1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/ConstantRange.h"
17#include "llvm/IR/Intrinsics.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23#define DEBUG_TYPE "instcombine"
24
25static inline Value *dyn_castNotVal(Value *V) {
26  // If this is not(not(x)) don't return that this is a not: we want the two
27  // not's to be folded first.
28  if (BinaryOperator::isNot(V)) {
29    Value *Operand = BinaryOperator::getNotArgument(V);
30    if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
31      return Operand;
32  }
33
34  // Constants can be considered to be not'ed values...
35  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
36    return ConstantInt::get(C->getType(), ~C->getValue());
37  return nullptr;
38}
39
40/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
41/// predicate into a three bit mask. It also returns whether it is an ordered
42/// predicate by reference.
43static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
44  isOrdered = false;
45  switch (CC) {
46  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
47  case FCmpInst::FCMP_UNO:                   return 0;  // 000
48  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
49  case FCmpInst::FCMP_UGT:                   return 1;  // 001
50  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
51  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
52  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
53  case FCmpInst::FCMP_UGE:                   return 3;  // 011
54  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
55  case FCmpInst::FCMP_ULT:                   return 4;  // 100
56  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
57  case FCmpInst::FCMP_UNE:                   return 5;  // 101
58  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
59  case FCmpInst::FCMP_ULE:                   return 6;  // 110
60    // True -> 7
61  default:
62    // Not expecting FCMP_FALSE and FCMP_TRUE;
63    llvm_unreachable("Unexpected FCmp predicate!");
64  }
65}
66
67/// getNewICmpValue - This is the complement of getICmpCode, which turns an
68/// opcode and two operands into either a constant true or false, or a brand
69/// new ICmp instruction. The sign is passed in to determine which kind
70/// of predicate to use in the new icmp instruction.
71static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
72                              InstCombiner::BuilderTy *Builder) {
73  ICmpInst::Predicate NewPred;
74  if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
75    return NewConstant;
76  return Builder->CreateICmp(NewPred, LHS, RHS);
77}
78
79/// getFCmpValue - This is the complement of getFCmpCode, which turns an
80/// opcode and two operands into either a FCmp instruction. isordered is passed
81/// in to determine which kind of predicate to use in the new fcmp instruction.
82static Value *getFCmpValue(bool isordered, unsigned code,
83                           Value *LHS, Value *RHS,
84                           InstCombiner::BuilderTy *Builder) {
85  CmpInst::Predicate Pred;
86  switch (code) {
87  default: llvm_unreachable("Illegal FCmp code!");
88  case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
89  case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
90  case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
91  case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
92  case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
93  case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
94  case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
95  case 7:
96    if (!isordered) return ConstantInt::getTrue(LHS->getContext());
97    Pred = FCmpInst::FCMP_ORD; break;
98  }
99  return Builder->CreateFCmp(Pred, LHS, RHS);
100}
101
102/// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
103/// \param I Binary operator to transform.
104/// \return Pointer to node that must replace the original binary operator, or
105///         null pointer if no transformation was made.
106Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
107  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
108
109  // Can't do vectors.
110  if (I.getType()->isVectorTy()) return nullptr;
111
112  // Can only do bitwise ops.
113  unsigned Op = I.getOpcode();
114  if (Op != Instruction::And && Op != Instruction::Or &&
115      Op != Instruction::Xor)
116    return nullptr;
117
118  Value *OldLHS = I.getOperand(0);
119  Value *OldRHS = I.getOperand(1);
120  ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
121  ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
122  IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
123  IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
124  bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
125  bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
126
127  if (!IsBswapLHS && !IsBswapRHS)
128    return nullptr;
129
130  if (!IsBswapLHS && !ConstLHS)
131    return nullptr;
132
133  if (!IsBswapRHS && !ConstRHS)
134    return nullptr;
135
136  /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
137  /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
138  Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
139                  Builder->getInt(ConstLHS->getValue().byteSwap());
140
141  Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
142                  Builder->getInt(ConstRHS->getValue().byteSwap());
143
144  Value *BinOp = nullptr;
145  if (Op == Instruction::And)
146    BinOp = Builder->CreateAnd(NewLHS, NewRHS);
147  else if (Op == Instruction::Or)
148    BinOp = Builder->CreateOr(NewLHS, NewRHS);
149  else //if (Op == Instruction::Xor)
150    BinOp = Builder->CreateXor(NewLHS, NewRHS);
151
152  Module *M = I.getParent()->getParent()->getParent();
153  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
154  return Builder->CreateCall(F, BinOp);
155}
156
157// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
158// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
159// guaranteed to be a binary operator.
160Instruction *InstCombiner::OptAndOp(Instruction *Op,
161                                    ConstantInt *OpRHS,
162                                    ConstantInt *AndRHS,
163                                    BinaryOperator &TheAnd) {
164  Value *X = Op->getOperand(0);
165  Constant *Together = nullptr;
166  if (!Op->isShift())
167    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
168
169  switch (Op->getOpcode()) {
170  case Instruction::Xor:
171    if (Op->hasOneUse()) {
172      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
173      Value *And = Builder->CreateAnd(X, AndRHS);
174      And->takeName(Op);
175      return BinaryOperator::CreateXor(And, Together);
176    }
177    break;
178  case Instruction::Or:
179    if (Op->hasOneUse()){
180      if (Together != OpRHS) {
181        // (X | C1) & C2 --> (X | (C1&C2)) & C2
182        Value *Or = Builder->CreateOr(X, Together);
183        Or->takeName(Op);
184        return BinaryOperator::CreateAnd(Or, AndRHS);
185      }
186
187      ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
188      if (TogetherCI && !TogetherCI->isZero()){
189        // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
190        // NOTE: This reduces the number of bits set in the & mask, which
191        // can expose opportunities for store narrowing.
192        Together = ConstantExpr::getXor(AndRHS, Together);
193        Value *And = Builder->CreateAnd(X, Together);
194        And->takeName(Op);
195        return BinaryOperator::CreateOr(And, OpRHS);
196      }
197    }
198
199    break;
200  case Instruction::Add:
201    if (Op->hasOneUse()) {
202      // Adding a one to a single bit bit-field should be turned into an XOR
203      // of the bit.  First thing to check is to see if this AND is with a
204      // single bit constant.
205      const APInt &AndRHSV = AndRHS->getValue();
206
207      // If there is only one bit set.
208      if (AndRHSV.isPowerOf2()) {
209        // Ok, at this point, we know that we are masking the result of the
210        // ADD down to exactly one bit.  If the constant we are adding has
211        // no bits set below this bit, then we can eliminate the ADD.
212        const APInt& AddRHS = OpRHS->getValue();
213
214        // Check to see if any bits below the one bit set in AndRHSV are set.
215        if ((AddRHS & (AndRHSV-1)) == 0) {
216          // If not, the only thing that can effect the output of the AND is
217          // the bit specified by AndRHSV.  If that bit is set, the effect of
218          // the XOR is to toggle the bit.  If it is clear, then the ADD has
219          // no effect.
220          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
221            TheAnd.setOperand(0, X);
222            return &TheAnd;
223          } else {
224            // Pull the XOR out of the AND.
225            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
226            NewAnd->takeName(Op);
227            return BinaryOperator::CreateXor(NewAnd, AndRHS);
228          }
229        }
230      }
231    }
232    break;
233
234  case Instruction::Shl: {
235    // We know that the AND will not produce any of the bits shifted in, so if
236    // the anded constant includes them, clear them now!
237    //
238    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
239    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
240    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
241    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
242
243    if (CI->getValue() == ShlMask)
244      // Masking out bits that the shift already masks.
245      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
246
247    if (CI != AndRHS) {                  // Reducing bits set in and.
248      TheAnd.setOperand(1, CI);
249      return &TheAnd;
250    }
251    break;
252  }
253  case Instruction::LShr: {
254    // We know that the AND will not produce any of the bits shifted in, so if
255    // the anded constant includes them, clear them now!  This only applies to
256    // unsigned shifts, because a signed shr may bring in set bits!
257    //
258    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
259    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
260    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
261    ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
262
263    if (CI->getValue() == ShrMask)
264      // Masking out bits that the shift already masks.
265      return ReplaceInstUsesWith(TheAnd, Op);
266
267    if (CI != AndRHS) {
268      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
269      return &TheAnd;
270    }
271    break;
272  }
273  case Instruction::AShr:
274    // Signed shr.
275    // See if this is shifting in some sign extension, then masking it out
276    // with an and.
277    if (Op->hasOneUse()) {
278      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
279      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
280      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
281      Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
282      if (C == AndRHS) {          // Masking out bits shifted in.
283        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
284        // Make the argument unsigned.
285        Value *ShVal = Op->getOperand(0);
286        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
287        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
288      }
289    }
290    break;
291  }
292  return nullptr;
293}
294
295/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
296/// (V < Lo || V >= Hi).  In practice, we emit the more efficient
297/// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
298/// whether to treat the V, Lo and HI as signed or not. IB is the location to
299/// insert new instructions.
300Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
301                                     bool isSigned, bool Inside) {
302  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
303            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
304         "Lo is not <= Hi in range emission code!");
305
306  if (Inside) {
307    if (Lo == Hi)  // Trivially false.
308      return Builder->getFalse();
309
310    // V >= Min && V < Hi --> V < Hi
311    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
312      ICmpInst::Predicate pred = (isSigned ?
313        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
314      return Builder->CreateICmp(pred, V, Hi);
315    }
316
317    // Emit V-Lo <u Hi-Lo
318    Constant *NegLo = ConstantExpr::getNeg(Lo);
319    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
320    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
321    return Builder->CreateICmpULT(Add, UpperBound);
322  }
323
324  if (Lo == Hi)  // Trivially true.
325    return Builder->getTrue();
326
327  // V < Min || V >= Hi -> V > Hi-1
328  Hi = SubOne(cast<ConstantInt>(Hi));
329  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
330    ICmpInst::Predicate pred = (isSigned ?
331        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
332    return Builder->CreateICmp(pred, V, Hi);
333  }
334
335  // Emit V-Lo >u Hi-1-Lo
336  // Note that Hi has already had one subtracted from it, above.
337  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
338  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
339  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
340  return Builder->CreateICmpUGT(Add, LowerBound);
341}
342
343// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
344// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
345// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
346// not, since all 1s are not contiguous.
347static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
348  const APInt& V = Val->getValue();
349  uint32_t BitWidth = Val->getType()->getBitWidth();
350  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
351
352  // look for the first zero bit after the run of ones
353  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
354  // look for the first non-zero bit
355  ME = V.getActiveBits();
356  return true;
357}
358
359/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
360/// where isSub determines whether the operator is a sub.  If we can fold one of
361/// the following xforms:
362///
363/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
364/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
365/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
366///
367/// return (A +/- B).
368///
369Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
370                                        ConstantInt *Mask, bool isSub,
371                                        Instruction &I) {
372  Instruction *LHSI = dyn_cast<Instruction>(LHS);
373  if (!LHSI || LHSI->getNumOperands() != 2 ||
374      !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
375
376  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
377
378  switch (LHSI->getOpcode()) {
379  default: return nullptr;
380  case Instruction::And:
381    if (ConstantExpr::getAnd(N, Mask) == Mask) {
382      // If the AndRHS is a power of two minus one (0+1+), this is simple.
383      if ((Mask->getValue().countLeadingZeros() +
384           Mask->getValue().countPopulation()) ==
385          Mask->getValue().getBitWidth())
386        break;
387
388      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
389      // part, we don't need any explicit masks to take them out of A.  If that
390      // is all N is, ignore it.
391      uint32_t MB = 0, ME = 0;
392      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
393        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
394        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
395        if (MaskedValueIsZero(RHS, Mask, 0, &I))
396          break;
397      }
398    }
399    return nullptr;
400  case Instruction::Or:
401  case Instruction::Xor:
402    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
403    if ((Mask->getValue().countLeadingZeros() +
404         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
405        && ConstantExpr::getAnd(N, Mask)->isNullValue())
406      break;
407    return nullptr;
408  }
409
410  if (isSub)
411    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
412  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
413}
414
415/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
416/// One of A and B is considered the mask, the other the value. This is
417/// described as the "AMask" or "BMask" part of the enum. If the enum
418/// contains only "Mask", then both A and B can be considered masks.
419/// If A is the mask, then it was proven, that (A & C) == C. This
420/// is trivial if C == A, or C == 0. If both A and C are constants, this
421/// proof is also easy.
422/// For the following explanations we assume that A is the mask.
423/// The part "AllOnes" declares, that the comparison is true only
424/// if (A & B) == A, or all bits of A are set in B.
425///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
426/// The part "AllZeroes" declares, that the comparison is true only
427/// if (A & B) == 0, or all bits of A are cleared in B.
428///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
429/// The part "Mixed" declares, that (A & B) == C and C might or might not
430/// contain any number of one bits and zero bits.
431///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
432/// The Part "Not" means, that in above descriptions "==" should be replaced
433/// by "!=".
434///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
435/// If the mask A contains a single bit, then the following is equivalent:
436///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
437///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
438enum MaskedICmpType {
439  FoldMskICmp_AMask_AllOnes           =     1,
440  FoldMskICmp_AMask_NotAllOnes        =     2,
441  FoldMskICmp_BMask_AllOnes           =     4,
442  FoldMskICmp_BMask_NotAllOnes        =     8,
443  FoldMskICmp_Mask_AllZeroes          =    16,
444  FoldMskICmp_Mask_NotAllZeroes       =    32,
445  FoldMskICmp_AMask_Mixed             =    64,
446  FoldMskICmp_AMask_NotMixed          =   128,
447  FoldMskICmp_BMask_Mixed             =   256,
448  FoldMskICmp_BMask_NotMixed          =   512
449};
450
451/// return the set of pattern classes (from MaskedICmpType)
452/// that (icmp SCC (A & B), C) satisfies
453static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
454                                    ICmpInst::Predicate SCC)
455{
456  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
457  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
458  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
459  bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
460  bool icmp_abit = (ACst && !ACst->isZero() &&
461                    ACst->getValue().isPowerOf2());
462  bool icmp_bbit = (BCst && !BCst->isZero() &&
463                    BCst->getValue().isPowerOf2());
464  unsigned result = 0;
465  if (CCst && CCst->isZero()) {
466    // if C is zero, then both A and B qualify as mask
467    result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
468                          FoldMskICmp_Mask_AllZeroes |
469                          FoldMskICmp_AMask_Mixed |
470                          FoldMskICmp_BMask_Mixed)
471                       : (FoldMskICmp_Mask_NotAllZeroes |
472                          FoldMskICmp_Mask_NotAllZeroes |
473                          FoldMskICmp_AMask_NotMixed |
474                          FoldMskICmp_BMask_NotMixed));
475    if (icmp_abit)
476      result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
477                            FoldMskICmp_AMask_NotMixed)
478                         : (FoldMskICmp_AMask_AllOnes |
479                            FoldMskICmp_AMask_Mixed));
480    if (icmp_bbit)
481      result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
482                            FoldMskICmp_BMask_NotMixed)
483                         : (FoldMskICmp_BMask_AllOnes |
484                            FoldMskICmp_BMask_Mixed));
485    return result;
486  }
487  if (A == C) {
488    result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
489                          FoldMskICmp_AMask_Mixed)
490                       : (FoldMskICmp_AMask_NotAllOnes |
491                          FoldMskICmp_AMask_NotMixed));
492    if (icmp_abit)
493      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
494                            FoldMskICmp_AMask_NotMixed)
495                         : (FoldMskICmp_Mask_AllZeroes |
496                            FoldMskICmp_AMask_Mixed));
497  } else if (ACst && CCst &&
498             ConstantExpr::getAnd(ACst, CCst) == CCst) {
499    result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
500                       : FoldMskICmp_AMask_NotMixed);
501  }
502  if (B == C) {
503    result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
504                          FoldMskICmp_BMask_Mixed)
505                       : (FoldMskICmp_BMask_NotAllOnes |
506                          FoldMskICmp_BMask_NotMixed));
507    if (icmp_bbit)
508      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
509                            FoldMskICmp_BMask_NotMixed)
510                         : (FoldMskICmp_Mask_AllZeroes |
511                            FoldMskICmp_BMask_Mixed));
512  } else if (BCst && CCst &&
513             ConstantExpr::getAnd(BCst, CCst) == CCst) {
514    result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
515                       : FoldMskICmp_BMask_NotMixed);
516  }
517  return result;
518}
519
520/// Convert an analysis of a masked ICmp into its equivalent if all boolean
521/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
522/// is adjacent to the corresponding normal flag (recording ==), this just
523/// involves swapping those bits over.
524static unsigned conjugateICmpMask(unsigned Mask) {
525  unsigned NewMask;
526  NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
527                     FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
528                     FoldMskICmp_BMask_Mixed))
529            << 1;
530
531  NewMask |=
532      (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
533               FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
534               FoldMskICmp_BMask_NotMixed))
535      >> 1;
536
537  return NewMask;
538}
539
540/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
541/// if possible. The returned predicate is either == or !=. Returns false if
542/// decomposition fails.
543static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
544                                 Value *&X, Value *&Y, Value *&Z) {
545  ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
546  if (!C)
547    return false;
548
549  switch (I->getPredicate()) {
550  default:
551    return false;
552  case ICmpInst::ICMP_SLT:
553    // X < 0 is equivalent to (X & SignBit) != 0.
554    if (!C->isZero())
555      return false;
556    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
557    Pred = ICmpInst::ICMP_NE;
558    break;
559  case ICmpInst::ICMP_SGT:
560    // X > -1 is equivalent to (X & SignBit) == 0.
561    if (!C->isAllOnesValue())
562      return false;
563    Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
564    Pred = ICmpInst::ICMP_EQ;
565    break;
566  case ICmpInst::ICMP_ULT:
567    // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
568    if (!C->getValue().isPowerOf2())
569      return false;
570    Y = ConstantInt::get(I->getContext(), -C->getValue());
571    Pred = ICmpInst::ICMP_EQ;
572    break;
573  case ICmpInst::ICMP_UGT:
574    // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
575    if (!(C->getValue() + 1).isPowerOf2())
576      return false;
577    Y = ConstantInt::get(I->getContext(), ~C->getValue());
578    Pred = ICmpInst::ICMP_NE;
579    break;
580  }
581
582  X = I->getOperand(0);
583  Z = ConstantInt::getNullValue(C->getType());
584  return true;
585}
586
587/// foldLogOpOfMaskedICmpsHelper:
588/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
589/// return the set of pattern classes (from MaskedICmpType)
590/// that both LHS and RHS satisfy
591static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
592                                             Value*& B, Value*& C,
593                                             Value*& D, Value*& E,
594                                             ICmpInst *LHS, ICmpInst *RHS,
595                                             ICmpInst::Predicate &LHSCC,
596                                             ICmpInst::Predicate &RHSCC) {
597  if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
598  // vectors are not (yet?) supported
599  if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
600
601  // Here comes the tricky part:
602  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
603  // and L11 & L12 == L21 & L22. The same goes for RHS.
604  // Now we must find those components L** and R**, that are equal, so
605  // that we can extract the parameters A, B, C, D, and E for the canonical
606  // above.
607  Value *L1 = LHS->getOperand(0);
608  Value *L2 = LHS->getOperand(1);
609  Value *L11,*L12,*L21,*L22;
610  // Check whether the icmp can be decomposed into a bit test.
611  if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
612    L21 = L22 = L1 = nullptr;
613  } else {
614    // Look for ANDs in the LHS icmp.
615    if (!L1->getType()->isIntegerTy()) {
616      // You can icmp pointers, for example. They really aren't masks.
617      L11 = L12 = nullptr;
618    } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
619      // Any icmp can be viewed as being trivially masked; if it allows us to
620      // remove one, it's worth it.
621      L11 = L1;
622      L12 = Constant::getAllOnesValue(L1->getType());
623    }
624
625    if (!L2->getType()->isIntegerTy()) {
626      // You can icmp pointers, for example. They really aren't masks.
627      L21 = L22 = nullptr;
628    } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
629      L21 = L2;
630      L22 = Constant::getAllOnesValue(L2->getType());
631    }
632  }
633
634  // Bail if LHS was a icmp that can't be decomposed into an equality.
635  if (!ICmpInst::isEquality(LHSCC))
636    return 0;
637
638  Value *R1 = RHS->getOperand(0);
639  Value *R2 = RHS->getOperand(1);
640  Value *R11,*R12;
641  bool ok = false;
642  if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
643    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
644      A = R11; D = R12;
645    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
646      A = R12; D = R11;
647    } else {
648      return 0;
649    }
650    E = R2; R1 = nullptr; ok = true;
651  } else if (R1->getType()->isIntegerTy()) {
652    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
653      // As before, model no mask as a trivial mask if it'll let us do an
654      // optimization.
655      R11 = R1;
656      R12 = Constant::getAllOnesValue(R1->getType());
657    }
658
659    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
660      A = R11; D = R12; E = R2; ok = true;
661    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
662      A = R12; D = R11; E = R2; ok = true;
663    }
664  }
665
666  // Bail if RHS was a icmp that can't be decomposed into an equality.
667  if (!ICmpInst::isEquality(RHSCC))
668    return 0;
669
670  // Look for ANDs in on the right side of the RHS icmp.
671  if (!ok && R2->getType()->isIntegerTy()) {
672    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
673      R11 = R2;
674      R12 = Constant::getAllOnesValue(R2->getType());
675    }
676
677    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
678      A = R11; D = R12; E = R1; ok = true;
679    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
680      A = R12; D = R11; E = R1; ok = true;
681    } else {
682      return 0;
683    }
684  }
685  if (!ok)
686    return 0;
687
688  if (L11 == A) {
689    B = L12; C = L2;
690  } else if (L12 == A) {
691    B = L11; C = L2;
692  } else if (L21 == A) {
693    B = L22; C = L1;
694  } else if (L22 == A) {
695    B = L21; C = L1;
696  }
697
698  unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
699  unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
700  return left_type & right_type;
701}
702/// foldLogOpOfMaskedICmps:
703/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
704/// into a single (icmp(A & X) ==/!= Y)
705static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
706                                     llvm::InstCombiner::BuilderTy *Builder) {
707  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
708  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
709  unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
710                                               LHSCC, RHSCC);
711  if (mask == 0) return nullptr;
712  assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
713         "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
714
715  // In full generality:
716  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
717  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
718  //
719  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
720  // equivalent to (icmp (A & X) !Op Y).
721  //
722  // Therefore, we can pretend for the rest of this function that we're dealing
723  // with the conjunction, provided we flip the sense of any comparisons (both
724  // input and output).
725
726  // In most cases we're going to produce an EQ for the "&&" case.
727  ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
728  if (!IsAnd) {
729    // Convert the masking analysis into its equivalent with negated
730    // comparisons.
731    mask = conjugateICmpMask(mask);
732  }
733
734  if (mask & FoldMskICmp_Mask_AllZeroes) {
735    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
736    // -> (icmp eq (A & (B|D)), 0)
737    Value *newOr = Builder->CreateOr(B, D);
738    Value *newAnd = Builder->CreateAnd(A, newOr);
739    // we can't use C as zero, because we might actually handle
740    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
741    // with B and D, having a single bit set
742    Value *zero = Constant::getNullValue(A->getType());
743    return Builder->CreateICmp(NEWCC, newAnd, zero);
744  }
745  if (mask & FoldMskICmp_BMask_AllOnes) {
746    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
747    // -> (icmp eq (A & (B|D)), (B|D))
748    Value *newOr = Builder->CreateOr(B, D);
749    Value *newAnd = Builder->CreateAnd(A, newOr);
750    return Builder->CreateICmp(NEWCC, newAnd, newOr);
751  }
752  if (mask & FoldMskICmp_AMask_AllOnes) {
753    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
754    // -> (icmp eq (A & (B&D)), A)
755    Value *newAnd1 = Builder->CreateAnd(B, D);
756    Value *newAnd = Builder->CreateAnd(A, newAnd1);
757    return Builder->CreateICmp(NEWCC, newAnd, A);
758  }
759
760  // Remaining cases assume at least that B and D are constant, and depend on
761  // their actual values. This isn't strictly, necessary, just a "handle the
762  // easy cases for now" decision.
763  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
764  if (!BCst) return nullptr;
765  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
766  if (!DCst) return nullptr;
767
768  if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
769    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
770    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
771    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
772    // Only valid if one of the masks is a superset of the other (check "B&D" is
773    // the same as either B or D).
774    APInt NewMask = BCst->getValue() & DCst->getValue();
775
776    if (NewMask == BCst->getValue())
777      return LHS;
778    else if (NewMask == DCst->getValue())
779      return RHS;
780  }
781  if (mask & FoldMskICmp_AMask_NotAllOnes) {
782    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
783    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
784    // Only valid if one of the masks is a superset of the other (check "B|D" is
785    // the same as either B or D).
786    APInt NewMask = BCst->getValue() | DCst->getValue();
787
788    if (NewMask == BCst->getValue())
789      return LHS;
790    else if (NewMask == DCst->getValue())
791      return RHS;
792  }
793  if (mask & FoldMskICmp_BMask_Mixed) {
794    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
795    // We already know that B & C == C && D & E == E.
796    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
797    // C and E, which are shared by both the mask B and the mask D, don't
798    // contradict, then we can transform to
799    // -> (icmp eq (A & (B|D)), (C|E))
800    // Currently, we only handle the case of B, C, D, and E being constant.
801    // we can't simply use C and E, because we might actually handle
802    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
803    // with B and D, having a single bit set
804    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
805    if (!CCst) return nullptr;
806    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
807    if (!ECst) return nullptr;
808    if (LHSCC != NEWCC)
809      CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
810    if (RHSCC != NEWCC)
811      ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
812    // if there is a conflict we should actually return a false for the
813    // whole construct
814    if (((BCst->getValue() & DCst->getValue()) &
815         (CCst->getValue() ^ ECst->getValue())) != 0)
816      return ConstantInt::get(LHS->getType(), !IsAnd);
817    Value *newOr1 = Builder->CreateOr(B, D);
818    Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
819    Value *newAnd = Builder->CreateAnd(A, newOr1);
820    return Builder->CreateICmp(NEWCC, newAnd, newOr2);
821  }
822  return nullptr;
823}
824
825/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
826/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
827/// If \p Inverted is true then the check is for the inverted range, e.g.
828/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
829Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
830                                        bool Inverted) {
831  // Check the lower range comparison, e.g. x >= 0
832  // InstCombine already ensured that if there is a constant it's on the RHS.
833  ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
834  if (!RangeStart)
835    return nullptr;
836
837  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
838                               Cmp0->getPredicate());
839
840  // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
841  if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
842        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
843    return nullptr;
844
845  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
846                               Cmp1->getPredicate());
847
848  Value *Input = Cmp0->getOperand(0);
849  Value *RangeEnd;
850  if (Cmp1->getOperand(0) == Input) {
851    // For the upper range compare we have: icmp x, n
852    RangeEnd = Cmp1->getOperand(1);
853  } else if (Cmp1->getOperand(1) == Input) {
854    // For the upper range compare we have: icmp n, x
855    RangeEnd = Cmp1->getOperand(0);
856    Pred1 = ICmpInst::getSwappedPredicate(Pred1);
857  } else {
858    return nullptr;
859  }
860
861  // Check the upper range comparison, e.g. x < n
862  ICmpInst::Predicate NewPred;
863  switch (Pred1) {
864    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
865    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
866    default: return nullptr;
867  }
868
869  // This simplification is only valid if the upper range is not negative.
870  bool IsNegative, IsNotNegative;
871  ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
872  if (!IsNotNegative)
873    return nullptr;
874
875  if (Inverted)
876    NewPred = ICmpInst::getInversePredicate(NewPred);
877
878  return Builder->CreateICmp(NewPred, Input, RangeEnd);
879}
880
881/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
882Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
883  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
884
885  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
886  if (PredicatesFoldable(LHSCC, RHSCC)) {
887    if (LHS->getOperand(0) == RHS->getOperand(1) &&
888        LHS->getOperand(1) == RHS->getOperand(0))
889      LHS->swapOperands();
890    if (LHS->getOperand(0) == RHS->getOperand(0) &&
891        LHS->getOperand(1) == RHS->getOperand(1)) {
892      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
893      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
894      bool isSigned = LHS->isSigned() || RHS->isSigned();
895      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
896    }
897  }
898
899  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
900  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
901    return V;
902
903  // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
904  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
905    return V;
906
907  // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
908  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
909    return V;
910
911  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
912  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
913  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
914  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
915  if (!LHSCst || !RHSCst) return nullptr;
916
917  if (LHSCst == RHSCst && LHSCC == RHSCC) {
918    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
919    // where C is a power of 2
920    if (LHSCC == ICmpInst::ICMP_ULT &&
921        LHSCst->getValue().isPowerOf2()) {
922      Value *NewOr = Builder->CreateOr(Val, Val2);
923      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
924    }
925
926    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
927    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
928      Value *NewOr = Builder->CreateOr(Val, Val2);
929      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
930    }
931  }
932
933  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
934  // where CMAX is the all ones value for the truncated type,
935  // iff the lower bits of C2 and CA are zero.
936  if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
937      LHS->hasOneUse() && RHS->hasOneUse()) {
938    Value *V;
939    ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
940
941    // (trunc x) == C1 & (and x, CA) == C2
942    // (and x, CA) == C2 & (trunc x) == C1
943    if (match(Val2, m_Trunc(m_Value(V))) &&
944        match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
945      SmallCst = RHSCst;
946      BigCst = LHSCst;
947    } else if (match(Val, m_Trunc(m_Value(V))) &&
948               match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
949      SmallCst = LHSCst;
950      BigCst = RHSCst;
951    }
952
953    if (SmallCst && BigCst) {
954      unsigned BigBitSize = BigCst->getType()->getBitWidth();
955      unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
956
957      // Check that the low bits are zero.
958      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
959      if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
960        Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
961        APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
962        Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
963        return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
964      }
965    }
966  }
967
968  // From here on, we only handle:
969  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
970  if (Val != Val2) return nullptr;
971
972  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
973  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
974      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
975      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
976      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
977    return nullptr;
978
979  // Make a constant range that's the intersection of the two icmp ranges.
980  // If the intersection is empty, we know that the result is false.
981  ConstantRange LHSRange =
982      ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
983  ConstantRange RHSRange =
984      ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
985
986  if (LHSRange.intersectWith(RHSRange).isEmptySet())
987    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
988
989  // We can't fold (ugt x, C) & (sgt x, C2).
990  if (!PredicatesFoldable(LHSCC, RHSCC))
991    return nullptr;
992
993  // Ensure that the larger constant is on the RHS.
994  bool ShouldSwap;
995  if (CmpInst::isSigned(LHSCC) ||
996      (ICmpInst::isEquality(LHSCC) &&
997       CmpInst::isSigned(RHSCC)))
998    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
999  else
1000    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1001
1002  if (ShouldSwap) {
1003    std::swap(LHS, RHS);
1004    std::swap(LHSCst, RHSCst);
1005    std::swap(LHSCC, RHSCC);
1006  }
1007
1008  // At this point, we know we have two icmp instructions
1009  // comparing a value against two constants and and'ing the result
1010  // together.  Because of the above check, we know that we only have
1011  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1012  // (from the icmp folding check above), that the two constants
1013  // are not equal and that the larger constant is on the RHS
1014  assert(LHSCst != RHSCst && "Compares not folded above?");
1015
1016  switch (LHSCC) {
1017  default: llvm_unreachable("Unknown integer condition code!");
1018  case ICmpInst::ICMP_EQ:
1019    switch (RHSCC) {
1020    default: llvm_unreachable("Unknown integer condition code!");
1021    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
1022    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
1023    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
1024      return LHS;
1025    }
1026  case ICmpInst::ICMP_NE:
1027    switch (RHSCC) {
1028    default: llvm_unreachable("Unknown integer condition code!");
1029    case ICmpInst::ICMP_ULT:
1030      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
1031        return Builder->CreateICmpULT(Val, LHSCst);
1032      if (LHSCst->isNullValue())    // (X !=  0 & X u< 14) -> X-1 u< 13
1033        return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1034      break;                        // (X != 13 & X u< 15) -> no change
1035    case ICmpInst::ICMP_SLT:
1036      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
1037        return Builder->CreateICmpSLT(Val, LHSCst);
1038      break;                        // (X != 13 & X s< 15) -> no change
1039    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
1040    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
1041    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
1042      return RHS;
1043    case ICmpInst::ICMP_NE:
1044      // Special case to get the ordering right when the values wrap around
1045      // zero.
1046      if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
1047        std::swap(LHSCst, RHSCst);
1048      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
1049        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1050        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1051        return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
1052                                      Val->getName()+".cmp");
1053      }
1054      break;                        // (X != 13 & X != 15) -> no change
1055    }
1056    break;
1057  case ICmpInst::ICMP_ULT:
1058    switch (RHSCC) {
1059    default: llvm_unreachable("Unknown integer condition code!");
1060    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
1061    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
1062      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1063    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
1064      break;
1065    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
1066    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
1067      return LHS;
1068    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
1069      break;
1070    }
1071    break;
1072  case ICmpInst::ICMP_SLT:
1073    switch (RHSCC) {
1074    default: llvm_unreachable("Unknown integer condition code!");
1075    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
1076      break;
1077    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
1078    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
1079      return LHS;
1080    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
1081      break;
1082    }
1083    break;
1084  case ICmpInst::ICMP_UGT:
1085    switch (RHSCC) {
1086    default: llvm_unreachable("Unknown integer condition code!");
1087    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
1088    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
1089      return RHS;
1090    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
1091      break;
1092    case ICmpInst::ICMP_NE:
1093      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
1094        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1095      break;                        // (X u> 13 & X != 15) -> no change
1096    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
1097      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1098    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
1099      break;
1100    }
1101    break;
1102  case ICmpInst::ICMP_SGT:
1103    switch (RHSCC) {
1104    default: llvm_unreachable("Unknown integer condition code!");
1105    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
1106    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
1107      return RHS;
1108    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
1109      break;
1110    case ICmpInst::ICMP_NE:
1111      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1112        return Builder->CreateICmp(LHSCC, Val, RHSCst);
1113      break;                        // (X s> 13 & X != 15) -> no change
1114    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
1115      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1116    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
1117      break;
1118    }
1119    break;
1120  }
1121
1122  return nullptr;
1123}
1124
1125/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
1126/// instcombine, this returns a Value which should already be inserted into the
1127/// function.
1128Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1129  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1130      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1131    if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1132      return nullptr;
1133
1134    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
1135    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1136      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1137        // If either of the constants are nans, then the whole thing returns
1138        // false.
1139        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1140          return Builder->getFalse();
1141        return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1142      }
1143
1144    // Handle vector zeros.  This occurs because the canonical form of
1145    // "fcmp ord x,x" is "fcmp ord x, 0".
1146    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1147        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1148      return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1149    return nullptr;
1150  }
1151
1152  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1153  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1154  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1155
1156
1157  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1158    // Swap RHS operands to match LHS.
1159    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1160    std::swap(Op1LHS, Op1RHS);
1161  }
1162
1163  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1164    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1165    if (Op0CC == Op1CC)
1166      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1167    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
1168      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1169    if (Op0CC == FCmpInst::FCMP_TRUE)
1170      return RHS;
1171    if (Op1CC == FCmpInst::FCMP_TRUE)
1172      return LHS;
1173
1174    bool Op0Ordered;
1175    bool Op1Ordered;
1176    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1177    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1178    // uno && ord -> false
1179    if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
1180        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1181    if (Op1Pred == 0) {
1182      std::swap(LHS, RHS);
1183      std::swap(Op0Pred, Op1Pred);
1184      std::swap(Op0Ordered, Op1Ordered);
1185    }
1186    if (Op0Pred == 0) {
1187      // uno && ueq -> uno && (uno || eq) -> uno
1188      // ord && olt -> ord && (ord && lt) -> olt
1189      if (!Op0Ordered && (Op0Ordered == Op1Ordered))
1190        return LHS;
1191      if (Op0Ordered && (Op0Ordered == Op1Ordered))
1192        return RHS;
1193
1194      // uno && oeq -> uno && (ord && eq) -> false
1195      if (!Op0Ordered)
1196        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1197      // ord && ueq -> ord && (uno || eq) -> oeq
1198      return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1199    }
1200  }
1201
1202  return nullptr;
1203}
1204
1205Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1206  bool Changed = SimplifyAssociativeOrCommutative(I);
1207  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1208
1209  if (Value *V = SimplifyVectorOp(I))
1210    return ReplaceInstUsesWith(I, V);
1211
1212  if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
1213    return ReplaceInstUsesWith(I, V);
1214
1215  // (A|B)&(A|C) -> A|(B&C) etc
1216  if (Value *V = SimplifyUsingDistributiveLaws(I))
1217    return ReplaceInstUsesWith(I, V);
1218
1219  // See if we can simplify any instructions used by the instruction whose sole
1220  // purpose is to compute bits we don't care about.
1221  if (SimplifyDemandedInstructionBits(I))
1222    return &I;
1223
1224  if (Value *V = SimplifyBSwap(I))
1225    return ReplaceInstUsesWith(I, V);
1226
1227  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1228    const APInt &AndRHSMask = AndRHS->getValue();
1229
1230    // Optimize a variety of ((val OP C1) & C2) combinations...
1231    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1232      Value *Op0LHS = Op0I->getOperand(0);
1233      Value *Op0RHS = Op0I->getOperand(1);
1234      switch (Op0I->getOpcode()) {
1235      default: break;
1236      case Instruction::Xor:
1237      case Instruction::Or: {
1238        // If the mask is only needed on one incoming arm, push it up.
1239        if (!Op0I->hasOneUse()) break;
1240
1241        APInt NotAndRHS(~AndRHSMask);
1242        if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
1243          // Not masking anything out for the LHS, move to RHS.
1244          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1245                                             Op0RHS->getName()+".masked");
1246          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1247        }
1248        if (!isa<Constant>(Op0RHS) &&
1249            MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
1250          // Not masking anything out for the RHS, move to LHS.
1251          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1252                                             Op0LHS->getName()+".masked");
1253          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1254        }
1255
1256        break;
1257      }
1258      case Instruction::Add:
1259        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1260        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1261        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1262        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1263          return BinaryOperator::CreateAnd(V, AndRHS);
1264        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1265          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1266        break;
1267
1268      case Instruction::Sub:
1269        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1270        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1271        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1272        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1273          return BinaryOperator::CreateAnd(V, AndRHS);
1274
1275        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1276        // has 1's for all bits that the subtraction with A might affect.
1277        if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1278          uint32_t BitWidth = AndRHSMask.getBitWidth();
1279          uint32_t Zeros = AndRHSMask.countLeadingZeros();
1280          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1281
1282          if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
1283            Value *NewNeg = Builder->CreateNeg(Op0RHS);
1284            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1285          }
1286        }
1287        break;
1288
1289      case Instruction::Shl:
1290      case Instruction::LShr:
1291        // (1 << x) & 1 --> zext(x == 0)
1292        // (1 >> x) & 1 --> zext(x == 0)
1293        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1294          Value *NewICmp =
1295            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1296          return new ZExtInst(NewICmp, I.getType());
1297        }
1298        break;
1299      }
1300
1301      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1302        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1303          return Res;
1304    }
1305
1306    // If this is an integer truncation, and if the source is an 'and' with
1307    // immediate, transform it.  This frequently occurs for bitfield accesses.
1308    {
1309      Value *X = nullptr; ConstantInt *YC = nullptr;
1310      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1311        // Change: and (trunc (and X, YC) to T), C2
1312        // into  : and (trunc X to T), trunc(YC) & C2
1313        // This will fold the two constants together, which may allow
1314        // other simplifications.
1315        Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1316        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1317        C3 = ConstantExpr::getAnd(C3, AndRHS);
1318        return BinaryOperator::CreateAnd(NewCast, C3);
1319      }
1320    }
1321
1322    // Try to fold constant and into select arguments.
1323    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1324      if (Instruction *R = FoldOpIntoSelect(I, SI))
1325        return R;
1326    if (isa<PHINode>(Op0))
1327      if (Instruction *NV = FoldOpIntoPhi(I))
1328        return NV;
1329  }
1330
1331
1332  // (~A & ~B) == (~(A | B)) - De Morgan's Law
1333  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1334    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1335      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1336        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1337                                      I.getName()+".demorgan");
1338        return BinaryOperator::CreateNot(Or);
1339      }
1340
1341  {
1342    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
1343    // (A|B) & ~(A&B) -> A^B
1344    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1345        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1346        ((A == C && B == D) || (A == D && B == C)))
1347      return BinaryOperator::CreateXor(A, B);
1348
1349    // ~(A&B) & (A|B) -> A^B
1350    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1351        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1352        ((A == C && B == D) || (A == D && B == C)))
1353      return BinaryOperator::CreateXor(A, B);
1354
1355    // A&(A^B) => A & ~B
1356    {
1357      Value *tmpOp0 = Op0;
1358      Value *tmpOp1 = Op1;
1359      if (Op0->hasOneUse() &&
1360          match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1361        if (A == Op1 || B == Op1 ) {
1362          tmpOp1 = Op0;
1363          tmpOp0 = Op1;
1364          // Simplify below
1365        }
1366      }
1367
1368      if (tmpOp1->hasOneUse() &&
1369          match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1370        if (B == tmpOp0) {
1371          std::swap(A, B);
1372        }
1373        // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1374        // A is originally -1 (or a vector of -1 and undefs), then we enter
1375        // an endless loop. By checking that A is non-constant we ensure that
1376        // we will never get to the loop.
1377        if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1378          return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1379      }
1380    }
1381
1382    // (A&((~A)|B)) -> A&B
1383    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1384        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1385      return BinaryOperator::CreateAnd(A, Op1);
1386    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1387        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1388      return BinaryOperator::CreateAnd(A, Op0);
1389
1390    // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1391    if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1392      if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1393        if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
1394          return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
1395
1396    // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1397    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1398      if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1399        if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
1400          return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
1401
1402    // (A | B) & ((~A) ^ B) -> (A & B)
1403    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1404        match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
1405      return BinaryOperator::CreateAnd(A, B);
1406
1407    // ((~A) ^ B) & (A | B) -> (A & B)
1408    if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1409        match(Op1, m_Or(m_Specific(A), m_Specific(B))))
1410      return BinaryOperator::CreateAnd(A, B);
1411  }
1412
1413  {
1414    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1415    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1416    if (LHS && RHS)
1417      if (Value *Res = FoldAndOfICmps(LHS, RHS))
1418        return ReplaceInstUsesWith(I, Res);
1419
1420    // TODO: Make this recursive; it's a little tricky because an arbitrary
1421    // number of 'and' instructions might have to be created.
1422    Value *X, *Y;
1423    if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1424      if (auto *Cmp = dyn_cast<ICmpInst>(X))
1425        if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1426          return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1427      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1428        if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1429          return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1430    }
1431    if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1432      if (auto *Cmp = dyn_cast<ICmpInst>(X))
1433        if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1434          return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1435      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1436        if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1437          return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1438    }
1439  }
1440
1441  // If and'ing two fcmp, try combine them into one.
1442  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1443    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1444      if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1445        return ReplaceInstUsesWith(I, Res);
1446
1447
1448  // fold (and (cast A), (cast B)) -> (cast (and A, B))
1449  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
1450    if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1451      Type *SrcTy = Op0C->getOperand(0)->getType();
1452      if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1453          SrcTy == Op1C->getOperand(0)->getType() &&
1454          SrcTy->isIntOrIntVectorTy()) {
1455        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1456
1457        // Only do this if the casts both really cause code to be generated.
1458        if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1459            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1460          Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1461          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1462        }
1463
1464        // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1465        // cast is otherwise not optimizable.  This happens for vector sexts.
1466        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1467          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1468            if (Value *Res = FoldAndOfICmps(LHS, RHS))
1469              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1470
1471        // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1472        // cast is otherwise not optimizable.  This happens for vector sexts.
1473        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1474          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1475            if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1476              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1477      }
1478    }
1479
1480  {
1481    Value *X = nullptr;
1482    bool OpsSwapped = false;
1483    // Canonicalize SExt or Not to the LHS
1484    if (match(Op1, m_SExt(m_Value())) ||
1485        match(Op1, m_Not(m_Value()))) {
1486      std::swap(Op0, Op1);
1487      OpsSwapped = true;
1488    }
1489
1490    // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1491    if (match(Op0, m_SExt(m_Value(X))) &&
1492        X->getType()->getScalarType()->isIntegerTy(1)) {
1493      Value *Zero = Constant::getNullValue(Op1->getType());
1494      return SelectInst::Create(X, Op1, Zero);
1495    }
1496
1497    // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1498    if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1499        X->getType()->getScalarType()->isIntegerTy(1)) {
1500      Value *Zero = Constant::getNullValue(Op0->getType());
1501      return SelectInst::Create(X, Zero, Op1);
1502    }
1503
1504    if (OpsSwapped)
1505      std::swap(Op0, Op1);
1506  }
1507
1508  return Changed ? &I : nullptr;
1509}
1510
1511/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1512/// capable of providing pieces of a bswap.  The subexpression provides pieces
1513/// of a bswap if it is proven that each of the non-zero bytes in the output of
1514/// the expression came from the corresponding "byte swapped" byte in some other
1515/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
1516/// we know that the expression deposits the low byte of %X into the high byte
1517/// of the bswap result and that all other bytes are zero.  This expression is
1518/// accepted, the high byte of ByteValues is set to X to indicate a correct
1519/// match.
1520///
1521/// This function returns true if the match was unsuccessful and false if so.
1522/// On entry to the function the "OverallLeftShift" is a signed integer value
1523/// indicating the number of bytes that the subexpression is later shifted.  For
1524/// example, if the expression is later right shifted by 16 bits, the
1525/// OverallLeftShift value would be -2 on entry.  This is used to specify which
1526/// byte of ByteValues is actually being set.
1527///
1528/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1529/// byte is masked to zero by a user.  For example, in (X & 255), X will be
1530/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
1531/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
1532/// always in the local (OverallLeftShift) coordinate space.
1533///
1534static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1535                              SmallVectorImpl<Value *> &ByteValues) {
1536  if (Instruction *I = dyn_cast<Instruction>(V)) {
1537    // If this is an or instruction, it may be an inner node of the bswap.
1538    if (I->getOpcode() == Instruction::Or) {
1539      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1540                               ByteValues) ||
1541             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1542                               ByteValues);
1543    }
1544
1545    // If this is a logical shift by a constant multiple of 8, recurse with
1546    // OverallLeftShift and ByteMask adjusted.
1547    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1548      unsigned ShAmt =
1549        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1550      // Ensure the shift amount is defined and of a byte value.
1551      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1552        return true;
1553
1554      unsigned ByteShift = ShAmt >> 3;
1555      if (I->getOpcode() == Instruction::Shl) {
1556        // X << 2 -> collect(X, +2)
1557        OverallLeftShift += ByteShift;
1558        ByteMask >>= ByteShift;
1559      } else {
1560        // X >>u 2 -> collect(X, -2)
1561        OverallLeftShift -= ByteShift;
1562        ByteMask <<= ByteShift;
1563        ByteMask &= (~0U >> (32-ByteValues.size()));
1564      }
1565
1566      if (OverallLeftShift >= (int)ByteValues.size()) return true;
1567      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1568
1569      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1570                               ByteValues);
1571    }
1572
1573    // If this is a logical 'and' with a mask that clears bytes, clear the
1574    // corresponding bytes in ByteMask.
1575    if (I->getOpcode() == Instruction::And &&
1576        isa<ConstantInt>(I->getOperand(1))) {
1577      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1578      unsigned NumBytes = ByteValues.size();
1579      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1580      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1581
1582      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1583        // If this byte is masked out by a later operation, we don't care what
1584        // the and mask is.
1585        if ((ByteMask & (1 << i)) == 0)
1586          continue;
1587
1588        // If the AndMask is all zeros for this byte, clear the bit.
1589        APInt MaskB = AndMask & Byte;
1590        if (MaskB == 0) {
1591          ByteMask &= ~(1U << i);
1592          continue;
1593        }
1594
1595        // If the AndMask is not all ones for this byte, it's not a bytezap.
1596        if (MaskB != Byte)
1597          return true;
1598
1599        // Otherwise, this byte is kept.
1600      }
1601
1602      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1603                               ByteValues);
1604    }
1605  }
1606
1607  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1608  // the input value to the bswap.  Some observations: 1) if more than one byte
1609  // is demanded from this input, then it could not be successfully assembled
1610  // into a byteswap.  At least one of the two bytes would not be aligned with
1611  // their ultimate destination.
1612  if (!isPowerOf2_32(ByteMask)) return true;
1613  unsigned InputByteNo = countTrailingZeros(ByteMask);
1614
1615  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1616  // is demanded, it needs to go into byte 0 of the result.  This means that the
1617  // byte needs to be shifted until it lands in the right byte bucket.  The
1618  // shift amount depends on the position: if the byte is coming from the high
1619  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
1620  // low part, it must be shifted left.
1621  unsigned DestByteNo = InputByteNo + OverallLeftShift;
1622  if (ByteValues.size()-1-DestByteNo != InputByteNo)
1623    return true;
1624
1625  // If the destination byte value is already defined, the values are or'd
1626  // together, which isn't a bswap (unless it's an or of the same bits).
1627  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1628    return true;
1629  ByteValues[DestByteNo] = V;
1630  return false;
1631}
1632
1633/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1634/// If so, insert the new bswap intrinsic and return it.
1635Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1636  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1637  if (!ITy || ITy->getBitWidth() % 16 ||
1638      // ByteMask only allows up to 32-byte values.
1639      ITy->getBitWidth() > 32*8)
1640    return nullptr;   // Can only bswap pairs of bytes.  Can't do vectors.
1641
1642  /// ByteValues - For each byte of the result, we keep track of which value
1643  /// defines each byte.
1644  SmallVector<Value*, 8> ByteValues;
1645  ByteValues.resize(ITy->getBitWidth()/8);
1646
1647  // Try to find all the pieces corresponding to the bswap.
1648  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1649  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1650    return nullptr;
1651
1652  // Check to see if all of the bytes come from the same value.
1653  Value *V = ByteValues[0];
1654  if (!V) return nullptr;  // Didn't find a byte?  Must be zero.
1655
1656  // Check to make sure that all of the bytes come from the same value.
1657  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1658    if (ByteValues[i] != V)
1659      return nullptr;
1660  Module *M = I.getParent()->getParent()->getParent();
1661  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
1662  return CallInst::Create(F, V);
1663}
1664
1665/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
1666/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1667/// we can simplify this expression to "cond ? C : D or B".
1668static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1669                                         Value *C, Value *D) {
1670  // If A is not a select of -1/0, this cannot match.
1671  Value *Cond = nullptr;
1672  if (!match(A, m_SExt(m_Value(Cond))) ||
1673      !Cond->getType()->isIntegerTy(1))
1674    return nullptr;
1675
1676  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1677  if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1678    return SelectInst::Create(Cond, C, B);
1679  if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1680    return SelectInst::Create(Cond, C, B);
1681
1682  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1683  if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1684    return SelectInst::Create(Cond, C, D);
1685  if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1686    return SelectInst::Create(Cond, C, D);
1687  return nullptr;
1688}
1689
1690/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1691Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1692                                   Instruction *CxtI) {
1693  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1694
1695  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1696  // if K1 and K2 are a one-bit mask.
1697  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1698  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1699
1700  if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1701      RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1702
1703    BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1704    BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1705    if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1706        LAnd->getOpcode() == Instruction::And &&
1707        RAnd->getOpcode() == Instruction::And) {
1708
1709      Value *Mask = nullptr;
1710      Value *Masked = nullptr;
1711      if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1712          isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
1713                                 DT) &&
1714          isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
1715                                 DT)) {
1716        Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1717        Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1718      } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1719                 isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
1720                                        CxtI, DT) &&
1721                 isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
1722                                        CxtI, DT)) {
1723        Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1724        Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1725      }
1726
1727      if (Masked)
1728        return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1729    }
1730  }
1731
1732  // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1733  //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1734  // The original condition actually refers to the following two ranges:
1735  // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1736  // We can fold these two ranges if:
1737  // 1) C1 and C2 is unsigned greater than C3.
1738  // 2) The two ranges are separated.
1739  // 3) C1 ^ C2 is one-bit mask.
1740  // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1741  // This implies all values in the two ranges differ by exactly one bit.
1742
1743  if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
1744      LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
1745      RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
1746      LHSCst->getValue() == (RHSCst->getValue())) {
1747
1748    Value *LAdd = LHS->getOperand(0);
1749    Value *RAdd = RHS->getOperand(0);
1750
1751    Value *LAddOpnd, *RAddOpnd;
1752    ConstantInt *LAddCst, *RAddCst;
1753    if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
1754        match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
1755        LAddCst->getValue().ugt(LHSCst->getValue()) &&
1756        RAddCst->getValue().ugt(LHSCst->getValue())) {
1757
1758      APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
1759      if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
1760        ConstantInt *MaxAddCst = nullptr;
1761        if (LAddCst->getValue().ult(RAddCst->getValue()))
1762          MaxAddCst = RAddCst;
1763        else
1764          MaxAddCst = LAddCst;
1765
1766        APInt RRangeLow = -RAddCst->getValue();
1767        APInt RRangeHigh = RRangeLow + LHSCst->getValue();
1768        APInt LRangeLow = -LAddCst->getValue();
1769        APInt LRangeHigh = LRangeLow + LHSCst->getValue();
1770        APInt LowRangeDiff = RRangeLow ^ LRangeLow;
1771        APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
1772        APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
1773                                                   : RRangeLow - LRangeLow;
1774
1775        if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
1776            RangeDiff.ugt(LHSCst->getValue())) {
1777          Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
1778
1779          Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
1780          Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
1781          return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
1782        }
1783      }
1784    }
1785  }
1786
1787  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1788  if (PredicatesFoldable(LHSCC, RHSCC)) {
1789    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1790        LHS->getOperand(1) == RHS->getOperand(0))
1791      LHS->swapOperands();
1792    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1793        LHS->getOperand(1) == RHS->getOperand(1)) {
1794      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1795      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1796      bool isSigned = LHS->isSigned() || RHS->isSigned();
1797      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1798    }
1799  }
1800
1801  // handle (roughly):
1802  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1803  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1804    return V;
1805
1806  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1807  if (LHS->hasOneUse() || RHS->hasOneUse()) {
1808    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1809    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1810    Value *A = nullptr, *B = nullptr;
1811    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1812      B = Val;
1813      if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1814        A = Val2;
1815      else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1816        A = RHS->getOperand(1);
1817    }
1818    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1819    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1820    else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1821      B = Val2;
1822      if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1823        A = Val;
1824      else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1825        A = LHS->getOperand(1);
1826    }
1827    if (A && B)
1828      return Builder->CreateICmp(
1829          ICmpInst::ICMP_UGE,
1830          Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1831  }
1832
1833  // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
1834  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
1835    return V;
1836
1837  // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
1838  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
1839    return V;
1840
1841  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1842  if (!LHSCst || !RHSCst) return nullptr;
1843
1844  if (LHSCst == RHSCst && LHSCC == RHSCC) {
1845    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1846    if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1847      Value *NewOr = Builder->CreateOr(Val, Val2);
1848      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1849    }
1850  }
1851
1852  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1853  //   iff C2 + CA == C1.
1854  if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1855    ConstantInt *AddCst;
1856    if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1857      if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1858        return Builder->CreateICmpULE(Val, LHSCst);
1859  }
1860
1861  // From here on, we only handle:
1862  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1863  if (Val != Val2) return nullptr;
1864
1865  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1866  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1867      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1868      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1869      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1870    return nullptr;
1871
1872  // We can't fold (ugt x, C) | (sgt x, C2).
1873  if (!PredicatesFoldable(LHSCC, RHSCC))
1874    return nullptr;
1875
1876  // Ensure that the larger constant is on the RHS.
1877  bool ShouldSwap;
1878  if (CmpInst::isSigned(LHSCC) ||
1879      (ICmpInst::isEquality(LHSCC) &&
1880       CmpInst::isSigned(RHSCC)))
1881    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1882  else
1883    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1884
1885  if (ShouldSwap) {
1886    std::swap(LHS, RHS);
1887    std::swap(LHSCst, RHSCst);
1888    std::swap(LHSCC, RHSCC);
1889  }
1890
1891  // At this point, we know we have two icmp instructions
1892  // comparing a value against two constants and or'ing the result
1893  // together.  Because of the above check, we know that we only have
1894  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1895  // icmp folding check above), that the two constants are not
1896  // equal.
1897  assert(LHSCst != RHSCst && "Compares not folded above?");
1898
1899  switch (LHSCC) {
1900  default: llvm_unreachable("Unknown integer condition code!");
1901  case ICmpInst::ICMP_EQ:
1902    switch (RHSCC) {
1903    default: llvm_unreachable("Unknown integer condition code!");
1904    case ICmpInst::ICMP_EQ:
1905      if (LHS->getOperand(0) == RHS->getOperand(0)) {
1906        // if LHSCst and RHSCst differ only by one bit:
1907        // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
1908        assert(LHSCst->getValue().ule(LHSCst->getValue()));
1909
1910        APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
1911        if (Xor.isPowerOf2()) {
1912          Value *NegCst = Builder->getInt(~Xor);
1913          Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
1914          return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
1915        }
1916      }
1917
1918      if (LHSCst == SubOne(RHSCst)) {
1919        // (X == 13 | X == 14) -> X-13 <u 2
1920        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1921        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1922        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1923        return Builder->CreateICmpULT(Add, AddCST);
1924      }
1925
1926      break;                         // (X == 13 | X == 15) -> no change
1927    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1928    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1929      break;
1930    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1931    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1932    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1933      return RHS;
1934    }
1935    break;
1936  case ICmpInst::ICMP_NE:
1937    switch (RHSCC) {
1938    default: llvm_unreachable("Unknown integer condition code!");
1939    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1940    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1941    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1942      return LHS;
1943    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1944    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1945    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1946      return Builder->getTrue();
1947    }
1948  case ICmpInst::ICMP_ULT:
1949    switch (RHSCC) {
1950    default: llvm_unreachable("Unknown integer condition code!");
1951    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1952      break;
1953    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1954      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1955      // this can cause overflow.
1956      if (RHSCst->isMaxValue(false))
1957        return LHS;
1958      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1959    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1960      break;
1961    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1962    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1963      return RHS;
1964    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1965      break;
1966    }
1967    break;
1968  case ICmpInst::ICMP_SLT:
1969    switch (RHSCC) {
1970    default: llvm_unreachable("Unknown integer condition code!");
1971    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1972      break;
1973    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1974      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1975      // this can cause overflow.
1976      if (RHSCst->isMaxValue(true))
1977        return LHS;
1978      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1979    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1980      break;
1981    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1982    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1983      return RHS;
1984    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1985      break;
1986    }
1987    break;
1988  case ICmpInst::ICMP_UGT:
1989    switch (RHSCC) {
1990    default: llvm_unreachable("Unknown integer condition code!");
1991    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1992    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1993      return LHS;
1994    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1995      break;
1996    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1997    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1998      return Builder->getTrue();
1999    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
2000      break;
2001    }
2002    break;
2003  case ICmpInst::ICMP_SGT:
2004    switch (RHSCC) {
2005    default: llvm_unreachable("Unknown integer condition code!");
2006    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
2007    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
2008      return LHS;
2009    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
2010      break;
2011    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
2012    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
2013      return Builder->getTrue();
2014    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
2015      break;
2016    }
2017    break;
2018  }
2019  return nullptr;
2020}
2021
2022/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
2023/// instcombine, this returns a Value which should already be inserted into the
2024/// function.
2025Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
2026  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
2027      RHS->getPredicate() == FCmpInst::FCMP_UNO &&
2028      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
2029    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
2030      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
2031        // If either of the constants are nans, then the whole thing returns
2032        // true.
2033        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
2034          return Builder->getTrue();
2035
2036        // Otherwise, no need to compare the two constants, compare the
2037        // rest.
2038        return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2039      }
2040
2041    // Handle vector zeros.  This occurs because the canonical form of
2042    // "fcmp uno x,x" is "fcmp uno x, 0".
2043    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
2044        isa<ConstantAggregateZero>(RHS->getOperand(1)))
2045      return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2046
2047    return nullptr;
2048  }
2049
2050  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
2051  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
2052  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
2053
2054  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
2055    // Swap RHS operands to match LHS.
2056    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
2057    std::swap(Op1LHS, Op1RHS);
2058  }
2059  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
2060    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
2061    if (Op0CC == Op1CC)
2062      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
2063    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
2064      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
2065    if (Op0CC == FCmpInst::FCMP_FALSE)
2066      return RHS;
2067    if (Op1CC == FCmpInst::FCMP_FALSE)
2068      return LHS;
2069    bool Op0Ordered;
2070    bool Op1Ordered;
2071    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
2072    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
2073    if (Op0Ordered == Op1Ordered) {
2074      // If both are ordered or unordered, return a new fcmp with
2075      // or'ed predicates.
2076      return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
2077    }
2078  }
2079  return nullptr;
2080}
2081
2082/// FoldOrWithConstants - This helper function folds:
2083///
2084///     ((A | B) & C1) | (B & C2)
2085///
2086/// into:
2087///
2088///     (A & C1) | B
2089///
2090/// when the XOR of the two constants is "all ones" (-1).
2091Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
2092                                               Value *A, Value *B, Value *C) {
2093  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2094  if (!CI1) return nullptr;
2095
2096  Value *V1 = nullptr;
2097  ConstantInt *CI2 = nullptr;
2098  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
2099
2100  APInt Xor = CI1->getValue() ^ CI2->getValue();
2101  if (!Xor.isAllOnesValue()) return nullptr;
2102
2103  if (V1 == A || V1 == B) {
2104    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
2105    return BinaryOperator::CreateOr(NewOp, V1);
2106  }
2107
2108  return nullptr;
2109}
2110
2111/// \brief This helper function folds:
2112///
2113///     ((A | B) & C1) ^ (B & C2)
2114///
2115/// into:
2116///
2117///     (A & C1) ^ B
2118///
2119/// when the XOR of the two constants is "all ones" (-1).
2120Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
2121                                                Value *A, Value *B, Value *C) {
2122  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2123  if (!CI1)
2124    return nullptr;
2125
2126  Value *V1 = nullptr;
2127  ConstantInt *CI2 = nullptr;
2128  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
2129    return nullptr;
2130
2131  APInt Xor = CI1->getValue() ^ CI2->getValue();
2132  if (!Xor.isAllOnesValue())
2133    return nullptr;
2134
2135  if (V1 == A || V1 == B) {
2136    Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
2137    return BinaryOperator::CreateXor(NewOp, V1);
2138  }
2139
2140  return nullptr;
2141}
2142
2143Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2144  bool Changed = SimplifyAssociativeOrCommutative(I);
2145  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2146
2147  if (Value *V = SimplifyVectorOp(I))
2148    return ReplaceInstUsesWith(I, V);
2149
2150  if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
2151    return ReplaceInstUsesWith(I, V);
2152
2153  // (A&B)|(A&C) -> A&(B|C) etc
2154  if (Value *V = SimplifyUsingDistributiveLaws(I))
2155    return ReplaceInstUsesWith(I, V);
2156
2157  // See if we can simplify any instructions used by the instruction whose sole
2158  // purpose is to compute bits we don't care about.
2159  if (SimplifyDemandedInstructionBits(I))
2160    return &I;
2161
2162  if (Value *V = SimplifyBSwap(I))
2163    return ReplaceInstUsesWith(I, V);
2164
2165  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2166    ConstantInt *C1 = nullptr; Value *X = nullptr;
2167    // (X & C1) | C2 --> (X | C2) & (C1|C2)
2168    // iff (C1 & C2) == 0.
2169    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
2170        (RHS->getValue() & C1->getValue()) != 0 &&
2171        Op0->hasOneUse()) {
2172      Value *Or = Builder->CreateOr(X, RHS);
2173      Or->takeName(Op0);
2174      return BinaryOperator::CreateAnd(Or,
2175                             Builder->getInt(RHS->getValue() | C1->getValue()));
2176    }
2177
2178    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2179    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
2180        Op0->hasOneUse()) {
2181      Value *Or = Builder->CreateOr(X, RHS);
2182      Or->takeName(Op0);
2183      return BinaryOperator::CreateXor(Or,
2184                            Builder->getInt(C1->getValue() & ~RHS->getValue()));
2185    }
2186
2187    // Try to fold constant and into select arguments.
2188    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2189      if (Instruction *R = FoldOpIntoSelect(I, SI))
2190        return R;
2191
2192    if (isa<PHINode>(Op0))
2193      if (Instruction *NV = FoldOpIntoPhi(I))
2194        return NV;
2195  }
2196
2197  Value *A = nullptr, *B = nullptr;
2198  ConstantInt *C1 = nullptr, *C2 = nullptr;
2199
2200  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
2201  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
2202  if (match(Op0, m_Or(m_Value(), m_Value())) ||
2203      match(Op1, m_Or(m_Value(), m_Value())) ||
2204      (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
2205       match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
2206    if (Instruction *BSwap = MatchBSwap(I))
2207      return BSwap;
2208  }
2209
2210  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2211  if (Op0->hasOneUse() &&
2212      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2213      MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
2214    Value *NOr = Builder->CreateOr(A, Op1);
2215    NOr->takeName(Op0);
2216    return BinaryOperator::CreateXor(NOr, C1);
2217  }
2218
2219  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2220  if (Op1->hasOneUse() &&
2221      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2222      MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
2223    Value *NOr = Builder->CreateOr(A, Op0);
2224    NOr->takeName(Op0);
2225    return BinaryOperator::CreateXor(NOr, C1);
2226  }
2227
2228  // ((~A & B) | A) -> (A | B)
2229  if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2230      match(Op1, m_Specific(A)))
2231    return BinaryOperator::CreateOr(A, B);
2232
2233  // ((A & B) | ~A) -> (~A | B)
2234  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2235      match(Op1, m_Not(m_Specific(A))))
2236    return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
2237
2238  // (A & (~B)) | (A ^ B) -> (A ^ B)
2239  if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2240      match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
2241    return BinaryOperator::CreateXor(A, B);
2242
2243  // (A ^ B) | ( A & (~B)) -> (A ^ B)
2244  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2245      match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
2246    return BinaryOperator::CreateXor(A, B);
2247
2248  // (A & C)|(B & D)
2249  Value *C = nullptr, *D = nullptr;
2250  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2251      match(Op1, m_And(m_Value(B), m_Value(D)))) {
2252    Value *V1 = nullptr, *V2 = nullptr;
2253    C1 = dyn_cast<ConstantInt>(C);
2254    C2 = dyn_cast<ConstantInt>(D);
2255    if (C1 && C2) {  // (A & C1)|(B & C2)
2256      if ((C1->getValue() & C2->getValue()) == 0) {
2257        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2258        // iff (C1&C2) == 0 and (N&~C1) == 0
2259        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2260            ((V1 == B &&
2261              MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2262             (V2 == B &&
2263              MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2264          return BinaryOperator::CreateAnd(A,
2265                                Builder->getInt(C1->getValue()|C2->getValue()));
2266        // Or commutes, try both ways.
2267        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2268            ((V1 == A &&
2269              MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2270             (V2 == A &&
2271              MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2272          return BinaryOperator::CreateAnd(B,
2273                                Builder->getInt(C1->getValue()|C2->getValue()));
2274
2275        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2276        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2277        ConstantInt *C3 = nullptr, *C4 = nullptr;
2278        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2279            (C3->getValue() & ~C1->getValue()) == 0 &&
2280            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2281            (C4->getValue() & ~C2->getValue()) == 0) {
2282          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2283          return BinaryOperator::CreateAnd(V2,
2284                                Builder->getInt(C1->getValue()|C2->getValue()));
2285        }
2286      }
2287    }
2288
2289    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
2290    // Don't do this for vector select idioms, the code generator doesn't handle
2291    // them well yet.
2292    if (!I.getType()->isVectorTy()) {
2293      if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
2294        return Match;
2295      if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
2296        return Match;
2297      if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
2298        return Match;
2299      if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
2300        return Match;
2301    }
2302
2303    // ((A&~B)|(~A&B)) -> A^B
2304    if ((match(C, m_Not(m_Specific(D))) &&
2305         match(B, m_Not(m_Specific(A)))))
2306      return BinaryOperator::CreateXor(A, D);
2307    // ((~B&A)|(~A&B)) -> A^B
2308    if ((match(A, m_Not(m_Specific(D))) &&
2309         match(B, m_Not(m_Specific(C)))))
2310      return BinaryOperator::CreateXor(C, D);
2311    // ((A&~B)|(B&~A)) -> A^B
2312    if ((match(C, m_Not(m_Specific(B))) &&
2313         match(D, m_Not(m_Specific(A)))))
2314      return BinaryOperator::CreateXor(A, B);
2315    // ((~B&A)|(B&~A)) -> A^B
2316    if ((match(A, m_Not(m_Specific(B))) &&
2317         match(D, m_Not(m_Specific(C)))))
2318      return BinaryOperator::CreateXor(C, B);
2319
2320    // ((A|B)&1)|(B&-2) -> (A&1) | B
2321    if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2322        match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2323      Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2324      if (Ret) return Ret;
2325    }
2326    // (B&-2)|((A|B)&1) -> (A&1) | B
2327    if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2328        match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2329      Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2330      if (Ret) return Ret;
2331    }
2332    // ((A^B)&1)|(B&-2) -> (A&1) ^ B
2333    if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
2334        match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
2335      Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
2336      if (Ret) return Ret;
2337    }
2338    // (B&-2)|((A^B)&1) -> (A&1) ^ B
2339    if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
2340        match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
2341      Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
2342      if (Ret) return Ret;
2343    }
2344  }
2345
2346  // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2347  if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2348    if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2349      if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
2350        return BinaryOperator::CreateOr(Op0, C);
2351
2352  // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2353  if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2354    if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2355      if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
2356        return BinaryOperator::CreateOr(Op1, C);
2357
2358  // ((B | C) & A) | B -> B | (A & C)
2359  if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2360    return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
2361
2362  // (~A | ~B) == (~(A & B)) - De Morgan's Law
2363  if (Value *Op0NotVal = dyn_castNotVal(Op0))
2364    if (Value *Op1NotVal = dyn_castNotVal(Op1))
2365      if (Op0->hasOneUse() && Op1->hasOneUse()) {
2366        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
2367                                        I.getName()+".demorgan");
2368        return BinaryOperator::CreateNot(And);
2369      }
2370
2371  // Canonicalize xor to the RHS.
2372  bool SwappedForXor = false;
2373  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2374    std::swap(Op0, Op1);
2375    SwappedForXor = true;
2376  }
2377
2378  // A | ( A ^ B) -> A |  B
2379  // A | (~A ^ B) -> A | ~B
2380  // (A & B) | (A ^ B)
2381  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2382    if (Op0 == A || Op0 == B)
2383      return BinaryOperator::CreateOr(A, B);
2384
2385    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2386        match(Op0, m_And(m_Specific(B), m_Specific(A))))
2387      return BinaryOperator::CreateOr(A, B);
2388
2389    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2390      Value *Not = Builder->CreateNot(B, B->getName()+".not");
2391      return BinaryOperator::CreateOr(Not, Op0);
2392    }
2393    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2394      Value *Not = Builder->CreateNot(A, A->getName()+".not");
2395      return BinaryOperator::CreateOr(Not, Op0);
2396    }
2397  }
2398
2399  // A | ~(A | B) -> A | ~B
2400  // A | ~(A ^ B) -> A | ~B
2401  if (match(Op1, m_Not(m_Value(A))))
2402    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2403      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2404          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2405                               B->getOpcode() == Instruction::Xor)) {
2406        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2407                                                 B->getOperand(0);
2408        Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2409        return BinaryOperator::CreateOr(Not, Op0);
2410      }
2411
2412  // (A & B) | ((~A) ^ B) -> (~A ^ B)
2413  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2414      match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
2415    return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2416
2417  // ((~A) ^ B) | (A & B) -> (~A ^ B)
2418  if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2419      match(Op1, m_And(m_Specific(A), m_Specific(B))))
2420    return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2421
2422  if (SwappedForXor)
2423    std::swap(Op0, Op1);
2424
2425  {
2426    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2427    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2428    if (LHS && RHS)
2429      if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2430        return ReplaceInstUsesWith(I, Res);
2431
2432    // TODO: Make this recursive; it's a little tricky because an arbitrary
2433    // number of 'or' instructions might have to be created.
2434    Value *X, *Y;
2435    if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2436      if (auto *Cmp = dyn_cast<ICmpInst>(X))
2437        if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2438          return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2439      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2440        if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2441          return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
2442    }
2443    if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2444      if (auto *Cmp = dyn_cast<ICmpInst>(X))
2445        if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2446          return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2447      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2448        if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2449          return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
2450    }
2451  }
2452
2453  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2454  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2455    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2456      if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2457        return ReplaceInstUsesWith(I, Res);
2458
2459  // fold (or (cast A), (cast B)) -> (cast (or A, B))
2460  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2461    CastInst *Op1C = dyn_cast<CastInst>(Op1);
2462    if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2463      Type *SrcTy = Op0C->getOperand(0)->getType();
2464      if (SrcTy == Op1C->getOperand(0)->getType() &&
2465          SrcTy->isIntOrIntVectorTy()) {
2466        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2467
2468        if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2469            // Only do this if the casts both really cause code to be
2470            // generated.
2471            ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2472            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2473          Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2474          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2475        }
2476
2477        // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2478        // cast is otherwise not optimizable.  This happens for vector sexts.
2479        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2480          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2481            if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2482              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2483
2484        // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2485        // cast is otherwise not optimizable.  This happens for vector sexts.
2486        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2487          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2488            if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2489              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2490      }
2491    }
2492  }
2493
2494  // or(sext(A), B) -> A ? -1 : B where A is an i1
2495  // or(A, sext(B)) -> B ? -1 : A where B is an i1
2496  if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2497    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2498  if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2499    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2500
2501  // Note: If we've gotten to the point of visiting the outer OR, then the
2502  // inner one couldn't be simplified.  If it was a constant, then it won't
2503  // be simplified by a later pass either, so we try swapping the inner/outer
2504  // ORs in the hopes that we'll be able to simplify it this way.
2505  // (X|C) | V --> (X|V) | C
2506  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2507      match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2508    Value *Inner = Builder->CreateOr(A, Op1);
2509    Inner->takeName(Op0);
2510    return BinaryOperator::CreateOr(Inner, C1);
2511  }
2512
2513  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2514  // Since this OR statement hasn't been optimized further yet, we hope
2515  // that this transformation will allow the new ORs to be optimized.
2516  {
2517    Value *X = nullptr, *Y = nullptr;
2518    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2519        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2520        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2521      Value *orTrue = Builder->CreateOr(A, C);
2522      Value *orFalse = Builder->CreateOr(B, D);
2523      return SelectInst::Create(X, orTrue, orFalse);
2524    }
2525  }
2526
2527  return Changed ? &I : nullptr;
2528}
2529
2530Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2531  bool Changed = SimplifyAssociativeOrCommutative(I);
2532  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2533
2534  if (Value *V = SimplifyVectorOp(I))
2535    return ReplaceInstUsesWith(I, V);
2536
2537  if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
2538    return ReplaceInstUsesWith(I, V);
2539
2540  // (A&B)^(A&C) -> A&(B^C) etc
2541  if (Value *V = SimplifyUsingDistributiveLaws(I))
2542    return ReplaceInstUsesWith(I, V);
2543
2544  // See if we can simplify any instructions used by the instruction whose sole
2545  // purpose is to compute bits we don't care about.
2546  if (SimplifyDemandedInstructionBits(I))
2547    return &I;
2548
2549  if (Value *V = SimplifyBSwap(I))
2550    return ReplaceInstUsesWith(I, V);
2551
2552  // Is this a ~ operation?
2553  if (Value *NotOp = dyn_castNotVal(&I)) {
2554    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2555      if (Op0I->getOpcode() == Instruction::And ||
2556          Op0I->getOpcode() == Instruction::Or) {
2557        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2558        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2559        if (dyn_castNotVal(Op0I->getOperand(1)))
2560          Op0I->swapOperands();
2561        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2562          Value *NotY =
2563            Builder->CreateNot(Op0I->getOperand(1),
2564                               Op0I->getOperand(1)->getName()+".not");
2565          if (Op0I->getOpcode() == Instruction::And)
2566            return BinaryOperator::CreateOr(Op0NotVal, NotY);
2567          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2568        }
2569
2570        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2571        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2572        if (IsFreeToInvert(Op0I->getOperand(0),
2573                           Op0I->getOperand(0)->hasOneUse()) &&
2574            IsFreeToInvert(Op0I->getOperand(1),
2575                           Op0I->getOperand(1)->hasOneUse())) {
2576          Value *NotX =
2577            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2578          Value *NotY =
2579            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2580          if (Op0I->getOpcode() == Instruction::And)
2581            return BinaryOperator::CreateOr(NotX, NotY);
2582          return BinaryOperator::CreateAnd(NotX, NotY);
2583        }
2584
2585      } else if (Op0I->getOpcode() == Instruction::AShr) {
2586        // ~(~X >>s Y) --> (X >>s Y)
2587        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2588          return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2589      }
2590    }
2591  }
2592
2593  if (Constant *RHS = dyn_cast<Constant>(Op1)) {
2594    if (RHS->isAllOnesValue() && Op0->hasOneUse())
2595      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2596      if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2597        return CmpInst::Create(CI->getOpcode(),
2598                               CI->getInversePredicate(),
2599                               CI->getOperand(0), CI->getOperand(1));
2600  }
2601
2602  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2603    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2604    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2605      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2606        if (CI->hasOneUse() && Op0C->hasOneUse()) {
2607          Instruction::CastOps Opcode = Op0C->getOpcode();
2608          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2609              (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2610                                            Op0C->getDestTy()))) {
2611            CI->setPredicate(CI->getInversePredicate());
2612            return CastInst::Create(Opcode, CI, Op0C->getType());
2613          }
2614        }
2615      }
2616    }
2617
2618    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2619      // ~(c-X) == X-c-1 == X+(-c-1)
2620      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2621        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2622          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2623          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2624                                      ConstantInt::get(I.getType(), 1));
2625          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2626        }
2627
2628      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2629        if (Op0I->getOpcode() == Instruction::Add) {
2630          // ~(X-c) --> (-c-1)-X
2631          if (RHS->isAllOnesValue()) {
2632            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2633            return BinaryOperator::CreateSub(
2634                           ConstantExpr::getSub(NegOp0CI,
2635                                      ConstantInt::get(I.getType(), 1)),
2636                                      Op0I->getOperand(0));
2637          } else if (RHS->getValue().isSignBit()) {
2638            // (X + C) ^ signbit -> (X + C + signbit)
2639            Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2640            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2641
2642          }
2643        } else if (Op0I->getOpcode() == Instruction::Or) {
2644          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2645          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
2646                                0, &I)) {
2647            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2648            // Anything in both C1 and C2 is known to be zero, remove it from
2649            // NewRHS.
2650            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2651            NewRHS = ConstantExpr::getAnd(NewRHS,
2652                                       ConstantExpr::getNot(CommonBits));
2653            Worklist.Add(Op0I);
2654            I.setOperand(0, Op0I->getOperand(0));
2655            I.setOperand(1, NewRHS);
2656            return &I;
2657          }
2658        } else if (Op0I->getOpcode() == Instruction::LShr) {
2659          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2660          // E1 = "X ^ C1"
2661          BinaryOperator *E1;
2662          ConstantInt *C1;
2663          if (Op0I->hasOneUse() &&
2664              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2665              E1->getOpcode() == Instruction::Xor &&
2666              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2667            // fold (C1 >> C2) ^ C3
2668            ConstantInt *C2 = Op0CI, *C3 = RHS;
2669            APInt FoldConst = C1->getValue().lshr(C2->getValue());
2670            FoldConst ^= C3->getValue();
2671            // Prepare the two operands.
2672            Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2673            Opnd0->takeName(Op0I);
2674            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2675            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2676
2677            return BinaryOperator::CreateXor(Opnd0, FoldVal);
2678          }
2679        }
2680      }
2681    }
2682
2683    // Try to fold constant and into select arguments.
2684    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2685      if (Instruction *R = FoldOpIntoSelect(I, SI))
2686        return R;
2687    if (isa<PHINode>(Op0))
2688      if (Instruction *NV = FoldOpIntoPhi(I))
2689        return NV;
2690  }
2691
2692  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2693  if (Op1I) {
2694    Value *A, *B;
2695    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2696      if (A == Op0) {              // B^(B|A) == (A|B)^B
2697        Op1I->swapOperands();
2698        I.swapOperands();
2699        std::swap(Op0, Op1);
2700      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2701        I.swapOperands();     // Simplified below.
2702        std::swap(Op0, Op1);
2703      }
2704    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2705               Op1I->hasOneUse()){
2706      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2707        Op1I->swapOperands();
2708        std::swap(A, B);
2709      }
2710      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2711        I.swapOperands();     // Simplified below.
2712        std::swap(Op0, Op1);
2713      }
2714    }
2715  }
2716
2717  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2718  if (Op0I) {
2719    Value *A, *B;
2720    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2721        Op0I->hasOneUse()) {
2722      if (A == Op1)                                  // (B|A)^B == (A|B)^B
2723        std::swap(A, B);
2724      if (B == Op1)                                  // (A|B)^B == A & ~B
2725        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2726    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2727               Op0I->hasOneUse()){
2728      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2729        std::swap(A, B);
2730      if (B == Op1 &&                                      // (B&A)^A == ~B & A
2731          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2732        return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2733      }
2734    }
2735  }
2736
2737  if (Op0I && Op1I) {
2738    Value *A, *B, *C, *D;
2739    // (A & B)^(A | B) -> A ^ B
2740    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2741        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2742      if ((A == C && B == D) || (A == D && B == C))
2743        return BinaryOperator::CreateXor(A, B);
2744    }
2745    // (A | B)^(A & B) -> A ^ B
2746    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2747        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2748      if ((A == C && B == D) || (A == D && B == C))
2749        return BinaryOperator::CreateXor(A, B);
2750    }
2751    // (A | ~B) ^ (~A | B) -> A ^ B
2752    if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
2753        match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
2754      return BinaryOperator::CreateXor(A, B);
2755    }
2756    // (~A | B) ^ (A | ~B) -> A ^ B
2757    if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
2758        match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
2759      return BinaryOperator::CreateXor(A, B);
2760    }
2761    // (A & ~B) ^ (~A & B) -> A ^ B
2762    if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2763        match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
2764      return BinaryOperator::CreateXor(A, B);
2765    }
2766    // (~A & B) ^ (A & ~B) -> A ^ B
2767    if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2768        match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
2769      return BinaryOperator::CreateXor(A, B);
2770    }
2771    // (A ^ C)^(A | B) -> ((~A) & B) ^ C
2772    if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
2773        match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2774      if (D == A)
2775        return BinaryOperator::CreateXor(
2776            Builder->CreateAnd(Builder->CreateNot(A), B), C);
2777      if (D == B)
2778        return BinaryOperator::CreateXor(
2779            Builder->CreateAnd(Builder->CreateNot(B), A), C);
2780    }
2781    // (A | B)^(A ^ C) -> ((~A) & B) ^ C
2782    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2783        match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
2784      if (D == A)
2785        return BinaryOperator::CreateXor(
2786            Builder->CreateAnd(Builder->CreateNot(A), B), C);
2787      if (D == B)
2788        return BinaryOperator::CreateXor(
2789            Builder->CreateAnd(Builder->CreateNot(B), A), C);
2790    }
2791    // (A & B) ^ (A ^ B) -> (A | B)
2792    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2793        match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
2794      return BinaryOperator::CreateOr(A, B);
2795    // (A ^ B) ^ (A & B) -> (A | B)
2796    if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
2797        match(Op1I, m_And(m_Specific(A), m_Specific(B))))
2798      return BinaryOperator::CreateOr(A, B);
2799  }
2800
2801  Value *A = nullptr, *B = nullptr;
2802  // (A & ~B) ^ (~A) -> ~(A & B)
2803  if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2804      match(Op1, m_Not(m_Specific(A))))
2805    return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
2806
2807  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2808  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2809    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2810      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2811        if (LHS->getOperand(0) == RHS->getOperand(1) &&
2812            LHS->getOperand(1) == RHS->getOperand(0))
2813          LHS->swapOperands();
2814        if (LHS->getOperand(0) == RHS->getOperand(0) &&
2815            LHS->getOperand(1) == RHS->getOperand(1)) {
2816          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2817          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2818          bool isSigned = LHS->isSigned() || RHS->isSigned();
2819          return ReplaceInstUsesWith(I,
2820                               getNewICmpValue(isSigned, Code, Op0, Op1,
2821                                               Builder));
2822        }
2823      }
2824
2825  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2826  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2827    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2828      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2829        Type *SrcTy = Op0C->getOperand(0)->getType();
2830        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2831            // Only do this if the casts both really cause code to be generated.
2832            ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2833                               I.getType()) &&
2834            ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2835                               I.getType())) {
2836          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2837                                            Op1C->getOperand(0), I.getName());
2838          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2839        }
2840      }
2841  }
2842
2843  return Changed ? &I : nullptr;
2844}
2845