1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15  : AsmOperandClass {
16  let Name = name;
17  let RenderMethod = "addImmOperands";
18}
19class ImmediateTLSAsmOperand<string name>
20  : AsmOperandClass {
21  let Name = name;
22  let RenderMethod = "addImmTLSOperands";
23}
24
25// Constructs both a DAG pattern and instruction operand for an immediate
26// of type VT.  PRED returns true if a node is acceptable and XFORM returns
27// the operand value associated with the node.  ASMOP is the name of the
28// associated asm operand, and also forms the basis of the asm print method.
29class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
30  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
31  let PrintMethod = "print"##asmop##"Operand";
32  let DecoderMethod = "decode"##asmop##"Operand";
33  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
34}
35
36// Constructs an asm operand for a PC-relative address.  SIZE says how
37// many bits there are.
38class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
39  let PredicateMethod = "isImm";
40  let ParserMethod = "parsePCRel"##size;
41}
42class PCRelTLSAsmOperand<string size>
43  : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
44  let PredicateMethod = "isImmTLS";
45  let ParserMethod = "parsePCRelTLS"##size;
46}
47
48// Constructs an operand for a PC-relative address with address type VT.
49// ASMOP is the associated asm operand.
50class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
51  let PrintMethod = "printPCRelOperand";
52  let ParserMatchClass = asmop;
53}
54class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
55  let PrintMethod = "printPCRelTLSOperand";
56  let ParserMatchClass = asmop;
57}
58
59// Constructs both a DAG pattern and instruction operand for a PC-relative
60// address with address size VT.  SELF is the name of the operand and
61// ASMOP is the associated asm operand.
62class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
63  : ComplexPattern<vt, 1, "selectPCRelAddress",
64                   [z_pcrel_wrapper, z_pcrel_offset]>,
65    PCRelOperand<vt, asmop> {
66  let MIOperandInfo = (ops !cast<Operand>(self));
67}
68
69// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
70// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
71// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
72// is "".
73class AddressAsmOperand<string format, string bitsize, string dispsize,
74                        string length = "">
75  : AsmOperandClass {
76  let Name = format##bitsize##"Disp"##dispsize##length;
77  let ParserMethod = "parse"##format##bitsize;
78  let RenderMethod = "add"##format##"Operands";
79}
80
81// Constructs both a DAG pattern and instruction operand for an addressing mode.
82// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
83// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
84// (base register, displacement, etc.).  SELTYPE is the type of the memory
85// operand for selection purposes; sometimes we want different selection
86// choices for the same underlying addressing mode.  SUFFIX is similarly
87// a suffix appended to the displacement for selection purposes;
88// e.g. we want to reject small 20-bit displacements if a 12-bit form
89// also exists, but we want to accept them otherwise.
90class AddressingMode<string seltype, string bitsize, string dispsize,
91                     string suffix, string length, int numops, string format,
92                     dag operands>
93  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
94                   "select"##seltype##dispsize##suffix##length,
95                   [add, sub, or, frameindex, z_adjdynalloc]>,
96    Operand<!cast<ValueType>("i"##bitsize)> {
97  let PrintMethod = "print"##format##"Operand";
98  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
99  let DecoderMethod =
100    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
101  let MIOperandInfo = operands;
102  let ParserMatchClass =
103    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
104}
105
106// An addressing mode with a base and displacement but no index.
107class BDMode<string type, string bitsize, string dispsize, string suffix>
108  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
109                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
110                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
111
112// An addressing mode with a base, displacement and index.
113class BDXMode<string type, string bitsize, string dispsize, string suffix>
114  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
115                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
116                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
117                        !cast<RegisterOperand>("ADDR"##bitsize))>;
118
119// A BDMode paired with an immediate length operand of LENSIZE bits.
120class BDLMode<string type, string bitsize, string dispsize, string suffix,
121              string lensize>
122  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
123                   "BDLAddr",
124                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
125                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
126                        !cast<Immediate>("imm"##bitsize))>;
127
128//===----------------------------------------------------------------------===//
129// Extracting immediate operands from nodes
130// These all create MVT::i64 nodes to ensure the value is not sign-extended
131// when converted from an SDNode to a MachineOperand later on.
132//===----------------------------------------------------------------------===//
133
134// Bits 0-15 (counting from the lsb).
135def LL16 : SDNodeXForm<imm, [{
136  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
137  return CurDAG->getTargetConstant(Value, MVT::i64);
138}]>;
139
140// Bits 16-31 (counting from the lsb).
141def LH16 : SDNodeXForm<imm, [{
142  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
143  return CurDAG->getTargetConstant(Value, MVT::i64);
144}]>;
145
146// Bits 32-47 (counting from the lsb).
147def HL16 : SDNodeXForm<imm, [{
148  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
149  return CurDAG->getTargetConstant(Value, MVT::i64);
150}]>;
151
152// Bits 48-63 (counting from the lsb).
153def HH16 : SDNodeXForm<imm, [{
154  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
155  return CurDAG->getTargetConstant(Value, MVT::i64);
156}]>;
157
158// Low 32 bits.
159def LF32 : SDNodeXForm<imm, [{
160  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
161  return CurDAG->getTargetConstant(Value, MVT::i64);
162}]>;
163
164// High 32 bits.
165def HF32 : SDNodeXForm<imm, [{
166  uint64_t Value = N->getZExtValue() >> 32;
167  return CurDAG->getTargetConstant(Value, MVT::i64);
168}]>;
169
170// Truncate an immediate to a 8-bit signed quantity.
171def SIMM8 : SDNodeXForm<imm, [{
172  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
173}]>;
174
175// Truncate an immediate to a 8-bit unsigned quantity.
176def UIMM8 : SDNodeXForm<imm, [{
177  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
178}]>;
179
180// Truncate an immediate to a 16-bit signed quantity.
181def SIMM16 : SDNodeXForm<imm, [{
182  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
183}]>;
184
185// Truncate an immediate to a 16-bit unsigned quantity.
186def UIMM16 : SDNodeXForm<imm, [{
187  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
188}]>;
189
190// Truncate an immediate to a 32-bit signed quantity.
191def SIMM32 : SDNodeXForm<imm, [{
192  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
193}]>;
194
195// Truncate an immediate to a 32-bit unsigned quantity.
196def UIMM32 : SDNodeXForm<imm, [{
197  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
198}]>;
199
200// Negate and then truncate an immediate to a 32-bit unsigned quantity.
201def NEGIMM32 : SDNodeXForm<imm, [{
202  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
203}]>;
204
205//===----------------------------------------------------------------------===//
206// Immediate asm operands.
207//===----------------------------------------------------------------------===//
208
209def U4Imm  : ImmediateAsmOperand<"U4Imm">;
210def U6Imm  : ImmediateAsmOperand<"U6Imm">;
211def S8Imm  : ImmediateAsmOperand<"S8Imm">;
212def U8Imm  : ImmediateAsmOperand<"U8Imm">;
213def S16Imm : ImmediateAsmOperand<"S16Imm">;
214def U16Imm : ImmediateAsmOperand<"U16Imm">;
215def S32Imm : ImmediateAsmOperand<"S32Imm">;
216def U32Imm : ImmediateAsmOperand<"U32Imm">;
217
218//===----------------------------------------------------------------------===//
219// i32 immediates
220//===----------------------------------------------------------------------===//
221
222// Immediates for the lower and upper 16 bits of an i32, with the other
223// bits of the i32 being zero.
224def imm32ll16 : Immediate<i32, [{
225  return SystemZ::isImmLL(N->getZExtValue());
226}], LL16, "U16Imm">;
227
228def imm32lh16 : Immediate<i32, [{
229  return SystemZ::isImmLH(N->getZExtValue());
230}], LH16, "U16Imm">;
231
232// Immediates for the lower and upper 16 bits of an i32, with the other
233// bits of the i32 being one.
234def imm32ll16c : Immediate<i32, [{
235  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
236}], LL16, "U16Imm">;
237
238def imm32lh16c : Immediate<i32, [{
239  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
240}], LH16, "U16Imm">;
241
242// Short immediates
243def imm32zx4 : Immediate<i32, [{
244  return isUInt<4>(N->getZExtValue());
245}], NOOP_SDNodeXForm, "U4Imm">;
246
247def imm32zx6 : Immediate<i32, [{
248  return isUInt<6>(N->getZExtValue());
249}], NOOP_SDNodeXForm, "U6Imm">;
250
251def imm32sx8 : Immediate<i32, [{
252  return isInt<8>(N->getSExtValue());
253}], SIMM8, "S8Imm">;
254
255def imm32zx8 : Immediate<i32, [{
256  return isUInt<8>(N->getZExtValue());
257}], UIMM8, "U8Imm">;
258
259def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
260
261def imm32sx16 : Immediate<i32, [{
262  return isInt<16>(N->getSExtValue());
263}], SIMM16, "S16Imm">;
264
265def imm32zx16 : Immediate<i32, [{
266  return isUInt<16>(N->getZExtValue());
267}], UIMM16, "U16Imm">;
268
269def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
270
271// Full 32-bit immediates.  we need both signed and unsigned versions
272// because the assembler is picky.  E.g. AFI requires signed operands
273// while NILF requires unsigned ones.
274def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
275def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
276
277def imm32 : ImmLeaf<i32, [{}]>;
278
279//===----------------------------------------------------------------------===//
280// 64-bit immediates
281//===----------------------------------------------------------------------===//
282
283// Immediates for 16-bit chunks of an i64, with the other bits of the
284// i32 being zero.
285def imm64ll16 : Immediate<i64, [{
286  return SystemZ::isImmLL(N->getZExtValue());
287}], LL16, "U16Imm">;
288
289def imm64lh16 : Immediate<i64, [{
290  return SystemZ::isImmLH(N->getZExtValue());
291}], LH16, "U16Imm">;
292
293def imm64hl16 : Immediate<i64, [{
294  return SystemZ::isImmHL(N->getZExtValue());
295}], HL16, "U16Imm">;
296
297def imm64hh16 : Immediate<i64, [{
298  return SystemZ::isImmHH(N->getZExtValue());
299}], HH16, "U16Imm">;
300
301// Immediates for 16-bit chunks of an i64, with the other bits of the
302// i32 being one.
303def imm64ll16c : Immediate<i64, [{
304  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
305}], LL16, "U16Imm">;
306
307def imm64lh16c : Immediate<i64, [{
308  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
309}], LH16, "U16Imm">;
310
311def imm64hl16c : Immediate<i64, [{
312  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
313}], HL16, "U16Imm">;
314
315def imm64hh16c : Immediate<i64, [{
316  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
317}], HH16, "U16Imm">;
318
319// Immediates for the lower and upper 32 bits of an i64, with the other
320// bits of the i32 being zero.
321def imm64lf32 : Immediate<i64, [{
322  return SystemZ::isImmLF(N->getZExtValue());
323}], LF32, "U32Imm">;
324
325def imm64hf32 : Immediate<i64, [{
326  return SystemZ::isImmHF(N->getZExtValue());
327}], HF32, "U32Imm">;
328
329// Immediates for the lower and upper 32 bits of an i64, with the other
330// bits of the i32 being one.
331def imm64lf32c : Immediate<i64, [{
332  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
333}], LF32, "U32Imm">;
334
335def imm64hf32c : Immediate<i64, [{
336  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
337}], HF32, "U32Imm">;
338
339// Short immediates.
340def imm64sx8 : Immediate<i64, [{
341  return isInt<8>(N->getSExtValue());
342}], SIMM8, "S8Imm">;
343
344def imm64zx8 : Immediate<i64, [{
345  return isUInt<8>(N->getSExtValue());
346}], UIMM8, "U8Imm">;
347
348def imm64sx16 : Immediate<i64, [{
349  return isInt<16>(N->getSExtValue());
350}], SIMM16, "S16Imm">;
351
352def imm64zx16 : Immediate<i64, [{
353  return isUInt<16>(N->getZExtValue());
354}], UIMM16, "U16Imm">;
355
356def imm64sx32 : Immediate<i64, [{
357  return isInt<32>(N->getSExtValue());
358}], SIMM32, "S32Imm">;
359
360def imm64zx32 : Immediate<i64, [{
361  return isUInt<32>(N->getZExtValue());
362}], UIMM32, "U32Imm">;
363
364def imm64zx32n : Immediate<i64, [{
365  return isUInt<32>(-N->getSExtValue());
366}], NEGIMM32, "U32Imm">;
367
368def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
369
370//===----------------------------------------------------------------------===//
371// Floating-point immediates
372//===----------------------------------------------------------------------===//
373
374// Floating-point zero.
375def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
376
377// Floating point negative zero.
378def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
379
380//===----------------------------------------------------------------------===//
381// Symbolic address operands
382//===----------------------------------------------------------------------===//
383
384// PC-relative asm operands.
385def PCRel16 : PCRelAsmOperand<"16">;
386def PCRel32 : PCRelAsmOperand<"32">;
387def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
388def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
389
390// PC-relative offsets of a basic block.  The offset is sign-extended
391// and multiplied by 2.
392def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
393  let EncoderMethod = "getPC16DBLEncoding";
394  let DecoderMethod = "decodePC16DBLOperand";
395}
396def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
397  let EncoderMethod = "getPC32DBLEncoding";
398  let DecoderMethod = "decodePC32DBLOperand";
399}
400
401// Variants of brtarget16/32 with an optional additional TLS symbol.
402// These are used to annotate calls to __tls_get_offset.
403def tlssym : Operand<i64> { }
404def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
405  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
406  let EncoderMethod = "getPC16DBLTLSEncoding";
407  let DecoderMethod = "decodePC16DBLOperand";
408}
409def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
410  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
411  let EncoderMethod = "getPC32DBLTLSEncoding";
412  let DecoderMethod = "decodePC32DBLOperand";
413}
414
415// A PC-relative offset of a global value.  The offset is sign-extended
416// and multiplied by 2.
417def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
418  let EncoderMethod = "getPC32DBLEncoding";
419  let DecoderMethod = "decodePC32DBLOperand";
420}
421
422//===----------------------------------------------------------------------===//
423// Addressing modes
424//===----------------------------------------------------------------------===//
425
426// 12-bit displacement operands.
427def disp12imm32 : Operand<i32>;
428def disp12imm64 : Operand<i64>;
429
430// 20-bit displacement operands.
431def disp20imm32 : Operand<i32>;
432def disp20imm64 : Operand<i64>;
433
434def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
435def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
436def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
437def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
438def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
439def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
440def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
441
442// DAG patterns and operands for addressing modes.  Each mode has
443// the form <type><range><group>[<len>] where:
444//
445// <type> is one of:
446//   shift    : base + displacement (32-bit)
447//   bdaddr   : base + displacement
448//   mviaddr  : like bdaddr, but reject cases with a natural index
449//   bdxaddr  : base + displacement + index
450//   laaddr   : like bdxaddr, but used for Load Address operations
451//   dynalloc : base + displacement + index + ADJDYNALLOC
452//   bdladdr  : base + displacement with a length field
453//
454// <range> is one of:
455//   12       : the displacement is an unsigned 12-bit value
456//   20       : the displacement is a signed 20-bit value
457//
458// <group> is one of:
459//   pair     : used when there is an equivalent instruction with the opposite
460//              range value (12 or 20)
461//   only     : used when there is no equivalent instruction with the opposite
462//              range value
463//
464// <len> is one of:
465//
466//   <empty>  : there is no length field
467//   len8     : the length field is 8 bits, with a range of [1, 0x100].
468def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
469def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
470def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
471def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
472def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
473def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
474def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
475def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
476def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
477def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
478def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
479def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
480def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
481def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
482def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
483def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
484def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
485
486//===----------------------------------------------------------------------===//
487// Miscellaneous
488//===----------------------------------------------------------------------===//
489
490// Access registers.  At present we just use them for accessing the thread
491// pointer, so we don't expose them as register to LLVM.
492def AccessReg : AsmOperandClass {
493  let Name = "AccessReg";
494  let ParserMethod = "parseAccessReg";
495}
496def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
497                           NOOP_SDNodeXForm, "AccessReg"> {
498  let ParserMatchClass = AccessReg;
499}
500
501// A 4-bit condition-code mask.
502def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
503            Operand<i32> {
504  let PrintMethod = "printCond4Operand";
505}
506