1//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the Bit-Tracking Dead Code Elimination pass. Some 11// instructions (shifts, some ands, ors, etc.) kill some of their input bits. 12// We track these dead bits and remove instructions that compute only these 13// dead bits. 14// 15//===----------------------------------------------------------------------===// 16 17#include "llvm/Transforms/Scalar.h" 18#include "llvm/ADT/DenseMap.h" 19#include "llvm/ADT/DepthFirstIterator.h" 20#include "llvm/ADT/SmallPtrSet.h" 21#include "llvm/ADT/SmallVector.h" 22#include "llvm/ADT/Statistic.h" 23#include "llvm/Analysis/AssumptionCache.h" 24#include "llvm/Analysis/ValueTracking.h" 25#include "llvm/IR/BasicBlock.h" 26#include "llvm/IR/CFG.h" 27#include "llvm/IR/DataLayout.h" 28#include "llvm/IR/Dominators.h" 29#include "llvm/IR/InstIterator.h" 30#include "llvm/IR/Instructions.h" 31#include "llvm/IR/IntrinsicInst.h" 32#include "llvm/IR/Module.h" 33#include "llvm/IR/Operator.h" 34#include "llvm/Pass.h" 35#include "llvm/Support/Debug.h" 36#include "llvm/Support/raw_ostream.h" 37 38using namespace llvm; 39 40#define DEBUG_TYPE "bdce" 41 42STATISTIC(NumRemoved, "Number of instructions removed (unused)"); 43STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); 44 45namespace { 46struct BDCE : public FunctionPass { 47 static char ID; // Pass identification, replacement for typeid 48 BDCE() : FunctionPass(ID) { 49 initializeBDCEPass(*PassRegistry::getPassRegistry()); 50 } 51 52 bool runOnFunction(Function& F) override; 53 54 void getAnalysisUsage(AnalysisUsage& AU) const override { 55 AU.setPreservesCFG(); 56 AU.addRequired<AssumptionCacheTracker>(); 57 AU.addRequired<DominatorTreeWrapperPass>(); 58 } 59 60 void determineLiveOperandBits(const Instruction *UserI, 61 const Instruction *I, unsigned OperandNo, 62 const APInt &AOut, APInt &AB, 63 APInt &KnownZero, APInt &KnownOne, 64 APInt &KnownZero2, APInt &KnownOne2); 65 66 AssumptionCache *AC; 67 DominatorTree *DT; 68}; 69} 70 71char BDCE::ID = 0; 72INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination", 73 false, false) 74INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 75INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 76INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination", 77 false, false) 78 79static bool isAlwaysLive(Instruction *I) { 80 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 81 isa<LandingPadInst>(I) || I->mayHaveSideEffects(); 82} 83 84void BDCE::determineLiveOperandBits(const Instruction *UserI, 85 const Instruction *I, unsigned OperandNo, 86 const APInt &AOut, APInt &AB, 87 APInt &KnownZero, APInt &KnownOne, 88 APInt &KnownZero2, APInt &KnownOne2) { 89 unsigned BitWidth = AB.getBitWidth(); 90 91 // We're called once per operand, but for some instructions, we need to 92 // compute known bits of both operands in order to determine the live bits of 93 // either (when both operands are instructions themselves). We don't, 94 // however, want to do this twice, so we cache the result in APInts that live 95 // in the caller. For the two-relevant-operands case, both operand values are 96 // provided here. 97 auto ComputeKnownBits = 98 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 99 const DataLayout &DL = I->getModule()->getDataLayout(); 100 KnownZero = APInt(BitWidth, 0); 101 KnownOne = APInt(BitWidth, 0); 102 computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0, 103 AC, UserI, DT); 104 105 if (V2) { 106 KnownZero2 = APInt(BitWidth, 0); 107 KnownOne2 = APInt(BitWidth, 0); 108 computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL, 109 0, AC, UserI, DT); 110 } 111 }; 112 113 switch (UserI->getOpcode()) { 114 default: break; 115 case Instruction::Call: 116 case Instruction::Invoke: 117 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) 118 switch (II->getIntrinsicID()) { 119 default: break; 120 case Intrinsic::bswap: 121 // The alive bits of the input are the swapped alive bits of 122 // the output. 123 AB = AOut.byteSwap(); 124 break; 125 case Intrinsic::ctlz: 126 if (OperandNo == 0) { 127 // We need some output bits, so we need all bits of the 128 // input to the left of, and including, the leftmost bit 129 // known to be one. 130 ComputeKnownBits(BitWidth, I, nullptr); 131 AB = APInt::getHighBitsSet(BitWidth, 132 std::min(BitWidth, KnownOne.countLeadingZeros()+1)); 133 } 134 break; 135 case Intrinsic::cttz: 136 if (OperandNo == 0) { 137 // We need some output bits, so we need all bits of the 138 // input to the right of, and including, the rightmost bit 139 // known to be one. 140 ComputeKnownBits(BitWidth, I, nullptr); 141 AB = APInt::getLowBitsSet(BitWidth, 142 std::min(BitWidth, KnownOne.countTrailingZeros()+1)); 143 } 144 break; 145 } 146 break; 147 case Instruction::Add: 148 case Instruction::Sub: 149 // Find the highest live output bit. We don't need any more input 150 // bits than that (adds, and thus subtracts, ripple only to the 151 // left). 152 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 153 break; 154 case Instruction::Shl: 155 if (OperandNo == 0) 156 if (ConstantInt *CI = 157 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 158 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 159 AB = AOut.lshr(ShiftAmt); 160 161 // If the shift is nuw/nsw, then the high bits are not dead 162 // (because we've promised that they *must* be zero). 163 const ShlOperator *S = cast<ShlOperator>(UserI); 164 if (S->hasNoSignedWrap()) 165 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 166 else if (S->hasNoUnsignedWrap()) 167 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 168 } 169 break; 170 case Instruction::LShr: 171 if (OperandNo == 0) 172 if (ConstantInt *CI = 173 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 174 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 175 AB = AOut.shl(ShiftAmt); 176 177 // If the shift is exact, then the low bits are not dead 178 // (they must be zero). 179 if (cast<LShrOperator>(UserI)->isExact()) 180 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 181 } 182 break; 183 case Instruction::AShr: 184 if (OperandNo == 0) 185 if (ConstantInt *CI = 186 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 187 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 188 AB = AOut.shl(ShiftAmt); 189 // Because the high input bit is replicated into the 190 // high-order bits of the result, if we need any of those 191 // bits, then we must keep the highest input bit. 192 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 193 .getBoolValue()) 194 AB.setBit(BitWidth-1); 195 196 // If the shift is exact, then the low bits are not dead 197 // (they must be zero). 198 if (cast<AShrOperator>(UserI)->isExact()) 199 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 200 } 201 break; 202 case Instruction::And: 203 AB = AOut; 204 205 // For bits that are known zero, the corresponding bits in the 206 // other operand are dead (unless they're both zero, in which 207 // case they can't both be dead, so just mark the LHS bits as 208 // dead). 209 if (OperandNo == 0) { 210 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 211 AB &= ~KnownZero2; 212 } else { 213 if (!isa<Instruction>(UserI->getOperand(0))) 214 ComputeKnownBits(BitWidth, UserI->getOperand(0), I); 215 AB &= ~(KnownZero & ~KnownZero2); 216 } 217 break; 218 case Instruction::Or: 219 AB = AOut; 220 221 // For bits that are known one, the corresponding bits in the 222 // other operand are dead (unless they're both one, in which 223 // case they can't both be dead, so just mark the LHS bits as 224 // dead). 225 if (OperandNo == 0) { 226 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 227 AB &= ~KnownOne2; 228 } else { 229 if (!isa<Instruction>(UserI->getOperand(0))) 230 ComputeKnownBits(BitWidth, UserI->getOperand(0), I); 231 AB &= ~(KnownOne & ~KnownOne2); 232 } 233 break; 234 case Instruction::Xor: 235 case Instruction::PHI: 236 AB = AOut; 237 break; 238 case Instruction::Trunc: 239 AB = AOut.zext(BitWidth); 240 break; 241 case Instruction::ZExt: 242 AB = AOut.trunc(BitWidth); 243 break; 244 case Instruction::SExt: 245 AB = AOut.trunc(BitWidth); 246 // Because the high input bit is replicated into the 247 // high-order bits of the result, if we need any of those 248 // bits, then we must keep the highest input bit. 249 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 250 AOut.getBitWidth() - BitWidth)) 251 .getBoolValue()) 252 AB.setBit(BitWidth-1); 253 break; 254 case Instruction::Select: 255 if (OperandNo != 0) 256 AB = AOut; 257 break; 258 } 259} 260 261bool BDCE::runOnFunction(Function& F) { 262 if (skipOptnoneFunction(F)) 263 return false; 264 265 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 266 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 267 268 DenseMap<Instruction *, APInt> AliveBits; 269 SmallVector<Instruction*, 128> Worklist; 270 271 // The set of visited instructions (non-integer-typed only). 272 SmallPtrSet<Instruction*, 128> Visited; 273 274 // Collect the set of "root" instructions that are known live. 275 for (Instruction &I : inst_range(F)) { 276 if (!isAlwaysLive(&I)) 277 continue; 278 279 DEBUG(dbgs() << "BDCE: Root: " << I << "\n"); 280 // For integer-valued instructions, set up an initial empty set of alive 281 // bits and add the instruction to the work list. For other instructions 282 // add their operands to the work list (for integer values operands, mark 283 // all bits as live). 284 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 285 if (!AliveBits.count(&I)) { 286 AliveBits[&I] = APInt(IT->getBitWidth(), 0); 287 Worklist.push_back(&I); 288 } 289 290 continue; 291 } 292 293 // Non-integer-typed instructions... 294 for (Use &OI : I.operands()) { 295 if (Instruction *J = dyn_cast<Instruction>(OI)) { 296 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType())) 297 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); 298 Worklist.push_back(J); 299 } 300 } 301 // To save memory, we don't add I to the Visited set here. Instead, we 302 // check isAlwaysLive on every instruction when searching for dead 303 // instructions later (we need to check isAlwaysLive for the 304 // integer-typed instructions anyway). 305 } 306 307 // Propagate liveness backwards to operands. 308 while (!Worklist.empty()) { 309 Instruction *UserI = Worklist.pop_back_val(); 310 311 DEBUG(dbgs() << "BDCE: Visiting: " << *UserI); 312 APInt AOut; 313 if (UserI->getType()->isIntegerTy()) { 314 AOut = AliveBits[UserI]; 315 DEBUG(dbgs() << " Alive Out: " << AOut); 316 } 317 DEBUG(dbgs() << "\n"); 318 319 if (!UserI->getType()->isIntegerTy()) 320 Visited.insert(UserI); 321 322 APInt KnownZero, KnownOne, KnownZero2, KnownOne2; 323 // Compute the set of alive bits for each operand. These are anded into the 324 // existing set, if any, and if that changes the set of alive bits, the 325 // operand is added to the work-list. 326 for (Use &OI : UserI->operands()) { 327 if (Instruction *I = dyn_cast<Instruction>(OI)) { 328 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) { 329 unsigned BitWidth = IT->getBitWidth(); 330 APInt AB = APInt::getAllOnesValue(BitWidth); 331 if (UserI->getType()->isIntegerTy() && !AOut && 332 !isAlwaysLive(UserI)) { 333 AB = APInt(BitWidth, 0); 334 } else { 335 // If all bits of the output are dead, then all bits of the input 336 // Bits of each operand that are used to compute alive bits of the 337 // output are alive, all others are dead. 338 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, 339 KnownZero, KnownOne, 340 KnownZero2, KnownOne2); 341 } 342 343 // If we've added to the set of alive bits (or the operand has not 344 // been previously visited), then re-queue the operand to be visited 345 // again. 346 APInt ABPrev(BitWidth, 0); 347 auto ABI = AliveBits.find(I); 348 if (ABI != AliveBits.end()) 349 ABPrev = ABI->second; 350 351 APInt ABNew = AB | ABPrev; 352 if (ABNew != ABPrev || ABI == AliveBits.end()) { 353 AliveBits[I] = std::move(ABNew); 354 Worklist.push_back(I); 355 } 356 } else if (!Visited.count(I)) { 357 Worklist.push_back(I); 358 } 359 } 360 } 361 } 362 363 bool Changed = false; 364 // The inverse of the live set is the dead set. These are those instructions 365 // which have no side effects and do not influence the control flow or return 366 // value of the function, and may therefore be deleted safely. 367 // NOTE: We reuse the Worklist vector here for memory efficiency. 368 for (Instruction &I : inst_range(F)) { 369 // For live instructions that have all dead bits, first make them dead by 370 // replacing all uses with something else. Then, if they don't need to 371 // remain live (because they have side effects, etc.) we can remove them. 372 if (I.getType()->isIntegerTy()) { 373 auto ABI = AliveBits.find(&I); 374 if (ABI != AliveBits.end()) { 375 if (ABI->second.getBoolValue()) 376 continue; 377 378 DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n"); 379 // FIXME: In theory we could substitute undef here instead of zero. 380 // This should be reconsidered once we settle on the semantics of 381 // undef, poison, etc. 382 Value *Zero = ConstantInt::get(I.getType(), 0); 383 ++NumSimplified; 384 I.replaceAllUsesWith(Zero); 385 Changed = true; 386 } 387 } else if (Visited.count(&I)) { 388 continue; 389 } 390 391 if (isAlwaysLive(&I)) 392 continue; 393 394 Worklist.push_back(&I); 395 I.dropAllReferences(); 396 Changed = true; 397 } 398 399 for (Instruction *&I : Worklist) { 400 ++NumRemoved; 401 I->eraseFromParent(); 402 } 403 404 return Changed; 405} 406 407FunctionPass *llvm::createBitTrackingDCEPass() { 408 return new BDCE(); 409} 410 411