1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/LoopPass.h"
33#include "llvm/Analysis/ScalarEvolutionExpander.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/Analysis/TargetTransformInfo.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/Dominators.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Type.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51using namespace llvm;
52
53#define DEBUG_TYPE "indvars"
54
55STATISTIC(NumWidened     , "Number of indvars widened");
56STATISTIC(NumReplaced    , "Number of exit values replaced");
57STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
58STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
59STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
60
61// Trip count verification can be enabled by default under NDEBUG if we
62// implement a strong expression equivalence checker in SCEV. Until then, we
63// use the verify-indvars flag, which may assert in some cases.
64static cl::opt<bool> VerifyIndvars(
65  "verify-indvars", cl::Hidden,
66  cl::desc("Verify the ScalarEvolution result after running indvars"));
67
68static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
69  cl::desc("Reduce live induction variables."));
70
71namespace {
72  class IndVarSimplify : public LoopPass {
73    LoopInfo                  *LI;
74    ScalarEvolution           *SE;
75    DominatorTree             *DT;
76    TargetLibraryInfo         *TLI;
77    const TargetTransformInfo *TTI;
78
79    SmallVector<WeakVH, 16> DeadInsts;
80    bool Changed;
81  public:
82
83    static char ID; // Pass identification, replacement for typeid
84    IndVarSimplify()
85        : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
86      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
87    }
88
89    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
90
91    void getAnalysisUsage(AnalysisUsage &AU) const override {
92      AU.addRequired<DominatorTreeWrapperPass>();
93      AU.addRequired<LoopInfoWrapperPass>();
94      AU.addRequired<ScalarEvolution>();
95      AU.addRequiredID(LoopSimplifyID);
96      AU.addRequiredID(LCSSAID);
97      AU.addPreserved<ScalarEvolution>();
98      AU.addPreservedID(LoopSimplifyID);
99      AU.addPreservedID(LCSSAID);
100      AU.setPreservesCFG();
101    }
102
103  private:
104    void releaseMemory() override {
105      DeadInsts.clear();
106    }
107
108    bool isValidRewrite(Value *FromVal, Value *ToVal);
109
110    void HandleFloatingPointIV(Loop *L, PHINode *PH);
111    void RewriteNonIntegerIVs(Loop *L);
112
113    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
114
115    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
116
117    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
118                                     PHINode *IndVar, SCEVExpander &Rewriter);
119
120    void SinkUnusedInvariants(Loop *L);
121  };
122}
123
124char IndVarSimplify::ID = 0;
125INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
126                "Induction Variable Simplification", false, false)
127INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
128INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
129INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
130INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
131INITIALIZE_PASS_DEPENDENCY(LCSSA)
132INITIALIZE_PASS_END(IndVarSimplify, "indvars",
133                "Induction Variable Simplification", false, false)
134
135Pass *llvm::createIndVarSimplifyPass() {
136  return new IndVarSimplify();
137}
138
139/// isValidRewrite - Return true if the SCEV expansion generated by the
140/// rewriter can replace the original value. SCEV guarantees that it
141/// produces the same value, but the way it is produced may be illegal IR.
142/// Ideally, this function will only be called for verification.
143bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
144  // If an SCEV expression subsumed multiple pointers, its expansion could
145  // reassociate the GEP changing the base pointer. This is illegal because the
146  // final address produced by a GEP chain must be inbounds relative to its
147  // underlying object. Otherwise basic alias analysis, among other things,
148  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
149  // producing an expression involving multiple pointers. Until then, we must
150  // bail out here.
151  //
152  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
153  // because it understands lcssa phis while SCEV does not.
154  Value *FromPtr = FromVal;
155  Value *ToPtr = ToVal;
156  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
157    FromPtr = GEP->getPointerOperand();
158  }
159  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
160    ToPtr = GEP->getPointerOperand();
161  }
162  if (FromPtr != FromVal || ToPtr != ToVal) {
163    // Quickly check the common case
164    if (FromPtr == ToPtr)
165      return true;
166
167    // SCEV may have rewritten an expression that produces the GEP's pointer
168    // operand. That's ok as long as the pointer operand has the same base
169    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
170    // base of a recurrence. This handles the case in which SCEV expansion
171    // converts a pointer type recurrence into a nonrecurrent pointer base
172    // indexed by an integer recurrence.
173
174    // If the GEP base pointer is a vector of pointers, abort.
175    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
176      return false;
177
178    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
179    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
180    if (FromBase == ToBase)
181      return true;
182
183    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
184          << *FromBase << " != " << *ToBase << "\n");
185
186    return false;
187  }
188  return true;
189}
190
191/// Determine the insertion point for this user. By default, insert immediately
192/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
193/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
194/// common dominator for the incoming blocks.
195static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
196                                          DominatorTree *DT) {
197  PHINode *PHI = dyn_cast<PHINode>(User);
198  if (!PHI)
199    return User;
200
201  Instruction *InsertPt = nullptr;
202  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
203    if (PHI->getIncomingValue(i) != Def)
204      continue;
205
206    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
207    if (!InsertPt) {
208      InsertPt = InsertBB->getTerminator();
209      continue;
210    }
211    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
212    InsertPt = InsertBB->getTerminator();
213  }
214  assert(InsertPt && "Missing phi operand");
215  assert((!isa<Instruction>(Def) ||
216          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
217         "def does not dominate all uses");
218  return InsertPt;
219}
220
221//===----------------------------------------------------------------------===//
222// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
223//===----------------------------------------------------------------------===//
224
225/// ConvertToSInt - Convert APF to an integer, if possible.
226static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
227  bool isExact = false;
228  // See if we can convert this to an int64_t
229  uint64_t UIntVal;
230  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
231                           &isExact) != APFloat::opOK || !isExact)
232    return false;
233  IntVal = UIntVal;
234  return true;
235}
236
237/// HandleFloatingPointIV - If the loop has floating induction variable
238/// then insert corresponding integer induction variable if possible.
239/// For example,
240/// for(double i = 0; i < 10000; ++i)
241///   bar(i)
242/// is converted into
243/// for(int i = 0; i < 10000; ++i)
244///   bar((double)i);
245///
246void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
247  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
248  unsigned BackEdge     = IncomingEdge^1;
249
250  // Check incoming value.
251  ConstantFP *InitValueVal =
252    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
253
254  int64_t InitValue;
255  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
256    return;
257
258  // Check IV increment. Reject this PN if increment operation is not
259  // an add or increment value can not be represented by an integer.
260  BinaryOperator *Incr =
261    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
262  if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
263
264  // If this is not an add of the PHI with a constantfp, or if the constant fp
265  // is not an integer, bail out.
266  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
267  int64_t IncValue;
268  if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
269      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
270    return;
271
272  // Check Incr uses. One user is PN and the other user is an exit condition
273  // used by the conditional terminator.
274  Value::user_iterator IncrUse = Incr->user_begin();
275  Instruction *U1 = cast<Instruction>(*IncrUse++);
276  if (IncrUse == Incr->user_end()) return;
277  Instruction *U2 = cast<Instruction>(*IncrUse++);
278  if (IncrUse != Incr->user_end()) return;
279
280  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
281  // only used by a branch, we can't transform it.
282  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
283  if (!Compare)
284    Compare = dyn_cast<FCmpInst>(U2);
285  if (!Compare || !Compare->hasOneUse() ||
286      !isa<BranchInst>(Compare->user_back()))
287    return;
288
289  BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
290
291  // We need to verify that the branch actually controls the iteration count
292  // of the loop.  If not, the new IV can overflow and no one will notice.
293  // The branch block must be in the loop and one of the successors must be out
294  // of the loop.
295  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
296  if (!L->contains(TheBr->getParent()) ||
297      (L->contains(TheBr->getSuccessor(0)) &&
298       L->contains(TheBr->getSuccessor(1))))
299    return;
300
301
302  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
303  // transform it.
304  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
305  int64_t ExitValue;
306  if (ExitValueVal == nullptr ||
307      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
308    return;
309
310  // Find new predicate for integer comparison.
311  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
312  switch (Compare->getPredicate()) {
313  default: return;  // Unknown comparison.
314  case CmpInst::FCMP_OEQ:
315  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
316  case CmpInst::FCMP_ONE:
317  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
318  case CmpInst::FCMP_OGT:
319  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
320  case CmpInst::FCMP_OGE:
321  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
322  case CmpInst::FCMP_OLT:
323  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
324  case CmpInst::FCMP_OLE:
325  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
326  }
327
328  // We convert the floating point induction variable to a signed i32 value if
329  // we can.  This is only safe if the comparison will not overflow in a way
330  // that won't be trapped by the integer equivalent operations.  Check for this
331  // now.
332  // TODO: We could use i64 if it is native and the range requires it.
333
334  // The start/stride/exit values must all fit in signed i32.
335  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
336    return;
337
338  // If not actually striding (add x, 0.0), avoid touching the code.
339  if (IncValue == 0)
340    return;
341
342  // Positive and negative strides have different safety conditions.
343  if (IncValue > 0) {
344    // If we have a positive stride, we require the init to be less than the
345    // exit value.
346    if (InitValue >= ExitValue)
347      return;
348
349    uint32_t Range = uint32_t(ExitValue-InitValue);
350    // Check for infinite loop, either:
351    // while (i <= Exit) or until (i > Exit)
352    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
353      if (++Range == 0) return;  // Range overflows.
354    }
355
356    unsigned Leftover = Range % uint32_t(IncValue);
357
358    // If this is an equality comparison, we require that the strided value
359    // exactly land on the exit value, otherwise the IV condition will wrap
360    // around and do things the fp IV wouldn't.
361    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
362        Leftover != 0)
363      return;
364
365    // If the stride would wrap around the i32 before exiting, we can't
366    // transform the IV.
367    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
368      return;
369
370  } else {
371    // If we have a negative stride, we require the init to be greater than the
372    // exit value.
373    if (InitValue <= ExitValue)
374      return;
375
376    uint32_t Range = uint32_t(InitValue-ExitValue);
377    // Check for infinite loop, either:
378    // while (i >= Exit) or until (i < Exit)
379    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
380      if (++Range == 0) return;  // Range overflows.
381    }
382
383    unsigned Leftover = Range % uint32_t(-IncValue);
384
385    // If this is an equality comparison, we require that the strided value
386    // exactly land on the exit value, otherwise the IV condition will wrap
387    // around and do things the fp IV wouldn't.
388    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
389        Leftover != 0)
390      return;
391
392    // If the stride would wrap around the i32 before exiting, we can't
393    // transform the IV.
394    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
395      return;
396  }
397
398  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
399
400  // Insert new integer induction variable.
401  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
402  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
403                      PN->getIncomingBlock(IncomingEdge));
404
405  Value *NewAdd =
406    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
407                              Incr->getName()+".int", Incr);
408  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
409
410  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
411                                      ConstantInt::get(Int32Ty, ExitValue),
412                                      Compare->getName());
413
414  // In the following deletions, PN may become dead and may be deleted.
415  // Use a WeakVH to observe whether this happens.
416  WeakVH WeakPH = PN;
417
418  // Delete the old floating point exit comparison.  The branch starts using the
419  // new comparison.
420  NewCompare->takeName(Compare);
421  Compare->replaceAllUsesWith(NewCompare);
422  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
423
424  // Delete the old floating point increment.
425  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
426  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
427
428  // If the FP induction variable still has uses, this is because something else
429  // in the loop uses its value.  In order to canonicalize the induction
430  // variable, we chose to eliminate the IV and rewrite it in terms of an
431  // int->fp cast.
432  //
433  // We give preference to sitofp over uitofp because it is faster on most
434  // platforms.
435  if (WeakPH) {
436    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
437                                 PN->getParent()->getFirstInsertionPt());
438    PN->replaceAllUsesWith(Conv);
439    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
440  }
441  Changed = true;
442}
443
444void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
445  // First step.  Check to see if there are any floating-point recurrences.
446  // If there are, change them into integer recurrences, permitting analysis by
447  // the SCEV routines.
448  //
449  BasicBlock *Header = L->getHeader();
450
451  SmallVector<WeakVH, 8> PHIs;
452  for (BasicBlock::iterator I = Header->begin();
453       PHINode *PN = dyn_cast<PHINode>(I); ++I)
454    PHIs.push_back(PN);
455
456  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
457    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
458      HandleFloatingPointIV(L, PN);
459
460  // If the loop previously had floating-point IV, ScalarEvolution
461  // may not have been able to compute a trip count. Now that we've done some
462  // re-writing, the trip count may be computable.
463  if (Changed)
464    SE->forgetLoop(L);
465}
466
467//===----------------------------------------------------------------------===//
468// RewriteLoopExitValues - Optimize IV users outside the loop.
469// As a side effect, reduces the amount of IV processing within the loop.
470//===----------------------------------------------------------------------===//
471
472/// RewriteLoopExitValues - Check to see if this loop has a computable
473/// loop-invariant execution count.  If so, this means that we can compute the
474/// final value of any expressions that are recurrent in the loop, and
475/// substitute the exit values from the loop into any instructions outside of
476/// the loop that use the final values of the current expressions.
477///
478/// This is mostly redundant with the regular IndVarSimplify activities that
479/// happen later, except that it's more powerful in some cases, because it's
480/// able to brute-force evaluate arbitrary instructions as long as they have
481/// constant operands at the beginning of the loop.
482void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
483  // Verify the input to the pass in already in LCSSA form.
484  assert(L->isLCSSAForm(*DT));
485
486  SmallVector<BasicBlock*, 8> ExitBlocks;
487  L->getUniqueExitBlocks(ExitBlocks);
488
489  // Find all values that are computed inside the loop, but used outside of it.
490  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
491  // the exit blocks of the loop to find them.
492  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
493    BasicBlock *ExitBB = ExitBlocks[i];
494
495    // If there are no PHI nodes in this exit block, then no values defined
496    // inside the loop are used on this path, skip it.
497    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
498    if (!PN) continue;
499
500    unsigned NumPreds = PN->getNumIncomingValues();
501
502    // We would like to be able to RAUW single-incoming value PHI nodes. We
503    // have to be certain this is safe even when this is an LCSSA PHI node.
504    // While the computed exit value is no longer varying in *this* loop, the
505    // exit block may be an exit block for an outer containing loop as well,
506    // the exit value may be varying in the outer loop, and thus it may still
507    // require an LCSSA PHI node. The safe case is when this is
508    // single-predecessor PHI node (LCSSA) and the exit block containing it is
509    // part of the enclosing loop, or this is the outer most loop of the nest.
510    // In either case the exit value could (at most) be varying in the same
511    // loop body as the phi node itself. Thus if it is in turn used outside of
512    // an enclosing loop it will only be via a separate LCSSA node.
513    bool LCSSASafePhiForRAUW =
514        NumPreds == 1 &&
515        (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
516
517    // Iterate over all of the PHI nodes.
518    BasicBlock::iterator BBI = ExitBB->begin();
519    while ((PN = dyn_cast<PHINode>(BBI++))) {
520      if (PN->use_empty())
521        continue; // dead use, don't replace it
522
523      // SCEV only supports integer expressions for now.
524      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
525        continue;
526
527      // It's necessary to tell ScalarEvolution about this explicitly so that
528      // it can walk the def-use list and forget all SCEVs, as it may not be
529      // watching the PHI itself. Once the new exit value is in place, there
530      // may not be a def-use connection between the loop and every instruction
531      // which got a SCEVAddRecExpr for that loop.
532      SE->forgetValue(PN);
533
534      // Iterate over all of the values in all the PHI nodes.
535      for (unsigned i = 0; i != NumPreds; ++i) {
536        // If the value being merged in is not integer or is not defined
537        // in the loop, skip it.
538        Value *InVal = PN->getIncomingValue(i);
539        if (!isa<Instruction>(InVal))
540          continue;
541
542        // If this pred is for a subloop, not L itself, skip it.
543        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
544          continue; // The Block is in a subloop, skip it.
545
546        // Check that InVal is defined in the loop.
547        Instruction *Inst = cast<Instruction>(InVal);
548        if (!L->contains(Inst))
549          continue;
550
551        // Okay, this instruction has a user outside of the current loop
552        // and varies predictably *inside* the loop.  Evaluate the value it
553        // contains when the loop exits, if possible.
554        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
555        if (!SE->isLoopInvariant(ExitValue, L) ||
556            !isSafeToExpand(ExitValue, *SE))
557          continue;
558
559        // Computing the value outside of the loop brings no benefit if :
560        //  - it is definitely used inside the loop in a way which can not be
561        //    optimized away.
562        //  - no use outside of the loop can take advantage of hoisting the
563        //    computation out of the loop
564        if (ExitValue->getSCEVType()>=scMulExpr) {
565          unsigned NumHardInternalUses = 0;
566          unsigned NumSoftExternalUses = 0;
567          unsigned NumUses = 0;
568          for (auto IB = Inst->user_begin(), IE = Inst->user_end();
569               IB != IE && NumUses <= 6; ++IB) {
570            Instruction *UseInstr = cast<Instruction>(*IB);
571            unsigned Opc = UseInstr->getOpcode();
572            NumUses++;
573            if (L->contains(UseInstr)) {
574              if (Opc == Instruction::Call || Opc == Instruction::Ret)
575                NumHardInternalUses++;
576            } else {
577              if (Opc == Instruction::PHI) {
578                // Do not count the Phi as a use. LCSSA may have inserted
579                // plenty of trivial ones.
580                NumUses--;
581                for (auto PB = UseInstr->user_begin(),
582                          PE = UseInstr->user_end();
583                     PB != PE && NumUses <= 6; ++PB, ++NumUses) {
584                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
585                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
586                    NumSoftExternalUses++;
587                }
588                continue;
589              }
590              if (Opc != Instruction::Call && Opc != Instruction::Ret)
591                NumSoftExternalUses++;
592            }
593          }
594          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
595            continue;
596        }
597
598        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
599
600        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
601                     << "  LoopVal = " << *Inst << "\n");
602
603        if (!isValidRewrite(Inst, ExitVal)) {
604          DeadInsts.push_back(ExitVal);
605          continue;
606        }
607        Changed = true;
608        ++NumReplaced;
609
610        PN->setIncomingValue(i, ExitVal);
611
612        // If this instruction is dead now, delete it. Don't do it now to avoid
613        // invalidating iterators.
614        if (isInstructionTriviallyDead(Inst, TLI))
615          DeadInsts.push_back(Inst);
616
617        // If we determined that this PHI is safe to replace even if an LCSSA
618        // PHI, do so.
619        if (LCSSASafePhiForRAUW) {
620          PN->replaceAllUsesWith(ExitVal);
621          PN->eraseFromParent();
622        }
623      }
624
625      // If we were unable to completely replace the PHI node, clone the PHI
626      // and delete the original one. This lets IVUsers and any other maps
627      // purge the original user from their records.
628      if (!LCSSASafePhiForRAUW) {
629        PHINode *NewPN = cast<PHINode>(PN->clone());
630        NewPN->takeName(PN);
631        NewPN->insertBefore(PN);
632        PN->replaceAllUsesWith(NewPN);
633        PN->eraseFromParent();
634      }
635    }
636  }
637
638  // The insertion point instruction may have been deleted; clear it out
639  // so that the rewriter doesn't trip over it later.
640  Rewriter.clearInsertPoint();
641}
642
643//===----------------------------------------------------------------------===//
644//  IV Widening - Extend the width of an IV to cover its widest uses.
645//===----------------------------------------------------------------------===//
646
647namespace {
648  // Collect information about induction variables that are used by sign/zero
649  // extend operations. This information is recorded by CollectExtend and
650  // provides the input to WidenIV.
651  struct WideIVInfo {
652    PHINode *NarrowIV;
653    Type *WidestNativeType; // Widest integer type created [sz]ext
654    bool IsSigned;          // Was a sext user seen before a zext?
655
656    WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
657                   IsSigned(false) {}
658  };
659}
660
661/// visitCast - Update information about the induction variable that is
662/// extended by this sign or zero extend operation. This is used to determine
663/// the final width of the IV before actually widening it.
664static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
665                        const TargetTransformInfo *TTI) {
666  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
667  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
668    return;
669
670  Type *Ty = Cast->getType();
671  uint64_t Width = SE->getTypeSizeInBits(Ty);
672  if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
673    return;
674
675  // Cast is either an sext or zext up to this point.
676  // We should not widen an indvar if arithmetics on the wider indvar are more
677  // expensive than those on the narrower indvar. We check only the cost of ADD
678  // because at least an ADD is required to increment the induction variable. We
679  // could compute more comprehensively the cost of all instructions on the
680  // induction variable when necessary.
681  if (TTI &&
682      TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
683          TTI->getArithmeticInstrCost(Instruction::Add,
684                                      Cast->getOperand(0)->getType())) {
685    return;
686  }
687
688  if (!WI.WidestNativeType) {
689    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
690    WI.IsSigned = IsSigned;
691    return;
692  }
693
694  // We extend the IV to satisfy the sign of its first user, arbitrarily.
695  if (WI.IsSigned != IsSigned)
696    return;
697
698  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
699    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
700}
701
702namespace {
703
704/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
705/// WideIV that computes the same value as the Narrow IV def.  This avoids
706/// caching Use* pointers.
707struct NarrowIVDefUse {
708  Instruction *NarrowDef;
709  Instruction *NarrowUse;
710  Instruction *WideDef;
711
712  NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
713
714  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
715    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
716};
717
718/// WidenIV - The goal of this transform is to remove sign and zero extends
719/// without creating any new induction variables. To do this, it creates a new
720/// phi of the wider type and redirects all users, either removing extends or
721/// inserting truncs whenever we stop propagating the type.
722///
723class WidenIV {
724  // Parameters
725  PHINode *OrigPhi;
726  Type *WideType;
727  bool IsSigned;
728
729  // Context
730  LoopInfo        *LI;
731  Loop            *L;
732  ScalarEvolution *SE;
733  DominatorTree   *DT;
734
735  // Result
736  PHINode *WidePhi;
737  Instruction *WideInc;
738  const SCEV *WideIncExpr;
739  SmallVectorImpl<WeakVH> &DeadInsts;
740
741  SmallPtrSet<Instruction*,16> Widened;
742  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
743
744public:
745  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
746          ScalarEvolution *SEv, DominatorTree *DTree,
747          SmallVectorImpl<WeakVH> &DI) :
748    OrigPhi(WI.NarrowIV),
749    WideType(WI.WidestNativeType),
750    IsSigned(WI.IsSigned),
751    LI(LInfo),
752    L(LI->getLoopFor(OrigPhi->getParent())),
753    SE(SEv),
754    DT(DTree),
755    WidePhi(nullptr),
756    WideInc(nullptr),
757    WideIncExpr(nullptr),
758    DeadInsts(DI) {
759    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
760  }
761
762  PHINode *CreateWideIV(SCEVExpander &Rewriter);
763
764protected:
765  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
766                   Instruction *Use);
767
768  Instruction *CloneIVUser(NarrowIVDefUse DU);
769
770  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
771
772  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
773
774  const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
775                              unsigned OpCode) const;
776
777  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
778
779  bool WidenLoopCompare(NarrowIVDefUse DU);
780
781  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
782};
783} // anonymous namespace
784
785/// isLoopInvariant - Perform a quick domtree based check for loop invariance
786/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
787/// gratuitous for this purpose.
788static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
789  Instruction *Inst = dyn_cast<Instruction>(V);
790  if (!Inst)
791    return true;
792
793  return DT->properlyDominates(Inst->getParent(), L->getHeader());
794}
795
796Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
797                          Instruction *Use) {
798  // Set the debug location and conservative insertion point.
799  IRBuilder<> Builder(Use);
800  // Hoist the insertion point into loop preheaders as far as possible.
801  for (const Loop *L = LI->getLoopFor(Use->getParent());
802       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
803       L = L->getParentLoop())
804    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
805
806  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
807                    Builder.CreateZExt(NarrowOper, WideType);
808}
809
810/// CloneIVUser - Instantiate a wide operation to replace a narrow
811/// operation. This only needs to handle operations that can evaluation to
812/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
813Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
814  unsigned Opcode = DU.NarrowUse->getOpcode();
815  switch (Opcode) {
816  default:
817    return nullptr;
818  case Instruction::Add:
819  case Instruction::Mul:
820  case Instruction::UDiv:
821  case Instruction::Sub:
822  case Instruction::And:
823  case Instruction::Or:
824  case Instruction::Xor:
825  case Instruction::Shl:
826  case Instruction::LShr:
827  case Instruction::AShr:
828    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
829
830    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
831    // anything about the narrow operand yet so must insert a [sz]ext. It is
832    // probably loop invariant and will be folded or hoisted. If it actually
833    // comes from a widened IV, it should be removed during a future call to
834    // WidenIVUse.
835    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
836      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
837    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
838      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
839
840    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
841    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
842                                                    LHS, RHS,
843                                                    NarrowBO->getName());
844    IRBuilder<> Builder(DU.NarrowUse);
845    Builder.Insert(WideBO);
846    if (const OverflowingBinaryOperator *OBO =
847        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
848      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
849      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
850    }
851    return WideBO;
852  }
853}
854
855const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
856                                     unsigned OpCode) const {
857  if (OpCode == Instruction::Add)
858    return SE->getAddExpr(LHS, RHS);
859  if (OpCode == Instruction::Sub)
860    return SE->getMinusSCEV(LHS, RHS);
861  if (OpCode == Instruction::Mul)
862    return SE->getMulExpr(LHS, RHS);
863
864  llvm_unreachable("Unsupported opcode.");
865}
866
867/// No-wrap operations can transfer sign extension of their result to their
868/// operands. Generate the SCEV value for the widened operation without
869/// actually modifying the IR yet. If the expression after extending the
870/// operands is an AddRec for this loop, return it.
871const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
872
873  // Handle the common case of add<nsw/nuw>
874  const unsigned OpCode = DU.NarrowUse->getOpcode();
875  // Only Add/Sub/Mul instructions supported yet.
876  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
877      OpCode != Instruction::Mul)
878    return nullptr;
879
880  // One operand (NarrowDef) has already been extended to WideDef. Now determine
881  // if extending the other will lead to a recurrence.
882  const unsigned ExtendOperIdx =
883      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
884  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
885
886  const SCEV *ExtendOperExpr = nullptr;
887  const OverflowingBinaryOperator *OBO =
888    cast<OverflowingBinaryOperator>(DU.NarrowUse);
889  if (IsSigned && OBO->hasNoSignedWrap())
890    ExtendOperExpr = SE->getSignExtendExpr(
891      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
892  else if(!IsSigned && OBO->hasNoUnsignedWrap())
893    ExtendOperExpr = SE->getZeroExtendExpr(
894      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
895  else
896    return nullptr;
897
898  // When creating this SCEV expr, don't apply the current operations NSW or NUW
899  // flags. This instruction may be guarded by control flow that the no-wrap
900  // behavior depends on. Non-control-equivalent instructions can be mapped to
901  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
902  // semantics to those operations.
903  const SCEV *lhs = SE->getSCEV(DU.WideDef);
904  const SCEV *rhs = ExtendOperExpr;
905
906  // Let's swap operands to the initial order for the case of non-commutative
907  // operations, like SUB. See PR21014.
908  if (ExtendOperIdx == 0)
909    std::swap(lhs, rhs);
910  const SCEVAddRecExpr *AddRec =
911      dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
912
913  if (!AddRec || AddRec->getLoop() != L)
914    return nullptr;
915  return AddRec;
916}
917
918/// GetWideRecurrence - Is this instruction potentially interesting from
919/// IVUsers' perspective after widening it's type? In other words, can the
920/// extend be safely hoisted out of the loop with SCEV reducing the value to a
921/// recurrence on the same loop. If so, return the sign or zero extended
922/// recurrence. Otherwise return NULL.
923const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
924  if (!SE->isSCEVable(NarrowUse->getType()))
925    return nullptr;
926
927  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
928  if (SE->getTypeSizeInBits(NarrowExpr->getType())
929      >= SE->getTypeSizeInBits(WideType)) {
930    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
931    // index. So don't follow this use.
932    return nullptr;
933  }
934
935  const SCEV *WideExpr = IsSigned ?
936    SE->getSignExtendExpr(NarrowExpr, WideType) :
937    SE->getZeroExtendExpr(NarrowExpr, WideType);
938  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
939  if (!AddRec || AddRec->getLoop() != L)
940    return nullptr;
941  return AddRec;
942}
943
944/// This IV user cannot be widen. Replace this use of the original narrow IV
945/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
946static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
947  DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
948        << " for user " << *DU.NarrowUse << "\n");
949  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
950  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
951  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
952}
953
954/// If the narrow use is a compare instruction, then widen the compare
955//  (and possibly the other operand).  The extend operation is hoisted into the
956// loop preheader as far as possible.
957bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
958  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
959  if (!Cmp)
960    return false;
961
962  // Sign of IV user and compare must match.
963  if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
964    return false;
965
966  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
967  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
968  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
969  assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
970
971  // Widen the compare instruction.
972  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
973  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
974
975  // Widen the other operand of the compare, if necessary.
976  if (CastWidth < IVWidth) {
977    Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
978    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
979  }
980  return true;
981}
982
983/// WidenIVUse - Determine whether an individual user of the narrow IV can be
984/// widened. If so, return the wide clone of the user.
985Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
986
987  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
988  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
989    if (LI->getLoopFor(UsePhi->getParent()) != L) {
990      // For LCSSA phis, sink the truncate outside the loop.
991      // After SimplifyCFG most loop exit targets have a single predecessor.
992      // Otherwise fall back to a truncate within the loop.
993      if (UsePhi->getNumOperands() != 1)
994        truncateIVUse(DU, DT);
995      else {
996        PHINode *WidePhi =
997          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
998                          UsePhi);
999        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1000        IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
1001        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1002        UsePhi->replaceAllUsesWith(Trunc);
1003        DeadInsts.push_back(UsePhi);
1004        DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1005              << " to " << *WidePhi << "\n");
1006      }
1007      return nullptr;
1008    }
1009  }
1010  // Our raison d'etre! Eliminate sign and zero extension.
1011  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1012    Value *NewDef = DU.WideDef;
1013    if (DU.NarrowUse->getType() != WideType) {
1014      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1015      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1016      if (CastWidth < IVWidth) {
1017        // The cast isn't as wide as the IV, so insert a Trunc.
1018        IRBuilder<> Builder(DU.NarrowUse);
1019        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1020      }
1021      else {
1022        // A wider extend was hidden behind a narrower one. This may induce
1023        // another round of IV widening in which the intermediate IV becomes
1024        // dead. It should be very rare.
1025        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1026              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1027        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1028        NewDef = DU.NarrowUse;
1029      }
1030    }
1031    if (NewDef != DU.NarrowUse) {
1032      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1033            << " replaced by " << *DU.WideDef << "\n");
1034      ++NumElimExt;
1035      DU.NarrowUse->replaceAllUsesWith(NewDef);
1036      DeadInsts.push_back(DU.NarrowUse);
1037    }
1038    // Now that the extend is gone, we want to expose it's uses for potential
1039    // further simplification. We don't need to directly inform SimplifyIVUsers
1040    // of the new users, because their parent IV will be processed later as a
1041    // new loop phi. If we preserved IVUsers analysis, we would also want to
1042    // push the uses of WideDef here.
1043
1044    // No further widening is needed. The deceased [sz]ext had done it for us.
1045    return nullptr;
1046  }
1047
1048  // Does this user itself evaluate to a recurrence after widening?
1049  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1050  if (!WideAddRec)
1051    WideAddRec = GetExtendedOperandRecurrence(DU);
1052
1053  if (!WideAddRec) {
1054    // If use is a loop condition, try to promote the condition instead of
1055    // truncating the IV first.
1056    if (WidenLoopCompare(DU))
1057      return nullptr;
1058
1059    // This user does not evaluate to a recurence after widening, so don't
1060    // follow it. Instead insert a Trunc to kill off the original use,
1061    // eventually isolating the original narrow IV so it can be removed.
1062    truncateIVUse(DU, DT);
1063    return nullptr;
1064  }
1065  // Assume block terminators cannot evaluate to a recurrence. We can't to
1066  // insert a Trunc after a terminator if there happens to be a critical edge.
1067  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1068         "SCEV is not expected to evaluate a block terminator");
1069
1070  // Reuse the IV increment that SCEVExpander created as long as it dominates
1071  // NarrowUse.
1072  Instruction *WideUse = nullptr;
1073  if (WideAddRec == WideIncExpr
1074      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1075    WideUse = WideInc;
1076  else {
1077    WideUse = CloneIVUser(DU);
1078    if (!WideUse)
1079      return nullptr;
1080  }
1081  // Evaluation of WideAddRec ensured that the narrow expression could be
1082  // extended outside the loop without overflow. This suggests that the wide use
1083  // evaluates to the same expression as the extended narrow use, but doesn't
1084  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1085  // where it fails, we simply throw away the newly created wide use.
1086  if (WideAddRec != SE->getSCEV(WideUse)) {
1087    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1088          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1089    DeadInsts.push_back(WideUse);
1090    return nullptr;
1091  }
1092
1093  // Returning WideUse pushes it on the worklist.
1094  return WideUse;
1095}
1096
1097/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1098///
1099void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1100  for (User *U : NarrowDef->users()) {
1101    Instruction *NarrowUser = cast<Instruction>(U);
1102
1103    // Handle data flow merges and bizarre phi cycles.
1104    if (!Widened.insert(NarrowUser).second)
1105      continue;
1106
1107    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
1108  }
1109}
1110
1111/// CreateWideIV - Process a single induction variable. First use the
1112/// SCEVExpander to create a wide induction variable that evaluates to the same
1113/// recurrence as the original narrow IV. Then use a worklist to forward
1114/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1115/// interesting IV users, the narrow IV will be isolated for removal by
1116/// DeleteDeadPHIs.
1117///
1118/// It would be simpler to delete uses as they are processed, but we must avoid
1119/// invalidating SCEV expressions.
1120///
1121PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1122  // Is this phi an induction variable?
1123  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1124  if (!AddRec)
1125    return nullptr;
1126
1127  // Widen the induction variable expression.
1128  const SCEV *WideIVExpr = IsSigned ?
1129    SE->getSignExtendExpr(AddRec, WideType) :
1130    SE->getZeroExtendExpr(AddRec, WideType);
1131
1132  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1133         "Expect the new IV expression to preserve its type");
1134
1135  // Can the IV be extended outside the loop without overflow?
1136  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1137  if (!AddRec || AddRec->getLoop() != L)
1138    return nullptr;
1139
1140  // An AddRec must have loop-invariant operands. Since this AddRec is
1141  // materialized by a loop header phi, the expression cannot have any post-loop
1142  // operands, so they must dominate the loop header.
1143  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1144         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1145         && "Loop header phi recurrence inputs do not dominate the loop");
1146
1147  // The rewriter provides a value for the desired IV expression. This may
1148  // either find an existing phi or materialize a new one. Either way, we
1149  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1150  // of the phi-SCC dominates the loop entry.
1151  Instruction *InsertPt = L->getHeader()->begin();
1152  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1153
1154  // Remembering the WideIV increment generated by SCEVExpander allows
1155  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1156  // employ a general reuse mechanism because the call above is the only call to
1157  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1158  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1159    WideInc =
1160      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1161    WideIncExpr = SE->getSCEV(WideInc);
1162  }
1163
1164  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1165  ++NumWidened;
1166
1167  // Traverse the def-use chain using a worklist starting at the original IV.
1168  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1169
1170  Widened.insert(OrigPhi);
1171  pushNarrowIVUsers(OrigPhi, WidePhi);
1172
1173  while (!NarrowIVUsers.empty()) {
1174    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1175
1176    // Process a def-use edge. This may replace the use, so don't hold a
1177    // use_iterator across it.
1178    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1179
1180    // Follow all def-use edges from the previous narrow use.
1181    if (WideUse)
1182      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1183
1184    // WidenIVUse may have removed the def-use edge.
1185    if (DU.NarrowDef->use_empty())
1186      DeadInsts.push_back(DU.NarrowDef);
1187  }
1188  return WidePhi;
1189}
1190
1191//===----------------------------------------------------------------------===//
1192//  Live IV Reduction - Minimize IVs live across the loop.
1193//===----------------------------------------------------------------------===//
1194
1195
1196//===----------------------------------------------------------------------===//
1197//  Simplification of IV users based on SCEV evaluation.
1198//===----------------------------------------------------------------------===//
1199
1200namespace {
1201  class IndVarSimplifyVisitor : public IVVisitor {
1202    ScalarEvolution *SE;
1203    const TargetTransformInfo *TTI;
1204    PHINode *IVPhi;
1205
1206  public:
1207    WideIVInfo WI;
1208
1209    IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1210                          const TargetTransformInfo *TTI,
1211                          const DominatorTree *DTree)
1212        : SE(SCEV), TTI(TTI), IVPhi(IV) {
1213      DT = DTree;
1214      WI.NarrowIV = IVPhi;
1215      if (ReduceLiveIVs)
1216        setSplitOverflowIntrinsics();
1217    }
1218
1219    // Implement the interface used by simplifyUsersOfIV.
1220    void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1221  };
1222}
1223
1224/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1225/// users. Each successive simplification may push more users which may
1226/// themselves be candidates for simplification.
1227///
1228/// Sign/Zero extend elimination is interleaved with IV simplification.
1229///
1230void IndVarSimplify::SimplifyAndExtend(Loop *L,
1231                                       SCEVExpander &Rewriter,
1232                                       LPPassManager &LPM) {
1233  SmallVector<WideIVInfo, 8> WideIVs;
1234
1235  SmallVector<PHINode*, 8> LoopPhis;
1236  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1237    LoopPhis.push_back(cast<PHINode>(I));
1238  }
1239  // Each round of simplification iterates through the SimplifyIVUsers worklist
1240  // for all current phis, then determines whether any IVs can be
1241  // widened. Widening adds new phis to LoopPhis, inducing another round of
1242  // simplification on the wide IVs.
1243  while (!LoopPhis.empty()) {
1244    // Evaluate as many IV expressions as possible before widening any IVs. This
1245    // forces SCEV to set no-wrap flags before evaluating sign/zero
1246    // extension. The first time SCEV attempts to normalize sign/zero extension,
1247    // the result becomes final. So for the most predictable results, we delay
1248    // evaluation of sign/zero extend evaluation until needed, and avoid running
1249    // other SCEV based analysis prior to SimplifyAndExtend.
1250    do {
1251      PHINode *CurrIV = LoopPhis.pop_back_val();
1252
1253      // Information about sign/zero extensions of CurrIV.
1254      IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1255
1256      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
1257
1258      if (Visitor.WI.WidestNativeType) {
1259        WideIVs.push_back(Visitor.WI);
1260      }
1261    } while(!LoopPhis.empty());
1262
1263    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1264      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1265      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1266        Changed = true;
1267        LoopPhis.push_back(WidePhi);
1268      }
1269    }
1270  }
1271}
1272
1273//===----------------------------------------------------------------------===//
1274//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1275//===----------------------------------------------------------------------===//
1276
1277/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1278/// count expression can be safely and cheaply expanded into an instruction
1279/// sequence that can be used by LinearFunctionTestReplace.
1280///
1281/// TODO: This fails for pointer-type loop counters with greater than one byte
1282/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1283/// we could skip this check in the case that the LFTR loop counter (chosen by
1284/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1285/// the loop test to an inequality test by checking the target data's alignment
1286/// of element types (given that the initial pointer value originates from or is
1287/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1288/// However, we don't yet have a strong motivation for converting loop tests
1289/// into inequality tests.
1290static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1291                                        SCEVExpander &Rewriter) {
1292  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1293  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1294      BackedgeTakenCount->isZero())
1295    return false;
1296
1297  if (!L->getExitingBlock())
1298    return false;
1299
1300  // Can't rewrite non-branch yet.
1301  if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1302    return false;
1303
1304  if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1305    return false;
1306
1307  return true;
1308}
1309
1310/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1311/// invariant value to the phi.
1312static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1313  Instruction *IncI = dyn_cast<Instruction>(IncV);
1314  if (!IncI)
1315    return nullptr;
1316
1317  switch (IncI->getOpcode()) {
1318  case Instruction::Add:
1319  case Instruction::Sub:
1320    break;
1321  case Instruction::GetElementPtr:
1322    // An IV counter must preserve its type.
1323    if (IncI->getNumOperands() == 2)
1324      break;
1325  default:
1326    return nullptr;
1327  }
1328
1329  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1330  if (Phi && Phi->getParent() == L->getHeader()) {
1331    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1332      return Phi;
1333    return nullptr;
1334  }
1335  if (IncI->getOpcode() == Instruction::GetElementPtr)
1336    return nullptr;
1337
1338  // Allow add/sub to be commuted.
1339  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1340  if (Phi && Phi->getParent() == L->getHeader()) {
1341    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1342      return Phi;
1343  }
1344  return nullptr;
1345}
1346
1347/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1348static ICmpInst *getLoopTest(Loop *L) {
1349  assert(L->getExitingBlock() && "expected loop exit");
1350
1351  BasicBlock *LatchBlock = L->getLoopLatch();
1352  // Don't bother with LFTR if the loop is not properly simplified.
1353  if (!LatchBlock)
1354    return nullptr;
1355
1356  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1357  assert(BI && "expected exit branch");
1358
1359  return dyn_cast<ICmpInst>(BI->getCondition());
1360}
1361
1362/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1363/// that the current exit test is already sufficiently canonical.
1364static bool needsLFTR(Loop *L, DominatorTree *DT) {
1365  // Do LFTR to simplify the exit condition to an ICMP.
1366  ICmpInst *Cond = getLoopTest(L);
1367  if (!Cond)
1368    return true;
1369
1370  // Do LFTR to simplify the exit ICMP to EQ/NE
1371  ICmpInst::Predicate Pred = Cond->getPredicate();
1372  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1373    return true;
1374
1375  // Look for a loop invariant RHS
1376  Value *LHS = Cond->getOperand(0);
1377  Value *RHS = Cond->getOperand(1);
1378  if (!isLoopInvariant(RHS, L, DT)) {
1379    if (!isLoopInvariant(LHS, L, DT))
1380      return true;
1381    std::swap(LHS, RHS);
1382  }
1383  // Look for a simple IV counter LHS
1384  PHINode *Phi = dyn_cast<PHINode>(LHS);
1385  if (!Phi)
1386    Phi = getLoopPhiForCounter(LHS, L, DT);
1387
1388  if (!Phi)
1389    return true;
1390
1391  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1392  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1393  if (Idx < 0)
1394    return true;
1395
1396  // Do LFTR if the exit condition's IV is *not* a simple counter.
1397  Value *IncV = Phi->getIncomingValue(Idx);
1398  return Phi != getLoopPhiForCounter(IncV, L, DT);
1399}
1400
1401/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1402/// down to checking that all operands are constant and listing instructions
1403/// that may hide undef.
1404static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1405                               unsigned Depth) {
1406  if (isa<Constant>(V))
1407    return !isa<UndefValue>(V);
1408
1409  if (Depth >= 6)
1410    return false;
1411
1412  // Conservatively handle non-constant non-instructions. For example, Arguments
1413  // may be undef.
1414  Instruction *I = dyn_cast<Instruction>(V);
1415  if (!I)
1416    return false;
1417
1418  // Load and return values may be undef.
1419  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1420    return false;
1421
1422  // Optimistically handle other instructions.
1423  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1424    if (!Visited.insert(*OI).second)
1425      continue;
1426    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1427      return false;
1428  }
1429  return true;
1430}
1431
1432/// Return true if the given value is concrete. We must prove that undef can
1433/// never reach it.
1434///
1435/// TODO: If we decide that this is a good approach to checking for undef, we
1436/// may factor it into a common location.
1437static bool hasConcreteDef(Value *V) {
1438  SmallPtrSet<Value*, 8> Visited;
1439  Visited.insert(V);
1440  return hasConcreteDefImpl(V, Visited, 0);
1441}
1442
1443/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1444/// be rewritten) loop exit test.
1445static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1446  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1447  Value *IncV = Phi->getIncomingValue(LatchIdx);
1448
1449  for (User *U : Phi->users())
1450    if (U != Cond && U != IncV) return false;
1451
1452  for (User *U : IncV->users())
1453    if (U != Cond && U != Phi) return false;
1454  return true;
1455}
1456
1457/// FindLoopCounter - Find an affine IV in canonical form.
1458///
1459/// BECount may be an i8* pointer type. The pointer difference is already
1460/// valid count without scaling the address stride, so it remains a pointer
1461/// expression as far as SCEV is concerned.
1462///
1463/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1464///
1465/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1466///
1467/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1468/// This is difficult in general for SCEV because of potential overflow. But we
1469/// could at least handle constant BECounts.
1470static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1471                                ScalarEvolution *SE, DominatorTree *DT) {
1472  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1473
1474  Value *Cond =
1475    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1476
1477  // Loop over all of the PHI nodes, looking for a simple counter.
1478  PHINode *BestPhi = nullptr;
1479  const SCEV *BestInit = nullptr;
1480  BasicBlock *LatchBlock = L->getLoopLatch();
1481  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1482
1483  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1484    PHINode *Phi = cast<PHINode>(I);
1485    if (!SE->isSCEVable(Phi->getType()))
1486      continue;
1487
1488    // Avoid comparing an integer IV against a pointer Limit.
1489    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1490      continue;
1491
1492    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1493    if (!AR || AR->getLoop() != L || !AR->isAffine())
1494      continue;
1495
1496    // AR may be a pointer type, while BECount is an integer type.
1497    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1498    // AR may not be a narrower type, or we may never exit.
1499    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1500    if (PhiWidth < BCWidth ||
1501        !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
1502      continue;
1503
1504    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1505    if (!Step || !Step->isOne())
1506      continue;
1507
1508    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1509    Value *IncV = Phi->getIncomingValue(LatchIdx);
1510    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1511      continue;
1512
1513    // Avoid reusing a potentially undef value to compute other values that may
1514    // have originally had a concrete definition.
1515    if (!hasConcreteDef(Phi)) {
1516      // We explicitly allow unknown phis as long as they are already used by
1517      // the loop test. In this case we assume that performing LFTR could not
1518      // increase the number of undef users.
1519      if (ICmpInst *Cond = getLoopTest(L)) {
1520        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1521            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1522          continue;
1523        }
1524      }
1525    }
1526    const SCEV *Init = AR->getStart();
1527
1528    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1529      // Don't force a live loop counter if another IV can be used.
1530      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1531        continue;
1532
1533      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1534      // also prefers integer to pointer IVs.
1535      if (BestInit->isZero() != Init->isZero()) {
1536        if (BestInit->isZero())
1537          continue;
1538      }
1539      // If two IVs both count from zero or both count from nonzero then the
1540      // narrower is likely a dead phi that has been widened. Use the wider phi
1541      // to allow the other to be eliminated.
1542      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1543        continue;
1544    }
1545    BestPhi = Phi;
1546    BestInit = Init;
1547  }
1548  return BestPhi;
1549}
1550
1551/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1552/// holds the RHS of the new loop test.
1553static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1554                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1555  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1556  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1557  const SCEV *IVInit = AR->getStart();
1558
1559  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1560  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1561  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1562  // the existing GEPs whenever possible.
1563  if (IndVar->getType()->isPointerTy()
1564      && !IVCount->getType()->isPointerTy()) {
1565
1566    // IVOffset will be the new GEP offset that is interpreted by GEP as a
1567    // signed value. IVCount on the other hand represents the loop trip count,
1568    // which is an unsigned value. FindLoopCounter only allows induction
1569    // variables that have a positive unit stride of one. This means we don't
1570    // have to handle the case of negative offsets (yet) and just need to zero
1571    // extend IVCount.
1572    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1573    const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1574
1575    // Expand the code for the iteration count.
1576    assert(SE->isLoopInvariant(IVOffset, L) &&
1577           "Computed iteration count is not loop invariant!");
1578    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1579    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1580
1581    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1582    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1583    // We could handle pointer IVs other than i8*, but we need to compensate for
1584    // gep index scaling. See canExpandBackedgeTakenCount comments.
1585    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1586             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1587           && "unit stride pointer IV must be i8*");
1588
1589    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1590    return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1591  }
1592  else {
1593    // In any other case, convert both IVInit and IVCount to integers before
1594    // comparing. This may result in SCEV expension of pointers, but in practice
1595    // SCEV will fold the pointer arithmetic away as such:
1596    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1597    //
1598    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1599    // for simple memset-style loops.
1600    //
1601    // IVInit integer and IVCount pointer would only occur if a canonical IV
1602    // were generated on top of case #2, which is not expected.
1603
1604    const SCEV *IVLimit = nullptr;
1605    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1606    // For non-zero Start, compute IVCount here.
1607    if (AR->getStart()->isZero())
1608      IVLimit = IVCount;
1609    else {
1610      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1611      const SCEV *IVInit = AR->getStart();
1612
1613      // For integer IVs, truncate the IV before computing IVInit + BECount.
1614      if (SE->getTypeSizeInBits(IVInit->getType())
1615          > SE->getTypeSizeInBits(IVCount->getType()))
1616        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1617
1618      IVLimit = SE->getAddExpr(IVInit, IVCount);
1619    }
1620    // Expand the code for the iteration count.
1621    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1622    IRBuilder<> Builder(BI);
1623    assert(SE->isLoopInvariant(IVLimit, L) &&
1624           "Computed iteration count is not loop invariant!");
1625    // Ensure that we generate the same type as IndVar, or a smaller integer
1626    // type. In the presence of null pointer values, we have an integer type
1627    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1628    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1629      IndVar->getType() : IVCount->getType();
1630    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1631  }
1632}
1633
1634/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1635/// loop to be a canonical != comparison against the incremented loop induction
1636/// variable.  This pass is able to rewrite the exit tests of any loop where the
1637/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1638/// is actually a much broader range than just linear tests.
1639Value *IndVarSimplify::
1640LinearFunctionTestReplace(Loop *L,
1641                          const SCEV *BackedgeTakenCount,
1642                          PHINode *IndVar,
1643                          SCEVExpander &Rewriter) {
1644  assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1645
1646  // Initialize CmpIndVar and IVCount to their preincremented values.
1647  Value *CmpIndVar = IndVar;
1648  const SCEV *IVCount = BackedgeTakenCount;
1649
1650  // If the exiting block is the same as the backedge block, we prefer to
1651  // compare against the post-incremented value, otherwise we must compare
1652  // against the preincremented value.
1653  if (L->getExitingBlock() == L->getLoopLatch()) {
1654    // Add one to the "backedge-taken" count to get the trip count.
1655    // This addition may overflow, which is valid as long as the comparison is
1656    // truncated to BackedgeTakenCount->getType().
1657    IVCount = SE->getAddExpr(BackedgeTakenCount,
1658                             SE->getConstant(BackedgeTakenCount->getType(), 1));
1659    // The BackedgeTaken expression contains the number of times that the
1660    // backedge branches to the loop header.  This is one less than the
1661    // number of times the loop executes, so use the incremented indvar.
1662    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1663  }
1664
1665  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1666  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1667         && "genLoopLimit missed a cast");
1668
1669  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1670  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1671  ICmpInst::Predicate P;
1672  if (L->contains(BI->getSuccessor(0)))
1673    P = ICmpInst::ICMP_NE;
1674  else
1675    P = ICmpInst::ICMP_EQ;
1676
1677  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1678               << "      LHS:" << *CmpIndVar << '\n'
1679               << "       op:\t"
1680               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1681               << "      RHS:\t" << *ExitCnt << "\n"
1682               << "  IVCount:\t" << *IVCount << "\n");
1683
1684  IRBuilder<> Builder(BI);
1685
1686  // LFTR can ignore IV overflow and truncate to the width of
1687  // BECount. This avoids materializing the add(zext(add)) expression.
1688  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1689  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1690  if (CmpIndVarSize > ExitCntSize) {
1691    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1692    const SCEV *ARStart = AR->getStart();
1693    const SCEV *ARStep = AR->getStepRecurrence(*SE);
1694    // For constant IVCount, avoid truncation.
1695    if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1696      const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1697      APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1698      // Note that the post-inc value of BackedgeTakenCount may have overflowed
1699      // above such that IVCount is now zero.
1700      if (IVCount != BackedgeTakenCount && Count == 0) {
1701        Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1702        ++Count;
1703      }
1704      else
1705        Count = Count.zext(CmpIndVarSize);
1706      APInt NewLimit;
1707      if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1708        NewLimit = Start - Count;
1709      else
1710        NewLimit = Start + Count;
1711      ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1712
1713      DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1714    } else {
1715      CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1716                                      "lftr.wideiv");
1717    }
1718  }
1719  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1720  Value *OrigCond = BI->getCondition();
1721  // It's tempting to use replaceAllUsesWith here to fully replace the old
1722  // comparison, but that's not immediately safe, since users of the old
1723  // comparison may not be dominated by the new comparison. Instead, just
1724  // update the branch to use the new comparison; in the common case this
1725  // will make old comparison dead.
1726  BI->setCondition(Cond);
1727  DeadInsts.push_back(OrigCond);
1728
1729  ++NumLFTR;
1730  Changed = true;
1731  return Cond;
1732}
1733
1734//===----------------------------------------------------------------------===//
1735//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1736//===----------------------------------------------------------------------===//
1737
1738/// If there's a single exit block, sink any loop-invariant values that
1739/// were defined in the preheader but not used inside the loop into the
1740/// exit block to reduce register pressure in the loop.
1741void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1742  BasicBlock *ExitBlock = L->getExitBlock();
1743  if (!ExitBlock) return;
1744
1745  BasicBlock *Preheader = L->getLoopPreheader();
1746  if (!Preheader) return;
1747
1748  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1749  BasicBlock::iterator I = Preheader->getTerminator();
1750  while (I != Preheader->begin()) {
1751    --I;
1752    // New instructions were inserted at the end of the preheader.
1753    if (isa<PHINode>(I))
1754      break;
1755
1756    // Don't move instructions which might have side effects, since the side
1757    // effects need to complete before instructions inside the loop.  Also don't
1758    // move instructions which might read memory, since the loop may modify
1759    // memory. Note that it's okay if the instruction might have undefined
1760    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1761    // block.
1762    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1763      continue;
1764
1765    // Skip debug info intrinsics.
1766    if (isa<DbgInfoIntrinsic>(I))
1767      continue;
1768
1769    // Skip landingpad instructions.
1770    if (isa<LandingPadInst>(I))
1771      continue;
1772
1773    // Don't sink alloca: we never want to sink static alloca's out of the
1774    // entry block, and correctly sinking dynamic alloca's requires
1775    // checks for stacksave/stackrestore intrinsics.
1776    // FIXME: Refactor this check somehow?
1777    if (isa<AllocaInst>(I))
1778      continue;
1779
1780    // Determine if there is a use in or before the loop (direct or
1781    // otherwise).
1782    bool UsedInLoop = false;
1783    for (Use &U : I->uses()) {
1784      Instruction *User = cast<Instruction>(U.getUser());
1785      BasicBlock *UseBB = User->getParent();
1786      if (PHINode *P = dyn_cast<PHINode>(User)) {
1787        unsigned i =
1788          PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1789        UseBB = P->getIncomingBlock(i);
1790      }
1791      if (UseBB == Preheader || L->contains(UseBB)) {
1792        UsedInLoop = true;
1793        break;
1794      }
1795    }
1796
1797    // If there is, the def must remain in the preheader.
1798    if (UsedInLoop)
1799      continue;
1800
1801    // Otherwise, sink it to the exit block.
1802    Instruction *ToMove = I;
1803    bool Done = false;
1804
1805    if (I != Preheader->begin()) {
1806      // Skip debug info intrinsics.
1807      do {
1808        --I;
1809      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1810
1811      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1812        Done = true;
1813    } else {
1814      Done = true;
1815    }
1816
1817    ToMove->moveBefore(InsertPt);
1818    if (Done) break;
1819    InsertPt = ToMove;
1820  }
1821}
1822
1823//===----------------------------------------------------------------------===//
1824//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1825//===----------------------------------------------------------------------===//
1826
1827bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1828  if (skipOptnoneFunction(L))
1829    return false;
1830
1831  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1832  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1833  //    canonicalization can be a pessimization without LSR to "clean up"
1834  //    afterwards.
1835  //  - We depend on having a preheader; in particular,
1836  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1837  //    and we're in trouble if we can't find the induction variable even when
1838  //    we've manually inserted one.
1839  if (!L->isLoopSimplifyForm())
1840    return false;
1841
1842  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1843  SE = &getAnalysis<ScalarEvolution>();
1844  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1845  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1846  TLI = TLIP ? &TLIP->getTLI() : nullptr;
1847  auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
1848  TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
1849  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1850
1851  DeadInsts.clear();
1852  Changed = false;
1853
1854  // If there are any floating-point recurrences, attempt to
1855  // transform them to use integer recurrences.
1856  RewriteNonIntegerIVs(L);
1857
1858  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1859
1860  // Create a rewriter object which we'll use to transform the code with.
1861  SCEVExpander Rewriter(*SE, DL, "indvars");
1862#ifndef NDEBUG
1863  Rewriter.setDebugType(DEBUG_TYPE);
1864#endif
1865
1866  // Eliminate redundant IV users.
1867  //
1868  // Simplification works best when run before other consumers of SCEV. We
1869  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1870  // other expressions involving loop IVs have been evaluated. This helps SCEV
1871  // set no-wrap flags before normalizing sign/zero extension.
1872  Rewriter.disableCanonicalMode();
1873  SimplifyAndExtend(L, Rewriter, LPM);
1874
1875  // Check to see if this loop has a computable loop-invariant execution count.
1876  // If so, this means that we can compute the final value of any expressions
1877  // that are recurrent in the loop, and substitute the exit values from the
1878  // loop into any instructions outside of the loop that use the final values of
1879  // the current expressions.
1880  //
1881  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1882    RewriteLoopExitValues(L, Rewriter);
1883
1884  // Eliminate redundant IV cycles.
1885  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1886
1887  // If we have a trip count expression, rewrite the loop's exit condition
1888  // using it.  We can currently only handle loops with a single exit.
1889  if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
1890    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
1891    if (IndVar) {
1892      // Check preconditions for proper SCEVExpander operation. SCEV does not
1893      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1894      // pass that uses the SCEVExpander must do it. This does not work well for
1895      // loop passes because SCEVExpander makes assumptions about all loops,
1896      // while LoopPassManager only forces the current loop to be simplified.
1897      //
1898      // FIXME: SCEV expansion has no way to bail out, so the caller must
1899      // explicitly check any assumptions made by SCEV. Brittle.
1900      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1901      if (!AR || AR->getLoop()->getLoopPreheader())
1902        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1903                                        Rewriter);
1904    }
1905  }
1906  // Clear the rewriter cache, because values that are in the rewriter's cache
1907  // can be deleted in the loop below, causing the AssertingVH in the cache to
1908  // trigger.
1909  Rewriter.clear();
1910
1911  // Now that we're done iterating through lists, clean up any instructions
1912  // which are now dead.
1913  while (!DeadInsts.empty())
1914    if (Instruction *Inst =
1915          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1916      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1917
1918  // The Rewriter may not be used from this point on.
1919
1920  // Loop-invariant instructions in the preheader that aren't used in the
1921  // loop may be sunk below the loop to reduce register pressure.
1922  SinkUnusedInvariants(L);
1923
1924  // Clean up dead instructions.
1925  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1926  // Check a post-condition.
1927  assert(L->isLCSSAForm(*DT) &&
1928         "Indvars did not leave the loop in lcssa form!");
1929
1930  // Verify that LFTR, and any other change have not interfered with SCEV's
1931  // ability to compute trip count.
1932#ifndef NDEBUG
1933  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1934    SE->forgetLoop(L);
1935    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1936    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1937        SE->getTypeSizeInBits(NewBECount->getType()))
1938      NewBECount = SE->getTruncateOrNoop(NewBECount,
1939                                         BackedgeTakenCount->getType());
1940    else
1941      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1942                                                 NewBECount->getType());
1943    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1944  }
1945#endif
1946
1947  return Changed;
1948}
1949