1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#ifdef _MSC_VER
16// Provide M_PI.
17#define _USE_MATH_DEFINES
18#include <cmath>
19#endif
20
21#include "SIISelLowering.h"
22#include "AMDGPU.h"
23#include "AMDGPUIntrinsicInfo.h"
24#include "AMDGPUSubtarget.h"
25#include "SIInstrInfo.h"
26#include "SIMachineFunctionInfo.h"
27#include "SIRegisterInfo.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/IR/Function.h"
34#include "llvm/ADT/SmallString.h"
35
36using namespace llvm;
37
38SITargetLowering::SITargetLowering(TargetMachine &TM,
39                                   const AMDGPUSubtarget &STI)
40    : AMDGPUTargetLowering(TM, STI) {
41  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
42  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
43
44  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
45  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
46
47  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
48  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
49
50  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
51  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
52  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
53
54  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
55  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
56
57  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
58  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
59
60  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
61  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
62
63  computeRegisterProperties(STI.getRegisterInfo());
64
65  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
66  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
67  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
68  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
69
70  setOperationAction(ISD::ADD, MVT::i32, Legal);
71  setOperationAction(ISD::ADDC, MVT::i32, Legal);
72  setOperationAction(ISD::ADDE, MVT::i32, Legal);
73  setOperationAction(ISD::SUBC, MVT::i32, Legal);
74  setOperationAction(ISD::SUBE, MVT::i32, Legal);
75
76  setOperationAction(ISD::FSIN, MVT::f32, Custom);
77  setOperationAction(ISD::FCOS, MVT::f32, Custom);
78
79  setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
80  setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
81
82  // We need to custom lower vector stores from local memory
83  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
84  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
85  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
86
87  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
88  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
89
90  setOperationAction(ISD::STORE, MVT::i1, Custom);
91  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
92
93  setOperationAction(ISD::SELECT, MVT::i64, Custom);
94  setOperationAction(ISD::SELECT, MVT::f64, Promote);
95  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
96
97  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
98  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
99  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
100  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
101
102  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
103  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
104
105  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
106
107  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
108  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
109  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
110
111  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
112  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
113  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
114
115  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
116  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
117  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
118
119  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
120  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
121
122  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
123  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
124  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
125  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
126
127  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
128  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
129
130  for (MVT VT : MVT::integer_valuetypes()) {
131    if (VT == MVT::i64)
132      continue;
133
134    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
135    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
136    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
137    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
138
139    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
140    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
141    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
142    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
143
144    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
145    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
146    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
147    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
148  }
149
150  for (MVT VT : MVT::integer_vector_valuetypes()) {
151    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
152    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
153  }
154
155  for (MVT VT : MVT::fp_valuetypes())
156    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
157
158  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
159  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
160  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
161  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
162
163  setOperationAction(ISD::LOAD, MVT::i1, Custom);
164
165  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
166  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
167  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
168
169  // These should use UDIVREM, so set them to expand
170  setOperationAction(ISD::UDIV, MVT::i64, Expand);
171  setOperationAction(ISD::UREM, MVT::i64, Expand);
172
173  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
174  setOperationAction(ISD::SELECT, MVT::i1, Promote);
175
176  // We only support LOAD/STORE and vector manipulation ops for vectors
177  // with > 4 elements.
178  for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) {
179    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
180      switch(Op) {
181      case ISD::LOAD:
182      case ISD::STORE:
183      case ISD::BUILD_VECTOR:
184      case ISD::BITCAST:
185      case ISD::EXTRACT_VECTOR_ELT:
186      case ISD::INSERT_VECTOR_ELT:
187      case ISD::INSERT_SUBVECTOR:
188      case ISD::EXTRACT_SUBVECTOR:
189        break;
190      case ISD::CONCAT_VECTORS:
191        setOperationAction(Op, VT, Custom);
192        break;
193      default:
194        setOperationAction(Op, VT, Expand);
195        break;
196      }
197    }
198  }
199
200  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
201    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
202    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
203    setOperationAction(ISD::FRINT, MVT::f64, Legal);
204  }
205
206  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
207  setOperationAction(ISD::FDIV, MVT::f32, Custom);
208  setOperationAction(ISD::FDIV, MVT::f64, Custom);
209
210  setTargetDAGCombine(ISD::FADD);
211  setTargetDAGCombine(ISD::FSUB);
212  setTargetDAGCombine(ISD::FMINNUM);
213  setTargetDAGCombine(ISD::FMAXNUM);
214  setTargetDAGCombine(ISD::SELECT_CC);
215  setTargetDAGCombine(ISD::SETCC);
216  setTargetDAGCombine(ISD::AND);
217  setTargetDAGCombine(ISD::OR);
218  setTargetDAGCombine(ISD::UINT_TO_FP);
219
220  // All memory operations. Some folding on the pointer operand is done to help
221  // matching the constant offsets in the addressing modes.
222  setTargetDAGCombine(ISD::LOAD);
223  setTargetDAGCombine(ISD::STORE);
224  setTargetDAGCombine(ISD::ATOMIC_LOAD);
225  setTargetDAGCombine(ISD::ATOMIC_STORE);
226  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
227  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
228  setTargetDAGCombine(ISD::ATOMIC_SWAP);
229  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
230  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
231  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
232  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
233  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
234  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
235  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
236  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
237  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
238  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
239
240  setSchedulingPreference(Sched::RegPressure);
241}
242
243//===----------------------------------------------------------------------===//
244// TargetLowering queries
245//===----------------------------------------------------------------------===//
246
247bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
248                                          EVT) const {
249  // SI has some legal vector types, but no legal vector operations. Say no
250  // shuffles are legal in order to prefer scalarizing some vector operations.
251  return false;
252}
253
254// FIXME: This really needs an address space argument. The immediate offset
255// size is different for different sets of memory instruction sets.
256
257// The single offset DS instructions have a 16-bit unsigned byte offset.
258//
259// MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
260// r + i with addr64. 32-bit has more addressing mode options. Depending on the
261// resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
262//
263// SMRD instructions have an 8-bit, dword offset.
264//
265bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
266                                             Type *Ty) const {
267  // No global is ever allowed as a base.
268  if (AM.BaseGV)
269    return false;
270
271  // Allow a 16-bit unsigned immediate field, since this is what DS instructions
272  // use.
273  if (!isUInt<16>(AM.BaseOffs))
274    return false;
275
276  // Only support r+r,
277  switch (AM.Scale) {
278  case 0:  // "r+i" or just "i", depending on HasBaseReg.
279    break;
280  case 1:
281    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
282      return false;
283    // Otherwise we have r+r or r+i.
284    break;
285  case 2:
286    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
287      return false;
288    // Allow 2*r as r+r.
289    break;
290  default: // Don't allow n * r
291    return false;
292  }
293
294  return true;
295}
296
297bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
298                                                      unsigned AddrSpace,
299                                                      unsigned Align,
300                                                      bool *IsFast) const {
301  if (IsFast)
302    *IsFast = false;
303
304  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
305  // which isn't a simple VT.
306  if (!VT.isSimple() || VT == MVT::Other)
307    return false;
308
309  // TODO - CI+ supports unaligned memory accesses, but this requires driver
310  // support.
311
312  // XXX - The only mention I see of this in the ISA manual is for LDS direct
313  // reads the "byte address and must be dword aligned". Is it also true for the
314  // normal loads and stores?
315  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
316    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
317    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
318    // with adjacent offsets.
319    return Align % 4 == 0;
320  }
321
322  // Smaller than dword value must be aligned.
323  // FIXME: This should be allowed on CI+
324  if (VT.bitsLT(MVT::i32))
325    return false;
326
327  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
328  // byte-address are ignored, thus forcing Dword alignment.
329  // This applies to private, global, and constant memory.
330  if (IsFast)
331    *IsFast = true;
332
333  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
334}
335
336EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
337                                          unsigned SrcAlign, bool IsMemset,
338                                          bool ZeroMemset,
339                                          bool MemcpyStrSrc,
340                                          MachineFunction &MF) const {
341  // FIXME: Should account for address space here.
342
343  // The default fallback uses the private pointer size as a guess for a type to
344  // use. Make sure we switch these to 64-bit accesses.
345
346  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
347    return MVT::v4i32;
348
349  if (Size >= 8 && DstAlign >= 4)
350    return MVT::v2i32;
351
352  // Use the default.
353  return MVT::Other;
354}
355
356TargetLoweringBase::LegalizeTypeAction
357SITargetLowering::getPreferredVectorAction(EVT VT) const {
358  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
359    return TypeSplitVector;
360
361  return TargetLoweringBase::getPreferredVectorAction(VT);
362}
363
364bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
365                                                         Type *Ty) const {
366  const SIInstrInfo *TII =
367      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
368  return TII->isInlineConstant(Imm);
369}
370
371SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
372                                         SDLoc SL, SDValue Chain,
373                                         unsigned Offset, bool Signed) const {
374  const DataLayout *DL = getDataLayout();
375  MachineFunction &MF = DAG.getMachineFunction();
376  const SIRegisterInfo *TRI =
377      static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
378  unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
379
380  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
381
382  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
383  PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
384  SDValue BasePtr =  DAG.getCopyFromReg(Chain, SL,
385                           MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
386  SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
387                                             DAG.getConstant(Offset, MVT::i64));
388  SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
389  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
390
391  return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
392                     VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
393                     false, // isVolatile
394                     true, // isNonTemporal
395                     true, // isInvariant
396                     DL->getABITypeAlignment(Ty)); // Alignment
397}
398
399SDValue SITargetLowering::LowerFormalArguments(
400    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
401    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
402    SmallVectorImpl<SDValue> &InVals) const {
403  const SIRegisterInfo *TRI =
404      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
405
406  MachineFunction &MF = DAG.getMachineFunction();
407  FunctionType *FType = MF.getFunction()->getFunctionType();
408  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
409
410  assert(CallConv == CallingConv::C);
411
412  SmallVector<ISD::InputArg, 16> Splits;
413  BitVector Skipped(Ins.size());
414
415  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
416    const ISD::InputArg &Arg = Ins[i];
417
418    // First check if it's a PS input addr
419    if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
420        !Arg.Flags.isByVal()) {
421
422      assert((PSInputNum <= 15) && "Too many PS inputs!");
423
424      if (!Arg.Used) {
425        // We can savely skip PS inputs
426        Skipped.set(i);
427        ++PSInputNum;
428        continue;
429      }
430
431      Info->PSInputAddr |= 1 << PSInputNum++;
432    }
433
434    // Second split vertices into their elements
435    if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
436      ISD::InputArg NewArg = Arg;
437      NewArg.Flags.setSplit();
438      NewArg.VT = Arg.VT.getVectorElementType();
439
440      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
441      // three or five element vertex only needs three or five registers,
442      // NOT four or eigth.
443      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
444      unsigned NumElements = ParamType->getVectorNumElements();
445
446      for (unsigned j = 0; j != NumElements; ++j) {
447        Splits.push_back(NewArg);
448        NewArg.PartOffset += NewArg.VT.getStoreSize();
449      }
450
451    } else if (Info->getShaderType() != ShaderType::COMPUTE) {
452      Splits.push_back(Arg);
453    }
454  }
455
456  SmallVector<CCValAssign, 16> ArgLocs;
457  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
458                 *DAG.getContext());
459
460  // At least one interpolation mode must be enabled or else the GPU will hang.
461  if (Info->getShaderType() == ShaderType::PIXEL &&
462      (Info->PSInputAddr & 0x7F) == 0) {
463    Info->PSInputAddr |= 1;
464    CCInfo.AllocateReg(AMDGPU::VGPR0);
465    CCInfo.AllocateReg(AMDGPU::VGPR1);
466  }
467
468  // The pointer to the list of arguments is stored in SGPR0, SGPR1
469	// The pointer to the scratch buffer is stored in SGPR2, SGPR3
470  if (Info->getShaderType() == ShaderType::COMPUTE) {
471    if (Subtarget->isAmdHsaOS())
472      Info->NumUserSGPRs = 2;  // FIXME: Need to support scratch buffers.
473    else
474      Info->NumUserSGPRs = 4;
475
476    unsigned InputPtrReg =
477        TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
478    unsigned InputPtrRegLo =
479        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
480    unsigned InputPtrRegHi =
481        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
482
483    unsigned ScratchPtrReg =
484        TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
485    unsigned ScratchPtrRegLo =
486        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
487    unsigned ScratchPtrRegHi =
488        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
489
490    CCInfo.AllocateReg(InputPtrRegLo);
491    CCInfo.AllocateReg(InputPtrRegHi);
492    CCInfo.AllocateReg(ScratchPtrRegLo);
493    CCInfo.AllocateReg(ScratchPtrRegHi);
494    MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
495    MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
496  }
497
498  if (Info->getShaderType() == ShaderType::COMPUTE) {
499    getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
500                            Splits);
501  }
502
503  AnalyzeFormalArguments(CCInfo, Splits);
504
505  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
506
507    const ISD::InputArg &Arg = Ins[i];
508    if (Skipped[i]) {
509      InVals.push_back(DAG.getUNDEF(Arg.VT));
510      continue;
511    }
512
513    CCValAssign &VA = ArgLocs[ArgIdx++];
514    MVT VT = VA.getLocVT();
515
516    if (VA.isMemLoc()) {
517      VT = Ins[i].VT;
518      EVT MemVT = Splits[i].VT;
519      const unsigned Offset = 36 + VA.getLocMemOffset();
520      // The first 36 bytes of the input buffer contains information about
521      // thread group and global sizes.
522      SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, DAG.getRoot(),
523                                   Offset, Ins[i].Flags.isSExt());
524
525      const PointerType *ParamTy =
526        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
527      if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
528          ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
529        // On SI local pointers are just offsets into LDS, so they are always
530        // less than 16-bits.  On CI and newer they could potentially be
531        // real pointers, so we can't guarantee their size.
532        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
533                          DAG.getValueType(MVT::i16));
534      }
535
536      InVals.push_back(Arg);
537      Info->ABIArgOffset = Offset + MemVT.getStoreSize();
538      continue;
539    }
540    assert(VA.isRegLoc() && "Parameter must be in a register!");
541
542    unsigned Reg = VA.getLocReg();
543
544    if (VT == MVT::i64) {
545      // For now assume it is a pointer
546      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
547                                     &AMDGPU::SReg_64RegClass);
548      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
549      InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
550      continue;
551    }
552
553    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
554
555    Reg = MF.addLiveIn(Reg, RC);
556    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
557
558    if (Arg.VT.isVector()) {
559
560      // Build a vector from the registers
561      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
562      unsigned NumElements = ParamType->getVectorNumElements();
563
564      SmallVector<SDValue, 4> Regs;
565      Regs.push_back(Val);
566      for (unsigned j = 1; j != NumElements; ++j) {
567        Reg = ArgLocs[ArgIdx++].getLocReg();
568        Reg = MF.addLiveIn(Reg, RC);
569        Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
570      }
571
572      // Fill up the missing vector elements
573      NumElements = Arg.VT.getVectorNumElements() - NumElements;
574      Regs.append(NumElements, DAG.getUNDEF(VT));
575
576      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
577      continue;
578    }
579
580    InVals.push_back(Val);
581  }
582
583  if (Info->getShaderType() != ShaderType::COMPUTE) {
584    unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>(
585        AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs()));
586    Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
587  }
588  return Chain;
589}
590
591MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
592    MachineInstr * MI, MachineBasicBlock * BB) const {
593
594  MachineBasicBlock::iterator I = *MI;
595  const SIInstrInfo *TII =
596      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
597
598  switch (MI->getOpcode()) {
599  default:
600    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
601  case AMDGPU::BRANCH:
602    return BB;
603  case AMDGPU::SI_RegisterStorePseudo: {
604    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
605    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
606    MachineInstrBuilder MIB =
607        BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
608                Reg);
609    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
610      MIB.addOperand(MI->getOperand(i));
611
612    MI->eraseFromParent();
613    break;
614  }
615  }
616  return BB;
617}
618
619bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
620  // This currently forces unfolding various combinations of fsub into fma with
621  // free fneg'd operands. As long as we have fast FMA (controlled by
622  // isFMAFasterThanFMulAndFAdd), we should perform these.
623
624  // When fma is quarter rate, for f64 where add / sub are at best half rate,
625  // most of these combines appear to be cycle neutral but save on instruction
626  // count / code size.
627  return true;
628}
629
630EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
631  if (!VT.isVector()) {
632    return MVT::i1;
633  }
634  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
635}
636
637MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
638  return MVT::i32;
639}
640
641// Answering this is somewhat tricky and depends on the specific device which
642// have different rates for fma or all f64 operations.
643//
644// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
645// regardless of which device (although the number of cycles differs between
646// devices), so it is always profitable for f64.
647//
648// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
649// only on full rate devices. Normally, we should prefer selecting v_mad_f32
650// which we can always do even without fused FP ops since it returns the same
651// result as the separate operations and since it is always full
652// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
653// however does not support denormals, so we do report fma as faster if we have
654// a fast fma device and require denormals.
655//
656bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
657  VT = VT.getScalarType();
658
659  if (!VT.isSimple())
660    return false;
661
662  switch (VT.getSimpleVT().SimpleTy) {
663  case MVT::f32:
664    // This is as fast on some subtargets. However, we always have full rate f32
665    // mad available which returns the same result as the separate operations
666    // which we should prefer over fma. We can't use this if we want to support
667    // denormals, so only report this in these cases.
668    return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
669  case MVT::f64:
670    return true;
671  default:
672    break;
673  }
674
675  return false;
676}
677
678//===----------------------------------------------------------------------===//
679// Custom DAG Lowering Operations
680//===----------------------------------------------------------------------===//
681
682SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
683  switch (Op.getOpcode()) {
684  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
685  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
686  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
687  case ISD::LOAD: {
688    SDValue Result = LowerLOAD(Op, DAG);
689    assert((!Result.getNode() ||
690            Result.getNode()->getNumValues() == 2) &&
691           "Load should return a value and a chain");
692    return Result;
693  }
694
695  case ISD::FSIN:
696  case ISD::FCOS:
697    return LowerTrig(Op, DAG);
698  case ISD::SELECT: return LowerSELECT(Op, DAG);
699  case ISD::FDIV: return LowerFDIV(Op, DAG);
700  case ISD::STORE: return LowerSTORE(Op, DAG);
701  case ISD::GlobalAddress: {
702    MachineFunction &MF = DAG.getMachineFunction();
703    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
704    return LowerGlobalAddress(MFI, Op, DAG);
705  }
706  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
707  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
708  }
709  return SDValue();
710}
711
712/// \brief Helper function for LowerBRCOND
713static SDNode *findUser(SDValue Value, unsigned Opcode) {
714
715  SDNode *Parent = Value.getNode();
716  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
717       I != E; ++I) {
718
719    if (I.getUse().get() != Value)
720      continue;
721
722    if (I->getOpcode() == Opcode)
723      return *I;
724  }
725  return nullptr;
726}
727
728SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
729
730  FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
731  unsigned FrameIndex = FINode->getIndex();
732
733  return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
734}
735
736/// This transforms the control flow intrinsics to get the branch destination as
737/// last parameter, also switches branch target with BR if the need arise
738SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
739                                      SelectionDAG &DAG) const {
740
741  SDLoc DL(BRCOND);
742
743  SDNode *Intr = BRCOND.getOperand(1).getNode();
744  SDValue Target = BRCOND.getOperand(2);
745  SDNode *BR = nullptr;
746
747  if (Intr->getOpcode() == ISD::SETCC) {
748    // As long as we negate the condition everything is fine
749    SDNode *SetCC = Intr;
750    assert(SetCC->getConstantOperandVal(1) == 1);
751    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
752           ISD::SETNE);
753    Intr = SetCC->getOperand(0).getNode();
754
755  } else {
756    // Get the target from BR if we don't negate the condition
757    BR = findUser(BRCOND, ISD::BR);
758    Target = BR->getOperand(1);
759  }
760
761  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
762
763  // Build the result and
764  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
765
766  // operands of the new intrinsic call
767  SmallVector<SDValue, 4> Ops;
768  Ops.push_back(BRCOND.getOperand(0));
769  Ops.append(Intr->op_begin() + 1, Intr->op_end());
770  Ops.push_back(Target);
771
772  // build the new intrinsic call
773  SDNode *Result = DAG.getNode(
774    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
775    DAG.getVTList(Res), Ops).getNode();
776
777  if (BR) {
778    // Give the branch instruction our target
779    SDValue Ops[] = {
780      BR->getOperand(0),
781      BRCOND.getOperand(2)
782    };
783    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
784    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
785    BR = NewBR.getNode();
786  }
787
788  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
789
790  // Copy the intrinsic results to registers
791  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
792    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
793    if (!CopyToReg)
794      continue;
795
796    Chain = DAG.getCopyToReg(
797      Chain, DL,
798      CopyToReg->getOperand(1),
799      SDValue(Result, i - 1),
800      SDValue());
801
802    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
803  }
804
805  // Remove the old intrinsic from the chain
806  DAG.ReplaceAllUsesOfValueWith(
807    SDValue(Intr, Intr->getNumValues() - 1),
808    Intr->getOperand(0));
809
810  return Chain;
811}
812
813SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
814                                             SDValue Op,
815                                             SelectionDAG &DAG) const {
816  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
817
818  if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
819    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
820
821  SDLoc DL(GSD);
822  const GlobalValue *GV = GSD->getGlobal();
823  MVT PtrVT = getPointerTy(GSD->getAddressSpace());
824
825  SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
826  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
827
828  SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
829                              DAG.getConstant(0, MVT::i32));
830  SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
831                              DAG.getConstant(1, MVT::i32));
832
833  SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
834                           PtrLo, GA);
835  SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
836                           PtrHi, DAG.getConstant(0, MVT::i32),
837                           SDValue(Lo.getNode(), 1));
838  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
839}
840
841SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
842                                                  SelectionDAG &DAG) const {
843  MachineFunction &MF = DAG.getMachineFunction();
844  const SIRegisterInfo *TRI =
845      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
846
847  EVT VT = Op.getValueType();
848  SDLoc DL(Op);
849  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
850
851  switch (IntrinsicID) {
852  case Intrinsic::r600_read_ngroups_x:
853    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
854                          SI::KernelInputOffsets::NGROUPS_X, false);
855  case Intrinsic::r600_read_ngroups_y:
856    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
857                          SI::KernelInputOffsets::NGROUPS_Y, false);
858  case Intrinsic::r600_read_ngroups_z:
859    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
860                          SI::KernelInputOffsets::NGROUPS_Z, false);
861  case Intrinsic::r600_read_global_size_x:
862    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
863                          SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
864  case Intrinsic::r600_read_global_size_y:
865    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
866                          SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
867  case Intrinsic::r600_read_global_size_z:
868    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
869                          SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
870  case Intrinsic::r600_read_local_size_x:
871    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
872                          SI::KernelInputOffsets::LOCAL_SIZE_X, false);
873  case Intrinsic::r600_read_local_size_y:
874    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
875                          SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
876  case Intrinsic::r600_read_local_size_z:
877    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
878                          SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
879
880  case Intrinsic::AMDGPU_read_workdim:
881    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
882                          MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
883                          false);
884
885  case Intrinsic::r600_read_tgid_x:
886    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
887      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
888  case Intrinsic::r600_read_tgid_y:
889    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
890      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
891  case Intrinsic::r600_read_tgid_z:
892    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
893      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
894  case Intrinsic::r600_read_tidig_x:
895    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
896      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
897  case Intrinsic::r600_read_tidig_y:
898    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
899      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
900  case Intrinsic::r600_read_tidig_z:
901    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
902      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
903  case AMDGPUIntrinsic::SI_load_const: {
904    SDValue Ops[] = {
905      Op.getOperand(1),
906      Op.getOperand(2)
907    };
908
909    MachineMemOperand *MMO = MF.getMachineMemOperand(
910      MachinePointerInfo(),
911      MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
912      VT.getStoreSize(), 4);
913    return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
914                                   Op->getVTList(), Ops, VT, MMO);
915  }
916  case AMDGPUIntrinsic::SI_sample:
917    return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
918  case AMDGPUIntrinsic::SI_sampleb:
919    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
920  case AMDGPUIntrinsic::SI_sampled:
921    return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
922  case AMDGPUIntrinsic::SI_samplel:
923    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
924  case AMDGPUIntrinsic::SI_vs_load_input:
925    return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
926                       Op.getOperand(1),
927                       Op.getOperand(2),
928                       Op.getOperand(3));
929
930  case AMDGPUIntrinsic::AMDGPU_fract:
931  case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
932    return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
933                       DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
934
935  default:
936    return AMDGPUTargetLowering::LowerOperation(Op, DAG);
937  }
938}
939
940SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
941                                              SelectionDAG &DAG) const {
942  MachineFunction &MF = DAG.getMachineFunction();
943  SDValue Chain = Op.getOperand(0);
944  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
945
946  switch (IntrinsicID) {
947  case AMDGPUIntrinsic::SI_tbuffer_store: {
948    SDLoc DL(Op);
949    SDValue Ops[] = {
950      Chain,
951      Op.getOperand(2),
952      Op.getOperand(3),
953      Op.getOperand(4),
954      Op.getOperand(5),
955      Op.getOperand(6),
956      Op.getOperand(7),
957      Op.getOperand(8),
958      Op.getOperand(9),
959      Op.getOperand(10),
960      Op.getOperand(11),
961      Op.getOperand(12),
962      Op.getOperand(13),
963      Op.getOperand(14)
964    };
965
966    EVT VT = Op.getOperand(3).getValueType();
967
968    MachineMemOperand *MMO = MF.getMachineMemOperand(
969      MachinePointerInfo(),
970      MachineMemOperand::MOStore,
971      VT.getStoreSize(), 4);
972    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
973                                   Op->getVTList(), Ops, VT, MMO);
974  }
975  default:
976    return SDValue();
977  }
978}
979
980SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
981  SDLoc DL(Op);
982  LoadSDNode *Load = cast<LoadSDNode>(Op);
983
984  if (Op.getValueType().isVector()) {
985    assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
986           "Custom lowering for non-i32 vectors hasn't been implemented.");
987    unsigned NumElements = Op.getValueType().getVectorNumElements();
988    assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
989    switch (Load->getAddressSpace()) {
990      default: break;
991      case AMDGPUAS::GLOBAL_ADDRESS:
992      case AMDGPUAS::PRIVATE_ADDRESS:
993        // v4 loads are supported for private and global memory.
994        if (NumElements <= 4)
995          break;
996        // fall-through
997      case AMDGPUAS::LOCAL_ADDRESS:
998        return ScalarizeVectorLoad(Op, DAG);
999    }
1000  }
1001
1002  return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
1003}
1004
1005SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
1006                                               const SDValue &Op,
1007                                               SelectionDAG &DAG) const {
1008  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
1009                     Op.getOperand(2),
1010                     Op.getOperand(3),
1011                     Op.getOperand(4));
1012}
1013
1014SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1015  if (Op.getValueType() != MVT::i64)
1016    return SDValue();
1017
1018  SDLoc DL(Op);
1019  SDValue Cond = Op.getOperand(0);
1020
1021  SDValue Zero = DAG.getConstant(0, MVT::i32);
1022  SDValue One = DAG.getConstant(1, MVT::i32);
1023
1024  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1025  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1026
1027  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1028  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1029
1030  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1031
1032  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1033  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1034
1035  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1036
1037  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1038  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1039}
1040
1041// Catch division cases where we can use shortcuts with rcp and rsq
1042// instructions.
1043SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1044  SDLoc SL(Op);
1045  SDValue LHS = Op.getOperand(0);
1046  SDValue RHS = Op.getOperand(1);
1047  EVT VT = Op.getValueType();
1048  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1049
1050  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1051    if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1052        CLHS->isExactlyValue(1.0)) {
1053      // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1054      // the CI documentation has a worst case error of 1 ulp.
1055      // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1056      // use it as long as we aren't trying to use denormals.
1057
1058      // 1.0 / sqrt(x) -> rsq(x)
1059      //
1060      // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1061      // error seems really high at 2^29 ULP.
1062      if (RHS.getOpcode() == ISD::FSQRT)
1063        return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1064
1065      // 1.0 / x -> rcp(x)
1066      return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1067    }
1068  }
1069
1070  if (Unsafe) {
1071    // Turn into multiply by the reciprocal.
1072    // x / y -> x * (1.0 / y)
1073    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1074    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
1075  }
1076
1077  return SDValue();
1078}
1079
1080SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1081  SDValue FastLowered = LowerFastFDIV(Op, DAG);
1082  if (FastLowered.getNode())
1083    return FastLowered;
1084
1085  // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1086  // selection error for now rather than do something incorrect.
1087  if (Subtarget->hasFP32Denormals())
1088    return SDValue();
1089
1090  SDLoc SL(Op);
1091  SDValue LHS = Op.getOperand(0);
1092  SDValue RHS = Op.getOperand(1);
1093
1094  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1095
1096  const APFloat K0Val(BitsToFloat(0x6f800000));
1097  const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
1098
1099  const APFloat K1Val(BitsToFloat(0x2f800000));
1100  const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
1101
1102  const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
1103
1104  EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
1105
1106  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1107
1108  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1109
1110  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1111
1112  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1113
1114  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1115
1116  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1117}
1118
1119SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1120  if (DAG.getTarget().Options.UnsafeFPMath)
1121    return LowerFastFDIV(Op, DAG);
1122
1123  SDLoc SL(Op);
1124  SDValue X = Op.getOperand(0);
1125  SDValue Y = Op.getOperand(1);
1126
1127  const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1128
1129  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1130
1131  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1132
1133  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1134
1135  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1136
1137  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1138
1139  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1140
1141  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1142
1143  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1144
1145  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1146  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1147
1148  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1149                             NegDivScale0, Mul, DivScale1);
1150
1151  SDValue Scale;
1152
1153  if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1154    // Workaround a hardware bug on SI where the condition output from div_scale
1155    // is not usable.
1156
1157    const SDValue Hi = DAG.getConstant(1, MVT::i32);
1158
1159    // Figure out if the scale to use for div_fmas.
1160    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1161    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1162    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1163    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1164
1165    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1166    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1167
1168    SDValue Scale0Hi
1169      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1170    SDValue Scale1Hi
1171      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
1172
1173    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
1174    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
1175    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
1176  } else {
1177    Scale = DivScale1.getValue(1);
1178  }
1179
1180  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
1181                             Fma4, Fma3, Mul, Scale);
1182
1183  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
1184}
1185
1186SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1187  EVT VT = Op.getValueType();
1188
1189  if (VT == MVT::f32)
1190    return LowerFDIV32(Op, DAG);
1191
1192  if (VT == MVT::f64)
1193    return LowerFDIV64(Op, DAG);
1194
1195  llvm_unreachable("Unexpected type for fdiv");
1196}
1197
1198SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1199  SDLoc DL(Op);
1200  StoreSDNode *Store = cast<StoreSDNode>(Op);
1201  EVT VT = Store->getMemoryVT();
1202
1203  // These stores are legal.
1204  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1205    if (VT.isVector() && VT.getVectorNumElements() > 4)
1206      return ScalarizeVectorStore(Op, DAG);
1207    return SDValue();
1208  }
1209
1210  SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1211  if (Ret.getNode())
1212    return Ret;
1213
1214  if (VT.isVector() && VT.getVectorNumElements() >= 8)
1215      return ScalarizeVectorStore(Op, DAG);
1216
1217  if (VT == MVT::i1)
1218    return DAG.getTruncStore(Store->getChain(), DL,
1219                        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1220                        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1221
1222  return SDValue();
1223}
1224
1225SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1226  EVT VT = Op.getValueType();
1227  SDValue Arg = Op.getOperand(0);
1228  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
1229        DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
1230          DAG.getConstantFP(0.5 / M_PI, VT)));
1231
1232  switch (Op.getOpcode()) {
1233  case ISD::FCOS:
1234    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1235  case ISD::FSIN:
1236    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1237  default:
1238    llvm_unreachable("Wrong trig opcode");
1239  }
1240}
1241
1242//===----------------------------------------------------------------------===//
1243// Custom DAG optimizations
1244//===----------------------------------------------------------------------===//
1245
1246SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1247                                                     DAGCombinerInfo &DCI) const {
1248  EVT VT = N->getValueType(0);
1249  EVT ScalarVT = VT.getScalarType();
1250  if (ScalarVT != MVT::f32)
1251    return SDValue();
1252
1253  SelectionDAG &DAG = DCI.DAG;
1254  SDLoc DL(N);
1255
1256  SDValue Src = N->getOperand(0);
1257  EVT SrcVT = Src.getValueType();
1258
1259  // TODO: We could try to match extracting the higher bytes, which would be
1260  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1261  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1262  // about in practice.
1263  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1264    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1265      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1266      DCI.AddToWorklist(Cvt.getNode());
1267      return Cvt;
1268    }
1269  }
1270
1271  // We are primarily trying to catch operations on illegal vector types
1272  // before they are expanded.
1273  // For scalars, we can use the more flexible method of checking masked bits
1274  // after legalization.
1275  if (!DCI.isBeforeLegalize() ||
1276      !SrcVT.isVector() ||
1277      SrcVT.getVectorElementType() != MVT::i8) {
1278    return SDValue();
1279  }
1280
1281  assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1282
1283  // Weird sized vectors are a pain to handle, but we know 3 is really the same
1284  // size as 4.
1285  unsigned NElts = SrcVT.getVectorNumElements();
1286  if (!SrcVT.isSimple() && NElts != 3)
1287    return SDValue();
1288
1289  // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1290  // prevent a mess from expanding to v4i32 and repacking.
1291  if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1292    EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1293    EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1294    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1295    LoadSDNode *Load = cast<LoadSDNode>(Src);
1296
1297    unsigned AS = Load->getAddressSpace();
1298    unsigned Align = Load->getAlignment();
1299    Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1300    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
1301
1302    // Don't try to replace the load if we have to expand it due to alignment
1303    // problems. Otherwise we will end up scalarizing the load, and trying to
1304    // repack into the vector for no real reason.
1305    if (Align < ABIAlignment &&
1306        !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1307      return SDValue();
1308    }
1309
1310    SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1311                                     Load->getChain(),
1312                                     Load->getBasePtr(),
1313                                     LoadVT,
1314                                     Load->getMemOperand());
1315
1316    // Make sure successors of the original load stay after it by updating
1317    // them to use the new Chain.
1318    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1319
1320    SmallVector<SDValue, 4> Elts;
1321    if (RegVT.isVector())
1322      DAG.ExtractVectorElements(NewLoad, Elts);
1323    else
1324      Elts.push_back(NewLoad);
1325
1326    SmallVector<SDValue, 4> Ops;
1327
1328    unsigned EltIdx = 0;
1329    for (SDValue Elt : Elts) {
1330      unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1331      for (unsigned I = 0; I < ComponentsInElt; ++I) {
1332        unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1333        SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1334        DCI.AddToWorklist(Cvt.getNode());
1335        Ops.push_back(Cvt);
1336      }
1337
1338      ++EltIdx;
1339    }
1340
1341    assert(Ops.size() == NElts);
1342
1343    return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1344  }
1345
1346  return SDValue();
1347}
1348
1349/// \brief Return true if the given offset Size in bytes can be folded into
1350/// the immediate offsets of a memory instruction for the given address space.
1351static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
1352                          const AMDGPUSubtarget &STI) {
1353  switch (AS) {
1354  case AMDGPUAS::GLOBAL_ADDRESS: {
1355    // MUBUF instructions a 12-bit offset in bytes.
1356    return isUInt<12>(OffsetSize);
1357  }
1358  case AMDGPUAS::CONSTANT_ADDRESS: {
1359    // SMRD instructions have an 8-bit offset in dwords on SI and
1360    // a 20-bit offset in bytes on VI.
1361    if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1362      return isUInt<20>(OffsetSize);
1363    else
1364      return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
1365  }
1366  case AMDGPUAS::LOCAL_ADDRESS:
1367  case AMDGPUAS::REGION_ADDRESS: {
1368    // The single offset versions have a 16-bit offset in bytes.
1369    return isUInt<16>(OffsetSize);
1370  }
1371  case AMDGPUAS::PRIVATE_ADDRESS:
1372  // Indirect register addressing does not use any offsets.
1373  default:
1374    return 0;
1375  }
1376}
1377
1378// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1379
1380// This is a variant of
1381// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1382//
1383// The normal DAG combiner will do this, but only if the add has one use since
1384// that would increase the number of instructions.
1385//
1386// This prevents us from seeing a constant offset that can be folded into a
1387// memory instruction's addressing mode. If we know the resulting add offset of
1388// a pointer can be folded into an addressing offset, we can replace the pointer
1389// operand with the add of new constant offset. This eliminates one of the uses,
1390// and may allow the remaining use to also be simplified.
1391//
1392SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1393                                               unsigned AddrSpace,
1394                                               DAGCombinerInfo &DCI) const {
1395  SDValue N0 = N->getOperand(0);
1396  SDValue N1 = N->getOperand(1);
1397
1398  if (N0.getOpcode() != ISD::ADD)
1399    return SDValue();
1400
1401  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1402  if (!CN1)
1403    return SDValue();
1404
1405  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1406  if (!CAdd)
1407    return SDValue();
1408
1409  // If the resulting offset is too large, we can't fold it into the addressing
1410  // mode offset.
1411  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1412  if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
1413    return SDValue();
1414
1415  SelectionDAG &DAG = DCI.DAG;
1416  SDLoc SL(N);
1417  EVT VT = N->getValueType(0);
1418
1419  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1420  SDValue COffset = DAG.getConstant(Offset, MVT::i32);
1421
1422  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1423}
1424
1425SDValue SITargetLowering::performAndCombine(SDNode *N,
1426                                            DAGCombinerInfo &DCI) const {
1427  if (DCI.isBeforeLegalize())
1428    return SDValue();
1429
1430  SelectionDAG &DAG = DCI.DAG;
1431
1432  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1433  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1434  SDValue LHS = N->getOperand(0);
1435  SDValue RHS = N->getOperand(1);
1436
1437  if (LHS.getOpcode() == ISD::SETCC &&
1438      RHS.getOpcode() == ISD::SETCC) {
1439    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1440    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1441
1442    SDValue X = LHS.getOperand(0);
1443    SDValue Y = RHS.getOperand(0);
1444    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1445      return SDValue();
1446
1447    if (LCC == ISD::SETO) {
1448      if (X != LHS.getOperand(1))
1449        return SDValue();
1450
1451      if (RCC == ISD::SETUNE) {
1452        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1453        if (!C1 || !C1->isInfinity() || C1->isNegative())
1454          return SDValue();
1455
1456        const uint32_t Mask = SIInstrFlags::N_NORMAL |
1457                              SIInstrFlags::N_SUBNORMAL |
1458                              SIInstrFlags::N_ZERO |
1459                              SIInstrFlags::P_ZERO |
1460                              SIInstrFlags::P_SUBNORMAL |
1461                              SIInstrFlags::P_NORMAL;
1462
1463        static_assert(((~(SIInstrFlags::S_NAN |
1464                          SIInstrFlags::Q_NAN |
1465                          SIInstrFlags::N_INFINITY |
1466                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1467                      "mask not equal");
1468
1469        return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
1470                           X, DAG.getConstant(Mask, MVT::i32));
1471      }
1472    }
1473  }
1474
1475  return SDValue();
1476}
1477
1478SDValue SITargetLowering::performOrCombine(SDNode *N,
1479                                           DAGCombinerInfo &DCI) const {
1480  SelectionDAG &DAG = DCI.DAG;
1481  SDValue LHS = N->getOperand(0);
1482  SDValue RHS = N->getOperand(1);
1483
1484  // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1485  if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1486      RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1487    SDValue Src = LHS.getOperand(0);
1488    if (Src != RHS.getOperand(0))
1489      return SDValue();
1490
1491    const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1492    const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1493    if (!CLHS || !CRHS)
1494      return SDValue();
1495
1496    // Only 10 bits are used.
1497    static const uint32_t MaxMask = 0x3ff;
1498
1499    uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1500    return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
1501                       Src, DAG.getConstant(NewMask, MVT::i32));
1502  }
1503
1504  return SDValue();
1505}
1506
1507SDValue SITargetLowering::performClassCombine(SDNode *N,
1508                                              DAGCombinerInfo &DCI) const {
1509  SelectionDAG &DAG = DCI.DAG;
1510  SDValue Mask = N->getOperand(1);
1511
1512  // fp_class x, 0 -> false
1513  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1514    if (CMask->isNullValue())
1515      return DAG.getConstant(0, MVT::i1);
1516  }
1517
1518  return SDValue();
1519}
1520
1521static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1522  switch (Opc) {
1523  case ISD::FMAXNUM:
1524    return AMDGPUISD::FMAX3;
1525  case AMDGPUISD::SMAX:
1526    return AMDGPUISD::SMAX3;
1527  case AMDGPUISD::UMAX:
1528    return AMDGPUISD::UMAX3;
1529  case ISD::FMINNUM:
1530    return AMDGPUISD::FMIN3;
1531  case AMDGPUISD::SMIN:
1532    return AMDGPUISD::SMIN3;
1533  case AMDGPUISD::UMIN:
1534    return AMDGPUISD::UMIN3;
1535  default:
1536    llvm_unreachable("Not a min/max opcode");
1537  }
1538}
1539
1540SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1541                                                 DAGCombinerInfo &DCI) const {
1542  SelectionDAG &DAG = DCI.DAG;
1543
1544  unsigned Opc = N->getOpcode();
1545  SDValue Op0 = N->getOperand(0);
1546  SDValue Op1 = N->getOperand(1);
1547
1548  // Only do this if the inner op has one use since this will just increases
1549  // register pressure for no benefit.
1550
1551  // max(max(a, b), c)
1552  if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1553    SDLoc DL(N);
1554    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1555                       DL,
1556                       N->getValueType(0),
1557                       Op0.getOperand(0),
1558                       Op0.getOperand(1),
1559                       Op1);
1560  }
1561
1562  // max(a, max(b, c))
1563  if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1564    SDLoc DL(N);
1565    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1566                       DL,
1567                       N->getValueType(0),
1568                       Op0,
1569                       Op1.getOperand(0),
1570                       Op1.getOperand(1));
1571  }
1572
1573  return SDValue();
1574}
1575
1576SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1577                                              DAGCombinerInfo &DCI) const {
1578  SelectionDAG &DAG = DCI.DAG;
1579  SDLoc SL(N);
1580
1581  SDValue LHS = N->getOperand(0);
1582  SDValue RHS = N->getOperand(1);
1583  EVT VT = LHS.getValueType();
1584
1585  if (VT != MVT::f32 && VT != MVT::f64)
1586    return SDValue();
1587
1588  // Match isinf pattern
1589  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1590  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1591  if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1592    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1593    if (!CRHS)
1594      return SDValue();
1595
1596    const APFloat &APF = CRHS->getValueAPF();
1597    if (APF.isInfinity() && !APF.isNegative()) {
1598      unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1599      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
1600                         LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
1601    }
1602  }
1603
1604  return SDValue();
1605}
1606
1607SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1608                                            DAGCombinerInfo &DCI) const {
1609  SelectionDAG &DAG = DCI.DAG;
1610  SDLoc DL(N);
1611
1612  switch (N->getOpcode()) {
1613  default:
1614    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1615  case ISD::SETCC:
1616    return performSetCCCombine(N, DCI);
1617  case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1618  case ISD::FMINNUM:
1619  case AMDGPUISD::SMAX:
1620  case AMDGPUISD::SMIN:
1621  case AMDGPUISD::UMAX:
1622  case AMDGPUISD::UMIN: {
1623    if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
1624        N->getValueType(0) != MVT::f64 &&
1625        getTargetMachine().getOptLevel() > CodeGenOpt::None)
1626      return performMin3Max3Combine(N, DCI);
1627    break;
1628  }
1629
1630  case AMDGPUISD::CVT_F32_UBYTE0:
1631  case AMDGPUISD::CVT_F32_UBYTE1:
1632  case AMDGPUISD::CVT_F32_UBYTE2:
1633  case AMDGPUISD::CVT_F32_UBYTE3: {
1634    unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
1635
1636    SDValue Src = N->getOperand(0);
1637    APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
1638
1639    APInt KnownZero, KnownOne;
1640    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1641                                          !DCI.isBeforeLegalizeOps());
1642    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1643    if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
1644        TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
1645      DCI.CommitTargetLoweringOpt(TLO);
1646    }
1647
1648    break;
1649  }
1650
1651  case ISD::UINT_TO_FP: {
1652    return performUCharToFloatCombine(N, DCI);
1653
1654  case ISD::FADD: {
1655    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1656      break;
1657
1658    EVT VT = N->getValueType(0);
1659    if (VT != MVT::f32)
1660      break;
1661
1662    // Only do this if we are not trying to support denormals. v_mad_f32 does
1663    // not support denormals ever.
1664    if (Subtarget->hasFP32Denormals())
1665      break;
1666
1667    SDValue LHS = N->getOperand(0);
1668    SDValue RHS = N->getOperand(1);
1669
1670    // These should really be instruction patterns, but writing patterns with
1671    // source modiifiers is a pain.
1672
1673    // fadd (fadd (a, a), b) -> mad 2.0, a, b
1674    if (LHS.getOpcode() == ISD::FADD) {
1675      SDValue A = LHS.getOperand(0);
1676      if (A == LHS.getOperand(1)) {
1677        const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1678        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
1679      }
1680    }
1681
1682    // fadd (b, fadd (a, a)) -> mad 2.0, a, b
1683    if (RHS.getOpcode() == ISD::FADD) {
1684      SDValue A = RHS.getOperand(0);
1685      if (A == RHS.getOperand(1)) {
1686        const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1687        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
1688      }
1689    }
1690
1691    return SDValue();
1692  }
1693  case ISD::FSUB: {
1694    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1695      break;
1696
1697    EVT VT = N->getValueType(0);
1698
1699    // Try to get the fneg to fold into the source modifier. This undoes generic
1700    // DAG combines and folds them into the mad.
1701    //
1702    // Only do this if we are not trying to support denormals. v_mad_f32 does
1703    // not support denormals ever.
1704    if (VT == MVT::f32 &&
1705        !Subtarget->hasFP32Denormals()) {
1706      SDValue LHS = N->getOperand(0);
1707      SDValue RHS = N->getOperand(1);
1708      if (LHS.getOpcode() == ISD::FADD) {
1709        // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
1710
1711        SDValue A = LHS.getOperand(0);
1712        if (A == LHS.getOperand(1)) {
1713          const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1714          SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
1715
1716          return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
1717        }
1718      }
1719
1720      if (RHS.getOpcode() == ISD::FADD) {
1721        // (fsub c, (fadd a, a)) -> mad -2.0, a, c
1722
1723        SDValue A = RHS.getOperand(0);
1724        if (A == RHS.getOperand(1)) {
1725          const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
1726          return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
1727        }
1728      }
1729
1730      return SDValue();
1731    }
1732
1733    break;
1734  }
1735  }
1736  case ISD::LOAD:
1737  case ISD::STORE:
1738  case ISD::ATOMIC_LOAD:
1739  case ISD::ATOMIC_STORE:
1740  case ISD::ATOMIC_CMP_SWAP:
1741  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1742  case ISD::ATOMIC_SWAP:
1743  case ISD::ATOMIC_LOAD_ADD:
1744  case ISD::ATOMIC_LOAD_SUB:
1745  case ISD::ATOMIC_LOAD_AND:
1746  case ISD::ATOMIC_LOAD_OR:
1747  case ISD::ATOMIC_LOAD_XOR:
1748  case ISD::ATOMIC_LOAD_NAND:
1749  case ISD::ATOMIC_LOAD_MIN:
1750  case ISD::ATOMIC_LOAD_MAX:
1751  case ISD::ATOMIC_LOAD_UMIN:
1752  case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
1753    if (DCI.isBeforeLegalize())
1754      break;
1755
1756    MemSDNode *MemNode = cast<MemSDNode>(N);
1757    SDValue Ptr = MemNode->getBasePtr();
1758
1759    // TODO: We could also do this for multiplies.
1760    unsigned AS = MemNode->getAddressSpace();
1761    if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
1762      SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
1763      if (NewPtr) {
1764        SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
1765
1766        NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
1767        return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
1768      }
1769    }
1770    break;
1771  }
1772  case ISD::AND:
1773    return performAndCombine(N, DCI);
1774  case ISD::OR:
1775    return performOrCombine(N, DCI);
1776  case AMDGPUISD::FP_CLASS:
1777    return performClassCombine(N, DCI);
1778  }
1779  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1780}
1781
1782/// \brief Analyze the possible immediate value Op
1783///
1784/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
1785/// and the immediate value if it's a literal immediate
1786int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
1787
1788  const SIInstrInfo *TII =
1789      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1790
1791  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
1792    if (TII->isInlineConstant(Node->getAPIntValue()))
1793      return 0;
1794
1795    uint64_t Val = Node->getZExtValue();
1796    return isUInt<32>(Val) ? Val : -1;
1797  }
1798
1799  if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
1800    if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
1801      return 0;
1802
1803    if (Node->getValueType(0) == MVT::f32)
1804      return FloatToBits(Node->getValueAPF().convertToFloat());
1805
1806    return -1;
1807  }
1808
1809  return -1;
1810}
1811
1812/// \brief Helper function for adjustWritemask
1813static unsigned SubIdx2Lane(unsigned Idx) {
1814  switch (Idx) {
1815  default: return 0;
1816  case AMDGPU::sub0: return 0;
1817  case AMDGPU::sub1: return 1;
1818  case AMDGPU::sub2: return 2;
1819  case AMDGPU::sub3: return 3;
1820  }
1821}
1822
1823/// \brief Adjust the writemask of MIMG instructions
1824void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
1825                                       SelectionDAG &DAG) const {
1826  SDNode *Users[4] = { };
1827  unsigned Lane = 0;
1828  unsigned OldDmask = Node->getConstantOperandVal(0);
1829  unsigned NewDmask = 0;
1830
1831  // Try to figure out the used register components
1832  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
1833       I != E; ++I) {
1834
1835    // Abort if we can't understand the usage
1836    if (!I->isMachineOpcode() ||
1837        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
1838      return;
1839
1840    // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
1841    // Note that subregs are packed, i.e. Lane==0 is the first bit set
1842    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
1843    // set, etc.
1844    Lane = SubIdx2Lane(I->getConstantOperandVal(1));
1845
1846    // Set which texture component corresponds to the lane.
1847    unsigned Comp;
1848    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
1849      assert(Dmask);
1850      Comp = countTrailingZeros(Dmask);
1851      Dmask &= ~(1 << Comp);
1852    }
1853
1854    // Abort if we have more than one user per component
1855    if (Users[Lane])
1856      return;
1857
1858    Users[Lane] = *I;
1859    NewDmask |= 1 << Comp;
1860  }
1861
1862  // Abort if there's no change
1863  if (NewDmask == OldDmask)
1864    return;
1865
1866  // Adjust the writemask in the node
1867  std::vector<SDValue> Ops;
1868  Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
1869  Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
1870  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
1871
1872  // If we only got one lane, replace it with a copy
1873  // (if NewDmask has only one bit set...)
1874  if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
1875    SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
1876    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1877                                      SDLoc(), Users[Lane]->getValueType(0),
1878                                      SDValue(Node, 0), RC);
1879    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
1880    return;
1881  }
1882
1883  // Update the users of the node with the new indices
1884  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
1885
1886    SDNode *User = Users[i];
1887    if (!User)
1888      continue;
1889
1890    SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
1891    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
1892
1893    switch (Idx) {
1894    default: break;
1895    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
1896    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
1897    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
1898    }
1899  }
1900}
1901
1902/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
1903/// with frame index operands.
1904/// LLVM assumes that inputs are to these instructions are registers.
1905void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
1906                                                     SelectionDAG &DAG) const {
1907
1908  SmallVector<SDValue, 8> Ops;
1909  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
1910    if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
1911      Ops.push_back(Node->getOperand(i));
1912      continue;
1913    }
1914
1915    SDLoc DL(Node);
1916    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
1917                                     Node->getOperand(i).getValueType(),
1918                                     Node->getOperand(i)), 0));
1919  }
1920
1921  DAG.UpdateNodeOperands(Node, Ops);
1922}
1923
1924/// \brief Fold the instructions after selecting them.
1925SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
1926                                          SelectionDAG &DAG) const {
1927  const SIInstrInfo *TII =
1928      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1929
1930  if (TII->isMIMG(Node->getMachineOpcode()))
1931    adjustWritemask(Node, DAG);
1932
1933  if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
1934      Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
1935    legalizeTargetIndependentNode(Node, DAG);
1936    return Node;
1937  }
1938  return Node;
1939}
1940
1941/// \brief Assign the register class depending on the number of
1942/// bits set in the writemask
1943void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
1944                                                     SDNode *Node) const {
1945  const SIInstrInfo *TII =
1946      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1947
1948  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1949  TII->legalizeOperands(MI);
1950
1951  if (TII->isMIMG(MI->getOpcode())) {
1952    unsigned VReg = MI->getOperand(0).getReg();
1953    unsigned Writemask = MI->getOperand(1).getImm();
1954    unsigned BitsSet = 0;
1955    for (unsigned i = 0; i < 4; ++i)
1956      BitsSet += Writemask & (1 << i) ? 1 : 0;
1957
1958    const TargetRegisterClass *RC;
1959    switch (BitsSet) {
1960    default: return;
1961    case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
1962    case 2:  RC = &AMDGPU::VReg_64RegClass; break;
1963    case 3:  RC = &AMDGPU::VReg_96RegClass; break;
1964    }
1965
1966    unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
1967    MI->setDesc(TII->get(NewOpcode));
1968    MRI.setRegClass(VReg, RC);
1969    return;
1970  }
1971
1972  // Replace unused atomics with the no return version.
1973  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
1974  if (NoRetAtomicOp != -1) {
1975    if (!Node->hasAnyUseOfValue(0)) {
1976      MI->setDesc(TII->get(NoRetAtomicOp));
1977      MI->RemoveOperand(0);
1978    }
1979
1980    return;
1981  }
1982}
1983
1984static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
1985  SDValue K = DAG.getTargetConstant(Val, MVT::i32);
1986  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
1987}
1988
1989MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
1990                                                SDLoc DL,
1991                                                SDValue Ptr) const {
1992  const SIInstrInfo *TII =
1993      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1994#if 1
1995    // XXX - Workaround for moveToVALU not handling different register class
1996    // inserts for REG_SEQUENCE.
1997
1998    // Build the half of the subregister with the constants.
1999    const SDValue Ops0[] = {
2000      DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
2001      buildSMovImm32(DAG, DL, 0),
2002      DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
2003      buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
2004      DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
2005    };
2006
2007    SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
2008                                                  MVT::v2i32, Ops0), 0);
2009
2010    // Combine the constants and the pointer.
2011    const SDValue Ops1[] = {
2012      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2013      Ptr,
2014      DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2015      SubRegHi,
2016      DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
2017    };
2018
2019    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2020#else
2021    const SDValue Ops[] = {
2022      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2023      Ptr,
2024      DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2025      buildSMovImm32(DAG, DL, 0),
2026      DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2027      buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
2028      DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2029    };
2030
2031    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2032
2033#endif
2034}
2035
2036/// \brief Return a resource descriptor with the 'Add TID' bit enabled
2037///        The TID (Thread ID) is multipled by the stride value (bits [61:48]
2038///        of the resource descriptor) to create an offset, which is added to the
2039///        resource ponter.
2040MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2041                                           SDLoc DL,
2042                                           SDValue Ptr,
2043                                           uint32_t RsrcDword1,
2044                                           uint64_t RsrcDword2And3) const {
2045  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2046  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2047  if (RsrcDword1) {
2048    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2049                                     DAG.getConstant(RsrcDword1, MVT::i32)), 0);
2050  }
2051
2052  SDValue DataLo = buildSMovImm32(DAG, DL,
2053                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2054  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2055
2056  const SDValue Ops[] = {
2057    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2058    PtrLo,
2059    DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
2060    PtrHi,
2061    DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
2062    DataLo,
2063    DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2064    DataHi,
2065    DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2066  };
2067
2068  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2069}
2070
2071MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
2072                                                  SDLoc DL,
2073                                                  SDValue Ptr) const {
2074  const SIInstrInfo *TII =
2075      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2076  uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
2077                  0xffffffff; // Size
2078
2079  return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
2080}
2081
2082SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2083                                               const TargetRegisterClass *RC,
2084                                               unsigned Reg, EVT VT) const {
2085  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2086
2087  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2088                            cast<RegisterSDNode>(VReg)->getReg(), VT);
2089}
2090
2091//===----------------------------------------------------------------------===//
2092//                         SI Inline Assembly Support
2093//===----------------------------------------------------------------------===//
2094
2095std::pair<unsigned, const TargetRegisterClass *>
2096SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2097                                               const std::string &Constraint,
2098                                               MVT VT) const {
2099  if (Constraint == "r") {
2100    switch(VT.SimpleTy) {
2101      default: llvm_unreachable("Unhandled type for 'r' inline asm constraint");
2102      case MVT::i64:
2103        return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
2104      case MVT::i32:
2105        return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
2106    }
2107  }
2108
2109  if (Constraint.size() > 1) {
2110    const TargetRegisterClass *RC = nullptr;
2111    if (Constraint[1] == 'v') {
2112      RC = &AMDGPU::VGPR_32RegClass;
2113    } else if (Constraint[1] == 's') {
2114      RC = &AMDGPU::SGPR_32RegClass;
2115    }
2116
2117    if (RC) {
2118      unsigned Idx = std::atoi(Constraint.substr(2).c_str());
2119      if (Idx < RC->getNumRegs())
2120        return std::make_pair(RC->getRegister(Idx), RC);
2121    }
2122  }
2123  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2124}
2125