212  // does. Integer booleans still use 0 and 1.
213  if (Subtarget.hasMips32r6())
214    setBooleanContents(ZeroOrOneBooleanContent,
215                       ZeroOrNegativeOneBooleanContent);
216
217  // Load extented operations for i1 types must be promoted
218  for (MVT VT : MVT::integer_valuetypes()) {
219    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
220    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
221    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
222  }
223
224  // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
225  // for f32, f16
226  for (MVT VT : MVT::fp_valuetypes()) {
227    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
228    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
229  }
230
231  // Set LoadExtAction for f16 vectors to Expand
232  for (MVT VT : MVT::fp_vector_valuetypes()) {
233    MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
234    if (F16VT.isValid())
235      setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
236  }
237
238  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
239  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
240
241  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
242
243  // Used by legalize types to correctly generate the setcc result.
244  // Without this, every float setcc comes with a AND/OR with the result,
245  // we don't want this, since the fpcmp result goes to a flag register,
246  // which is used implicitly by brcond and select operations.
247  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
248
249  // Mips Custom Operations
250  setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
251  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
252  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
253  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
254  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
255  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
256  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
257  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
258  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
259  setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
260  setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
261  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
262  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
263  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
264  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
265  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
266  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
267
268  if (Subtarget.isGP64bit()) {
269    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
270    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
271    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
272    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
273    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
274    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
275    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
276    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
277    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
278    setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
279    setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
280    setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
281  }
282
283  if (!Subtarget.isGP64bit()) {
284    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
285    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
286    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
287  }
288
289  setOperationAction(ISD::ADD,                MVT::i32,   Custom);
290  if (Subtarget.isGP64bit())
291    setOperationAction(ISD::ADD,                MVT::i64,   Custom);
292
293  setOperationAction(ISD::SDIV, MVT::i32, Expand);
294  setOperationAction(ISD::SREM, MVT::i32, Expand);
295  setOperationAction(ISD::UDIV, MVT::i32, Expand);
296  setOperationAction(ISD::UREM, MVT::i32, Expand);
297  setOperationAction(ISD::SDIV, MVT::i64, Expand);
298  setOperationAction(ISD::SREM, MVT::i64, Expand);
299  setOperationAction(ISD::UDIV, MVT::i64, Expand);
300  setOperationAction(ISD::UREM, MVT::i64, Expand);
301
302  // Operations not directly supported by Mips.
303  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
304  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
305  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
306  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
307  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
308  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
309  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
310  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
311  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
312  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
313  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
314  if (Subtarget.hasCnMips()) {
315    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
316    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
317  } else {
318    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
319    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
320  }
321  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
322  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
323  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
324  setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
325  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
326  setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
327  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
328  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
329  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
330  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
331
332  if (!Subtarget.hasMips32r2())
333    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
334
335  if (!Subtarget.hasMips64r2())
336    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
337
338  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
339  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
340  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
341  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
342  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
343  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
344  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
345  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
346  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
347  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
348  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
349  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
350  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
351  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
352  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
353  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
354  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
355
356  // Lower f16 conversion operations into library calls
357  setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
358  setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
359  setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
360  setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
361
362  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
363
364  setOperationAction(ISD::VASTART,           MVT::Other, Custom);
365  setOperationAction(ISD::VAARG,             MVT::Other, Custom);
366  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
367  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
368
369  // Use the default for now
370  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
371  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
372
373  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
374  setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
375  setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
376  setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
377
378  setInsertFencesForAtomic(true);
379
380  if (!Subtarget.hasMips32r2()) {
381    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
382    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
383  }
384
385  // MIPS16 lacks MIPS32's clz and clo instructions.
386  if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
387    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
388  if (!Subtarget.hasMips64())
389    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
390
391  if (!Subtarget.hasMips32r2())
392    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
393  if (!Subtarget.hasMips64r2())
394    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
395
396  if (Subtarget.isGP64bit()) {
397    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
398    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
399    setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
400    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
401  }
402
403  setOperationAction(ISD::TRAP, MVT::Other, Legal);
404
405  setTargetDAGCombine(ISD::SDIVREM);
406  setTargetDAGCombine(ISD::UDIVREM);
407  setTargetDAGCombine(ISD::SELECT);
408  setTargetDAGCombine(ISD::AND);
409  setTargetDAGCombine(ISD::OR);
410  setTargetDAGCombine(ISD::ADD);
411
412  setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
413
414  // The arguments on the stack are defined in terms of 4-byte slots on O32
415  // and 8-byte slots on N32/N64.
416  setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
417
418  setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
419
420  setExceptionPointerRegister(ABI.IsN64() ? Mips::A0_64 : Mips::A0);
421  setExceptionSelectorRegister(ABI.IsN64() ? Mips::A1_64 : Mips::A1);
422
423  MaxStoresPerMemcpy = 16;
424
425  isMicroMips = Subtarget.inMicroMipsMode();
426}
427
428const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
429                                                     const MipsSubtarget &STI) {
430  if (STI.inMips16Mode())
431    return llvm::createMips16TargetLowering(TM, STI);
432
433  return llvm::createMipsSETargetLowering(TM, STI);
434}
435
436// Create a fast isel object.
437FastISel *
438MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
439                                  const TargetLibraryInfo *libInfo) const {
440  if (!EnableMipsFastISel)
441    return TargetLowering::createFastISel(funcInfo, libInfo);
442  return Mips::createFastISel(funcInfo, libInfo);
443}
444
445EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
446  if (!VT.isVector())
447    return MVT::i32;
448  return VT.changeVectorElementTypeToInteger();
449}
450
451static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
452                                    TargetLowering::DAGCombinerInfo &DCI,
453                                    const MipsSubtarget &Subtarget) {
454  if (DCI.isBeforeLegalizeOps())
455    return SDValue();
456
457  EVT Ty = N->getValueType(0);
458  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
459  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
460  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
461                                                  MipsISD::DivRemU16;
462  SDLoc DL(N);
463
464  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
465                               N->getOperand(0), N->getOperand(1));
466  SDValue InChain = DAG.getEntryNode();
467  SDValue InGlue = DivRem;
468
469  // insert MFLO
470  if (N->hasAnyUseOfValue(0)) {
471    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
472                                            InGlue);
473    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
474    InChain = CopyFromLo.getValue(1);
475    InGlue = CopyFromLo.getValue(2);
476  }
477
478  // insert MFHI
479  if (N->hasAnyUseOfValue(1)) {
480    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
481                                            HI, Ty, InGlue);
482    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
483  }
484
485  return SDValue();
486}
487
488static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
489  switch (CC) {
490  default: llvm_unreachable("Unknown fp condition code!");
491  case ISD::SETEQ:
492  case ISD::SETOEQ: return Mips::FCOND_OEQ;
493  case ISD::SETUNE: return Mips::FCOND_UNE;
494  case ISD::SETLT:
495  case ISD::SETOLT: return Mips::FCOND_OLT;
496  case ISD::SETGT:
497  case ISD::SETOGT: return Mips::FCOND_OGT;
498  case ISD::SETLE:
499  case ISD::SETOLE: return Mips::FCOND_OLE;
500  case ISD::SETGE:
501  case ISD::SETOGE: return Mips::FCOND_OGE;
502  case ISD::SETULT: return Mips::FCOND_ULT;
503  case ISD::SETULE: return Mips::FCOND_ULE;
504  case ISD::SETUGT: return Mips::FCOND_UGT;
505  case ISD::SETUGE: return Mips::FCOND_UGE;
506  case ISD::SETUO:  return Mips::FCOND_UN;
507  case ISD::SETO:   return Mips::FCOND_OR;
508  case ISD::SETNE:
509  case ISD::SETONE: return Mips::FCOND_ONE;
510  case ISD::SETUEQ: return Mips::FCOND_UEQ;
511  }
512}
513
514
515/// This function returns true if the floating point conditional branches and
516/// conditional moves which use condition code CC should be inverted.
517static bool invertFPCondCodeUser(Mips::CondCode CC) {
518  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
519    return false;
520
521  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
522         "Illegal Condition Code");
523
524  return true;
525}
526
527// Creates and returns an FPCmp node from a setcc node.
528// Returns Op if setcc is not a floating point comparison.
529static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
530  // must be a SETCC node
531  if (Op.getOpcode() != ISD::SETCC)
532    return Op;
533
534  SDValue LHS = Op.getOperand(0);
535
536  if (!LHS.getValueType().isFloatingPoint())
537    return Op;
538
539  SDValue RHS = Op.getOperand(1);
540  SDLoc DL(Op);
541
542  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
543  // node if necessary.
544  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
545
546  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
547                     DAG.getConstant(condCodeToFCC(CC), MVT::i32));
548}
549
550// Creates and returns a CMovFPT/F node.
551static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
552                            SDValue False, SDLoc DL) {
553  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
554  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
555  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
556
557  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
558                     True.getValueType(), True, FCC0, False, Cond);
559}
560
561static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
562                                    TargetLowering::DAGCombinerInfo &DCI,
563                                    const MipsSubtarget &Subtarget) {
564  if (DCI.isBeforeLegalizeOps())
565    return SDValue();
566
567  SDValue SetCC = N->getOperand(0);
568
569  if ((SetCC.getOpcode() != ISD::SETCC) ||
570      !SetCC.getOperand(0).getValueType().isInteger())
571    return SDValue();
572
573  SDValue False = N->getOperand(2);
574  EVT FalseTy = False.getValueType();
575
576  if (!FalseTy.isInteger())
577    return SDValue();
578
579  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
580
581  // If the RHS (False) is 0, we swap the order of the operands
582  // of ISD::SELECT (obviously also inverting the condition) so that we can
583  // take advantage of conditional moves using the $0 register.
584  // Example:
585  //   return (a != 0) ? x : 0;
586  //     load $reg, x
587  //     movz $reg, $0, a
588  if (!FalseC)
589    return SDValue();
590
591  const SDLoc DL(N);
592
593  if (!FalseC->getZExtValue()) {
594    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
595    SDValue True = N->getOperand(1);
596
597    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
598                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
599
600    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
601  }
602
603  // If both operands are integer constants there's a possibility that we
604  // can do some interesting optimizations.
605  SDValue True = N->getOperand(1);
606  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
607
608  if (!TrueC || !True.getValueType().isInteger())
609    return SDValue();
610
611  // We'll also ignore MVT::i64 operands as this optimizations proves
612  // to be ineffective because of the required sign extensions as the result
613  // of a SETCC operator is always MVT::i32 for non-vector types.
614  if (True.getValueType() == MVT::i64)
615    return SDValue();
616
617  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
618
619  // 1)  (a < x) ? y : y-1
620  //  slti $reg1, a, x
621  //  addiu $reg2, $reg1, y-1
622  if (Diff == 1)
623    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
624
625  // 2)  (a < x) ? y-1 : y
626  //  slti $reg1, a, x
627  //  xor $reg1, $reg1, 1
628  //  addiu $reg2, $reg1, y-1
629  if (Diff == -1) {
630    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
631    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
632                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
633    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
634  }
635
636  // Couldn't optimize.
637  return SDValue();
638}
639
640static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
641                                    TargetLowering::DAGCombinerInfo &DCI,
642                                    const MipsSubtarget &Subtarget) {
643  if (DCI.isBeforeLegalizeOps())
644    return SDValue();
645
646  SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
647
648  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
649  if (!FalseC || FalseC->getZExtValue())
650    return SDValue();
651
652  // Since RHS (False) is 0, we swap the order of the True/False operands
653  // (obviously also inverting the condition) so that we can
654  // take advantage of conditional moves using the $0 register.
655  // Example:
656  //   return (a != 0) ? x : 0;
657  //     load $reg, x
658  //     movz $reg, $0, a
659  unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
660                                                         MipsISD::CMovFP_T;
661
662  SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
663  return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
664                     ValueIfFalse, FCC, ValueIfTrue, Glue);
665}
666
667static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
668                                 TargetLowering::DAGCombinerInfo &DCI,
669                                 const MipsSubtarget &Subtarget) {
670  // Pattern match EXT.
671  //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
672  //  => ext $dst, $src, size, pos
673  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
674    return SDValue();
675
676  SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
677  unsigned ShiftRightOpc = ShiftRight.getOpcode();
678
679  // Op's first operand must be a shift right.
680  if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
681    return SDValue();
682
683  // The second operand of the shift must be an immediate.
684  ConstantSDNode *CN;
685  if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
686    return SDValue();
687
688  uint64_t Pos = CN->getZExtValue();
689  uint64_t SMPos, SMSize;
690
691  // Op's second operand must be a shifted mask.
692  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
693      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
694    return SDValue();
695
696  // Return if the shifted mask does not start at bit 0 or the sum of its size
697  // and Pos exceeds the word's size.
698  EVT ValTy = N->getValueType(0);
699  if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
700    return SDValue();
701
702  return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
703                     ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
704                     DAG.getConstant(SMSize, MVT::i32));
705}
706
707static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
708                                TargetLowering::DAGCombinerInfo &DCI,
709                                const MipsSubtarget &Subtarget) {
710  // Pattern match INS.
711  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
712  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
713  //  => ins $dst, $src, size, pos, $src1
714  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
715    return SDValue();
716
717  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
718  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
719  ConstantSDNode *CN;
720
721  // See if Op's first operand matches (and $src1 , mask0).
722  if (And0.getOpcode() != ISD::AND)
723    return SDValue();
724
725  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
726      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
727    return SDValue();
728
729  // See if Op's second operand matches (and (shl $src, pos), mask1).
730  if (And1.getOpcode() != ISD::AND)
731    return SDValue();
732
733  if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
734      !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
735    return SDValue();
736
737  // The shift masks must have the same position and size.
738  if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
739    return SDValue();
740
741  SDValue Shl = And1.getOperand(0);
742  if (Shl.getOpcode() != ISD::SHL)
743    return SDValue();
744
745  if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
746    return SDValue();
747
748  unsigned Shamt = CN->getZExtValue();
749
750  // Return if the shift amount and the first bit position of mask are not the
751  // same.
752  EVT ValTy = N->getValueType(0);
753  if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
754    return SDValue();
755
756  return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
757                     DAG.getConstant(SMPos0, MVT::i32),
758                     DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
759}
760
761static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
762                                 TargetLowering::DAGCombinerInfo &DCI,
763                                 const MipsSubtarget &Subtarget) {
764  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
765
766  if (DCI.isBeforeLegalizeOps())
767    return SDValue();
768
769  SDValue Add = N->getOperand(1);
770
771  if (Add.getOpcode() != ISD::ADD)
772    return SDValue();
773
774  SDValue Lo = Add.getOperand(1);
775
776  if ((Lo.getOpcode() != MipsISD::Lo) ||
777      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
778    return SDValue();
779
780  EVT ValTy = N->getValueType(0);
781  SDLoc DL(N);
782
783  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
784                             Add.getOperand(0));
785  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
786}
787
788SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
789  const {
790  SelectionDAG &DAG = DCI.DAG;
791  unsigned Opc = N->getOpcode();
792
793  switch (Opc) {
794  default: break;
795  case ISD::SDIVREM:
796  case ISD::UDIVREM:
797    return performDivRemCombine(N, DAG, DCI, Subtarget);
798  case ISD::SELECT:
799    return performSELECTCombine(N, DAG, DCI, Subtarget);
800  case MipsISD::CMovFP_F:
801  case MipsISD::CMovFP_T:
802    return performCMovFPCombine(N, DAG, DCI, Subtarget);
803  case ISD::AND:
804    return performANDCombine(N, DAG, DCI, Subtarget);
805  case ISD::OR:
806    return performORCombine(N, DAG, DCI, Subtarget);
807  case ISD::ADD:
808    return performADDCombine(N, DAG, DCI, Subtarget);
809  }
810
811  return SDValue();
812}
813
814void
815MipsTargetLowering::LowerOperationWrapper(SDNode *N,
816                                          SmallVectorImpl<SDValue> &Results,
817                                          SelectionDAG &DAG) const {
818  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
819
820  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
821    Results.push_back(Res.getValue(I));
822}
823
824void
825MipsTargetLowering::ReplaceNodeResults(SDNode *N,
826                                       SmallVectorImpl<SDValue> &Results,
827                                       SelectionDAG &DAG) const {
828  return LowerOperationWrapper(N, Results, DAG);
829}
830
831SDValue MipsTargetLowering::
832LowerOperation(SDValue Op, SelectionDAG &DAG) const
833{
834  switch (Op.getOpcode())
835  {
836  case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
837  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
838  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
839  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
840  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
841  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
842  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
843  case ISD::SELECT:             return lowerSELECT(Op, DAG);
844  case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
845  case ISD::SETCC:              return lowerSETCC(Op, DAG);
846  case ISD::VASTART:            return lowerVASTART(Op, DAG);
847  case ISD::VAARG:              return lowerVAARG(Op, DAG);
848  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
849  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
850  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
851  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
852  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
853  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
854  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
855  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
856  case ISD::LOAD:               return lowerLOAD(Op, DAG);
857  case ISD::STORE:              return lowerSTORE(Op, DAG);
858  case ISD::ADD:                return lowerADD(Op, DAG);
859  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
860  }
861  return SDValue();
862}
863
864//===----------------------------------------------------------------------===//
865//  Lower helper functions
866//===----------------------------------------------------------------------===//
867
868// addLiveIn - This helper function adds the specified physical register to the
869// MachineFunction as a live in value.  It also creates a corresponding
870// virtual register for it.
871static unsigned
872addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
873{
874  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
875  MF.getRegInfo().addLiveIn(PReg, VReg);
876  return VReg;
877}
878
879static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI,
880                                              MachineBasicBlock &MBB,
881                                              const TargetInstrInfo &TII,
882                                              bool Is64Bit) {
883  if (NoZeroDivCheck)
884    return &MBB;
885
886  // Insert instruction "teq $divisor_reg, $zero, 7".
887  MachineBasicBlock::iterator I(MI);
888  MachineInstrBuilder MIB;
889  MachineOperand &Divisor = MI->getOperand(2);
890  MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
891    .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
892    .addReg(Mips::ZERO).addImm(7);
893
894  // Use the 32-bit sub-register if this is a 64-bit division.
895  if (Is64Bit)
896    MIB->getOperand(0).setSubReg(Mips::sub_32);
897
898  // Clear Divisor's kill flag.
899  Divisor.setIsKill(false);
900
901  // We would normally delete the original instruction here but in this case
902  // we only needed to inject an additional instruction rather than replace it.
903
904  return &MBB;
905}
906
907MachineBasicBlock *
908MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
909                                                MachineBasicBlock *BB) const {
910  switch (MI->getOpcode()) {
911  default:
912    llvm_unreachable("Unexpected instr type to insert");
913  case Mips::ATOMIC_LOAD_ADD_I8:
914    return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
915  case Mips::ATOMIC_LOAD_ADD_I16:
916    return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
917  case Mips::ATOMIC_LOAD_ADD_I32:
918    return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
919  case Mips::ATOMIC_LOAD_ADD_I64:
920    return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
921
922  case Mips::ATOMIC_LOAD_AND_I8:
923    return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
924  case Mips::ATOMIC_LOAD_AND_I16:
925    return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
926  case Mips::ATOMIC_LOAD_AND_I32:
927    return emitAtomicBinary(MI, BB, 4, Mips::AND);
928  case Mips::ATOMIC_LOAD_AND_I64:
929    return emitAtomicBinary(MI, BB, 8, Mips::AND64);
930
931  case Mips::ATOMIC_LOAD_OR_I8:
932    return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
933  case Mips::ATOMIC_LOAD_OR_I16:
934    return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
935  case Mips::ATOMIC_LOAD_OR_I32:
936    return emitAtomicBinary(MI, BB, 4, Mips::OR);
937  case Mips::ATOMIC_LOAD_OR_I64:
938    return emitAtomicBinary(MI, BB, 8, Mips::OR64);
939
940  case Mips::ATOMIC_LOAD_XOR_I8:
941    return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
942  case Mips::ATOMIC_LOAD_XOR_I16:
943    return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
944  case Mips::ATOMIC_LOAD_XOR_I32:
945    return emitAtomicBinary(MI, BB, 4, Mips::XOR);
946  case Mips::ATOMIC_LOAD_XOR_I64:
947    return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
948
949  case Mips::ATOMIC_LOAD_NAND_I8:
950    return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
951  case Mips::ATOMIC_LOAD_NAND_I16:
952    return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
953  case Mips::ATOMIC_LOAD_NAND_I32:
954    return emitAtomicBinary(MI, BB, 4, 0, true);
955  case Mips::ATOMIC_LOAD_NAND_I64:
956    return emitAtomicBinary(MI, BB, 8, 0, true);
957
958  case Mips::ATOMIC_LOAD_SUB_I8:
959    return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
960  case Mips::ATOMIC_LOAD_SUB_I16:
961    return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
962  case Mips::ATOMIC_LOAD_SUB_I32:
963    return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
964  case Mips::ATOMIC_LOAD_SUB_I64:
965    return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
966
967  case Mips::ATOMIC_SWAP_I8:
968    return emitAtomicBinaryPartword(MI, BB, 1, 0);
969  case Mips::ATOMIC_SWAP_I16:
970    return emitAtomicBinaryPartword(MI, BB, 2, 0);
971  case Mips::ATOMIC_SWAP_I32:
972    return emitAtomicBinary(MI, BB, 4, 0);
973  case Mips::ATOMIC_SWAP_I64:
974    return emitAtomicBinary(MI, BB, 8, 0);
975
976  case Mips::ATOMIC_CMP_SWAP_I8:
977    return emitAtomicCmpSwapPartword(MI, BB, 1);
978  case Mips::ATOMIC_CMP_SWAP_I16:
979    return emitAtomicCmpSwapPartword(MI, BB, 2);
980  case Mips::ATOMIC_CMP_SWAP_I32:
981    return emitAtomicCmpSwap(MI, BB, 4);
982  case Mips::ATOMIC_CMP_SWAP_I64:
983    return emitAtomicCmpSwap(MI, BB, 8);
984  case Mips::PseudoSDIV:
985  case Mips::PseudoUDIV:
986  case Mips::DIV:
987  case Mips::DIVU:
988  case Mips::MOD:
989  case Mips::MODU:
990    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false);
991  case Mips::PseudoDSDIV:
992  case Mips::PseudoDUDIV:
993  case Mips::DDIV:
994  case Mips::DDIVU:
995  case Mips::DMOD:
996  case Mips::DMODU:
997    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true);
998  case Mips::SEL_D:
999    return emitSEL_D(MI, BB);
1000
1001  case Mips::PseudoSELECT_I:
1002  case Mips::PseudoSELECT_I64:
1003  case Mips::PseudoSELECT_S:
1004  case Mips::PseudoSELECT_D32:
1005  case Mips::PseudoSELECT_D64:
1006    return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1007  case Mips::PseudoSELECTFP_F_I:
1008  case Mips::PseudoSELECTFP_F_I64:
1009  case Mips::PseudoSELECTFP_F_S:
1010  case Mips::PseudoSELECTFP_F_D32:
1011  case Mips::PseudoSELECTFP_F_D64:
1012    return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1013  case Mips::PseudoSELECTFP_T_I:
1014  case Mips::PseudoSELECTFP_T_I64:
1015  case Mips::PseudoSELECTFP_T_S:
1016  case Mips::PseudoSELECTFP_T_D32:
1017  case Mips::PseudoSELECTFP_T_D64:
1018    return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1019  }
1020}
1021
1022// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1023// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1024MachineBasicBlock *
1025MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1026                                     unsigned Size, unsigned BinOpcode,
1027                                     bool Nand) const {
1028  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1029
1030  MachineFunction *MF = BB->getParent();
1031  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1032  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1033  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1034  DebugLoc DL = MI->getDebugLoc();
1035  unsigned LL, SC, AND, NOR, ZERO, BEQ;
1036
1037  if (Size == 4) {
1038    if (isMicroMips) {
1039      LL = Mips::LL_MM;
1040      SC = Mips::SC_MM;
1041    } else {
1042      LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL;
1043      SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC;
1044    }
1045    AND = Mips::AND;
1046    NOR = Mips::NOR;
1047    ZERO = Mips::ZERO;
1048    BEQ = Mips::BEQ;
1049  } else {
1050    LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
1051    SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
1052    AND = Mips::AND64;
1053    NOR = Mips::NOR64;
1054    ZERO = Mips::ZERO_64;
1055    BEQ = Mips::BEQ64;
1056  }
1057
1058  unsigned OldVal = MI->getOperand(0).getReg();
1059  unsigned Ptr = MI->getOperand(1).getReg();
1060  unsigned Incr = MI->getOperand(2).getReg();
1061
1062  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1063  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1064  unsigned Success = RegInfo.createVirtualRegister(RC);
1065
1066  // insert new blocks after the current block
1067  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1068  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1069  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1070  MachineFunction::iterator It = BB;
1071  ++It;
1072  MF->insert(It, loopMBB);
1073  MF->insert(It, exitMBB);
1074
1075  // Transfer the remainder of BB and its successor edges to exitMBB.
1076  exitMBB->splice(exitMBB->begin(), BB,
1077                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1078  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1079
1080  //  thisMBB:
1081  //    ...
1082  //    fallthrough --> loopMBB
1083  BB->addSuccessor(loopMBB);
1084  loopMBB->addSuccessor(loopMBB);
1085  loopMBB->addSuccessor(exitMBB);
1086
1087  //  loopMBB:
1088  //    ll oldval, 0(ptr)
1089  //    <binop> storeval, oldval, incr
1090  //    sc success, storeval, 0(ptr)
1091  //    beq success, $0, loopMBB
1092  BB = loopMBB;
1093  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1094  if (Nand) {
1095    //  and andres, oldval, incr
1096    //  nor storeval, $0, andres
1097    BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1098    BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1099  } else if (BinOpcode) {
1100    //  <binop> storeval, oldval, incr
1101    BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1102  } else {
1103    StoreVal = Incr;
1104  }
1105  BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1106  BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1107
1108  MI->eraseFromParent(); // The instruction is gone now.
1109
1110  return exitMBB;
1111}
1112
1113MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1114    MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1115    unsigned SrcReg) const {
1116  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1117  DebugLoc DL = MI->getDebugLoc();
1118
1119  if (Subtarget.hasMips32r2() && Size == 1) {
1120    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1121    return BB;
1122  }
1123
1124  if (Subtarget.hasMips32r2() && Size == 2) {
1125    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1126    return BB;
1127  }
1128
1129  MachineFunction *MF = BB->getParent();
1130  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1131  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1132  unsigned ScrReg = RegInfo.createVirtualRegister(RC);
1133
1134  assert(Size < 32);
1135  int64_t ShiftImm = 32 - (Size * 8);
1136
1137  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1138  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1139
1140  return BB;
1141}
1142
1143MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1144    MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
1145    bool Nand) const {
1146  assert((Size == 1 || Size == 2) &&
1147         "Unsupported size for EmitAtomicBinaryPartial.");
1148
1149  MachineFunction *MF = BB->getParent();
1150  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1151  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1152  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1153  DebugLoc DL = MI->getDebugLoc();
1154
1155  unsigned Dest = MI->getOperand(0).getReg();
1156  unsigned Ptr = MI->getOperand(1).getReg();
1157  unsigned Incr = MI->getOperand(2).getReg();
1158
1159  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1160  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1161  unsigned Mask = RegInfo.createVirtualRegister(RC);
1162  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1163  unsigned NewVal = RegInfo.createVirtualRegister(RC);
1164  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1165  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1166  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1167  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1168  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1169  unsigned AndRes = RegInfo.createVirtualRegister(RC);
1170  unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1171  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1172  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1173  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1174  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1175  unsigned Success = RegInfo.createVirtualRegister(RC);
1176
1177  // insert new blocks after the current block
1178  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1179  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1180  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1181  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1182  MachineFunction::iterator It = BB;
1183  ++It;
1184  MF->insert(It, loopMBB);
1185  MF->insert(It, sinkMBB);
1186  MF->insert(It, exitMBB);
1187
1188  // Transfer the remainder of BB and its successor edges to exitMBB.
1189  exitMBB->splice(exitMBB->begin(), BB,
1190                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1191  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1192
1193  BB->addSuccessor(loopMBB);
1194  loopMBB->addSuccessor(loopMBB);
1195  loopMBB->addSuccessor(sinkMBB);
1196  sinkMBB->addSuccessor(exitMBB);
1197
1198  //  thisMBB:
1199  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1200  //    and     alignedaddr,ptr,masklsb2
1201  //    andi    ptrlsb2,ptr,3
1202  //    sll     shiftamt,ptrlsb2,3
1203  //    ori     maskupper,$0,255               # 0xff
1204  //    sll     mask,maskupper,shiftamt
1205  //    nor     mask2,$0,mask
1206  //    sll     incr2,incr,shiftamt
1207
1208  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1209  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1210    .addReg(Mips::ZERO).addImm(-4);
1211  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1212    .addReg(Ptr).addReg(MaskLSB2);
1213  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1214  if (Subtarget.isLittle()) {
1215    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1216  } else {
1217    unsigned Off = RegInfo.createVirtualRegister(RC);
1218    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1219      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1220    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1221  }
1222  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1223    .addReg(Mips::ZERO).addImm(MaskImm);
1224  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1225    .addReg(MaskUpper).addReg(ShiftAmt);
1226  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1227  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1228
1229  // atomic.load.binop
1230  // loopMBB:
1231  //   ll      oldval,0(alignedaddr)
1232  //   binop   binopres,oldval,incr2
1233  //   and     newval,binopres,mask
1234  //   and     maskedoldval0,oldval,mask2
1235  //   or      storeval,maskedoldval0,newval
1236  //   sc      success,storeval,0(alignedaddr)
1237  //   beq     success,$0,loopMBB
1238
1239  // atomic.swap
1240  // loopMBB:
1241  //   ll      oldval,0(alignedaddr)
1242  //   and     newval,incr2,mask
1243  //   and     maskedoldval0,oldval,mask2
1244  //   or      storeval,maskedoldval0,newval
1245  //   sc      success,storeval,0(alignedaddr)
1246  //   beq     success,$0,loopMBB
1247
1248  BB = loopMBB;
1249  unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1250  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1251  if (Nand) {
1252    //  and andres, oldval, incr2
1253    //  nor binopres, $0, andres
1254    //  and newval, binopres, mask
1255    BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1256    BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1257      .addReg(Mips::ZERO).addReg(AndRes);
1258    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1259  } else if (BinOpcode) {
1260    //  <binop> binopres, oldval, incr2
1261    //  and newval, binopres, mask
1262    BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1263    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1264  } else { // atomic.swap
1265    //  and newval, incr2, mask
1266    BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1267  }
1268
1269  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1270    .addReg(OldVal).addReg(Mask2);
1271  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1272    .addReg(MaskedOldVal0).addReg(NewVal);
1273  unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1274  BuildMI(BB, DL, TII->get(SC), Success)
1275    .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1276  BuildMI(BB, DL, TII->get(Mips::BEQ))
1277    .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1278
1279  //  sinkMBB:
1280  //    and     maskedoldval1,oldval,mask
1281  //    srl     srlres,maskedoldval1,shiftamt
1282  //    sign_extend dest,srlres
1283  BB = sinkMBB;
1284
1285  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1286    .addReg(OldVal).addReg(Mask);
1287  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1288      .addReg(MaskedOldVal1).addReg(ShiftAmt);
1289  BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1290
1291  MI->eraseFromParent(); // The instruction is gone now.
1292
1293  return exitMBB;
1294}
1295
1296MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1297                                                          MachineBasicBlock *BB,
1298                                                          unsigned Size) const {
1299  assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1300
1301  MachineFunction *MF = BB->getParent();
1302  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1303  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1304  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1305  DebugLoc DL = MI->getDebugLoc();
1306  unsigned LL, SC, ZERO, BNE, BEQ;
1307
1308  if (Size == 4) {
1309    LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1310    SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1311    ZERO = Mips::ZERO;
1312    BNE = Mips::BNE;
1313    BEQ = Mips::BEQ;
1314  } else {
1315    LL = Mips::LLD;
1316    SC = Mips::SCD;
1317    ZERO = Mips::ZERO_64;
1318    BNE = Mips::BNE64;
1319    BEQ = Mips::BEQ64;
1320  }
1321
1322  unsigned Dest    = MI->getOperand(0).getReg();
1323  unsigned Ptr     = MI->getOperand(1).getReg();
1324  unsigned OldVal  = MI->getOperand(2).getReg();
1325  unsigned NewVal  = MI->getOperand(3).getReg();
1326
1327  unsigned Success = RegInfo.createVirtualRegister(RC);
1328
1329  // insert new blocks after the current block
1330  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1331  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1332  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1333  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1334  MachineFunction::iterator It = BB;
1335  ++It;
1336  MF->insert(It, loop1MBB);
1337  MF->insert(It, loop2MBB);
1338  MF->insert(It, exitMBB);
1339
1340  // Transfer the remainder of BB and its successor edges to exitMBB.
1341  exitMBB->splice(exitMBB->begin(), BB,
1342                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1343  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1344
1345  //  thisMBB:
1346  //    ...
1347  //    fallthrough --> loop1MBB
1348  BB->addSuccessor(loop1MBB);
1349  loop1MBB->addSuccessor(exitMBB);
1350  loop1MBB->addSuccessor(loop2MBB);
1351  loop2MBB->addSuccessor(loop1MBB);
1352  loop2MBB->addSuccessor(exitMBB);
1353
1354  // loop1MBB:
1355  //   ll dest, 0(ptr)
1356  //   bne dest, oldval, exitMBB
1357  BB = loop1MBB;
1358  BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1359  BuildMI(BB, DL, TII->get(BNE))
1360    .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1361
1362  // loop2MBB:
1363  //   sc success, newval, 0(ptr)
1364  //   beq success, $0, loop1MBB
1365  BB = loop2MBB;
1366  BuildMI(BB, DL, TII->get(SC), Success)
1367    .addReg(NewVal).addReg(Ptr).addImm(0);
1368  BuildMI(BB, DL, TII->get(BEQ))
1369    .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1370
1371  MI->eraseFromParent(); // The instruction is gone now.
1372
1373  return exitMBB;
1374}
1375
1376MachineBasicBlock *
1377MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1378                                              MachineBasicBlock *BB,
1379                                              unsigned Size) const {
1380  assert((Size == 1 || Size == 2) &&
1381      "Unsupported size for EmitAtomicCmpSwapPartial.");
1382
1383  MachineFunction *MF = BB->getParent();
1384  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1385  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1386  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1387  DebugLoc DL = MI->getDebugLoc();
1388
1389  unsigned Dest    = MI->getOperand(0).getReg();
1390  unsigned Ptr     = MI->getOperand(1).getReg();
1391  unsigned CmpVal  = MI->getOperand(2).getReg();
1392  unsigned NewVal  = MI->getOperand(3).getReg();
1393
1394  unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1395  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1396  unsigned Mask = RegInfo.createVirtualRegister(RC);
1397  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1398  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1399  unsigned OldVal = RegInfo.createVirtualRegister(RC);
1400  unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1401  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1402  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1403  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1404  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1405  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1406  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1407  unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1408  unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1409  unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1410  unsigned Success = RegInfo.createVirtualRegister(RC);
1411
1412  // insert new blocks after the current block
1413  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1414  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1415  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1416  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1417  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1418  MachineFunction::iterator It = BB;
1419  ++It;
1420  MF->insert(It, loop1MBB);
1421  MF->insert(It, loop2MBB);
1422  MF->insert(It, sinkMBB);
1423  MF->insert(It, exitMBB);
1424
1425  // Transfer the remainder of BB and its successor edges to exitMBB.
1426  exitMBB->splice(exitMBB->begin(), BB,
1427                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1428  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1429
1430  BB->addSuccessor(loop1MBB);
1431  loop1MBB->addSuccessor(sinkMBB);
1432  loop1MBB->addSuccessor(loop2MBB);
1433  loop2MBB->addSuccessor(loop1MBB);
1434  loop2MBB->addSuccessor(sinkMBB);
1435  sinkMBB->addSuccessor(exitMBB);
1436
1437  // FIXME: computation of newval2 can be moved to loop2MBB.
1438  //  thisMBB:
1439  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1440  //    and     alignedaddr,ptr,masklsb2
1441  //    andi    ptrlsb2,ptr,3
1442  //    sll     shiftamt,ptrlsb2,3
1443  //    ori     maskupper,$0,255               # 0xff
1444  //    sll     mask,maskupper,shiftamt
1445  //    nor     mask2,$0,mask
1446  //    andi    maskedcmpval,cmpval,255
1447  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1448  //    andi    maskednewval,newval,255
1449  //    sll     shiftednewval,maskednewval,shiftamt
1450  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1451  BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1452    .addReg(Mips::ZERO).addImm(-4);
1453  BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1454    .addReg(Ptr).addReg(MaskLSB2);
1455  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1456  if (Subtarget.isLittle()) {
1457    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1458  } else {
1459    unsigned Off = RegInfo.createVirtualRegister(RC);
1460    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1461      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1462    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1463  }
1464  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1465    .addReg(Mips::ZERO).addImm(MaskImm);
1466  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1467    .addReg(MaskUpper).addReg(ShiftAmt);
1468  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1469  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1470    .addReg(CmpVal).addImm(MaskImm);
1471  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1472    .addReg(MaskedCmpVal).addReg(ShiftAmt);
1473  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1474    .addReg(NewVal).addImm(MaskImm);
1475  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1476    .addReg(MaskedNewVal).addReg(ShiftAmt);
1477
1478  //  loop1MBB:
1479  //    ll      oldval,0(alginedaddr)
1480  //    and     maskedoldval0,oldval,mask
1481  //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1482  BB = loop1MBB;
1483  unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1484  BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1485  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1486    .addReg(OldVal).addReg(Mask);
1487  BuildMI(BB, DL, TII->get(Mips::BNE))
1488    .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1489
1490  //  loop2MBB:
1491  //    and     maskedoldval1,oldval,mask2
1492  //    or      storeval,maskedoldval1,shiftednewval
1493  //    sc      success,storeval,0(alignedaddr)
1494  //    beq     success,$0,loop1MBB
1495  BB = loop2MBB;
1496  BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1497    .addReg(OldVal).addReg(Mask2);
1498  BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1499    .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1500  unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1501  BuildMI(BB, DL, TII->get(SC), Success)
1502      .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1503  BuildMI(BB, DL, TII->get(Mips::BEQ))
1504      .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1505
1506  //  sinkMBB:
1507  //    srl     srlres,maskedoldval0,shiftamt
1508  //    sign_extend dest,srlres
1509  BB = sinkMBB;
1510
1511  BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1512      .addReg(MaskedOldVal0).addReg(ShiftAmt);
1513  BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1514
1515  MI->eraseFromParent();   // The instruction is gone now.
1516
1517  return exitMBB;
1518}
1519
1520MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
1521                                                 MachineBasicBlock *BB) const {
1522  MachineFunction *MF = BB->getParent();
1523  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1524  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1525  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1526  DebugLoc DL = MI->getDebugLoc();
1527  MachineBasicBlock::iterator II(MI);
1528
1529  unsigned Fc = MI->getOperand(1).getReg();
1530  const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
1531
1532  unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
1533
1534  BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
1535      .addImm(0)
1536      .addReg(Fc)
1537      .addImm(Mips::sub_lo);
1538
1539  // We don't erase the original instruction, we just replace the condition
1540  // register with the 64-bit super-register.
1541  MI->getOperand(1).setReg(Fc2);
1542
1543  return BB;
1544}
1545
1546//===----------------------------------------------------------------------===//
1547//  Misc Lower Operation implementation
1548//===----------------------------------------------------------------------===//
1549SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1550  SDValue Chain = Op.getOperand(0);
1551  SDValue Table = Op.getOperand(1);
1552  SDValue Index = Op.getOperand(2);
1553  SDLoc DL(Op);
1554  EVT PTy = getPointerTy();
1555  unsigned EntrySize =
1556    DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1557
1558  Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1559                      DAG.getConstant(EntrySize, PTy));
1560  SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1561
1562  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1563  Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1564                        MachinePointerInfo::getJumpTable(), MemVT, false, false,
1565                        false, 0);
1566  Chain = Addr.getValue(1);
1567
1568  if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || ABI.IsN64()) {
1569    // For PIC, the sequence is:
1570    // BRIND(load(Jumptable + index) + RelocBase)
1571    // RelocBase can be JumpTable, GOT or some sort of global base.
1572    Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1573                       getPICJumpTableRelocBase(Table, DAG));
1574  }
1575
1576  return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1577}
1578
1579SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1580  // The first operand is the chain, the second is the condition, the third is
1581  // the block to branch to if the condition is true.
1582  SDValue Chain = Op.getOperand(0);
1583  SDValue Dest = Op.getOperand(2);
1584  SDLoc DL(Op);
1585
1586  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1587  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1588
1589  // Return if flag is not set by a floating point comparison.
1590  if (CondRes.getOpcode() != MipsISD::FPCmp)
1591    return Op;
1592
1593  SDValue CCNode  = CondRes.getOperand(2);
1594  Mips::CondCode CC =
1595    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1596  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1597  SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1598  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1599  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1600                     FCC0, Dest, CondRes);
1601}
1602
1603SDValue MipsTargetLowering::
1604lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1605{
1606  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1607  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1608
1609  // Return if flag is not set by a floating point comparison.
1610  if (Cond.getOpcode() != MipsISD::FPCmp)
1611    return Op;
1612
1613  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1614                      SDLoc(Op));
1615}
1616
1617SDValue MipsTargetLowering::
1618lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1619{
1620  SDLoc DL(Op);
1621  EVT Ty = Op.getOperand(0).getValueType();
1622  SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1623                             getSetCCResultType(*DAG.getContext(), Ty),
1624                             Op.getOperand(0), Op.getOperand(1),
1625                             Op.getOperand(4));
1626
1627  return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1628                     Op.getOperand(3));
1629}
1630
1631SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1632  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1633  SDValue Cond = createFPCmp(DAG, Op);
1634
1635  assert(Cond.getOpcode() == MipsISD::FPCmp &&
1636         "Floating point operand expected.");
1637
1638  SDValue True  = DAG.getConstant(1, MVT::i32);
1639  SDValue False = DAG.getConstant(0, MVT::i32);
1640
1641  return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1642}
1643
1644SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1645                                               SelectionDAG &DAG) const {
1646  EVT Ty = Op.getValueType();
1647  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1648  const GlobalValue *GV = N->getGlobal();
1649
1650  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) {
1651    const MipsTargetObjectFile *TLOF =
1652        static_cast<const MipsTargetObjectFile *>(
1653            getTargetMachine().getObjFileLowering());
1654    if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine()))
1655      // %gp_rel relocation
1656      return getAddrGPRel(N, SDLoc(N), Ty, DAG);
1657
1658    // %hi/%lo relocation
1659    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1660  }
1661
1662  if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1663    return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1664
1665  if (LargeGOT)
1666    return getAddrGlobalLargeGOT(N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16,
1667                                 MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1668                                 MachinePointerInfo::getGOT());
1669
1670  return getAddrGlobal(N, SDLoc(N), Ty, DAG,
1671                       (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP
1672                                                    : MipsII::MO_GOT16,
1673                       DAG.getEntryNode(), MachinePointerInfo::getGOT());
1674}
1675
1676SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1677                                              SelectionDAG &DAG) const {
1678  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1679  EVT Ty = Op.getValueType();
1680
1681  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64())
1682    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1683
1684  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1685}
1686
1687SDValue MipsTargetLowering::
1688lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1689{
1690  // If the relocation model is PIC, use the General Dynamic TLS Model or
1691  // Local Dynamic TLS model, otherwise use the Initial Exec or
1692  // Local Exec TLS Model.
1693
1694  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1695  SDLoc DL(GA);
1696  const GlobalValue *GV = GA->getGlobal();
1697  EVT PtrVT = getPointerTy();
1698
1699  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1700
1701  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1702    // General Dynamic and Local Dynamic TLS Model.
1703    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1704                                                      : MipsII::MO_TLSGD;
1705
1706    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1707    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1708                                   getGlobalReg(DAG, PtrVT), TGA);
1709    unsigned PtrSize = PtrVT.getSizeInBits();
1710    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1711
1712    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1713
1714    ArgListTy Args;
1715    ArgListEntry Entry;
1716    Entry.Node = Argument;
1717    Entry.Ty = PtrTy;
1718    Args.push_back(Entry);
1719
1720    TargetLowering::CallLoweringInfo CLI(DAG);
1721    CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
1722      .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0);
1723    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1724
1725    SDValue Ret = CallResult.first;
1726
1727    if (model != TLSModel::LocalDynamic)
1728      return Ret;
1729
1730    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1731                                               MipsII::MO_DTPREL_HI);
1732    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1733    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1734                                               MipsII::MO_DTPREL_LO);
1735    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1736    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1737    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1738  }
1739
1740  SDValue Offset;
1741  if (model == TLSModel::InitialExec) {
1742    // Initial Exec TLS Model
1743    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1744                                             MipsII::MO_GOTTPREL);
1745    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1746                      TGA);
1747    Offset = DAG.getLoad(PtrVT, DL,
1748                         DAG.getEntryNode(), TGA, MachinePointerInfo(),
1749                         false, false, false, 0);
1750  } else {
1751    // Local Exec TLS Model
1752    assert(model == TLSModel::LocalExec);
1753    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1754                                               MipsII::MO_TPREL_HI);
1755    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1756                                               MipsII::MO_TPREL_LO);
1757    SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1758    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1759    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1760  }
1761
1762  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1763  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1764}
1765
1766SDValue MipsTargetLowering::
1767lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1768{
1769  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1770  EVT Ty = Op.getValueType();
1771
1772  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64())
1773    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1774
1775  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1776}
1777
1778SDValue MipsTargetLowering::
1779lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1780{
1781  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1782  EVT Ty = Op.getValueType();
1783
1784  if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) {
1785    const MipsTargetObjectFile *TLOF =
1786        static_cast<const MipsTargetObjectFile *>(
1787            getTargetMachine().getObjFileLowering());
1788
1789    if (TLOF->IsConstantInSmallSection(N->getConstVal(), getTargetMachine()))
1790      // %gp_rel relocation
1791      return getAddrGPRel(N, SDLoc(N), Ty, DAG);
1792
1793    return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1794  }
1795
1796  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1797}
1798
1799SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1800  MachineFunction &MF = DAG.getMachineFunction();
1801  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1802
1803  SDLoc DL(Op);
1804  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1805                                 getPointerTy());
1806
1807  // vastart just stores the address of the VarArgsFrameIndex slot into the
1808  // memory location argument.
1809  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1810  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1811                      MachinePointerInfo(SV), false, false, 0);
1812}
1813
1814SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
1815  SDNode *Node = Op.getNode();
1816  EVT VT = Node->getValueType(0);
1817  SDValue Chain = Node->getOperand(0);
1818  SDValue VAListPtr = Node->getOperand(1);
1819  unsigned Align = Node->getConstantOperandVal(3);
1820  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1821  SDLoc DL(Node);
1822  unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
1823
1824  SDValue VAListLoad = DAG.getLoad(getPointerTy(), DL, Chain, VAListPtr,
1825                                   MachinePointerInfo(SV), false, false, false,
1826                                   0);
1827  SDValue VAList = VAListLoad;
1828
1829  // Re-align the pointer if necessary.
1830  // It should only ever be necessary for 64-bit types on O32 since the minimum
1831  // argument alignment is the same as the maximum type alignment for N32/N64.
1832  //
1833  // FIXME: We currently align too often. The code generator doesn't notice
1834  //        when the pointer is still aligned from the last va_arg (or pair of
1835  //        va_args for the i64 on O32 case).
1836  if (Align > getMinStackArgumentAlignment()) {
1837    assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1838
1839    VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
1840                         DAG.getConstant(Align - 1,
1841                                         VAList.getValueType()));
1842
1843    VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
1844                         DAG.getConstant(-(int64_t)Align,
1845                                         VAList.getValueType()));
1846  }
1847
1848  // Increment the pointer, VAList, to the next vaarg.
1849  unsigned ArgSizeInBytes = getDataLayout()->getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
1850  SDValue Tmp3 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
1851                             DAG.getConstant(RoundUpToAlignment(ArgSizeInBytes, ArgSlotSizeInBytes),
1852                                             VAList.getValueType()));
1853  // Store the incremented VAList to the legalized pointer
1854  Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
1855                      MachinePointerInfo(SV), false, false, 0);
1856
1857  // In big-endian mode we must adjust the pointer when the load size is smaller
1858  // than the argument slot size. We must also reduce the known alignment to
1859  // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
1860  // the correct half of the slot, and reduce the alignment from 8 (slot
1861  // alignment) down to 4 (type alignment).
1862  if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
1863    unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
1864    VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
1865                         DAG.getIntPtrConstant(Adjustment));
1866  }
1867  // Load the actual argument out of the pointer VAList
1868  return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false,
1869                     false, 0);
1870}
1871
1872static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1873                                bool HasExtractInsert) {
1874  EVT TyX = Op.getOperand(0).getValueType();
1875  EVT TyY = Op.getOperand(1).getValueType();
1876  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1877  SDValue Const31 = DAG.getConstant(31, MVT::i32);
1878  SDLoc DL(Op);
1879  SDValue Res;
1880
1881  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1882  // to i32.
1883  SDValue X = (TyX == MVT::f32) ?
1884    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1885    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1886                Const1);
1887  SDValue Y = (TyY == MVT::f32) ?
1888    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1889    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1890                Const1);
1891
1892  if (HasExtractInsert) {
1893    // ext  E, Y, 31, 1  ; extract bit31 of Y
1894    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1895    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1896    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1897  } else {
1898    // sll SllX, X, 1
1899    // srl SrlX, SllX, 1
1900    // srl SrlY, Y, 31
1901    // sll SllY, SrlX, 31
1902    // or  Or, SrlX, SllY
1903    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1904    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1905    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1906    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1907    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1908  }
1909
1910  if (TyX == MVT::f32)
1911    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1912
1913  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1914                             Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1915  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1916}
1917
1918static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
1919                                bool HasExtractInsert) {
1920  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1921  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1922  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1923  SDValue Const1 = DAG.getConstant(1, MVT::i32);
1924  SDLoc DL(Op);
1925
1926  // Bitcast to integer nodes.
1927  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1928  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1929
1930  if (HasExtractInsert) {
1931    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1932    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1933    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1934                            DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1935
1936    if (WidthX > WidthY)
1937      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1938    else if (WidthY > WidthX)
1939      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1940
1941    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1942                            DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1943    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1944  }
1945
1946  // (d)sll SllX, X, 1
1947  // (d)srl SrlX, SllX, 1
1948  // (d)srl SrlY, Y, width(Y)-1
1949  // (d)sll SllY, SrlX, width(Y)-1
1950  // or     Or, SrlX, SllY
1951  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1952  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1953  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1954                             DAG.getConstant(WidthY - 1, MVT::i32));
1955
1956  if (WidthX > WidthY)
1957    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1958  else if (WidthY > WidthX)
1959    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1960
1961  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1962                             DAG.getConstant(WidthX - 1, MVT::i32));
1963  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1964  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1965}
1966
1967SDValue
1968MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1969  if (Subtarget.isGP64bit())
1970    return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
1971
1972  return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
1973}
1974
1975SDValue MipsTargetLowering::
1976lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1977  // check the depth
1978  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1979         "Frame address can only be determined for current frame.");
1980
1981  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1982  MFI->setFrameAddressIsTaken(true);
1983  EVT VT = Op.getValueType();
1984  SDLoc DL(Op);
1985  SDValue FrameAddr = DAG.getCopyFromReg(
1986      DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
1987  return FrameAddr;
1988}
1989
1990SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1991                                            SelectionDAG &DAG) const {
1992  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1993    return SDValue();
1994
1995  // check the depth
1996  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1997         "Return address can be determined only for current frame.");
1998
1999  MachineFunction &MF = DAG.getMachineFunction();
2000  MachineFrameInfo *MFI = MF.getFrameInfo();
2001  MVT VT = Op.getSimpleValueType();
2002  unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2003  MFI->setReturnAddressIsTaken(true);
2004
2005  // Return RA, which contains the return address. Mark it an implicit live-in.
2006  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2007  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2008}
2009
2010// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2011// generated from __builtin_eh_return (offset, handler)
2012// The effect of this is to adjust the stack pointer by "offset"
2013// and then branch to "handler".
2014SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2015                                                                     const {
2016  MachineFunction &MF = DAG.getMachineFunction();
2017  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2018
2019  MipsFI->setCallsEhReturn();
2020  SDValue Chain     = Op.getOperand(0);
2021  SDValue Offset    = Op.getOperand(1);
2022  SDValue Handler   = Op.getOperand(2);
2023  SDLoc DL(Op);
2024  EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2025
2026  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2027  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2028  unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2029  unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2030  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2031  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2032  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2033                     DAG.getRegister(OffsetReg, Ty),
2034                     DAG.getRegister(AddrReg, getPointerTy()),
2035                     Chain.getValue(1));
2036}
2037
2038SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2039                                              SelectionDAG &DAG) const {
2040  // FIXME: Need pseudo-fence for 'singlethread' fences
2041  // FIXME: Set SType for weaker fences where supported/appropriate.
2042  unsigned SType = 0;
2043  SDLoc DL(Op);
2044  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2045                     DAG.getConstant(SType, MVT::i32));
2046}
2047
2048SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2049                                                SelectionDAG &DAG) const {
2050  SDLoc DL(Op);
2051  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2052
2053  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2054  SDValue Shamt = Op.getOperand(2);
2055  // if shamt < (VT.bits):
2056  //  lo = (shl lo, shamt)
2057  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2058  // else:
2059  //  lo = 0
2060  //  hi = (shl lo, shamt[4:0])
2061  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2062                            DAG.getConstant(-1, MVT::i32));
2063  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2064                                      DAG.getConstant(1, VT));
2065  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2066  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2067  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2068  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2069  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2070                             DAG.getConstant(0x20, MVT::i32));
2071  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2072                   DAG.getConstant(0, VT), ShiftLeftLo);
2073  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2074
2075  SDValue Ops[2] = {Lo, Hi};
2076  return DAG.getMergeValues(Ops, DL);
2077}
2078
2079SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2080                                                 bool IsSRA) const {
2081  SDLoc DL(Op);
2082  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2083  SDValue Shamt = Op.getOperand(2);
2084  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2085
2086  // if shamt < (VT.bits):
2087  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2088  //  if isSRA:
2089  //    hi = (sra hi, shamt)
2090  //  else:
2091  //    hi = (srl hi, shamt)
2092  // else:
2093  //  if isSRA:
2094  //   lo = (sra hi, shamt[4:0])
2095  //   hi = (sra hi, 31)
2096  //  else:
2097  //   lo = (srl hi, shamt[4:0])
2098  //   hi = 0
2099  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2100                            DAG.getConstant(-1, MVT::i32));
2101  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2102                                     DAG.getConstant(1, VT));
2103  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2104  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2105  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2106  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2107                                     DL, VT, Hi, Shamt);
2108  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2109                             DAG.getConstant(0x20, MVT::i32));
2110  SDValue Shift31 = DAG.getNode(ISD::SRA, DL, VT, Hi, DAG.getConstant(31, VT));
2111  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2112  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2113                   IsSRA ? Shift31 : DAG.getConstant(0, VT), ShiftRightHi);
2114
2115  SDValue Ops[2] = {Lo, Hi};
2116  return DAG.getMergeValues(Ops, DL);
2117}
2118
2119static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2120                            SDValue Chain, SDValue Src, unsigned Offset) {
2121  SDValue Ptr = LD->getBasePtr();
2122  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2123  EVT BasePtrVT = Ptr.getValueType();
2124  SDLoc DL(LD);
2125  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2126
2127  if (Offset)
2128    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2129                      DAG.getConstant(Offset, BasePtrVT));
2130
2131  SDValue Ops[] = { Chain, Ptr, Src };
2132  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2133                                 LD->getMemOperand());
2134}
2135
2136// Expand an unaligned 32 or 64-bit integer load node.
2137SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2138  LoadSDNode *LD = cast<LoadSDNode>(Op);
2139  EVT MemVT = LD->getMemoryVT();
2140
2141  if (Subtarget.systemSupportsUnalignedAccess())
2142    return Op;
2143
2144  // Return if load is aligned or if MemVT is neither i32 nor i64.
2145  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2146      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2147    return SDValue();
2148
2149  bool IsLittle = Subtarget.isLittle();
2150  EVT VT = Op.getValueType();
2151  ISD::LoadExtType ExtType = LD->getExtensionType();
2152  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2153
2154  assert((VT == MVT::i32) || (VT == MVT::i64));
2155
2156  // Expand
2157  //  (set dst, (i64 (load baseptr)))
2158  // to
2159  //  (set tmp, (ldl (add baseptr, 7), undef))
2160  //  (set dst, (ldr baseptr, tmp))
2161  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2162    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2163                               IsLittle ? 7 : 0);
2164    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2165                        IsLittle ? 0 : 7);
2166  }
2167
2168  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2169                             IsLittle ? 3 : 0);
2170  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2171                             IsLittle ? 0 : 3);
2172
2173  // Expand
2174  //  (set dst, (i32 (load baseptr))) or
2175  //  (set dst, (i64 (sextload baseptr))) or
2176  //  (set dst, (i64 (extload baseptr)))
2177  // to
2178  //  (set tmp, (lwl (add baseptr, 3), undef))
2179  //  (set dst, (lwr baseptr, tmp))
2180  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2181      (ExtType == ISD::EXTLOAD))
2182    return LWR;
2183
2184  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2185
2186  // Expand
2187  //  (set dst, (i64 (zextload baseptr)))
2188  // to
2189  //  (set tmp0, (lwl (add baseptr, 3), undef))
2190  //  (set tmp1, (lwr baseptr, tmp0))
2191  //  (set tmp2, (shl tmp1, 32))
2192  //  (set dst, (srl tmp2, 32))
2193  SDLoc DL(LD);
2194  SDValue Const32 = DAG.getConstant(32, MVT::i32);
2195  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2196  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2197  SDValue Ops[] = { SRL, LWR.getValue(1) };
2198  return DAG.getMergeValues(Ops, DL);
2199}
2200
2201static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2202                             SDValue Chain, unsigned Offset) {
2203  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2204  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2205  SDLoc DL(SD);
2206  SDVTList VTList = DAG.getVTList(MVT::Other);
2207
2208  if (Offset)
2209    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2210                      DAG.getConstant(Offset, BasePtrVT));
2211
2212  SDValue Ops[] = { Chain, Value, Ptr };
2213  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2214                                 SD->getMemOperand());
2215}
2216
2217// Expand an unaligned 32 or 64-bit integer store node.
2218static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2219                                      bool IsLittle) {
2220  SDValue Value = SD->getValue(), Chain = SD->getChain();
2221  EVT VT = Value.getValueType();
2222
2223  // Expand
2224  //  (store val, baseptr) or
2225  //  (truncstore val, baseptr)
2226  // to
2227  //  (swl val, (add baseptr, 3))
2228  //  (swr val, baseptr)
2229  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2230    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2231                                IsLittle ? 3 : 0);
2232    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2233  }
2234
2235  assert(VT == MVT::i64);
2236
2237  // Expand
2238  //  (store val, baseptr)
2239  // to
2240  //  (sdl val, (add baseptr, 7))
2241  //  (sdr val, baseptr)
2242  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2243  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2244}
2245
2246// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2247static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2248  SDValue Val = SD->getValue();
2249
2250  if (Val.getOpcode() != ISD::FP_TO_SINT)
2251    return SDValue();
2252
2253  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2254  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2255                           Val.getOperand(0));
2256
2257  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2258                      SD->getPointerInfo(), SD->isVolatile(),
2259                      SD->isNonTemporal(), SD->getAlignment());
2260}
2261
2262SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2263  StoreSDNode *SD = cast<StoreSDNode>(Op);
2264  EVT MemVT = SD->getMemoryVT();
2265
2266  // Lower unaligned integer stores.
2267  if (!Subtarget.systemSupportsUnalignedAccess() &&
2268      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2269      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2270    return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2271
2272  return lowerFP_TO_SINT_STORE(SD, DAG);
2273}
2274
2275SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2276  if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2277      || cast<ConstantSDNode>
2278        (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2279      || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2280    return SDValue();
2281
2282  // The pattern
2283  //   (add (frameaddr 0), (frame_to_args_offset))
2284  // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2285  //   (add FrameObject, 0)
2286  // where FrameObject is a fixed StackObject with offset 0 which points to
2287  // the old stack pointer.
2288  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2289  EVT ValTy = Op->getValueType(0);
2290  int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2291  SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2292  return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2293                     DAG.getConstant(0, ValTy));
2294}
2295
2296SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2297                                            SelectionDAG &DAG) const {
2298  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2299  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2300                              Op.getOperand(0));
2301  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2302}
2303
2304//===----------------------------------------------------------------------===//
2305//                      Calling Convention Implementation
2306//===----------------------------------------------------------------------===//
2307
2308//===----------------------------------------------------------------------===//
2309// TODO: Implement a generic logic using tblgen that can support this.
2310// Mips O32 ABI rules:
2311// ---
2312// i32 - Passed in A0, A1, A2, A3 and stack
2313// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2314//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2315// f64 - Only passed in two aliased f32 registers if no int reg has been used
2316//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2317//       not used, it must be shadowed. If only A3 is available, shadow it and
2318//       go to stack.
2319//
2320//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2321//===----------------------------------------------------------------------===//
2322
2323static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2324                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2325                       CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2326  const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2327      State.getMachineFunction().getSubtarget());
2328
2329  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2330  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2331
2332  // Do not process byval args here.
2333  if (ArgFlags.isByVal())
2334    return true;
2335
2336  // Promote i8 and i16
2337  if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2338    if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2339      LocVT = MVT::i32;
2340      if (ArgFlags.isSExt())
2341        LocInfo = CCValAssign::SExtUpper;
2342      else if (ArgFlags.isZExt())
2343        LocInfo = CCValAssign::ZExtUpper;
2344      else
2345        LocInfo = CCValAssign::AExtUpper;
2346    }
2347  }
2348
2349  // Promote i8 and i16
2350  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2351    LocVT = MVT::i32;
2352    if (ArgFlags.isSExt())
2353      LocInfo = CCValAssign::SExt;
2354    else if (ArgFlags.isZExt())
2355      LocInfo = CCValAssign::ZExt;
2356    else
2357      LocInfo = CCValAssign::AExt;
2358  }
2359
2360  unsigned Reg;
2361
2362  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2363  // is true: function is vararg, argument is 3rd or higher, there is previous
2364  // argument which is not f32 or f64.
2365  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2366                                State.getFirstUnallocated(F32Regs) != ValNo;
2367  unsigned OrigAlign = ArgFlags.getOrigAlign();
2368  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2369
2370  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2371    Reg = State.AllocateReg(IntRegs);
2372    // If this is the first part of an i64 arg,
2373    // the allocated register must be either A0 or A2.
2374    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2375      Reg = State.AllocateReg(IntRegs);
2376    LocVT = MVT::i32;
2377  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2378    // Allocate int register and shadow next int register. If first
2379    // available register is Mips::A1 or Mips::A3, shadow it too.
2380    Reg = State.AllocateReg(IntRegs);
2381    if (Reg == Mips::A1 || Reg == Mips::A3)
2382      Reg = State.AllocateReg(IntRegs);
2383    State.AllocateReg(IntRegs);
2384    LocVT = MVT::i32;
2385  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2386    // we are guaranteed to find an available float register
2387    if (ValVT == MVT::f32) {
2388      Reg = State.AllocateReg(F32Regs);
2389      // Shadow int register
2390      State.AllocateReg(IntRegs);
2391    } else {
2392      Reg = State.AllocateReg(F64Regs);
2393      // Shadow int registers
2394      unsigned Reg2 = State.AllocateReg(IntRegs);
2395      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2396        State.AllocateReg(IntRegs);
2397      State.AllocateReg(IntRegs);
2398    }
2399  } else
2400    llvm_unreachable("Cannot handle this ValVT.");
2401
2402  if (!Reg) {
2403    unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2404                                          OrigAlign);
2405    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2406  } else
2407    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2408
2409  return false;
2410}
2411
2412static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2413                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2414                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2415  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2416
2417  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2418}
2419
2420static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2421                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2422                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2423  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2424
2425  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2426}
2427
2428static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2429                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2430                       CCState &State) LLVM_ATTRIBUTE_UNUSED;
2431
2432#include "MipsGenCallingConv.inc"
2433
2434//===----------------------------------------------------------------------===//
2435//                  Call Calling Convention Implementation
2436//===----------------------------------------------------------------------===//
2437
2438// Return next O32 integer argument register.
2439static unsigned getNextIntArgReg(unsigned Reg) {
2440  assert((Reg == Mips::A0) || (Reg == Mips::A2));
2441  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2442}
2443
2444SDValue
2445MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2446                                   SDValue Chain, SDValue Arg, SDLoc DL,
2447                                   bool IsTailCall, SelectionDAG &DAG) const {
2448  if (!IsTailCall) {
2449    SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2450                                 DAG.getIntPtrConstant(Offset));
2451    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2452                        false, 0);
2453  }
2454
2455  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2456  int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2457  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2458  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2459                      /*isVolatile=*/ true, false, 0);
2460}
2461
2462void MipsTargetLowering::
2463getOpndList(SmallVectorImpl<SDValue> &Ops,
2464            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2465            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2466            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2467            SDValue Chain) const {
2468  // Insert node "GP copy globalreg" before call to function.
2469  //
2470  // R_MIPS_CALL* operators (emitted when non-internal functions are called
2471  // in PIC mode) allow symbols to be resolved via lazy binding.
2472  // The lazy binding stub requires GP to point to the GOT.
2473  // Note that we don't need GP to point to the GOT for indirect calls
2474  // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2475  // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2476  // used for the function (that is, Mips linker doesn't generate lazy binding
2477  // stub for a function whose address is taken in the program).
2478  if (IsPICCall && !InternalLinkage && IsCallReloc) {
2479    unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2480    EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2481    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2482  }
2483
2484  // Build a sequence of copy-to-reg nodes chained together with token
2485  // chain and flag operands which copy the outgoing args into registers.
2486  // The InFlag in necessary since all emitted instructions must be
2487  // stuck together.
2488  SDValue InFlag;
2489
2490  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2491    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2492                                 RegsToPass[i].second, InFlag);
2493    InFlag = Chain.getValue(1);
2494  }
2495
2496  // Add argument registers to the end of the list so that they are
2497  // known live into the call.
2498  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2499    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2500                                      RegsToPass[i].second.getValueType()));
2501
2502  // Add a register mask operand representing the call-preserved registers.
2503  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2504  const uint32_t *Mask =
2505      TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2506  assert(Mask && "Missing call preserved mask for calling convention");
2507  if (Subtarget.inMips16HardFloat()) {
2508    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2509      llvm::StringRef Sym = G->getGlobal()->getName();
2510      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2511      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2512        Mask = MipsRegisterInfo::getMips16RetHelperMask();
2513      }
2514    }
2515  }
2516  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2517
2518  if (InFlag.getNode())
2519    Ops.push_back(InFlag);
2520}
2521
2522/// LowerCall - functions arguments are copied from virtual regs to
2523/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2524SDValue
2525MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2526                              SmallVectorImpl<SDValue> &InVals) const {
2527  SelectionDAG &DAG                     = CLI.DAG;
2528  SDLoc DL                              = CLI.DL;
2529  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2530  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2531  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2532  SDValue Chain                         = CLI.Chain;
2533  SDValue Callee                        = CLI.Callee;
2534  bool &IsTailCall                      = CLI.IsTailCall;
2535  CallingConv::ID CallConv              = CLI.CallConv;
2536  bool IsVarArg                         = CLI.IsVarArg;
2537
2538  MachineFunction &MF = DAG.getMachineFunction();
2539  MachineFrameInfo *MFI = MF.getFrameInfo();
2540  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
2541  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2542  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2543
2544  // Analyze operands of the call, assigning locations to each operand.
2545  SmallVector<CCValAssign, 16> ArgLocs;
2546  MipsCCState CCInfo(
2547      CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
2548      MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
2549
2550  // Allocate the reserved argument area. It seems strange to do this from the
2551  // caller side but removing it breaks the frame size calculation.
2552  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
2553
2554  CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode());
2555
2556  // Get a count of how many bytes are to be pushed on the stack.
2557  unsigned NextStackOffset = CCInfo.getNextStackOffset();
2558
2559  // Check if it's really possible to do a tail call.
2560  if (IsTailCall)
2561    IsTailCall = isEligibleForTailCallOptimization(
2562        CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
2563
2564  if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2565    report_fatal_error("failed to perform tail call elimination on a call "
2566                       "site marked musttail");
2567
2568  if (IsTailCall)
2569    ++NumTailCalls;
2570
2571  // Chain is the output chain of the last Load/Store or CopyToReg node.
2572  // ByValChain is the output chain of the last Memcpy node created for copying
2573  // byval arguments to the stack.
2574  unsigned StackAlignment = TFL->getStackAlignment();
2575  NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2576  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2577
2578  if (!IsTailCall)
2579    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2580
2581  SDValue StackPtr = DAG.getCopyFromReg(
2582      Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, getPointerTy());
2583
2584  // With EABI is it possible to have 16 args on registers.
2585  std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2586  SmallVector<SDValue, 8> MemOpChains;
2587
2588  CCInfo.rewindByValRegsInfo();
2589
2590  // Walk the register/memloc assignments, inserting copies/loads.
2591  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2592    SDValue Arg = OutVals[i];
2593    CCValAssign &VA = ArgLocs[i];
2594    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2595    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2596    bool UseUpperBits = false;
2597
2598    // ByVal Arg.
2599    if (Flags.isByVal()) {
2600      unsigned FirstByValReg, LastByValReg;
2601      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
2602      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
2603
2604      assert(Flags.getByValSize() &&
2605             "ByVal args of size 0 should have been ignored by front-end.");
2606      assert(ByValIdx < CCInfo.getInRegsParamsCount());
2607      assert(!IsTailCall &&
2608             "Do not tail-call optimize if there is a byval argument.");
2609      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2610                   FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
2611                   VA);
2612      CCInfo.nextInRegsParam();
2613      continue;
2614    }
2615
2616    // Promote the value if needed.
2617    switch (VA.getLocInfo()) {
2618    default:
2619      llvm_unreachable("Unknown loc info!");
2620    case CCValAssign::Full:
2621      if (VA.isRegLoc()) {
2622        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2623            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2624            (ValVT == MVT::i64 && LocVT == MVT::f64))
2625          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2626        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2627          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2628                                   Arg, DAG.getConstant(0, MVT::i32));
2629          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2630                                   Arg, DAG.getConstant(1, MVT::i32));
2631          if (!Subtarget.isLittle())
2632            std::swap(Lo, Hi);
2633          unsigned LocRegLo = VA.getLocReg();
2634          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2635          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2636          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2637          continue;
2638        }
2639      }
2640      break;
2641    case CCValAssign::BCvt:
2642      Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2643      break;
2644    case CCValAssign::SExtUpper:
2645      UseUpperBits = true;
2646      // Fallthrough
2647    case CCValAssign::SExt:
2648      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2649      break;
2650    case CCValAssign::ZExtUpper:
2651      UseUpperBits = true;
2652      // Fallthrough
2653    case CCValAssign::ZExt:
2654      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2655      break;
2656    case CCValAssign::AExtUpper:
2657      UseUpperBits = true;
2658      // Fallthrough
2659    case CCValAssign::AExt:
2660      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2661      break;
2662    }
2663
2664    if (UseUpperBits) {
2665      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
2666      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2667      Arg = DAG.getNode(
2668          ISD::SHL, DL, VA.getLocVT(), Arg,
2669          DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
2670    }
2671
2672    // Arguments that can be passed on register must be kept at
2673    // RegsToPass vector
2674    if (VA.isRegLoc()) {
2675      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2676      continue;
2677    }
2678
2679    // Register can't get to this point...
2680    assert(VA.isMemLoc());
2681
2682    // emit ISD::STORE whichs stores the
2683    // parameter value to a stack Location
2684    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2685                                         Chain, Arg, DL, IsTailCall, DAG));
2686  }
2687
2688  // Transform all store nodes into one single node because all store
2689  // nodes are independent of each other.
2690  if (!MemOpChains.empty())
2691    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2692
2693  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2694  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2695  // node so that legalize doesn't hack it.
2696  bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to
2697                                           // jalr $25
2698  bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false;
2699  SDValue CalleeLo;
2700  EVT Ty = Callee.getValueType();
2701
2702  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2703    if (IsPICCall) {
2704      const GlobalValue *Val = G->getGlobal();
2705      InternalLinkage = Val->hasInternalLinkage();
2706
2707      if (InternalLinkage)
2708        Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
2709      else if (LargeGOT) {
2710        Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
2711                                       MipsII::MO_CALL_LO16, Chain,
2712                                       FuncInfo->callPtrInfo(Val));
2713        IsCallReloc = true;
2714      } else {
2715        Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2716                               FuncInfo->callPtrInfo(Val));
2717        IsCallReloc = true;
2718      }
2719    } else
2720      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2721                                          MipsII::MO_NO_FLAG);
2722    GlobalOrExternal = true;
2723  }
2724  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2725    const char *Sym = S->getSymbol();
2726
2727    if (!ABI.IsN64() && !IsPIC) // !N64 && static
2728      Callee =
2729          DAG.getTargetExternalSymbol(Sym, getPointerTy(), MipsII::MO_NO_FLAG);
2730    else if (LargeGOT) {
2731      Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
2732                                     MipsII::MO_CALL_LO16, Chain,
2733                                     FuncInfo->callPtrInfo(Sym));
2734      IsCallReloc = true;
2735    } else { // N64 || PIC
2736      Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2737                             FuncInfo->callPtrInfo(Sym));
2738      IsCallReloc = true;
2739    }
2740
2741    GlobalOrExternal = true;
2742  }
2743
2744  SmallVector<SDValue, 8> Ops(1, Chain);
2745  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2746
2747  getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2748              IsCallReloc, CLI, Callee, Chain);
2749
2750  if (IsTailCall)
2751    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
2752
2753  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
2754  SDValue InFlag = Chain.getValue(1);
2755
2756  // Create the CALLSEQ_END node.
2757  Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2758                             DAG.getIntPtrConstant(0, true), InFlag, DL);
2759  InFlag = Chain.getValue(1);
2760
2761  // Handle result values, copying them out of physregs into vregs that we
2762  // return.
2763  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2764                         InVals, CLI);
2765}
2766
2767/// LowerCallResult - Lower the result values of a call into the
2768/// appropriate copies out of appropriate physical registers.
2769SDValue MipsTargetLowering::LowerCallResult(
2770    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2771    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2772    SmallVectorImpl<SDValue> &InVals,
2773    TargetLowering::CallLoweringInfo &CLI) const {
2774  // Assign locations to each value returned by this call.
2775  SmallVector<CCValAssign, 16> RVLocs;
2776  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2777                     *DAG.getContext());
2778  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI);
2779
2780  // Copy all of the result registers out of their specified physreg.
2781  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2782    CCValAssign &VA = RVLocs[i];
2783    assert(VA.isRegLoc() && "Can only return in registers!");
2784
2785    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2786                                     RVLocs[i].getLocVT(), InFlag);
2787    Chain = Val.getValue(1);
2788    InFlag = Val.getValue(2);
2789
2790    if (VA.isUpperBitsInLoc()) {
2791      unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
2792      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2793      unsigned Shift =
2794          VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
2795      Val = DAG.getNode(
2796          Shift, DL, VA.getLocVT(), Val,
2797          DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
2798    }
2799
2800    switch (VA.getLocInfo()) {
2801    default:
2802      llvm_unreachable("Unknown loc info!");
2803    case CCValAssign::Full:
2804      break;
2805    case CCValAssign::BCvt:
2806      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2807      break;
2808    case CCValAssign::AExt:
2809    case CCValAssign::AExtUpper:
2810      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2811      break;
2812    case CCValAssign::ZExt:
2813    case CCValAssign::ZExtUpper:
2814      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2815                        DAG.getValueType(VA.getValVT()));
2816      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2817      break;
2818    case CCValAssign::SExt:
2819    case CCValAssign::SExtUpper:
2820      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2821                        DAG.getValueType(VA.getValVT()));
2822      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2823      break;
2824    }
2825
2826    InVals.push_back(Val);
2827  }
2828
2829  return Chain;
2830}
2831
2832static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
2833                                      EVT ArgVT, SDLoc DL, SelectionDAG &DAG) {
2834  MVT LocVT = VA.getLocVT();
2835  EVT ValVT = VA.getValVT();
2836
2837  // Shift into the upper bits if necessary.
2838  switch (VA.getLocInfo()) {
2839  default:
2840    break;
2841  case CCValAssign::AExtUpper:
2842  case CCValAssign::SExtUpper:
2843  case CCValAssign::ZExtUpper: {
2844    unsigned ValSizeInBits = ArgVT.getSizeInBits();
2845    unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2846    unsigned Opcode =
2847        VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
2848    Val = DAG.getNode(
2849        Opcode, DL, VA.getLocVT(), Val,
2850        DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
2851    break;
2852  }
2853  }
2854
2855  // If this is an value smaller than the argument slot size (32-bit for O32,
2856  // 64-bit for N32/N64), it has been promoted in some way to the argument slot
2857  // size. Extract the value and insert any appropriate assertions regarding
2858  // sign/zero extension.
2859  switch (VA.getLocInfo()) {
2860  default:
2861    llvm_unreachable("Unknown loc info!");
2862  case CCValAssign::Full:
2863    break;
2864  case CCValAssign::AExtUpper:
2865  case CCValAssign::AExt:
2866    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2867    break;
2868  case CCValAssign::SExtUpper:
2869  case CCValAssign::SExt:
2870    Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
2871    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2872    break;
2873  case CCValAssign::ZExtUpper:
2874  case CCValAssign::ZExt:
2875    Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
2876    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2877    break;
2878  case CCValAssign::BCvt:
2879    Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2880    break;
2881  }
2882
2883  return Val;
2884}
2885
2886//===----------------------------------------------------------------------===//
2887//             Formal Arguments Calling Convention Implementation
2888//===----------------------------------------------------------------------===//
2889/// LowerFormalArguments - transform physical registers into virtual registers
2890/// and generate load operations for arguments places on the stack.
2891SDValue
2892MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2893                                         CallingConv::ID CallConv,
2894                                         bool IsVarArg,
2895                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2896                                         SDLoc DL, SelectionDAG &DAG,
2897                                         SmallVectorImpl<SDValue> &InVals)
2898                                          const {
2899  MachineFunction &MF = DAG.getMachineFunction();
2900  MachineFrameInfo *MFI = MF.getFrameInfo();
2901  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2902
2903  MipsFI->setVarArgsFrameIndex(0);
2904
2905  // Used with vargs to acumulate store chains.
2906  std::vector<SDValue> OutChains;
2907
2908  // Assign locations to all of the incoming arguments.
2909  SmallVector<CCValAssign, 16> ArgLocs;
2910  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2911                     *DAG.getContext());
2912  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
2913  Function::const_arg_iterator FuncArg =
2914    DAG.getMachineFunction().getFunction()->arg_begin();
2915
2916  CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
2917  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2918                           CCInfo.getInRegsParamsCount() > 0);
2919
2920  unsigned CurArgIdx = 0;
2921  CCInfo.rewindByValRegsInfo();
2922
2923  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2924    CCValAssign &VA = ArgLocs[i];
2925    if (Ins[i].isOrigArg()) {
2926      std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2927      CurArgIdx = Ins[i].getOrigArgIndex();
2928    }
2929    EVT ValVT = VA.getValVT();
2930    ISD::ArgFlagsTy Flags = Ins[i].Flags;
2931    bool IsRegLoc = VA.isRegLoc();
2932
2933    if (Flags.isByVal()) {
2934      assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
2935      unsigned FirstByValReg, LastByValReg;
2936      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
2937      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
2938
2939      assert(Flags.getByValSize() &&
2940             "ByVal args of size 0 should have been ignored by front-end.");
2941      assert(ByValIdx < CCInfo.getInRegsParamsCount());
2942      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2943                    FirstByValReg, LastByValReg, VA, CCInfo);
2944      CCInfo.nextInRegsParam();
2945      continue;
2946    }
2947
2948    // Arguments stored on registers
2949    if (IsRegLoc) {
2950      MVT RegVT = VA.getLocVT();
2951      unsigned ArgReg = VA.getLocReg();
2952      const TargetRegisterClass *RC = getRegClassFor(RegVT);
2953
2954      // Transform the arguments stored on
2955      // physical registers into virtual ones
2956      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2957      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2958
2959      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
2960
2961      // Handle floating point arguments passed in integer registers and
2962      // long double arguments passed in floating point registers.
2963      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2964          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2965          (RegVT == MVT::f64 && ValVT == MVT::i64))
2966        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2967      else if (ABI.IsO32() && RegVT == MVT::i32 &&
2968               ValVT == MVT::f64) {
2969        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2970                                  getNextIntArgReg(ArgReg), RC);
2971        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2972        if (!Subtarget.isLittle())
2973          std::swap(ArgValue, ArgValue2);
2974        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2975                               ArgValue, ArgValue2);
2976      }
2977
2978      InVals.push_back(ArgValue);
2979    } else { // VA.isRegLoc()
2980      MVT LocVT = VA.getLocVT();
2981
2982      if (ABI.IsO32()) {
2983        // We ought to be able to use LocVT directly but O32 sets it to i32
2984        // when allocating floating point values to integer registers.
2985        // This shouldn't influence how we load the value into registers unless
2986        // we are targetting softfloat.
2987        if (VA.getValVT().isFloatingPoint() && !Subtarget.abiUsesSoftFloat())
2988          LocVT = VA.getValVT();
2989      }
2990
2991      // sanity check
2992      assert(VA.isMemLoc());
2993
2994      // The stack pointer offset is relative to the caller stack frame.
2995      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
2996                                      VA.getLocMemOffset(), true);
2997
2998      // Create load nodes to retrieve arguments from the stack
2999      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3000      SDValue ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
3001                                     MachinePointerInfo::getFixedStack(FI),
3002                                     false, false, false, 0);
3003      OutChains.push_back(ArgValue.getValue(1));
3004
3005      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3006
3007      InVals.push_back(ArgValue);
3008    }
3009  }
3010
3011  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3012    // The mips ABIs for returning structs by value requires that we copy
3013    // the sret argument into $v0 for the return. Save the argument into
3014    // a virtual register so that we can access it from the return points.
3015    if (Ins[i].Flags.isSRet()) {
3016      unsigned Reg = MipsFI->getSRetReturnReg();
3017      if (!Reg) {
3018        Reg = MF.getRegInfo().createVirtualRegister(
3019            getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3020        MipsFI->setSRetReturnReg(Reg);
3021      }
3022      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3023      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3024      break;
3025    }
3026  }
3027
3028  if (IsVarArg)
3029    writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3030
3031  // All stores are grouped in one node to allow the matching between
3032  // the size of Ins and InVals. This only happens when on varg functions
3033  if (!OutChains.empty()) {
3034    OutChains.push_back(Chain);
3035    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3036  }
3037
3038  return Chain;
3039}
3040
3041//===----------------------------------------------------------------------===//
3042//               Return Value Calling Convention Implementation
3043//===----------------------------------------------------------------------===//
3044
3045bool
3046MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3047                                   MachineFunction &MF, bool IsVarArg,
3048                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3049                                   LLVMContext &Context) const {
3050  SmallVector<CCValAssign, 16> RVLocs;
3051  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3052  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3053}
3054
3055bool
3056MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3057  if (Subtarget.hasMips3() && Subtarget.abiUsesSoftFloat()) {
3058    if (Type == MVT::i32)
3059      return true;
3060  }
3061  return IsSigned;
3062}
3063
3064SDValue
3065MipsTargetLowering::LowerReturn(SDValue Chain,
3066                                CallingConv::ID CallConv, bool IsVarArg,
3067                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3068                                const SmallVectorImpl<SDValue> &OutVals,
3069                                SDLoc DL, SelectionDAG &DAG) const {
3070  // CCValAssign - represent the assignment of
3071  // the return value to a location
3072  SmallVector<CCValAssign, 16> RVLocs;
3073  MachineFunction &MF = DAG.getMachineFunction();
3074
3075  // CCState - Info about the registers and stack slot.
3076  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3077
3078  // Analyze return values.
3079  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3080
3081  SDValue Flag;
3082  SmallVector<SDValue, 4> RetOps(1, Chain);
3083
3084  // Copy the result values into the output registers.
3085  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3086    SDValue Val = OutVals[i];
3087    CCValAssign &VA = RVLocs[i];
3088    assert(VA.isRegLoc() && "Can only return in registers!");
3089    bool UseUpperBits = false;
3090
3091    switch (VA.getLocInfo()) {
3092    default:
3093      llvm_unreachable("Unknown loc info!");
3094    case CCValAssign::Full:
3095      break;
3096    case CCValAssign::BCvt:
3097      Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3098      break;
3099    case CCValAssign::AExtUpper:
3100      UseUpperBits = true;
3101      // Fallthrough
3102    case CCValAssign::AExt:
3103      Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3104      break;
3105    case CCValAssign::ZExtUpper:
3106      UseUpperBits = true;
3107      // Fallthrough
3108    case CCValAssign::ZExt:
3109      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3110      break;
3111    case CCValAssign::SExtUpper:
3112      UseUpperBits = true;
3113      // Fallthrough
3114    case CCValAssign::SExt:
3115      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3116      break;
3117    }
3118
3119    if (UseUpperBits) {
3120      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3121      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3122      Val = DAG.getNode(
3123          ISD::SHL, DL, VA.getLocVT(), Val,
3124          DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
3125    }
3126
3127    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3128
3129    // Guarantee that all emitted copies are stuck together with flags.
3130    Flag = Chain.getValue(1);
3131    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3132  }
3133
3134  // The mips ABIs for returning structs by value requires that we copy
3135  // the sret argument into $v0 for the return. We saved the argument into
3136  // a virtual register in the entry block, so now we copy the value out
3137  // and into $v0.
3138  if (MF.getFunction()->hasStructRetAttr()) {
3139    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3140    unsigned Reg = MipsFI->getSRetReturnReg();
3141
3142    if (!Reg)
3143      llvm_unreachable("sret virtual register not created in the entry block");
3144    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
3145    unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3146
3147    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3148    Flag = Chain.getValue(1);
3149    RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
3150  }
3151
3152  RetOps[0] = Chain;  // Update chain.
3153
3154  // Add the flag if we have it.
3155  if (Flag.getNode())
3156    RetOps.push_back(Flag);
3157
3158  // Return on Mips is always a "jr $ra"
3159  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3160}
3161
3162//===----------------------------------------------------------------------===//
3163//                           Mips Inline Assembly Support
3164//===----------------------------------------------------------------------===//
3165
3166/// getConstraintType - Given a constraint letter, return the type of
3167/// constraint it is for this target.
3168MipsTargetLowering::ConstraintType MipsTargetLowering::
3169getConstraintType(const std::string &Constraint) const
3170{
3171  // Mips specific constraints
3172  // GCC config/mips/constraints.md
3173  //
3174  // 'd' : An address register. Equivalent to r
3175  //       unless generating MIPS16 code.
3176  // 'y' : Equivalent to r; retained for
3177  //       backwards compatibility.
3178  // 'c' : A register suitable for use in an indirect
3179  //       jump. This will always be $25 for -mabicalls.
3180  // 'l' : The lo register. 1 word storage.
3181  // 'x' : The hilo register pair. Double word storage.
3182  if (Constraint.size() == 1) {
3183    switch (Constraint[0]) {
3184      default : break;
3185      case 'd':
3186      case 'y':
3187      case 'f':
3188      case 'c':
3189      case 'l':
3190      case 'x':
3191        return C_RegisterClass;
3192      case 'R':
3193        return C_Memory;
3194    }
3195  }
3196
3197  if (Constraint == "ZC")
3198    return C_Memory;
3199
3200  return TargetLowering::getConstraintType(Constraint);
3201}
3202
3203/// Examine constraint type and operand type and determine a weight value.
3204/// This object must already have been set up with the operand type
3205/// and the current alternative constraint selected.
3206TargetLowering::ConstraintWeight
3207MipsTargetLowering::getSingleConstraintMatchWeight(
3208    AsmOperandInfo &info, const char *constraint) const {
3209  ConstraintWeight weight = CW_Invalid;
3210  Value *CallOperandVal = info.CallOperandVal;
3211    // If we don't have a value, we can't do a match,
3212    // but allow it at the lowest weight.
3213  if (!CallOperandVal)
3214    return CW_Default;
3215  Type *type = CallOperandVal->getType();
3216  // Look at the constraint type.
3217  switch (*constraint) {
3218  default:
3219    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3220    break;
3221  case 'd':
3222  case 'y':
3223    if (type->isIntegerTy())
3224      weight = CW_Register;
3225    break;
3226  case 'f': // FPU or MSA register
3227    if (Subtarget.hasMSA() && type->isVectorTy() &&
3228        cast<VectorType>(type)->getBitWidth() == 128)
3229      weight = CW_Register;
3230    else if (type->isFloatTy())
3231      weight = CW_Register;
3232    break;
3233  case 'c': // $25 for indirect jumps
3234  case 'l': // lo register
3235  case 'x': // hilo register pair
3236    if (type->isIntegerTy())
3237      weight = CW_SpecificReg;
3238    break;
3239  case 'I': // signed 16 bit immediate
3240  case 'J': // integer zero
3241  case 'K': // unsigned 16 bit immediate
3242  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3243  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3244  case 'O': // signed 15 bit immediate (+- 16383)
3245  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3246    if (isa<ConstantInt>(CallOperandVal))
3247      weight = CW_Constant;
3248    break;
3249  case 'R':
3250    weight = CW_Memory;
3251    break;
3252  }
3253  return weight;
3254}
3255
3256/// This is a helper function to parse a physical register string and split it
3257/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3258/// that is returned indicates whether parsing was successful. The second flag
3259/// is true if the numeric part exists.
3260static std::pair<bool, bool>
3261parsePhysicalReg(StringRef C, std::string &Prefix,
3262                 unsigned long long &Reg) {
3263  if (C.front() != '{' || C.back() != '}')
3264    return std::make_pair(false, false);
3265
3266  // Search for the first numeric character.
3267  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3268  I = std::find_if(B, E, std::ptr_fun(isdigit));
3269
3270  Prefix.assign(B, I - B);
3271
3272  // The second flag is set to false if no numeric characters were found.
3273  if (I == E)
3274    return std::make_pair(true, false);
3275
3276  // Parse the numeric characters.
3277  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3278                        true);
3279}
3280
3281std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
3282parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3283  const TargetRegisterInfo *TRI =
3284      Subtarget.getRegisterInfo();
3285  const TargetRegisterClass *RC;
3286  std::string Prefix;
3287  unsigned long long Reg;
3288
3289  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3290
3291  if (!R.first)
3292    return std::make_pair(0U, nullptr);
3293
3294  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3295    // No numeric characters follow "hi" or "lo".
3296    if (R.second)
3297      return std::make_pair(0U, nullptr);
3298
3299    RC = TRI->getRegClass(Prefix == "hi" ?
3300                          Mips::HI32RegClassID : Mips::LO32RegClassID);
3301    return std::make_pair(*(RC->begin()), RC);
3302  } else if (Prefix.compare(0, 4, "$msa") == 0) {
3303    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3304
3305    // No numeric characters follow the name.
3306    if (R.second)
3307      return std::make_pair(0U, nullptr);
3308
3309    Reg = StringSwitch<unsigned long long>(Prefix)
3310              .Case("$msair", Mips::MSAIR)
3311              .Case("$msacsr", Mips::MSACSR)
3312              .Case("$msaaccess", Mips::MSAAccess)
3313              .Case("$msasave", Mips::MSASave)
3314              .Case("$msamodify", Mips::MSAModify)
3315              .Case("$msarequest", Mips::MSARequest)
3316              .Case("$msamap", Mips::MSAMap)
3317              .Case("$msaunmap", Mips::MSAUnmap)
3318              .Default(0);
3319
3320    if (!Reg)
3321      return std::make_pair(0U, nullptr);
3322
3323    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3324    return std::make_pair(Reg, RC);
3325  }
3326
3327  if (!R.second)
3328    return std::make_pair(0U, nullptr);
3329
3330  if (Prefix == "$f") { // Parse $f0-$f31.
3331    // If the size of FP registers is 64-bit or Reg is an even number, select
3332    // the 64-bit register class. Otherwise, select the 32-bit register class.
3333    if (VT == MVT::Other)
3334      VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3335
3336    RC = getRegClassFor(VT);
3337
3338    if (RC == &Mips::AFGR64RegClass) {
3339      assert(Reg % 2 == 0);
3340      Reg >>= 1;
3341    }
3342  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3343    RC = TRI->getRegClass(Mips::FCCRegClassID);
3344  else if (Prefix == "$w") { // Parse $w0-$w31.
3345    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3346  } else { // Parse $0-$31.
3347    assert(Prefix == "$");
3348    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3349  }
3350
3351  assert(Reg < RC->getNumRegs());
3352  return std::make_pair(*(RC->begin() + Reg), RC);
3353}
3354
3355/// Given a register class constraint, like 'r', if this corresponds directly
3356/// to an LLVM register class, return a register of 0 and the register class
3357/// pointer.
3358std::pair<unsigned, const TargetRegisterClass *>
3359MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3360                                                 const std::string &Constraint,
3361                                                 MVT VT) const {
3362  if (Constraint.size() == 1) {
3363    switch (Constraint[0]) {
3364    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3365    case 'y': // Same as 'r'. Exists for compatibility.
3366    case 'r':
3367      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3368        if (Subtarget.inMips16Mode())
3369          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3370        return std::make_pair(0U, &Mips::GPR32RegClass);
3371      }
3372      if (VT == MVT::i64 && !Subtarget.isGP64bit())
3373        return std::make_pair(0U, &Mips::GPR32RegClass);
3374      if (VT == MVT::i64 && Subtarget.isGP64bit())
3375        return std::make_pair(0U, &Mips::GPR64RegClass);
3376      // This will generate an error message
3377      return std::make_pair(0U, nullptr);
3378    case 'f': // FPU or MSA register
3379      if (VT == MVT::v16i8)
3380        return std::make_pair(0U, &Mips::MSA128BRegClass);
3381      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3382        return std::make_pair(0U, &Mips::MSA128HRegClass);
3383      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3384        return std::make_pair(0U, &Mips::MSA128WRegClass);
3385      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3386        return std::make_pair(0U, &Mips::MSA128DRegClass);
3387      else if (VT == MVT::f32)
3388        return std::make_pair(0U, &Mips::FGR32RegClass);
3389      else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3390        if (Subtarget.isFP64bit())
3391          return std::make_pair(0U, &Mips::FGR64RegClass);
3392        return std::make_pair(0U, &Mips::AFGR64RegClass);
3393      }
3394      break;
3395    case 'c': // register suitable for indirect jump
3396      if (VT == MVT::i32)
3397        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3398      assert(VT == MVT::i64 && "Unexpected type.");
3399      return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3400    case 'l': // register suitable for indirect jump
3401      if (VT == MVT::i32)
3402        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3403      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3404    case 'x': // register suitable for indirect jump
3405      // Fixme: Not triggering the use of both hi and low
3406      // This will generate an error message
3407      return std::make_pair(0U, nullptr);
3408    }
3409  }
3410
3411  std::pair<unsigned, const TargetRegisterClass *> R;
3412  R = parseRegForInlineAsmConstraint(Constraint, VT);
3413
3414  if (R.second)
3415    return R;
3416
3417  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3418}
3419
3420/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3421/// vector.  If it is invalid, don't add anything to Ops.
3422void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3423                                                     std::string &Constraint,
3424                                                     std::vector<SDValue>&Ops,
3425                                                     SelectionDAG &DAG) const {
3426  SDValue Result;
3427
3428  // Only support length 1 constraints for now.
3429  if (Constraint.length() > 1) return;
3430
3431  char ConstraintLetter = Constraint[0];
3432  switch (ConstraintLetter) {
3433  default: break; // This will fall through to the generic implementation
3434  case 'I': // Signed 16 bit constant
3435    // If this fails, the parent routine will give an error
3436    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3437      EVT Type = Op.getValueType();
3438      int64_t Val = C->getSExtValue();
3439      if (isInt<16>(Val)) {
3440        Result = DAG.getTargetConstant(Val, Type);
3441        break;
3442      }
3443    }
3444    return;
3445  case 'J': // integer zero
3446    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3447      EVT Type = Op.getValueType();
3448      int64_t Val = C->getZExtValue();
3449      if (Val == 0) {
3450        Result = DAG.getTargetConstant(0, Type);
3451        break;
3452      }
3453    }
3454    return;
3455  case 'K': // unsigned 16 bit immediate
3456    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3457      EVT Type = Op.getValueType();
3458      uint64_t Val = (uint64_t)C->getZExtValue();
3459      if (isUInt<16>(Val)) {
3460        Result = DAG.getTargetConstant(Val, Type);
3461        break;
3462      }
3463    }
3464    return;
3465  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3466    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3467      EVT Type = Op.getValueType();
3468      int64_t Val = C->getSExtValue();
3469      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3470        Result = DAG.getTargetConstant(Val, Type);
3471        break;
3472      }
3473    }
3474    return;
3475  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3476    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3477      EVT Type = Op.getValueType();
3478      int64_t Val = C->getSExtValue();
3479      if ((Val >= -65535) && (Val <= -1)) {
3480        Result = DAG.getTargetConstant(Val, Type);
3481        break;
3482      }
3483    }
3484    return;
3485  case 'O': // signed 15 bit immediate
3486    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3487      EVT Type = Op.getValueType();
3488      int64_t Val = C->getSExtValue();
3489      if ((isInt<15>(Val))) {
3490        Result = DAG.getTargetConstant(Val, Type);
3491        break;
3492      }
3493    }
3494    return;
3495  case 'P': // immediate in the range of 1 to 65535 (inclusive)
3496    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3497      EVT Type = Op.getValueType();
3498      int64_t Val = C->getSExtValue();
3499      if ((Val <= 65535) && (Val >= 1)) {
3500        Result = DAG.getTargetConstant(Val, Type);
3501        break;
3502      }
3503    }
3504    return;
3505  }
3506
3507  if (Result.getNode()) {
3508    Ops.push_back(Result);
3509    return;
3510  }
3511
3512  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3513}
3514
3515bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3516                                               Type *Ty) const {
3517  // No global is ever allowed as a base.
3518  if (AM.BaseGV)
3519    return false;
3520
3521  switch (AM.Scale) {
3522  case 0: // "r+i" or just "i", depending on HasBaseReg.
3523    break;
3524  case 1:
3525    if (!AM.HasBaseReg) // allow "r+i".
3526      break;
3527    return false; // disallow "r+r" or "r+r+i".
3528  default:
3529    return false;
3530  }
3531
3532  return true;
3533}
3534
3535bool
3536MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3537  // The Mips target isn't yet aware of offsets.
3538  return false;
3539}
3540
3541EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3542                                            unsigned SrcAlign,
3543                                            bool IsMemset, bool ZeroMemset,
3544                                            bool MemcpyStrSrc,
3545                                            MachineFunction &MF) const {
3546  if (Subtarget.hasMips64())
3547    return MVT::i64;
3548
3549  return MVT::i32;
3550}
3551
3552bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3553  if (VT != MVT::f32 && VT != MVT::f64)
3554    return false;
3555  if (Imm.isNegZero())
3556    return false;
3557  return Imm.isZero();
3558}
3559
3560unsigned MipsTargetLowering::getJumpTableEncoding() const {
3561  if (ABI.IsN64())
3562    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3563
3564  return TargetLowering::getJumpTableEncoding();
3565}
3566
3567void MipsTargetLowering::copyByValRegs(
3568    SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains, SelectionDAG &DAG,
3569    const ISD::ArgFlagsTy &Flags, SmallVectorImpl<SDValue> &InVals,
3570    const Argument *FuncArg, unsigned FirstReg, unsigned LastReg,
3571    const CCValAssign &VA, MipsCCState &State) const {
3572  MachineFunction &MF = DAG.getMachineFunction();
3573  MachineFrameInfo *MFI = MF.getFrameInfo();
3574  unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
3575  unsigned NumRegs = LastReg - FirstReg;
3576  unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
3577  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3578  int FrameObjOffset;
3579  ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
3580
3581  if (RegAreaSize)
3582    FrameObjOffset =
3583        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
3584        (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
3585  else
3586    FrameObjOffset = VA.getLocMemOffset();
3587
3588  // Create frame object.
3589  EVT PtrTy = getPointerTy();
3590  int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3591  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3592  InVals.push_back(FIN);
3593
3594  if (!NumRegs)
3595    return;
3596
3597  // Copy arg registers.
3598  MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
3599  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3600
3601  for (unsigned I = 0; I < NumRegs; ++I) {
3602    unsigned ArgReg = ByValArgRegs[FirstReg + I];
3603    unsigned VReg = addLiveIn(MF, ArgReg, RC);
3604    unsigned Offset = I * GPRSizeInBytes;
3605    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3606                                   DAG.getConstant(Offset, PtrTy));
3607    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3608                                 StorePtr, MachinePointerInfo(FuncArg, Offset),
3609                                 false, false, 0);
3610    OutChains.push_back(Store);
3611  }
3612}
3613
3614// Copy byVal arg to registers and stack.
3615void MipsTargetLowering::passByValArg(
3616    SDValue Chain, SDLoc DL,
3617    std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3618    SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3619    MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
3620    unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
3621    const CCValAssign &VA) const {
3622  unsigned ByValSizeInBytes = Flags.getByValSize();
3623  unsigned OffsetInBytes = 0; // From beginning of struct
3624  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3625  unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
3626  EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3627  unsigned NumRegs = LastReg - FirstReg;
3628
3629  if (NumRegs) {
3630    const ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
3631    bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
3632    unsigned I = 0;
3633
3634    // Copy words to registers.
3635    for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
3636      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3637                                    DAG.getConstant(OffsetInBytes, PtrTy));
3638      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3639                                    MachinePointerInfo(), false, false, false,
3640                                    Alignment);
3641      MemOpChains.push_back(LoadVal.getValue(1));
3642      unsigned ArgReg = ArgRegs[FirstReg + I];
3643      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3644    }
3645
3646    // Return if the struct has been fully copied.
3647    if (ByValSizeInBytes == OffsetInBytes)
3648      return;
3649
3650    // Copy the remainder of the byval argument with sub-word loads and shifts.
3651    if (LeftoverBytes) {
3652      SDValue Val;
3653
3654      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
3655           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
3656        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
3657
3658        if (RemainingSizeInBytes < LoadSizeInBytes)
3659          continue;
3660
3661        // Load subword.
3662        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3663                                      DAG.getConstant(OffsetInBytes, PtrTy));
3664        SDValue LoadVal = DAG.getExtLoad(
3665            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
3666            MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false,
3667            Alignment);
3668        MemOpChains.push_back(LoadVal.getValue(1));
3669
3670        // Shift the loaded value.
3671        unsigned Shamt;
3672
3673        if (isLittle)
3674          Shamt = TotalBytesLoaded * 8;
3675        else
3676          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
3677
3678        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3679                                    DAG.getConstant(Shamt, MVT::i32));
3680
3681        if (Val.getNode())
3682          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3683        else
3684          Val = Shift;
3685
3686        OffsetInBytes += LoadSizeInBytes;
3687        TotalBytesLoaded += LoadSizeInBytes;
3688        Alignment = std::min(Alignment, LoadSizeInBytes);
3689      }
3690
3691      unsigned ArgReg = ArgRegs[FirstReg + I];
3692      RegsToPass.push_back(std::make_pair(ArgReg, Val));
3693      return;
3694    }
3695  }
3696
3697  // Copy remainder of byval arg to it with memcpy.
3698  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
3699  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3700                            DAG.getConstant(OffsetInBytes, PtrTy));
3701  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3702                            DAG.getIntPtrConstant(VA.getLocMemOffset()));
3703  Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3704                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3705                        /*isTailCall=*/false,
3706                        MachinePointerInfo(), MachinePointerInfo());
3707  MemOpChains.push_back(Chain);
3708}
3709
3710void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3711                                         SDValue Chain, SDLoc DL,
3712                                         SelectionDAG &DAG,
3713                                         CCState &State) const {
3714  const ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
3715  unsigned Idx = State.getFirstUnallocated(ArgRegs);
3716  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3717  MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3718  const TargetRegisterClass *RC = getRegClassFor(RegTy);
3719  MachineFunction &MF = DAG.getMachineFunction();
3720  MachineFrameInfo *MFI = MF.getFrameInfo();
3721  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3722
3723  // Offset of the first variable argument from stack pointer.
3724  int VaArgOffset;
3725
3726  if (ArgRegs.size() == Idx)
3727    VaArgOffset =
3728        RoundUpToAlignment(State.getNextStackOffset(), RegSizeInBytes);
3729  else {
3730    VaArgOffset =
3731        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
3732        (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
3733  }
3734
3735  // Record the frame index of the first variable argument
3736  // which is a value necessary to VASTART.
3737  int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
3738  MipsFI->setVarArgsFrameIndex(FI);
3739
3740  // Copy the integer registers that have not been used for argument passing
3741  // to the argument register save area. For O32, the save area is allocated
3742  // in the caller's stack frame, while for N32/64, it is allocated in the
3743  // callee's stack frame.
3744  for (unsigned I = Idx; I < ArgRegs.size();
3745       ++I, VaArgOffset += RegSizeInBytes) {
3746    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3747    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3748    FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
3749    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3750    SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3751                                 MachinePointerInfo(), false, false, 0);
3752    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
3753        (Value *)nullptr);
3754    OutChains.push_back(Store);
3755  }
3756}
3757
3758void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
3759                                     unsigned Align) const {
3760  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3761
3762  assert(Size && "Byval argument's size shouldn't be 0.");
3763
3764  Align = std::min(Align, TFL->getStackAlignment());
3765
3766  unsigned FirstReg = 0;
3767  unsigned NumRegs = 0;
3768
3769  if (State->getCallingConv() != CallingConv::Fast) {
3770    unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3771    const ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
3772    // FIXME: The O32 case actually describes no shadow registers.
3773    const MCPhysReg *ShadowRegs =
3774        ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
3775
3776    // We used to check the size as well but we can't do that anymore since
3777    // CCState::HandleByVal() rounds up the size after calling this function.
3778    assert(!(Align % RegSizeInBytes) &&
3779           "Byval argument's alignment should be a multiple of"
3780           "RegSizeInBytes.");
3781
3782    FirstReg = State->getFirstUnallocated(IntArgRegs);
3783
3784    // If Align > RegSizeInBytes, the first arg register must be even.
3785    // FIXME: This condition happens to do the right thing but it's not the
3786    //        right way to test it. We want to check that the stack frame offset
3787    //        of the register is aligned.
3788    if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
3789      State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
3790      ++FirstReg;
3791    }
3792
3793    // Mark the registers allocated.
3794    Size = RoundUpToAlignment(Size, RegSizeInBytes);
3795    for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
3796         Size -= RegSizeInBytes, ++I, ++NumRegs)
3797      State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3798  }
3799
3800  State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
3801}
3802
3803MachineBasicBlock *
3804MipsTargetLowering::emitPseudoSELECT(MachineInstr *MI, MachineBasicBlock *BB,
3805                                     bool isFPCmp, unsigned Opc) const {
3806  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
3807         "Subtarget already supports SELECT nodes with the use of"
3808         "conditional-move instructions.");
3809
3810  const TargetInstrInfo *TII =
3811      Subtarget.getInstrInfo();
3812  DebugLoc DL = MI->getDebugLoc();
3813
3814  // To "insert" a SELECT instruction, we actually have to insert the
3815  // diamond control-flow pattern.  The incoming instruction knows the
3816  // destination vreg to set, the condition code register to branch on, the
3817  // true/false values to select between, and a branch opcode to use.
3818  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3819  MachineFunction::iterator It = BB;
3820  ++It;
3821
3822  //  thisMBB:
3823  //  ...
3824  //   TrueVal = ...
3825  //   setcc r1, r2, r3
3826  //   bNE   r1, r0, copy1MBB
3827  //   fallthrough --> copy0MBB
3828  MachineBasicBlock *thisMBB  = BB;
3829  MachineFunction *F = BB->getParent();
3830  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3831  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3832  F->insert(It, copy0MBB);
3833  F->insert(It, sinkMBB);
3834
3835  // Transfer the remainder of BB and its successor edges to sinkMBB.
3836  sinkMBB->splice(sinkMBB->begin(), BB,
3837                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
3838  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
3839
3840  // Next, add the true and fallthrough blocks as its successors.
3841  BB->addSuccessor(copy0MBB);
3842  BB->addSuccessor(sinkMBB);
3843
3844  if (isFPCmp) {
3845    // bc1[tf] cc, sinkMBB
3846    BuildMI(BB, DL, TII->get(Opc))
3847      .addReg(MI->getOperand(1).getReg())
3848      .addMBB(sinkMBB);
3849  } else {
3850    // bne rs, $0, sinkMBB
3851    BuildMI(BB, DL, TII->get(Opc))
3852      .addReg(MI->getOperand(1).getReg())
3853      .addReg(Mips::ZERO)
3854      .addMBB(sinkMBB);
3855  }
3856
3857  //  copy0MBB:
3858  //   %FalseValue = ...
3859  //   # fallthrough to sinkMBB
3860  BB = copy0MBB;
3861
3862  // Update machine-CFG edges
3863  BB->addSuccessor(sinkMBB);
3864
3865  //  sinkMBB:
3866  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
3867  //  ...
3868  BB = sinkMBB;
3869
3870  BuildMI(*BB, BB->begin(), DL,
3871          TII->get(Mips::PHI), MI->getOperand(0).getReg())
3872    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
3873    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB);
3874
3875  MI->eraseFromParent();   // The pseudo instruction is gone now.
3876
3877  return BB;
3878}
3879
3880// FIXME? Maybe this could be a TableGen attribute on some registers and
3881// this table could be generated automatically from RegInfo.
3882unsigned MipsTargetLowering::getRegisterByName(const char* RegName,
3883                                               EVT VT) const {
3884  // Named registers is expected to be fairly rare. For now, just support $28
3885  // since the linux kernel uses it.
3886  if (Subtarget.isGP64bit()) {
3887    unsigned Reg = StringSwitch<unsigned>(RegName)
3888                         .Case("$28", Mips::GP_64)
3889                         .Default(0);
3890    if (Reg)
3891      return Reg;
3892  } else {
3893    unsigned Reg = StringSwitch<unsigned>(RegName)
3894                         .Case("$28", Mips::GP)
3895                         .Default(0);
3896    if (Reg)
3897      return Reg;
3898  }
3899  report_fatal_error("Invalid register name global variable");
3900}
3901