1//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "PPCTargetTransformInfo.h" 11#include "llvm/Analysis/TargetTransformInfo.h" 12#include "llvm/CodeGen/BasicTTIImpl.h" 13#include "llvm/Support/CommandLine.h" 14#include "llvm/Support/Debug.h" 15#include "llvm/Target/CostTable.h" 16#include "llvm/Target/TargetLowering.h" 17using namespace llvm; 18 19#define DEBUG_TYPE "ppctti" 20 21static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24//===----------------------------------------------------------------------===// 25// 26// PPC cost model. 27// 28//===----------------------------------------------------------------------===// 29 30TargetTransformInfo::PopcntSupportKind 31PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 32 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 33 if (ST->hasPOPCNTD() && TyWidth <= 64) 34 return TTI::PSK_FastHardware; 35 return TTI::PSK_Software; 36} 37 38unsigned PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 39 if (DisablePPCConstHoist) 40 return BaseT::getIntImmCost(Imm, Ty); 41 42 assert(Ty->isIntegerTy()); 43 44 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 45 if (BitSize == 0) 46 return ~0U; 47 48 if (Imm == 0) 49 return TTI::TCC_Free; 50 51 if (Imm.getBitWidth() <= 64) { 52 if (isInt<16>(Imm.getSExtValue())) 53 return TTI::TCC_Basic; 54 55 if (isInt<32>(Imm.getSExtValue())) { 56 // A constant that can be materialized using lis. 57 if ((Imm.getZExtValue() & 0xFFFF) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 } 63 64 return 4 * TTI::TCC_Basic; 65} 66 67unsigned PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 68 const APInt &Imm, Type *Ty) { 69 if (DisablePPCConstHoist) 70 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 71 72 assert(Ty->isIntegerTy()); 73 74 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 75 if (BitSize == 0) 76 return ~0U; 77 78 switch (IID) { 79 default: 80 return TTI::TCC_Free; 81 case Intrinsic::sadd_with_overflow: 82 case Intrinsic::uadd_with_overflow: 83 case Intrinsic::ssub_with_overflow: 84 case Intrinsic::usub_with_overflow: 85 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 86 return TTI::TCC_Free; 87 break; 88 case Intrinsic::experimental_stackmap: 89 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 90 return TTI::TCC_Free; 91 break; 92 case Intrinsic::experimental_patchpoint_void: 93 case Intrinsic::experimental_patchpoint_i64: 94 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 95 return TTI::TCC_Free; 96 break; 97 } 98 return PPCTTIImpl::getIntImmCost(Imm, Ty); 99} 100 101unsigned PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 102 const APInt &Imm, Type *Ty) { 103 if (DisablePPCConstHoist) 104 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 105 106 assert(Ty->isIntegerTy()); 107 108 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 109 if (BitSize == 0) 110 return ~0U; 111 112 unsigned ImmIdx = ~0U; 113 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 114 ZeroFree = false; 115 switch (Opcode) { 116 default: 117 return TTI::TCC_Free; 118 case Instruction::GetElementPtr: 119 // Always hoist the base address of a GetElementPtr. This prevents the 120 // creation of new constants for every base constant that gets constant 121 // folded with the offset. 122 if (Idx == 0) 123 return 2 * TTI::TCC_Basic; 124 return TTI::TCC_Free; 125 case Instruction::And: 126 RunFree = true; // (for the rotate-and-mask instructions) 127 // Fallthrough... 128 case Instruction::Add: 129 case Instruction::Or: 130 case Instruction::Xor: 131 ShiftedFree = true; 132 // Fallthrough... 133 case Instruction::Sub: 134 case Instruction::Mul: 135 case Instruction::Shl: 136 case Instruction::LShr: 137 case Instruction::AShr: 138 ImmIdx = 1; 139 break; 140 case Instruction::ICmp: 141 UnsignedFree = true; 142 ImmIdx = 1; 143 // Fallthrough... (zero comparisons can use record-form instructions) 144 case Instruction::Select: 145 ZeroFree = true; 146 break; 147 case Instruction::PHI: 148 case Instruction::Call: 149 case Instruction::Ret: 150 case Instruction::Load: 151 case Instruction::Store: 152 break; 153 } 154 155 if (ZeroFree && Imm == 0) 156 return TTI::TCC_Free; 157 158 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 159 if (isInt<16>(Imm.getSExtValue())) 160 return TTI::TCC_Free; 161 162 if (RunFree) { 163 if (Imm.getBitWidth() <= 32 && 164 (isShiftedMask_32(Imm.getZExtValue()) || 165 isShiftedMask_32(~Imm.getZExtValue()))) 166 return TTI::TCC_Free; 167 168 if (ST->isPPC64() && 169 (isShiftedMask_64(Imm.getZExtValue()) || 170 isShiftedMask_64(~Imm.getZExtValue()))) 171 return TTI::TCC_Free; 172 } 173 174 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 175 return TTI::TCC_Free; 176 177 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 178 return TTI::TCC_Free; 179 } 180 181 return PPCTTIImpl::getIntImmCost(Imm, Ty); 182} 183 184void PPCTTIImpl::getUnrollingPreferences(Loop *L, 185 TTI::UnrollingPreferences &UP) { 186 if (ST->getDarwinDirective() == PPC::DIR_A2) { 187 // The A2 is in-order with a deep pipeline, and concatenation unrolling 188 // helps expose latency-hiding opportunities to the instruction scheduler. 189 UP.Partial = UP.Runtime = true; 190 } 191 192 BaseT::getUnrollingPreferences(L, UP); 193} 194 195bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 196 return LoopHasReductions; 197} 198 199unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 200 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 201 return 0; 202 return ST->hasVSX() ? 64 : 32; 203} 204 205unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) { 206 if (Vector) { 207 if (ST->hasQPX()) return 256; 208 if (ST->hasAltivec()) return 128; 209 return 0; 210 } 211 212 if (ST->isPPC64()) 213 return 64; 214 return 32; 215 216} 217 218unsigned PPCTTIImpl::getMaxInterleaveFactor() { 219 unsigned Directive = ST->getDarwinDirective(); 220 // The 440 has no SIMD support, but floating-point instructions 221 // have a 5-cycle latency, so unroll by 5x for latency hiding. 222 if (Directive == PPC::DIR_440) 223 return 5; 224 225 // The A2 has no SIMD support, but floating-point instructions 226 // have a 6-cycle latency, so unroll by 6x for latency hiding. 227 if (Directive == PPC::DIR_A2) 228 return 6; 229 230 // FIXME: For lack of any better information, do no harm... 231 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 232 return 1; 233 234 // For P7 and P8, floating-point instructions have a 6-cycle latency and 235 // there are two execution units, so unroll by 12x for latency hiding. 236 if (Directive == PPC::DIR_PWR7 || 237 Directive == PPC::DIR_PWR8) 238 return 12; 239 240 // For most things, modern systems have two execution units (and 241 // out-of-order execution). 242 return 2; 243} 244 245unsigned PPCTTIImpl::getArithmeticInstrCost( 246 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 247 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 248 TTI::OperandValueProperties Opd2PropInfo) { 249 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 250 251 // Fallback to the default implementation. 252 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 253 Opd1PropInfo, Opd2PropInfo); 254} 255 256unsigned PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 257 Type *SubTp) { 258 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 259} 260 261unsigned PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 262 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 263 264 return BaseT::getCastInstrCost(Opcode, Dst, Src); 265} 266 267unsigned PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 268 Type *CondTy) { 269 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 270} 271 272unsigned PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 273 unsigned Index) { 274 assert(Val->isVectorTy() && "This must be a vector type"); 275 276 int ISD = TLI->InstructionOpcodeToISD(Opcode); 277 assert(ISD && "Invalid opcode"); 278 279 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 280 // Double-precision scalars are already located in index #0. 281 if (Index == 0) 282 return 0; 283 284 return BaseT::getVectorInstrCost(Opcode, Val, Index); 285 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 286 // Floating point scalars are already located in index #0. 287 if (Index == 0) 288 return 0; 289 290 return BaseT::getVectorInstrCost(Opcode, Val, Index); 291 } 292 293 // Estimated cost of a load-hit-store delay. This was obtained 294 // experimentally as a minimum needed to prevent unprofitable 295 // vectorization for the paq8p benchmark. It may need to be 296 // raised further if other unprofitable cases remain. 297 unsigned LHSPenalty = 2; 298 if (ISD == ISD::INSERT_VECTOR_ELT) 299 LHSPenalty += 7; 300 301 // Vector element insert/extract with Altivec is very expensive, 302 // because they require store and reload with the attendant 303 // processor stall for load-hit-store. Until VSX is available, 304 // these need to be estimated as very costly. 305 if (ISD == ISD::EXTRACT_VECTOR_ELT || 306 ISD == ISD::INSERT_VECTOR_ELT) 307 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 308 309 return BaseT::getVectorInstrCost(Opcode, Val, Index); 310} 311 312unsigned PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 313 unsigned Alignment, 314 unsigned AddressSpace) { 315 // Legalize the type. 316 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); 317 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 318 "Invalid Opcode"); 319 320 unsigned Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 321 322 // VSX loads/stores support unaligned access. 323 if (ST->hasVSX()) { 324 if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64) 325 return Cost; 326 } 327 328 bool UnalignedAltivec = 329 Src->isVectorTy() && 330 Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() && 331 LT.second.getSizeInBits() == 128 && 332 Opcode == Instruction::Load; 333 334 // PPC in general does not support unaligned loads and stores. They'll need 335 // to be decomposed based on the alignment factor. 336 unsigned SrcBytes = LT.second.getStoreSize(); 337 if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) { 338 Cost += LT.first*(SrcBytes/Alignment-1); 339 340 // For a vector type, there is also scalarization overhead (only for 341 // stores, loads are expanded using the vector-load + permutation sequence, 342 // which is much less expensive). 343 if (Src->isVectorTy() && Opcode == Instruction::Store) 344 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 345 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 346 } 347 348 return Cost; 349} 350 351