1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/MemoryBuiltins.h"
17#include "llvm/IR/CallSite.h"
18#include "llvm/IR/Dominators.h"
19#include "llvm/IR/PatternMatch.h"
20#include "llvm/IR/Statepoint.h"
21#include "llvm/Transforms/Utils/BuildLibCalls.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27#define DEBUG_TYPE "instcombine"
28
29STATISTIC(NumSimplified, "Number of library calls simplified");
30
31/// getPromotedType - Return the specified type promoted as it would be to pass
32/// though a va_arg area.
33static Type *getPromotedType(Type *Ty) {
34  if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
35    if (ITy->getBitWidth() < 32)
36      return Type::getInt32Ty(Ty->getContext());
37  }
38  return Ty;
39}
40
41/// reduceToSingleValueType - Given an aggregate type which ultimately holds a
42/// single scalar element, like {{{type}}} or [1 x type], return type.
43static Type *reduceToSingleValueType(Type *T) {
44  while (!T->isSingleValueType()) {
45    if (StructType *STy = dyn_cast<StructType>(T)) {
46      if (STy->getNumElements() == 1)
47        T = STy->getElementType(0);
48      else
49        break;
50    } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
51      if (ATy->getNumElements() == 1)
52        T = ATy->getElementType();
53      else
54        break;
55    } else
56      break;
57  }
58
59  return T;
60}
61
62Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
63  unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
64  unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
65  unsigned MinAlign = std::min(DstAlign, SrcAlign);
66  unsigned CopyAlign = MI->getAlignment();
67
68  if (CopyAlign < MinAlign) {
69    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
70                                             MinAlign, false));
71    return MI;
72  }
73
74  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
75  // load/store.
76  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
77  if (!MemOpLength) return nullptr;
78
79  // Source and destination pointer types are always "i8*" for intrinsic.  See
80  // if the size is something we can handle with a single primitive load/store.
81  // A single load+store correctly handles overlapping memory in the memmove
82  // case.
83  uint64_t Size = MemOpLength->getLimitedValue();
84  assert(Size && "0-sized memory transferring should be removed already.");
85
86  if (Size > 8 || (Size&(Size-1)))
87    return nullptr;  // If not 1/2/4/8 bytes, exit.
88
89  // Use an integer load+store unless we can find something better.
90  unsigned SrcAddrSp =
91    cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
92  unsigned DstAddrSp =
93    cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
94
95  IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
96  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
97  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
98
99  // Memcpy forces the use of i8* for the source and destination.  That means
100  // that if you're using memcpy to move one double around, you'll get a cast
101  // from double* to i8*.  We'd much rather use a double load+store rather than
102  // an i64 load+store, here because this improves the odds that the source or
103  // dest address will be promotable.  See if we can find a better type than the
104  // integer datatype.
105  Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
106  MDNode *CopyMD = nullptr;
107  if (StrippedDest != MI->getArgOperand(0)) {
108    Type *SrcETy = cast<PointerType>(StrippedDest->getType())
109                                    ->getElementType();
110    if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
111      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
112      // down through these levels if so.
113      SrcETy = reduceToSingleValueType(SrcETy);
114
115      if (SrcETy->isSingleValueType()) {
116        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
117        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
118
119        // If the memcpy has metadata describing the members, see if we can
120        // get the TBAA tag describing our copy.
121        if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
122          if (M->getNumOperands() == 3 && M->getOperand(0) &&
123              mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
124              mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
125              M->getOperand(1) &&
126              mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
127              mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
128                  Size &&
129              M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
130            CopyMD = cast<MDNode>(M->getOperand(2));
131        }
132      }
133    }
134  }
135
136  // If the memcpy/memmove provides better alignment info than we can
137  // infer, use it.
138  SrcAlign = std::max(SrcAlign, CopyAlign);
139  DstAlign = std::max(DstAlign, CopyAlign);
140
141  Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
142  Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
143  LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
144  L->setAlignment(SrcAlign);
145  if (CopyMD)
146    L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
147  StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
148  S->setAlignment(DstAlign);
149  if (CopyMD)
150    S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
151
152  // Set the size of the copy to 0, it will be deleted on the next iteration.
153  MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
154  return MI;
155}
156
157Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
158  unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
159  if (MI->getAlignment() < Alignment) {
160    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
161                                             Alignment, false));
162    return MI;
163  }
164
165  // Extract the length and alignment and fill if they are constant.
166  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
167  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
168  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
169    return nullptr;
170  uint64_t Len = LenC->getLimitedValue();
171  Alignment = MI->getAlignment();
172  assert(Len && "0-sized memory setting should be removed already.");
173
174  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
175  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
176    Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
177
178    Value *Dest = MI->getDest();
179    unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
180    Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
181    Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
182
183    // Alignment 0 is identity for alignment 1 for memset, but not store.
184    if (Alignment == 0) Alignment = 1;
185
186    // Extract the fill value and store.
187    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
188    StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
189                                        MI->isVolatile());
190    S->setAlignment(Alignment);
191
192    // Set the size of the copy to 0, it will be deleted on the next iteration.
193    MI->setLength(Constant::getNullValue(LenC->getType()));
194    return MI;
195  }
196
197  return nullptr;
198}
199
200static Value *SimplifyX86insertps(const IntrinsicInst &II,
201                                  InstCombiner::BuilderTy &Builder) {
202  if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
203    VectorType *VecTy = cast<VectorType>(II.getType());
204    ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
205
206    // The immediate permute control byte looks like this:
207    //    [3:0] - zero mask for each 32-bit lane
208    //    [5:4] - select one 32-bit destination lane
209    //    [7:6] - select one 32-bit source lane
210
211    uint8_t Imm = CInt->getZExtValue();
212    uint8_t ZMask = Imm & 0xf;
213    uint8_t DestLane = (Imm >> 4) & 0x3;
214    uint8_t SourceLane = (Imm >> 6) & 0x3;
215
216    // If all zero mask bits are set, this was just a weird way to
217    // generate a zero vector.
218    if (ZMask == 0xf)
219      return ZeroVector;
220
221    // TODO: Model this case as two shuffles or a 'logical and' plus shuffle?
222    if (ZMask)
223      return nullptr;
224
225    assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
226
227    // If we're not zeroing anything, this is a single shuffle.
228    // Replace the selected destination lane with the selected source lane.
229    // For all other lanes, pass the first source bits through.
230    int ShuffleMask[4] = { 0, 1, 2, 3 };
231    ShuffleMask[DestLane] = SourceLane + 4;
232
233    return Builder.CreateShuffleVector(II.getArgOperand(0), II.getArgOperand(1),
234                                       ShuffleMask);
235  }
236  return nullptr;
237}
238
239/// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
240/// source vectors, unless a zero bit is set. If a zero bit is set,
241/// then ignore that half of the mask and clear that half of the vector.
242static Value *SimplifyX86vperm2(const IntrinsicInst &II,
243                                InstCombiner::BuilderTy &Builder) {
244  if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
245    VectorType *VecTy = cast<VectorType>(II.getType());
246    ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
247
248    // The immediate permute control byte looks like this:
249    //    [1:0] - select 128 bits from sources for low half of destination
250    //    [2]   - ignore
251    //    [3]   - zero low half of destination
252    //    [5:4] - select 128 bits from sources for high half of destination
253    //    [6]   - ignore
254    //    [7]   - zero high half of destination
255
256    uint8_t Imm = CInt->getZExtValue();
257
258    bool LowHalfZero = Imm & 0x08;
259    bool HighHalfZero = Imm & 0x80;
260
261    // If both zero mask bits are set, this was just a weird way to
262    // generate a zero vector.
263    if (LowHalfZero && HighHalfZero)
264      return ZeroVector;
265
266    // If 0 or 1 zero mask bits are set, this is a simple shuffle.
267    unsigned NumElts = VecTy->getNumElements();
268    unsigned HalfSize = NumElts / 2;
269    SmallVector<int, 8> ShuffleMask(NumElts);
270
271    // The high bit of the selection field chooses the 1st or 2nd operand.
272    bool LowInputSelect = Imm & 0x02;
273    bool HighInputSelect = Imm & 0x20;
274
275    // The low bit of the selection field chooses the low or high half
276    // of the selected operand.
277    bool LowHalfSelect = Imm & 0x01;
278    bool HighHalfSelect = Imm & 0x10;
279
280    // Determine which operand(s) are actually in use for this instruction.
281    Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
282    Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
283
284    // If needed, replace operands based on zero mask.
285    V0 = LowHalfZero ? ZeroVector : V0;
286    V1 = HighHalfZero ? ZeroVector : V1;
287
288    // Permute low half of result.
289    unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
290    for (unsigned i = 0; i < HalfSize; ++i)
291      ShuffleMask[i] = StartIndex + i;
292
293    // Permute high half of result.
294    StartIndex = HighHalfSelect ? HalfSize : 0;
295    StartIndex += NumElts;
296    for (unsigned i = 0; i < HalfSize; ++i)
297      ShuffleMask[i + HalfSize] = StartIndex + i;
298
299    return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
300  }
301  return nullptr;
302}
303
304/// visitCallInst - CallInst simplification.  This mostly only handles folding
305/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
306/// the heavy lifting.
307///
308Instruction *InstCombiner::visitCallInst(CallInst &CI) {
309  if (isFreeCall(&CI, TLI))
310    return visitFree(CI);
311
312  // If the caller function is nounwind, mark the call as nounwind, even if the
313  // callee isn't.
314  if (CI.getParent()->getParent()->doesNotThrow() &&
315      !CI.doesNotThrow()) {
316    CI.setDoesNotThrow();
317    return &CI;
318  }
319
320  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
321  if (!II) return visitCallSite(&CI);
322
323  // Intrinsics cannot occur in an invoke, so handle them here instead of in
324  // visitCallSite.
325  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
326    bool Changed = false;
327
328    // memmove/cpy/set of zero bytes is a noop.
329    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
330      if (NumBytes->isNullValue())
331        return EraseInstFromFunction(CI);
332
333      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
334        if (CI->getZExtValue() == 1) {
335          // Replace the instruction with just byte operations.  We would
336          // transform other cases to loads/stores, but we don't know if
337          // alignment is sufficient.
338        }
339    }
340
341    // No other transformations apply to volatile transfers.
342    if (MI->isVolatile())
343      return nullptr;
344
345    // If we have a memmove and the source operation is a constant global,
346    // then the source and dest pointers can't alias, so we can change this
347    // into a call to memcpy.
348    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
349      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
350        if (GVSrc->isConstant()) {
351          Module *M = CI.getParent()->getParent()->getParent();
352          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
353          Type *Tys[3] = { CI.getArgOperand(0)->getType(),
354                           CI.getArgOperand(1)->getType(),
355                           CI.getArgOperand(2)->getType() };
356          CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
357          Changed = true;
358        }
359    }
360
361    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
362      // memmove(x,x,size) -> noop.
363      if (MTI->getSource() == MTI->getDest())
364        return EraseInstFromFunction(CI);
365    }
366
367    // If we can determine a pointer alignment that is bigger than currently
368    // set, update the alignment.
369    if (isa<MemTransferInst>(MI)) {
370      if (Instruction *I = SimplifyMemTransfer(MI))
371        return I;
372    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
373      if (Instruction *I = SimplifyMemSet(MSI))
374        return I;
375    }
376
377    if (Changed) return II;
378  }
379
380  switch (II->getIntrinsicID()) {
381  default: break;
382  case Intrinsic::objectsize: {
383    uint64_t Size;
384    if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
385      return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
386    return nullptr;
387  }
388  case Intrinsic::bswap: {
389    Value *IIOperand = II->getArgOperand(0);
390    Value *X = nullptr;
391
392    // bswap(bswap(x)) -> x
393    if (match(IIOperand, m_BSwap(m_Value(X))))
394        return ReplaceInstUsesWith(CI, X);
395
396    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
397    if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
398      unsigned C = X->getType()->getPrimitiveSizeInBits() -
399        IIOperand->getType()->getPrimitiveSizeInBits();
400      Value *CV = ConstantInt::get(X->getType(), C);
401      Value *V = Builder->CreateLShr(X, CV);
402      return new TruncInst(V, IIOperand->getType());
403    }
404    break;
405  }
406
407  case Intrinsic::powi:
408    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
409      // powi(x, 0) -> 1.0
410      if (Power->isZero())
411        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
412      // powi(x, 1) -> x
413      if (Power->isOne())
414        return ReplaceInstUsesWith(CI, II->getArgOperand(0));
415      // powi(x, -1) -> 1/x
416      if (Power->isAllOnesValue())
417        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
418                                          II->getArgOperand(0));
419    }
420    break;
421  case Intrinsic::cttz: {
422    // If all bits below the first known one are known zero,
423    // this value is constant.
424    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
425    // FIXME: Try to simplify vectors of integers.
426    if (!IT) break;
427    uint32_t BitWidth = IT->getBitWidth();
428    APInt KnownZero(BitWidth, 0);
429    APInt KnownOne(BitWidth, 0);
430    computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
431    unsigned TrailingZeros = KnownOne.countTrailingZeros();
432    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
433    if ((Mask & KnownZero) == Mask)
434      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
435                                 APInt(BitWidth, TrailingZeros)));
436
437    }
438    break;
439  case Intrinsic::ctlz: {
440    // If all bits above the first known one are known zero,
441    // this value is constant.
442    IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
443    // FIXME: Try to simplify vectors of integers.
444    if (!IT) break;
445    uint32_t BitWidth = IT->getBitWidth();
446    APInt KnownZero(BitWidth, 0);
447    APInt KnownOne(BitWidth, 0);
448    computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
449    unsigned LeadingZeros = KnownOne.countLeadingZeros();
450    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
451    if ((Mask & KnownZero) == Mask)
452      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
453                                 APInt(BitWidth, LeadingZeros)));
454
455    }
456    break;
457
458  case Intrinsic::uadd_with_overflow:
459  case Intrinsic::sadd_with_overflow:
460  case Intrinsic::umul_with_overflow:
461  case Intrinsic::smul_with_overflow:
462    if (isa<Constant>(II->getArgOperand(0)) &&
463        !isa<Constant>(II->getArgOperand(1))) {
464      // Canonicalize constants into the RHS.
465      Value *LHS = II->getArgOperand(0);
466      II->setArgOperand(0, II->getArgOperand(1));
467      II->setArgOperand(1, LHS);
468      return II;
469    }
470    // fall through
471
472  case Intrinsic::usub_with_overflow:
473  case Intrinsic::ssub_with_overflow: {
474    OverflowCheckFlavor OCF =
475        IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
476    assert(OCF != OCF_INVALID && "unexpected!");
477
478    Value *OperationResult = nullptr;
479    Constant *OverflowResult = nullptr;
480    if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
481                              *II, OperationResult, OverflowResult))
482      return CreateOverflowTuple(II, OperationResult, OverflowResult);
483
484    break;
485  }
486
487  case Intrinsic::minnum:
488  case Intrinsic::maxnum: {
489    Value *Arg0 = II->getArgOperand(0);
490    Value *Arg1 = II->getArgOperand(1);
491
492    // fmin(x, x) -> x
493    if (Arg0 == Arg1)
494      return ReplaceInstUsesWith(CI, Arg0);
495
496    const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
497    const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
498
499    // Canonicalize constants into the RHS.
500    if (C0 && !C1) {
501      II->setArgOperand(0, Arg1);
502      II->setArgOperand(1, Arg0);
503      return II;
504    }
505
506    // fmin(x, nan) -> x
507    if (C1 && C1->isNaN())
508      return ReplaceInstUsesWith(CI, Arg0);
509
510    // This is the value because if undef were NaN, we would return the other
511    // value and cannot return a NaN unless both operands are.
512    //
513    // fmin(undef, x) -> x
514    if (isa<UndefValue>(Arg0))
515      return ReplaceInstUsesWith(CI, Arg1);
516
517    // fmin(x, undef) -> x
518    if (isa<UndefValue>(Arg1))
519      return ReplaceInstUsesWith(CI, Arg0);
520
521    Value *X = nullptr;
522    Value *Y = nullptr;
523    if (II->getIntrinsicID() == Intrinsic::minnum) {
524      // fmin(x, fmin(x, y)) -> fmin(x, y)
525      // fmin(y, fmin(x, y)) -> fmin(x, y)
526      if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
527        if (Arg0 == X || Arg0 == Y)
528          return ReplaceInstUsesWith(CI, Arg1);
529      }
530
531      // fmin(fmin(x, y), x) -> fmin(x, y)
532      // fmin(fmin(x, y), y) -> fmin(x, y)
533      if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
534        if (Arg1 == X || Arg1 == Y)
535          return ReplaceInstUsesWith(CI, Arg0);
536      }
537
538      // TODO: fmin(nnan x, inf) -> x
539      // TODO: fmin(nnan ninf x, flt_max) -> x
540      if (C1 && C1->isInfinity()) {
541        // fmin(x, -inf) -> -inf
542        if (C1->isNegative())
543          return ReplaceInstUsesWith(CI, Arg1);
544      }
545    } else {
546      assert(II->getIntrinsicID() == Intrinsic::maxnum);
547      // fmax(x, fmax(x, y)) -> fmax(x, y)
548      // fmax(y, fmax(x, y)) -> fmax(x, y)
549      if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
550        if (Arg0 == X || Arg0 == Y)
551          return ReplaceInstUsesWith(CI, Arg1);
552      }
553
554      // fmax(fmax(x, y), x) -> fmax(x, y)
555      // fmax(fmax(x, y), y) -> fmax(x, y)
556      if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
557        if (Arg1 == X || Arg1 == Y)
558          return ReplaceInstUsesWith(CI, Arg0);
559      }
560
561      // TODO: fmax(nnan x, -inf) -> x
562      // TODO: fmax(nnan ninf x, -flt_max) -> x
563      if (C1 && C1->isInfinity()) {
564        // fmax(x, inf) -> inf
565        if (!C1->isNegative())
566          return ReplaceInstUsesWith(CI, Arg1);
567      }
568    }
569    break;
570  }
571  case Intrinsic::ppc_altivec_lvx:
572  case Intrinsic::ppc_altivec_lvxl:
573    // Turn PPC lvx -> load if the pointer is known aligned.
574    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
575        16) {
576      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
577                                         PointerType::getUnqual(II->getType()));
578      return new LoadInst(Ptr);
579    }
580    break;
581  case Intrinsic::ppc_vsx_lxvw4x:
582  case Intrinsic::ppc_vsx_lxvd2x: {
583    // Turn PPC VSX loads into normal loads.
584    Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
585                                        PointerType::getUnqual(II->getType()));
586    return new LoadInst(Ptr, Twine(""), false, 1);
587  }
588  case Intrinsic::ppc_altivec_stvx:
589  case Intrinsic::ppc_altivec_stvxl:
590    // Turn stvx -> store if the pointer is known aligned.
591    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
592        16) {
593      Type *OpPtrTy =
594        PointerType::getUnqual(II->getArgOperand(0)->getType());
595      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
596      return new StoreInst(II->getArgOperand(0), Ptr);
597    }
598    break;
599  case Intrinsic::ppc_vsx_stxvw4x:
600  case Intrinsic::ppc_vsx_stxvd2x: {
601    // Turn PPC VSX stores into normal stores.
602    Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
603    Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
604    return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
605  }
606  case Intrinsic::ppc_qpx_qvlfs:
607    // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
608    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
609        16) {
610      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
611                                         PointerType::getUnqual(II->getType()));
612      return new LoadInst(Ptr);
613    }
614    break;
615  case Intrinsic::ppc_qpx_qvlfd:
616    // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
617    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
618        32) {
619      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
620                                         PointerType::getUnqual(II->getType()));
621      return new LoadInst(Ptr);
622    }
623    break;
624  case Intrinsic::ppc_qpx_qvstfs:
625    // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
626    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
627        16) {
628      Type *OpPtrTy =
629        PointerType::getUnqual(II->getArgOperand(0)->getType());
630      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
631      return new StoreInst(II->getArgOperand(0), Ptr);
632    }
633    break;
634  case Intrinsic::ppc_qpx_qvstfd:
635    // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
636    if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
637        32) {
638      Type *OpPtrTy =
639        PointerType::getUnqual(II->getArgOperand(0)->getType());
640      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
641      return new StoreInst(II->getArgOperand(0), Ptr);
642    }
643    break;
644  case Intrinsic::x86_sse_storeu_ps:
645  case Intrinsic::x86_sse2_storeu_pd:
646  case Intrinsic::x86_sse2_storeu_dq:
647    // Turn X86 storeu -> store if the pointer is known aligned.
648    if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
649        16) {
650      Type *OpPtrTy =
651        PointerType::getUnqual(II->getArgOperand(1)->getType());
652      Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
653      return new StoreInst(II->getArgOperand(1), Ptr);
654    }
655    break;
656
657  case Intrinsic::x86_sse_cvtss2si:
658  case Intrinsic::x86_sse_cvtss2si64:
659  case Intrinsic::x86_sse_cvttss2si:
660  case Intrinsic::x86_sse_cvttss2si64:
661  case Intrinsic::x86_sse2_cvtsd2si:
662  case Intrinsic::x86_sse2_cvtsd2si64:
663  case Intrinsic::x86_sse2_cvttsd2si:
664  case Intrinsic::x86_sse2_cvttsd2si64: {
665    // These intrinsics only demand the 0th element of their input vectors. If
666    // we can simplify the input based on that, do so now.
667    unsigned VWidth =
668      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
669    APInt DemandedElts(VWidth, 1);
670    APInt UndefElts(VWidth, 0);
671    if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
672                                              DemandedElts, UndefElts)) {
673      II->setArgOperand(0, V);
674      return II;
675    }
676    break;
677  }
678
679  // Constant fold <A x Bi> << Ci.
680  // FIXME: We don't handle _dq because it's a shift of an i128, but is
681  // represented in the IR as <2 x i64>. A per element shift is wrong.
682  case Intrinsic::x86_sse2_psll_d:
683  case Intrinsic::x86_sse2_psll_q:
684  case Intrinsic::x86_sse2_psll_w:
685  case Intrinsic::x86_sse2_pslli_d:
686  case Intrinsic::x86_sse2_pslli_q:
687  case Intrinsic::x86_sse2_pslli_w:
688  case Intrinsic::x86_avx2_psll_d:
689  case Intrinsic::x86_avx2_psll_q:
690  case Intrinsic::x86_avx2_psll_w:
691  case Intrinsic::x86_avx2_pslli_d:
692  case Intrinsic::x86_avx2_pslli_q:
693  case Intrinsic::x86_avx2_pslli_w:
694  case Intrinsic::x86_sse2_psrl_d:
695  case Intrinsic::x86_sse2_psrl_q:
696  case Intrinsic::x86_sse2_psrl_w:
697  case Intrinsic::x86_sse2_psrli_d:
698  case Intrinsic::x86_sse2_psrli_q:
699  case Intrinsic::x86_sse2_psrli_w:
700  case Intrinsic::x86_avx2_psrl_d:
701  case Intrinsic::x86_avx2_psrl_q:
702  case Intrinsic::x86_avx2_psrl_w:
703  case Intrinsic::x86_avx2_psrli_d:
704  case Intrinsic::x86_avx2_psrli_q:
705  case Intrinsic::x86_avx2_psrli_w: {
706    // Simplify if count is constant. To 0 if >= BitWidth,
707    // otherwise to shl/lshr.
708    auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
709    auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
710    if (!CDV && !CInt)
711      break;
712    ConstantInt *Count;
713    if (CDV)
714      Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
715    else
716      Count = CInt;
717
718    auto Vec = II->getArgOperand(0);
719    auto VT = cast<VectorType>(Vec->getType());
720    if (Count->getZExtValue() >
721        VT->getElementType()->getPrimitiveSizeInBits() - 1)
722      return ReplaceInstUsesWith(
723          CI, ConstantAggregateZero::get(Vec->getType()));
724
725    bool isPackedShiftLeft = true;
726    switch (II->getIntrinsicID()) {
727    default : break;
728    case Intrinsic::x86_sse2_psrl_d:
729    case Intrinsic::x86_sse2_psrl_q:
730    case Intrinsic::x86_sse2_psrl_w:
731    case Intrinsic::x86_sse2_psrli_d:
732    case Intrinsic::x86_sse2_psrli_q:
733    case Intrinsic::x86_sse2_psrli_w:
734    case Intrinsic::x86_avx2_psrl_d:
735    case Intrinsic::x86_avx2_psrl_q:
736    case Intrinsic::x86_avx2_psrl_w:
737    case Intrinsic::x86_avx2_psrli_d:
738    case Intrinsic::x86_avx2_psrli_q:
739    case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
740    }
741
742    unsigned VWidth = VT->getNumElements();
743    // Get a constant vector of the same type as the first operand.
744    auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
745    if (isPackedShiftLeft)
746      return BinaryOperator::CreateShl(Vec,
747          Builder->CreateVectorSplat(VWidth, VTCI));
748
749    return BinaryOperator::CreateLShr(Vec,
750        Builder->CreateVectorSplat(VWidth, VTCI));
751  }
752
753  case Intrinsic::x86_sse41_pmovsxbw:
754  case Intrinsic::x86_sse41_pmovsxwd:
755  case Intrinsic::x86_sse41_pmovsxdq:
756  case Intrinsic::x86_sse41_pmovzxbw:
757  case Intrinsic::x86_sse41_pmovzxwd:
758  case Intrinsic::x86_sse41_pmovzxdq: {
759    // pmov{s|z}x ignores the upper half of their input vectors.
760    unsigned VWidth =
761      cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
762    unsigned LowHalfElts = VWidth / 2;
763    APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
764    APInt UndefElts(VWidth, 0);
765    if (Value *TmpV = SimplifyDemandedVectorElts(
766            II->getArgOperand(0), InputDemandedElts, UndefElts)) {
767      II->setArgOperand(0, TmpV);
768      return II;
769    }
770    break;
771  }
772  case Intrinsic::x86_sse41_insertps:
773    if (Value *V = SimplifyX86insertps(*II, *Builder))
774      return ReplaceInstUsesWith(*II, V);
775    break;
776
777  case Intrinsic::x86_sse4a_insertqi: {
778    // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
779    // ones undef
780    // TODO: eventually we should lower this intrinsic to IR
781    if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
782      if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
783        unsigned Index = CIStart->getZExtValue();
784        // From AMD documentation: "a value of zero in the field length is
785        // defined as length of 64".
786        unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
787
788        // From AMD documentation: "If the sum of the bit index + length field
789        // is greater than 64, the results are undefined".
790
791        // Note that both field index and field length are 8-bit quantities.
792        // Since variables 'Index' and 'Length' are unsigned values
793        // obtained from zero-extending field index and field length
794        // respectively, their sum should never wrap around.
795        if ((Index + Length) > 64)
796          return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
797
798        if (Length == 64 && Index == 0) {
799          Value *Vec = II->getArgOperand(1);
800          Value *Undef = UndefValue::get(Vec->getType());
801          const uint32_t Mask[] = { 0, 2 };
802          return ReplaceInstUsesWith(
803              CI,
804              Builder->CreateShuffleVector(
805                  Vec, Undef, ConstantDataVector::get(
806                                  II->getContext(), makeArrayRef(Mask))));
807
808        } else if (auto Source =
809                       dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
810          if (Source->hasOneUse() &&
811              Source->getArgOperand(1) == II->getArgOperand(1)) {
812            // If the source of the insert has only one use and it's another
813            // insert (and they're both inserting from the same vector), try to
814            // bundle both together.
815            auto CISourceWidth =
816                dyn_cast<ConstantInt>(Source->getArgOperand(2));
817            auto CISourceStart =
818                dyn_cast<ConstantInt>(Source->getArgOperand(3));
819            if (CISourceStart && CISourceWidth) {
820              unsigned Start = CIStart->getZExtValue();
821              unsigned Width = CIWidth->getZExtValue();
822              unsigned End = Start + Width;
823              unsigned SourceStart = CISourceStart->getZExtValue();
824              unsigned SourceWidth = CISourceWidth->getZExtValue();
825              unsigned SourceEnd = SourceStart + SourceWidth;
826              unsigned NewStart, NewWidth;
827              bool ShouldReplace = false;
828              if (Start <= SourceStart && SourceStart <= End) {
829                NewStart = Start;
830                NewWidth = std::max(End, SourceEnd) - NewStart;
831                ShouldReplace = true;
832              } else if (SourceStart <= Start && Start <= SourceEnd) {
833                NewStart = SourceStart;
834                NewWidth = std::max(SourceEnd, End) - NewStart;
835                ShouldReplace = true;
836              }
837
838              if (ShouldReplace) {
839                Constant *ConstantWidth = ConstantInt::get(
840                    II->getArgOperand(2)->getType(), NewWidth, false);
841                Constant *ConstantStart = ConstantInt::get(
842                    II->getArgOperand(3)->getType(), NewStart, false);
843                Value *Args[4] = { Source->getArgOperand(0),
844                                   II->getArgOperand(1), ConstantWidth,
845                                   ConstantStart };
846                Module *M = CI.getParent()->getParent()->getParent();
847                Value *F =
848                    Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
849                return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
850              }
851            }
852          }
853        }
854      }
855    }
856    break;
857  }
858
859  case Intrinsic::x86_sse41_pblendvb:
860  case Intrinsic::x86_sse41_blendvps:
861  case Intrinsic::x86_sse41_blendvpd:
862  case Intrinsic::x86_avx_blendv_ps_256:
863  case Intrinsic::x86_avx_blendv_pd_256:
864  case Intrinsic::x86_avx2_pblendvb: {
865    // Convert blendv* to vector selects if the mask is constant.
866    // This optimization is convoluted because the intrinsic is defined as
867    // getting a vector of floats or doubles for the ps and pd versions.
868    // FIXME: That should be changed.
869    Value *Mask = II->getArgOperand(2);
870    if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
871      auto Tyi1 = Builder->getInt1Ty();
872      auto SelectorType = cast<VectorType>(Mask->getType());
873      auto EltTy = SelectorType->getElementType();
874      unsigned Size = SelectorType->getNumElements();
875      unsigned BitWidth =
876          EltTy->isFloatTy()
877              ? 32
878              : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
879      assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
880             "Wrong arguments for variable blend intrinsic");
881      SmallVector<Constant *, 32> Selectors;
882      for (unsigned I = 0; I < Size; ++I) {
883        // The intrinsics only read the top bit
884        uint64_t Selector;
885        if (BitWidth == 8)
886          Selector = C->getElementAsInteger(I);
887        else
888          Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
889        Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
890      }
891      auto NewSelector = ConstantVector::get(Selectors);
892      return SelectInst::Create(NewSelector, II->getArgOperand(1),
893                                II->getArgOperand(0), "blendv");
894    } else {
895      break;
896    }
897  }
898
899  case Intrinsic::x86_avx_vpermilvar_ps:
900  case Intrinsic::x86_avx_vpermilvar_ps_256:
901  case Intrinsic::x86_avx_vpermilvar_pd:
902  case Intrinsic::x86_avx_vpermilvar_pd_256: {
903    // Convert vpermil* to shufflevector if the mask is constant.
904    Value *V = II->getArgOperand(1);
905    unsigned Size = cast<VectorType>(V->getType())->getNumElements();
906    assert(Size == 8 || Size == 4 || Size == 2);
907    uint32_t Indexes[8];
908    if (auto C = dyn_cast<ConstantDataVector>(V)) {
909      // The intrinsics only read one or two bits, clear the rest.
910      for (unsigned I = 0; I < Size; ++I) {
911        uint32_t Index = C->getElementAsInteger(I) & 0x3;
912        if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
913            II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
914          Index >>= 1;
915        Indexes[I] = Index;
916      }
917    } else if (isa<ConstantAggregateZero>(V)) {
918      for (unsigned I = 0; I < Size; ++I)
919        Indexes[I] = 0;
920    } else {
921      break;
922    }
923    // The _256 variants are a bit trickier since the mask bits always index
924    // into the corresponding 128 half. In order to convert to a generic
925    // shuffle, we have to make that explicit.
926    if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
927        II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
928      for (unsigned I = Size / 2; I < Size; ++I)
929        Indexes[I] += Size / 2;
930    }
931    auto NewC =
932        ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
933    auto V1 = II->getArgOperand(0);
934    auto V2 = UndefValue::get(V1->getType());
935    auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
936    return ReplaceInstUsesWith(CI, Shuffle);
937  }
938
939  case Intrinsic::x86_avx_vperm2f128_pd_256:
940  case Intrinsic::x86_avx_vperm2f128_ps_256:
941  case Intrinsic::x86_avx_vperm2f128_si_256:
942  case Intrinsic::x86_avx2_vperm2i128:
943    if (Value *V = SimplifyX86vperm2(*II, *Builder))
944      return ReplaceInstUsesWith(*II, V);
945    break;
946
947  case Intrinsic::ppc_altivec_vperm:
948    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
949    // Note that ppc_altivec_vperm has a big-endian bias, so when creating
950    // a vectorshuffle for little endian, we must undo the transformation
951    // performed on vec_perm in altivec.h.  That is, we must complement
952    // the permutation mask with respect to 31 and reverse the order of
953    // V1 and V2.
954    if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
955      assert(Mask->getType()->getVectorNumElements() == 16 &&
956             "Bad type for intrinsic!");
957
958      // Check that all of the elements are integer constants or undefs.
959      bool AllEltsOk = true;
960      for (unsigned i = 0; i != 16; ++i) {
961        Constant *Elt = Mask->getAggregateElement(i);
962        if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
963          AllEltsOk = false;
964          break;
965        }
966      }
967
968      if (AllEltsOk) {
969        // Cast the input vectors to byte vectors.
970        Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
971                                            Mask->getType());
972        Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
973                                            Mask->getType());
974        Value *Result = UndefValue::get(Op0->getType());
975
976        // Only extract each element once.
977        Value *ExtractedElts[32];
978        memset(ExtractedElts, 0, sizeof(ExtractedElts));
979
980        for (unsigned i = 0; i != 16; ++i) {
981          if (isa<UndefValue>(Mask->getAggregateElement(i)))
982            continue;
983          unsigned Idx =
984            cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
985          Idx &= 31;  // Match the hardware behavior.
986          if (DL.isLittleEndian())
987            Idx = 31 - Idx;
988
989          if (!ExtractedElts[Idx]) {
990            Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
991            Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
992            ExtractedElts[Idx] =
993              Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
994                                            Builder->getInt32(Idx&15));
995          }
996
997          // Insert this value into the result vector.
998          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
999                                                Builder->getInt32(i));
1000        }
1001        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
1002      }
1003    }
1004    break;
1005
1006  case Intrinsic::arm_neon_vld1:
1007  case Intrinsic::arm_neon_vld2:
1008  case Intrinsic::arm_neon_vld3:
1009  case Intrinsic::arm_neon_vld4:
1010  case Intrinsic::arm_neon_vld2lane:
1011  case Intrinsic::arm_neon_vld3lane:
1012  case Intrinsic::arm_neon_vld4lane:
1013  case Intrinsic::arm_neon_vst1:
1014  case Intrinsic::arm_neon_vst2:
1015  case Intrinsic::arm_neon_vst3:
1016  case Intrinsic::arm_neon_vst4:
1017  case Intrinsic::arm_neon_vst2lane:
1018  case Intrinsic::arm_neon_vst3lane:
1019  case Intrinsic::arm_neon_vst4lane: {
1020    unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
1021    unsigned AlignArg = II->getNumArgOperands() - 1;
1022    ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
1023    if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
1024      II->setArgOperand(AlignArg,
1025                        ConstantInt::get(Type::getInt32Ty(II->getContext()),
1026                                         MemAlign, false));
1027      return II;
1028    }
1029    break;
1030  }
1031
1032  case Intrinsic::arm_neon_vmulls:
1033  case Intrinsic::arm_neon_vmullu:
1034  case Intrinsic::aarch64_neon_smull:
1035  case Intrinsic::aarch64_neon_umull: {
1036    Value *Arg0 = II->getArgOperand(0);
1037    Value *Arg1 = II->getArgOperand(1);
1038
1039    // Handle mul by zero first:
1040    if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1041      return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1042    }
1043
1044    // Check for constant LHS & RHS - in this case we just simplify.
1045    bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
1046                 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
1047    VectorType *NewVT = cast<VectorType>(II->getType());
1048    if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1049      if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1050        CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1051        CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1052
1053        return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1054      }
1055
1056      // Couldn't simplify - canonicalize constant to the RHS.
1057      std::swap(Arg0, Arg1);
1058    }
1059
1060    // Handle mul by one:
1061    if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1062      if (ConstantInt *Splat =
1063              dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1064        if (Splat->isOne())
1065          return CastInst::CreateIntegerCast(Arg0, II->getType(),
1066                                             /*isSigned=*/!Zext);
1067
1068    break;
1069  }
1070
1071  case Intrinsic::AMDGPU_rcp: {
1072    if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
1073      const APFloat &ArgVal = C->getValueAPF();
1074      APFloat Val(ArgVal.getSemantics(), 1.0);
1075      APFloat::opStatus Status = Val.divide(ArgVal,
1076                                            APFloat::rmNearestTiesToEven);
1077      // Only do this if it was exact and therefore not dependent on the
1078      // rounding mode.
1079      if (Status == APFloat::opOK)
1080        return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
1081    }
1082
1083    break;
1084  }
1085  case Intrinsic::stackrestore: {
1086    // If the save is right next to the restore, remove the restore.  This can
1087    // happen when variable allocas are DCE'd.
1088    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1089      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1090        BasicBlock::iterator BI = SS;
1091        if (&*++BI == II)
1092          return EraseInstFromFunction(CI);
1093      }
1094    }
1095
1096    // Scan down this block to see if there is another stack restore in the
1097    // same block without an intervening call/alloca.
1098    BasicBlock::iterator BI = II;
1099    TerminatorInst *TI = II->getParent()->getTerminator();
1100    bool CannotRemove = false;
1101    for (++BI; &*BI != TI; ++BI) {
1102      if (isa<AllocaInst>(BI)) {
1103        CannotRemove = true;
1104        break;
1105      }
1106      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1107        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
1108          // If there is a stackrestore below this one, remove this one.
1109          if (II->getIntrinsicID() == Intrinsic::stackrestore)
1110            return EraseInstFromFunction(CI);
1111          // Otherwise, ignore the intrinsic.
1112        } else {
1113          // If we found a non-intrinsic call, we can't remove the stack
1114          // restore.
1115          CannotRemove = true;
1116          break;
1117        }
1118      }
1119    }
1120
1121    // If the stack restore is in a return, resume, or unwind block and if there
1122    // are no allocas or calls between the restore and the return, nuke the
1123    // restore.
1124    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1125      return EraseInstFromFunction(CI);
1126    break;
1127  }
1128  case Intrinsic::assume: {
1129    // Canonicalize assume(a && b) -> assume(a); assume(b);
1130    // Note: New assumption intrinsics created here are registered by
1131    // the InstCombineIRInserter object.
1132    Value *IIOperand = II->getArgOperand(0), *A, *B,
1133          *AssumeIntrinsic = II->getCalledValue();
1134    if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
1135      Builder->CreateCall(AssumeIntrinsic, A, II->getName());
1136      Builder->CreateCall(AssumeIntrinsic, B, II->getName());
1137      return EraseInstFromFunction(*II);
1138    }
1139    // assume(!(a || b)) -> assume(!a); assume(!b);
1140    if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
1141      Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
1142                          II->getName());
1143      Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
1144                          II->getName());
1145      return EraseInstFromFunction(*II);
1146    }
1147
1148    // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1149    // (if assume is valid at the load)
1150    if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
1151      Value *LHS = ICmp->getOperand(0);
1152      Value *RHS = ICmp->getOperand(1);
1153      if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
1154          isa<LoadInst>(LHS) &&
1155          isa<Constant>(RHS) &&
1156          RHS->getType()->isPointerTy() &&
1157          cast<Constant>(RHS)->isNullValue()) {
1158        LoadInst* LI = cast<LoadInst>(LHS);
1159        if (isValidAssumeForContext(II, LI, DT)) {
1160          MDNode *MD = MDNode::get(II->getContext(), None);
1161          LI->setMetadata(LLVMContext::MD_nonnull, MD);
1162          return EraseInstFromFunction(*II);
1163        }
1164      }
1165      // TODO: apply nonnull return attributes to calls and invokes
1166      // TODO: apply range metadata for range check patterns?
1167    }
1168    // If there is a dominating assume with the same condition as this one,
1169    // then this one is redundant, and should be removed.
1170    APInt KnownZero(1, 0), KnownOne(1, 0);
1171    computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
1172    if (KnownOne.isAllOnesValue())
1173      return EraseInstFromFunction(*II);
1174
1175    break;
1176  }
1177  case Intrinsic::experimental_gc_relocate: {
1178    // Translate facts known about a pointer before relocating into
1179    // facts about the relocate value, while being careful to
1180    // preserve relocation semantics.
1181    GCRelocateOperands Operands(II);
1182    Value *DerivedPtr = Operands.derivedPtr();
1183
1184    // Remove the relocation if unused, note that this check is required
1185    // to prevent the cases below from looping forever.
1186    if (II->use_empty())
1187      return EraseInstFromFunction(*II);
1188
1189    // Undef is undef, even after relocation.
1190    // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
1191    // most practical collectors, but there was discussion in the review thread
1192    // about whether it was legal for all possible collectors.
1193    if (isa<UndefValue>(DerivedPtr))
1194      return ReplaceInstUsesWith(*II, DerivedPtr);
1195
1196    // The relocation of null will be null for most any collector.
1197    // TODO: provide a hook for this in GCStrategy.  There might be some weird
1198    // collector this property does not hold for.
1199    if (isa<ConstantPointerNull>(DerivedPtr))
1200      return ReplaceInstUsesWith(*II, DerivedPtr);
1201
1202    // isKnownNonNull -> nonnull attribute
1203    if (isKnownNonNull(DerivedPtr))
1204      II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
1205
1206    // isDereferenceablePointer -> deref attribute
1207    if (DerivedPtr->isDereferenceablePointer(DL)) {
1208      if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
1209        uint64_t Bytes = A->getDereferenceableBytes();
1210        II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
1211      }
1212    }
1213
1214    // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
1215    // Canonicalize on the type from the uses to the defs
1216
1217    // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
1218  }
1219  }
1220
1221  return visitCallSite(II);
1222}
1223
1224// InvokeInst simplification
1225//
1226Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
1227  return visitCallSite(&II);
1228}
1229
1230/// isSafeToEliminateVarargsCast - If this cast does not affect the value
1231/// passed through the varargs area, we can eliminate the use of the cast.
1232static bool isSafeToEliminateVarargsCast(const CallSite CS,
1233                                         const DataLayout &DL,
1234                                         const CastInst *const CI,
1235                                         const int ix) {
1236  if (!CI->isLosslessCast())
1237    return false;
1238
1239  // If this is a GC intrinsic, avoid munging types.  We need types for
1240  // statepoint reconstruction in SelectionDAG.
1241  // TODO: This is probably something which should be expanded to all
1242  // intrinsics since the entire point of intrinsics is that
1243  // they are understandable by the optimizer.
1244  if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
1245    return false;
1246
1247  // The size of ByVal or InAlloca arguments is derived from the type, so we
1248  // can't change to a type with a different size.  If the size were
1249  // passed explicitly we could avoid this check.
1250  if (!CS.isByValOrInAllocaArgument(ix))
1251    return true;
1252
1253  Type* SrcTy =
1254            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
1255  Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
1256  if (!SrcTy->isSized() || !DstTy->isSized())
1257    return false;
1258  if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
1259    return false;
1260  return true;
1261}
1262
1263// Try to fold some different type of calls here.
1264// Currently we're only working with the checking functions, memcpy_chk,
1265// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
1266// strcat_chk and strncat_chk.
1267Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
1268  if (!CI->getCalledFunction()) return nullptr;
1269
1270  auto InstCombineRAUW = [this](Instruction *From, Value *With) {
1271    ReplaceInstUsesWith(*From, With);
1272  };
1273  LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
1274  if (Value *With = Simplifier.optimizeCall(CI)) {
1275    ++NumSimplified;
1276    return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
1277  }
1278
1279  return nullptr;
1280}
1281
1282static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
1283  // Strip off at most one level of pointer casts, looking for an alloca.  This
1284  // is good enough in practice and simpler than handling any number of casts.
1285  Value *Underlying = TrampMem->stripPointerCasts();
1286  if (Underlying != TrampMem &&
1287      (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
1288    return nullptr;
1289  if (!isa<AllocaInst>(Underlying))
1290    return nullptr;
1291
1292  IntrinsicInst *InitTrampoline = nullptr;
1293  for (User *U : TrampMem->users()) {
1294    IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1295    if (!II)
1296      return nullptr;
1297    if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
1298      if (InitTrampoline)
1299        // More than one init_trampoline writes to this value.  Give up.
1300        return nullptr;
1301      InitTrampoline = II;
1302      continue;
1303    }
1304    if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
1305      // Allow any number of calls to adjust.trampoline.
1306      continue;
1307    return nullptr;
1308  }
1309
1310  // No call to init.trampoline found.
1311  if (!InitTrampoline)
1312    return nullptr;
1313
1314  // Check that the alloca is being used in the expected way.
1315  if (InitTrampoline->getOperand(0) != TrampMem)
1316    return nullptr;
1317
1318  return InitTrampoline;
1319}
1320
1321static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
1322                                               Value *TrampMem) {
1323  // Visit all the previous instructions in the basic block, and try to find a
1324  // init.trampoline which has a direct path to the adjust.trampoline.
1325  for (BasicBlock::iterator I = AdjustTramp,
1326       E = AdjustTramp->getParent()->begin(); I != E; ) {
1327    Instruction *Inst = --I;
1328    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1329      if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
1330          II->getOperand(0) == TrampMem)
1331        return II;
1332    if (Inst->mayWriteToMemory())
1333      return nullptr;
1334  }
1335  return nullptr;
1336}
1337
1338// Given a call to llvm.adjust.trampoline, find and return the corresponding
1339// call to llvm.init.trampoline if the call to the trampoline can be optimized
1340// to a direct call to a function.  Otherwise return NULL.
1341//
1342static IntrinsicInst *FindInitTrampoline(Value *Callee) {
1343  Callee = Callee->stripPointerCasts();
1344  IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
1345  if (!AdjustTramp ||
1346      AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
1347    return nullptr;
1348
1349  Value *TrampMem = AdjustTramp->getOperand(0);
1350
1351  if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
1352    return IT;
1353  if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
1354    return IT;
1355  return nullptr;
1356}
1357
1358// visitCallSite - Improvements for call and invoke instructions.
1359//
1360Instruction *InstCombiner::visitCallSite(CallSite CS) {
1361  if (isAllocLikeFn(CS.getInstruction(), TLI))
1362    return visitAllocSite(*CS.getInstruction());
1363
1364  bool Changed = false;
1365
1366  // If the callee is a pointer to a function, attempt to move any casts to the
1367  // arguments of the call/invoke.
1368  Value *Callee = CS.getCalledValue();
1369  if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
1370    return nullptr;
1371
1372  if (Function *CalleeF = dyn_cast<Function>(Callee))
1373    // If the call and callee calling conventions don't match, this call must
1374    // be unreachable, as the call is undefined.
1375    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
1376        // Only do this for calls to a function with a body.  A prototype may
1377        // not actually end up matching the implementation's calling conv for a
1378        // variety of reasons (e.g. it may be written in assembly).
1379        !CalleeF->isDeclaration()) {
1380      Instruction *OldCall = CS.getInstruction();
1381      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1382                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1383                                  OldCall);
1384      // If OldCall does not return void then replaceAllUsesWith undef.
1385      // This allows ValueHandlers and custom metadata to adjust itself.
1386      if (!OldCall->getType()->isVoidTy())
1387        ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
1388      if (isa<CallInst>(OldCall))
1389        return EraseInstFromFunction(*OldCall);
1390
1391      // We cannot remove an invoke, because it would change the CFG, just
1392      // change the callee to a null pointer.
1393      cast<InvokeInst>(OldCall)->setCalledFunction(
1394                                    Constant::getNullValue(CalleeF->getType()));
1395      return nullptr;
1396    }
1397
1398  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1399    // If CS does not return void then replaceAllUsesWith undef.
1400    // This allows ValueHandlers and custom metadata to adjust itself.
1401    if (!CS.getInstruction()->getType()->isVoidTy())
1402      ReplaceInstUsesWith(*CS.getInstruction(),
1403                          UndefValue::get(CS.getInstruction()->getType()));
1404
1405    if (isa<InvokeInst>(CS.getInstruction())) {
1406      // Can't remove an invoke because we cannot change the CFG.
1407      return nullptr;
1408    }
1409
1410    // This instruction is not reachable, just remove it.  We insert a store to
1411    // undef so that we know that this code is not reachable, despite the fact
1412    // that we can't modify the CFG here.
1413    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1414                  UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1415                  CS.getInstruction());
1416
1417    return EraseInstFromFunction(*CS.getInstruction());
1418  }
1419
1420  if (IntrinsicInst *II = FindInitTrampoline(Callee))
1421    return transformCallThroughTrampoline(CS, II);
1422
1423  PointerType *PTy = cast<PointerType>(Callee->getType());
1424  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1425  if (FTy->isVarArg()) {
1426    int ix = FTy->getNumParams();
1427    // See if we can optimize any arguments passed through the varargs area of
1428    // the call.
1429    for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
1430           E = CS.arg_end(); I != E; ++I, ++ix) {
1431      CastInst *CI = dyn_cast<CastInst>(*I);
1432      if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
1433        *I = CI->getOperand(0);
1434        Changed = true;
1435      }
1436    }
1437  }
1438
1439  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1440    // Inline asm calls cannot throw - mark them 'nounwind'.
1441    CS.setDoesNotThrow();
1442    Changed = true;
1443  }
1444
1445  // Try to optimize the call if possible, we require DataLayout for most of
1446  // this.  None of these calls are seen as possibly dead so go ahead and
1447  // delete the instruction now.
1448  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1449    Instruction *I = tryOptimizeCall(CI);
1450    // If we changed something return the result, etc. Otherwise let
1451    // the fallthrough check.
1452    if (I) return EraseInstFromFunction(*I);
1453  }
1454
1455  return Changed ? CS.getInstruction() : nullptr;
1456}
1457
1458// transformConstExprCastCall - If the callee is a constexpr cast of a function,
1459// attempt to move the cast to the arguments of the call/invoke.
1460//
1461bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1462  Function *Callee =
1463    dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1464  if (!Callee)
1465    return false;
1466  // The prototype of thunks are a lie, don't try to directly call such
1467  // functions.
1468  if (Callee->hasFnAttribute("thunk"))
1469    return false;
1470  Instruction *Caller = CS.getInstruction();
1471  const AttributeSet &CallerPAL = CS.getAttributes();
1472
1473  // Okay, this is a cast from a function to a different type.  Unless doing so
1474  // would cause a type conversion of one of our arguments, change this call to
1475  // be a direct call with arguments casted to the appropriate types.
1476  //
1477  FunctionType *FT = Callee->getFunctionType();
1478  Type *OldRetTy = Caller->getType();
1479  Type *NewRetTy = FT->getReturnType();
1480
1481  // Check to see if we are changing the return type...
1482  if (OldRetTy != NewRetTy) {
1483
1484    if (NewRetTy->isStructTy())
1485      return false; // TODO: Handle multiple return values.
1486
1487    if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
1488      if (Callee->isDeclaration())
1489        return false;   // Cannot transform this return value.
1490
1491      if (!Caller->use_empty() &&
1492          // void -> non-void is handled specially
1493          !NewRetTy->isVoidTy())
1494        return false;   // Cannot transform this return value.
1495    }
1496
1497    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1498      AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1499      if (RAttrs.
1500          hasAttributes(AttributeFuncs::
1501                        typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1502                        AttributeSet::ReturnIndex))
1503        return false;   // Attribute not compatible with transformed value.
1504    }
1505
1506    // If the callsite is an invoke instruction, and the return value is used by
1507    // a PHI node in a successor, we cannot change the return type of the call
1508    // because there is no place to put the cast instruction (without breaking
1509    // the critical edge).  Bail out in this case.
1510    if (!Caller->use_empty())
1511      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1512        for (User *U : II->users())
1513          if (PHINode *PN = dyn_cast<PHINode>(U))
1514            if (PN->getParent() == II->getNormalDest() ||
1515                PN->getParent() == II->getUnwindDest())
1516              return false;
1517  }
1518
1519  unsigned NumActualArgs = CS.arg_size();
1520  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1521
1522  // Prevent us turning:
1523  // declare void @takes_i32_inalloca(i32* inalloca)
1524  //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
1525  //
1526  // into:
1527  //  call void @takes_i32_inalloca(i32* null)
1528  //
1529  //  Similarly, avoid folding away bitcasts of byval calls.
1530  if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
1531      Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
1532    return false;
1533
1534  CallSite::arg_iterator AI = CS.arg_begin();
1535  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1536    Type *ParamTy = FT->getParamType(i);
1537    Type *ActTy = (*AI)->getType();
1538
1539    if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
1540      return false;   // Cannot transform this parameter value.
1541
1542    if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
1543          hasAttributes(AttributeFuncs::
1544                        typeIncompatible(ParamTy, i + 1), i + 1))
1545      return false;   // Attribute not compatible with transformed value.
1546
1547    if (CS.isInAllocaArgument(i))
1548      return false;   // Cannot transform to and from inalloca.
1549
1550    // If the parameter is passed as a byval argument, then we have to have a
1551    // sized type and the sized type has to have the same size as the old type.
1552    if (ParamTy != ActTy &&
1553        CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
1554                                                         Attribute::ByVal)) {
1555      PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1556      if (!ParamPTy || !ParamPTy->getElementType()->isSized())
1557        return false;
1558
1559      Type *CurElTy = ActTy->getPointerElementType();
1560      if (DL.getTypeAllocSize(CurElTy) !=
1561          DL.getTypeAllocSize(ParamPTy->getElementType()))
1562        return false;
1563    }
1564  }
1565
1566  if (Callee->isDeclaration()) {
1567    // Do not delete arguments unless we have a function body.
1568    if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1569      return false;
1570
1571    // If the callee is just a declaration, don't change the varargsness of the
1572    // call.  We don't want to introduce a varargs call where one doesn't
1573    // already exist.
1574    PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1575    if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1576      return false;
1577
1578    // If both the callee and the cast type are varargs, we still have to make
1579    // sure the number of fixed parameters are the same or we have the same
1580    // ABI issues as if we introduce a varargs call.
1581    if (FT->isVarArg() &&
1582        cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1583        FT->getNumParams() !=
1584        cast<FunctionType>(APTy->getElementType())->getNumParams())
1585      return false;
1586  }
1587
1588  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1589      !CallerPAL.isEmpty())
1590    // In this case we have more arguments than the new function type, but we
1591    // won't be dropping them.  Check that these extra arguments have attributes
1592    // that are compatible with being a vararg call argument.
1593    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1594      unsigned Index = CallerPAL.getSlotIndex(i - 1);
1595      if (Index <= FT->getNumParams())
1596        break;
1597
1598      // Check if it has an attribute that's incompatible with varargs.
1599      AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
1600      if (PAttrs.hasAttribute(Index, Attribute::StructRet))
1601        return false;
1602    }
1603
1604
1605  // Okay, we decided that this is a safe thing to do: go ahead and start
1606  // inserting cast instructions as necessary.
1607  std::vector<Value*> Args;
1608  Args.reserve(NumActualArgs);
1609  SmallVector<AttributeSet, 8> attrVec;
1610  attrVec.reserve(NumCommonArgs);
1611
1612  // Get any return attributes.
1613  AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1614
1615  // If the return value is not being used, the type may not be compatible
1616  // with the existing attributes.  Wipe out any problematic attributes.
1617  RAttrs.
1618    removeAttributes(AttributeFuncs::
1619                     typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1620                     AttributeSet::ReturnIndex);
1621
1622  // Add the new return attributes.
1623  if (RAttrs.hasAttributes())
1624    attrVec.push_back(AttributeSet::get(Caller->getContext(),
1625                                        AttributeSet::ReturnIndex, RAttrs));
1626
1627  AI = CS.arg_begin();
1628  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1629    Type *ParamTy = FT->getParamType(i);
1630
1631    if ((*AI)->getType() == ParamTy) {
1632      Args.push_back(*AI);
1633    } else {
1634      Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
1635    }
1636
1637    // Add any parameter attributes.
1638    AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1639    if (PAttrs.hasAttributes())
1640      attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
1641                                          PAttrs));
1642  }
1643
1644  // If the function takes more arguments than the call was taking, add them
1645  // now.
1646  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1647    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1648
1649  // If we are removing arguments to the function, emit an obnoxious warning.
1650  if (FT->getNumParams() < NumActualArgs) {
1651    // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
1652    if (FT->isVarArg()) {
1653      // Add all of the arguments in their promoted form to the arg list.
1654      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1655        Type *PTy = getPromotedType((*AI)->getType());
1656        if (PTy != (*AI)->getType()) {
1657          // Must promote to pass through va_arg area!
1658          Instruction::CastOps opcode =
1659            CastInst::getCastOpcode(*AI, false, PTy, false);
1660          Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1661        } else {
1662          Args.push_back(*AI);
1663        }
1664
1665        // Add any parameter attributes.
1666        AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1667        if (PAttrs.hasAttributes())
1668          attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
1669                                              PAttrs));
1670      }
1671    }
1672  }
1673
1674  AttributeSet FnAttrs = CallerPAL.getFnAttributes();
1675  if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
1676    attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
1677
1678  if (NewRetTy->isVoidTy())
1679    Caller->setName("");   // Void type should not have a name.
1680
1681  const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
1682                                                       attrVec);
1683
1684  Instruction *NC;
1685  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1686    NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1687                               II->getUnwindDest(), Args);
1688    NC->takeName(II);
1689    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1690    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1691  } else {
1692    CallInst *CI = cast<CallInst>(Caller);
1693    NC = Builder->CreateCall(Callee, Args);
1694    NC->takeName(CI);
1695    if (CI->isTailCall())
1696      cast<CallInst>(NC)->setTailCall();
1697    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1698    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1699  }
1700
1701  // Insert a cast of the return type as necessary.
1702  Value *NV = NC;
1703  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1704    if (!NV->getType()->isVoidTy()) {
1705      NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
1706      NC->setDebugLoc(Caller->getDebugLoc());
1707
1708      // If this is an invoke instruction, we should insert it after the first
1709      // non-phi, instruction in the normal successor block.
1710      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1711        BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1712        InsertNewInstBefore(NC, *I);
1713      } else {
1714        // Otherwise, it's a call, just insert cast right after the call.
1715        InsertNewInstBefore(NC, *Caller);
1716      }
1717      Worklist.AddUsersToWorkList(*Caller);
1718    } else {
1719      NV = UndefValue::get(Caller->getType());
1720    }
1721  }
1722
1723  if (!Caller->use_empty())
1724    ReplaceInstUsesWith(*Caller, NV);
1725  else if (Caller->hasValueHandle()) {
1726    if (OldRetTy == NV->getType())
1727      ValueHandleBase::ValueIsRAUWd(Caller, NV);
1728    else
1729      // We cannot call ValueIsRAUWd with a different type, and the
1730      // actual tracked value will disappear.
1731      ValueHandleBase::ValueIsDeleted(Caller);
1732  }
1733
1734  EraseInstFromFunction(*Caller);
1735  return true;
1736}
1737
1738// transformCallThroughTrampoline - Turn a call to a function created by
1739// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1740// underlying function.
1741//
1742Instruction *
1743InstCombiner::transformCallThroughTrampoline(CallSite CS,
1744                                             IntrinsicInst *Tramp) {
1745  Value *Callee = CS.getCalledValue();
1746  PointerType *PTy = cast<PointerType>(Callee->getType());
1747  FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1748  const AttributeSet &Attrs = CS.getAttributes();
1749
1750  // If the call already has the 'nest' attribute somewhere then give up -
1751  // otherwise 'nest' would occur twice after splicing in the chain.
1752  if (Attrs.hasAttrSomewhere(Attribute::Nest))
1753    return nullptr;
1754
1755  assert(Tramp &&
1756         "transformCallThroughTrampoline called with incorrect CallSite.");
1757
1758  Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1759  PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1760  FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1761
1762  const AttributeSet &NestAttrs = NestF->getAttributes();
1763  if (!NestAttrs.isEmpty()) {
1764    unsigned NestIdx = 1;
1765    Type *NestTy = nullptr;
1766    AttributeSet NestAttr;
1767
1768    // Look for a parameter marked with the 'nest' attribute.
1769    for (FunctionType::param_iterator I = NestFTy->param_begin(),
1770         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1771      if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
1772        // Record the parameter type and any other attributes.
1773        NestTy = *I;
1774        NestAttr = NestAttrs.getParamAttributes(NestIdx);
1775        break;
1776      }
1777
1778    if (NestTy) {
1779      Instruction *Caller = CS.getInstruction();
1780      std::vector<Value*> NewArgs;
1781      NewArgs.reserve(CS.arg_size() + 1);
1782
1783      SmallVector<AttributeSet, 8> NewAttrs;
1784      NewAttrs.reserve(Attrs.getNumSlots() + 1);
1785
1786      // Insert the nest argument into the call argument list, which may
1787      // mean appending it.  Likewise for attributes.
1788
1789      // Add any result attributes.
1790      if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1791        NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1792                                             Attrs.getRetAttributes()));
1793
1794      {
1795        unsigned Idx = 1;
1796        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1797        do {
1798          if (Idx == NestIdx) {
1799            // Add the chain argument and attributes.
1800            Value *NestVal = Tramp->getArgOperand(2);
1801            if (NestVal->getType() != NestTy)
1802              NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1803            NewArgs.push_back(NestVal);
1804            NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1805                                                 NestAttr));
1806          }
1807
1808          if (I == E)
1809            break;
1810
1811          // Add the original argument and attributes.
1812          NewArgs.push_back(*I);
1813          AttributeSet Attr = Attrs.getParamAttributes(Idx);
1814          if (Attr.hasAttributes(Idx)) {
1815            AttrBuilder B(Attr, Idx);
1816            NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1817                                                 Idx + (Idx >= NestIdx), B));
1818          }
1819
1820          ++Idx, ++I;
1821        } while (1);
1822      }
1823
1824      // Add any function attributes.
1825      if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1826        NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
1827                                             Attrs.getFnAttributes()));
1828
1829      // The trampoline may have been bitcast to a bogus type (FTy).
1830      // Handle this by synthesizing a new function type, equal to FTy
1831      // with the chain parameter inserted.
1832
1833      std::vector<Type*> NewTypes;
1834      NewTypes.reserve(FTy->getNumParams()+1);
1835
1836      // Insert the chain's type into the list of parameter types, which may
1837      // mean appending it.
1838      {
1839        unsigned Idx = 1;
1840        FunctionType::param_iterator I = FTy->param_begin(),
1841          E = FTy->param_end();
1842
1843        do {
1844          if (Idx == NestIdx)
1845            // Add the chain's type.
1846            NewTypes.push_back(NestTy);
1847
1848          if (I == E)
1849            break;
1850
1851          // Add the original type.
1852          NewTypes.push_back(*I);
1853
1854          ++Idx, ++I;
1855        } while (1);
1856      }
1857
1858      // Replace the trampoline call with a direct call.  Let the generic
1859      // code sort out any function type mismatches.
1860      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1861                                                FTy->isVarArg());
1862      Constant *NewCallee =
1863        NestF->getType() == PointerType::getUnqual(NewFTy) ?
1864        NestF : ConstantExpr::getBitCast(NestF,
1865                                         PointerType::getUnqual(NewFTy));
1866      const AttributeSet &NewPAL =
1867          AttributeSet::get(FTy->getContext(), NewAttrs);
1868
1869      Instruction *NewCaller;
1870      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1871        NewCaller = InvokeInst::Create(NewCallee,
1872                                       II->getNormalDest(), II->getUnwindDest(),
1873                                       NewArgs);
1874        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1875        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1876      } else {
1877        NewCaller = CallInst::Create(NewCallee, NewArgs);
1878        if (cast<CallInst>(Caller)->isTailCall())
1879          cast<CallInst>(NewCaller)->setTailCall();
1880        cast<CallInst>(NewCaller)->
1881          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1882        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1883      }
1884
1885      return NewCaller;
1886    }
1887  }
1888
1889  // Replace the trampoline call with a direct call.  Since there is no 'nest'
1890  // parameter, there is no need to adjust the argument list.  Let the generic
1891  // code sort out any function type mismatches.
1892  Constant *NewCallee =
1893    NestF->getType() == PTy ? NestF :
1894                              ConstantExpr::getBitCast(NestF, PTy);
1895  CS.setCalledFunction(NewCallee);
1896  return CS.getInstruction();
1897}
1898