1//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Bit-Tracking Dead Code Elimination pass. Some
11// instructions (shifts, some ands, ors, etc.) kill some of their input bits.
12// We track these dead bits and remove instructions that compute only these
13// dead bits.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DepthFirstIterator.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/InstIterator.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "bdce"
41
42STATISTIC(NumRemoved, "Number of instructions removed (unused)");
43STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)");
44
45namespace {
46struct BDCE : public FunctionPass {
47  static char ID; // Pass identification, replacement for typeid
48  BDCE() : FunctionPass(ID) {
49    initializeBDCEPass(*PassRegistry::getPassRegistry());
50  }
51
52  bool runOnFunction(Function& F) override;
53
54  void getAnalysisUsage(AnalysisUsage& AU) const override {
55    AU.setPreservesCFG();
56    AU.addRequired<AssumptionCacheTracker>();
57    AU.addRequired<DominatorTreeWrapperPass>();
58  }
59
60  void determineLiveOperandBits(const Instruction *UserI,
61                                const Instruction *I, unsigned OperandNo,
62                                const APInt &AOut, APInt &AB,
63                                APInt &KnownZero, APInt &KnownOne,
64                                APInt &KnownZero2, APInt &KnownOne2);
65
66  AssumptionCache *AC;
67  DominatorTree *DT;
68};
69}
70
71char BDCE::ID = 0;
72INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
73                      false, false)
74INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
75INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
76INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
77                    false, false)
78
79static bool isAlwaysLive(Instruction *I) {
80  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
81         isa<LandingPadInst>(I) || I->mayHaveSideEffects();
82}
83
84void BDCE::determineLiveOperandBits(const Instruction *UserI,
85                                    const Instruction *I, unsigned OperandNo,
86                                    const APInt &AOut, APInt &AB,
87                                    APInt &KnownZero, APInt &KnownOne,
88                                    APInt &KnownZero2, APInt &KnownOne2) {
89  unsigned BitWidth = AB.getBitWidth();
90
91  // We're called once per operand, but for some instructions, we need to
92  // compute known bits of both operands in order to determine the live bits of
93  // either (when both operands are instructions themselves). We don't,
94  // however, want to do this twice, so we cache the result in APInts that live
95  // in the caller. For the two-relevant-operands case, both operand values are
96  // provided here.
97  auto ComputeKnownBits =
98      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
99        const DataLayout &DL = I->getModule()->getDataLayout();
100        KnownZero = APInt(BitWidth, 0);
101        KnownOne = APInt(BitWidth, 0);
102        computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
103                         AC, UserI, DT);
104
105        if (V2) {
106          KnownZero2 = APInt(BitWidth, 0);
107          KnownOne2 = APInt(BitWidth, 0);
108          computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
109                           0, AC, UserI, DT);
110        }
111      };
112
113  switch (UserI->getOpcode()) {
114  default: break;
115  case Instruction::Call:
116  case Instruction::Invoke:
117    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
118      switch (II->getIntrinsicID()) {
119      default: break;
120      case Intrinsic::bswap:
121        // The alive bits of the input are the swapped alive bits of
122        // the output.
123        AB = AOut.byteSwap();
124        break;
125      case Intrinsic::ctlz:
126        if (OperandNo == 0) {
127          // We need some output bits, so we need all bits of the
128          // input to the left of, and including, the leftmost bit
129          // known to be one.
130          ComputeKnownBits(BitWidth, I, nullptr);
131          AB = APInt::getHighBitsSet(BitWidth,
132                 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
133        }
134        break;
135      case Intrinsic::cttz:
136        if (OperandNo == 0) {
137          // We need some output bits, so we need all bits of the
138          // input to the right of, and including, the rightmost bit
139          // known to be one.
140          ComputeKnownBits(BitWidth, I, nullptr);
141          AB = APInt::getLowBitsSet(BitWidth,
142                 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
143        }
144        break;
145      }
146    break;
147  case Instruction::Add:
148  case Instruction::Sub:
149    // Find the highest live output bit. We don't need any more input
150    // bits than that (adds, and thus subtracts, ripple only to the
151    // left).
152    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
153    break;
154  case Instruction::Shl:
155    if (OperandNo == 0)
156      if (ConstantInt *CI =
157            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
158        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
159        AB = AOut.lshr(ShiftAmt);
160
161        // If the shift is nuw/nsw, then the high bits are not dead
162        // (because we've promised that they *must* be zero).
163        const ShlOperator *S = cast<ShlOperator>(UserI);
164        if (S->hasNoSignedWrap())
165          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
166        else if (S->hasNoUnsignedWrap())
167          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
168      }
169    break;
170  case Instruction::LShr:
171    if (OperandNo == 0)
172      if (ConstantInt *CI =
173            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
174        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
175        AB = AOut.shl(ShiftAmt);
176
177        // If the shift is exact, then the low bits are not dead
178        // (they must be zero).
179        if (cast<LShrOperator>(UserI)->isExact())
180          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
181      }
182    break;
183  case Instruction::AShr:
184    if (OperandNo == 0)
185      if (ConstantInt *CI =
186            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
187        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
188        AB = AOut.shl(ShiftAmt);
189        // Because the high input bit is replicated into the
190        // high-order bits of the result, if we need any of those
191        // bits, then we must keep the highest input bit.
192        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
193            .getBoolValue())
194          AB.setBit(BitWidth-1);
195
196        // If the shift is exact, then the low bits are not dead
197        // (they must be zero).
198        if (cast<AShrOperator>(UserI)->isExact())
199          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
200      }
201    break;
202  case Instruction::And:
203    AB = AOut;
204
205    // For bits that are known zero, the corresponding bits in the
206    // other operand are dead (unless they're both zero, in which
207    // case they can't both be dead, so just mark the LHS bits as
208    // dead).
209    if (OperandNo == 0) {
210      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
211      AB &= ~KnownZero2;
212    } else {
213      if (!isa<Instruction>(UserI->getOperand(0)))
214        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
215      AB &= ~(KnownZero & ~KnownZero2);
216    }
217    break;
218  case Instruction::Or:
219    AB = AOut;
220
221    // For bits that are known one, the corresponding bits in the
222    // other operand are dead (unless they're both one, in which
223    // case they can't both be dead, so just mark the LHS bits as
224    // dead).
225    if (OperandNo == 0) {
226      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
227      AB &= ~KnownOne2;
228    } else {
229      if (!isa<Instruction>(UserI->getOperand(0)))
230        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
231      AB &= ~(KnownOne & ~KnownOne2);
232    }
233    break;
234  case Instruction::Xor:
235  case Instruction::PHI:
236    AB = AOut;
237    break;
238  case Instruction::Trunc:
239    AB = AOut.zext(BitWidth);
240    break;
241  case Instruction::ZExt:
242    AB = AOut.trunc(BitWidth);
243    break;
244  case Instruction::SExt:
245    AB = AOut.trunc(BitWidth);
246    // Because the high input bit is replicated into the
247    // high-order bits of the result, if we need any of those
248    // bits, then we must keep the highest input bit.
249    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
250                                      AOut.getBitWidth() - BitWidth))
251        .getBoolValue())
252      AB.setBit(BitWidth-1);
253    break;
254  case Instruction::Select:
255    if (OperandNo != 0)
256      AB = AOut;
257    break;
258  }
259}
260
261bool BDCE::runOnFunction(Function& F) {
262  if (skipOptnoneFunction(F))
263    return false;
264
265  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
266  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
267
268  DenseMap<Instruction *, APInt> AliveBits;
269  SmallVector<Instruction*, 128> Worklist;
270
271  // The set of visited instructions (non-integer-typed only).
272  SmallPtrSet<Instruction*, 128> Visited;
273
274  // Collect the set of "root" instructions that are known live.
275  for (Instruction &I : inst_range(F)) {
276    if (!isAlwaysLive(&I))
277      continue;
278
279    DEBUG(dbgs() << "BDCE: Root: " << I << "\n");
280    // For integer-valued instructions, set up an initial empty set of alive
281    // bits and add the instruction to the work list. For other instructions
282    // add their operands to the work list (for integer values operands, mark
283    // all bits as live).
284    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
285      if (!AliveBits.count(&I)) {
286        AliveBits[&I] = APInt(IT->getBitWidth(), 0);
287        Worklist.push_back(&I);
288      }
289
290      continue;
291    }
292
293    // Non-integer-typed instructions...
294    for (Use &OI : I.operands()) {
295      if (Instruction *J = dyn_cast<Instruction>(OI)) {
296        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
297          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
298        Worklist.push_back(J);
299      }
300    }
301    // To save memory, we don't add I to the Visited set here. Instead, we
302    // check isAlwaysLive on every instruction when searching for dead
303    // instructions later (we need to check isAlwaysLive for the
304    // integer-typed instructions anyway).
305  }
306
307  // Propagate liveness backwards to operands.
308  while (!Worklist.empty()) {
309    Instruction *UserI = Worklist.pop_back_val();
310
311    DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
312    APInt AOut;
313    if (UserI->getType()->isIntegerTy()) {
314      AOut = AliveBits[UserI];
315      DEBUG(dbgs() << " Alive Out: " << AOut);
316    }
317    DEBUG(dbgs() << "\n");
318
319    if (!UserI->getType()->isIntegerTy())
320      Visited.insert(UserI);
321
322    APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
323    // Compute the set of alive bits for each operand. These are anded into the
324    // existing set, if any, and if that changes the set of alive bits, the
325    // operand is added to the work-list.
326    for (Use &OI : UserI->operands()) {
327      if (Instruction *I = dyn_cast<Instruction>(OI)) {
328        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
329          unsigned BitWidth = IT->getBitWidth();
330          APInt AB = APInt::getAllOnesValue(BitWidth);
331          if (UserI->getType()->isIntegerTy() && !AOut &&
332              !isAlwaysLive(UserI)) {
333            AB = APInt(BitWidth, 0);
334          } else {
335            // If all bits of the output are dead, then all bits of the input
336            // Bits of each operand that are used to compute alive bits of the
337            // output are alive, all others are dead.
338            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
339                                     KnownZero, KnownOne,
340                                     KnownZero2, KnownOne2);
341          }
342
343          // If we've added to the set of alive bits (or the operand has not
344          // been previously visited), then re-queue the operand to be visited
345          // again.
346          APInt ABPrev(BitWidth, 0);
347          auto ABI = AliveBits.find(I);
348          if (ABI != AliveBits.end())
349            ABPrev = ABI->second;
350
351          APInt ABNew = AB | ABPrev;
352          if (ABNew != ABPrev || ABI == AliveBits.end()) {
353            AliveBits[I] = std::move(ABNew);
354            Worklist.push_back(I);
355          }
356        } else if (!Visited.count(I)) {
357          Worklist.push_back(I);
358        }
359      }
360    }
361  }
362
363  bool Changed = false;
364  // The inverse of the live set is the dead set.  These are those instructions
365  // which have no side effects and do not influence the control flow or return
366  // value of the function, and may therefore be deleted safely.
367  // NOTE: We reuse the Worklist vector here for memory efficiency.
368  for (Instruction &I : inst_range(F)) {
369    // For live instructions that have all dead bits, first make them dead by
370    // replacing all uses with something else. Then, if they don't need to
371    // remain live (because they have side effects, etc.) we can remove them.
372    if (I.getType()->isIntegerTy()) {
373      auto ABI = AliveBits.find(&I);
374      if (ABI != AliveBits.end()) {
375        if (ABI->second.getBoolValue())
376          continue;
377
378        DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
379        // FIXME: In theory we could substitute undef here instead of zero.
380        // This should be reconsidered once we settle on the semantics of
381        // undef, poison, etc.
382        Value *Zero = ConstantInt::get(I.getType(), 0);
383        ++NumSimplified;
384        I.replaceAllUsesWith(Zero);
385        Changed = true;
386      }
387    } else if (Visited.count(&I)) {
388      continue;
389    }
390
391    if (isAlwaysLive(&I))
392      continue;
393
394    Worklist.push_back(&I);
395    I.dropAllReferences();
396    Changed = true;
397  }
398
399  for (Instruction *&I : Worklist) {
400    ++NumRemoved;
401    I->eraseFromParent();
402  }
403
404  return Changed;
405}
406
407FunctionPass *llvm::createBitTrackingDCEPass() {
408  return new BDCE();
409}
410
411