1//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop reroller.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar.h"
15#include "llvm/ADT/MapVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallBitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AliasSetTracker.h"
22#include "llvm/Analysis/LoopPass.h"
23#include "llvm/Analysis/ScalarEvolution.h"
24#include "llvm/Analysis/ScalarEvolutionExpander.h"
25#include "llvm/Analysis/ScalarEvolutionExpressions.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Transforms/Utils/LoopUtils.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "loop-reroll"
41
42STATISTIC(NumRerolledLoops, "Number of rerolled loops");
43
44static cl::opt<unsigned>
45MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
46  cl::desc("The maximum increment for loop rerolling"));
47
48static cl::opt<unsigned>
49NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
50                          cl::Hidden,
51                          cl::desc("The maximum number of failures to tolerate"
52                                   " during fuzzy matching. (default: 400)"));
53
54// This loop re-rolling transformation aims to transform loops like this:
55//
56// int foo(int a);
57// void bar(int *x) {
58//   for (int i = 0; i < 500; i += 3) {
59//     foo(i);
60//     foo(i+1);
61//     foo(i+2);
62//   }
63// }
64//
65// into a loop like this:
66//
67// void bar(int *x) {
68//   for (int i = 0; i < 500; ++i)
69//     foo(i);
70// }
71//
72// It does this by looking for loops that, besides the latch code, are composed
73// of isomorphic DAGs of instructions, with each DAG rooted at some increment
74// to the induction variable, and where each DAG is isomorphic to the DAG
75// rooted at the induction variable (excepting the sub-DAGs which root the
76// other induction-variable increments). In other words, we're looking for loop
77// bodies of the form:
78//
79// %iv = phi [ (preheader, ...), (body, %iv.next) ]
80// f(%iv)
81// %iv.1 = add %iv, 1                <-- a root increment
82// f(%iv.1)
83// %iv.2 = add %iv, 2                <-- a root increment
84// f(%iv.2)
85// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
86// f(%iv.scale_m_1)
87// ...
88// %iv.next = add %iv, scale
89// %cmp = icmp(%iv, ...)
90// br %cmp, header, exit
91//
92// where each f(i) is a set of instructions that, collectively, are a function
93// only of i (and other loop-invariant values).
94//
95// As a special case, we can also reroll loops like this:
96//
97// int foo(int);
98// void bar(int *x) {
99//   for (int i = 0; i < 500; ++i) {
100//     x[3*i] = foo(0);
101//     x[3*i+1] = foo(0);
102//     x[3*i+2] = foo(0);
103//   }
104// }
105//
106// into this:
107//
108// void bar(int *x) {
109//   for (int i = 0; i < 1500; ++i)
110//     x[i] = foo(0);
111// }
112//
113// in which case, we're looking for inputs like this:
114//
115// %iv = phi [ (preheader, ...), (body, %iv.next) ]
116// %scaled.iv = mul %iv, scale
117// f(%scaled.iv)
118// %scaled.iv.1 = add %scaled.iv, 1
119// f(%scaled.iv.1)
120// %scaled.iv.2 = add %scaled.iv, 2
121// f(%scaled.iv.2)
122// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
123// f(%scaled.iv.scale_m_1)
124// ...
125// %iv.next = add %iv, 1
126// %cmp = icmp(%iv, ...)
127// br %cmp, header, exit
128
129namespace {
130  enum IterationLimits {
131    /// The maximum number of iterations that we'll try and reroll. This
132    /// has to be less than 25 in order to fit into a SmallBitVector.
133    IL_MaxRerollIterations = 16,
134    /// The bitvector index used by loop induction variables and other
135    /// instructions that belong to all iterations.
136    IL_All,
137    IL_End
138  };
139
140  class LoopReroll : public LoopPass {
141  public:
142    static char ID; // Pass ID, replacement for typeid
143    LoopReroll() : LoopPass(ID) {
144      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
145    }
146
147    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
148
149    void getAnalysisUsage(AnalysisUsage &AU) const override {
150      AU.addRequired<AliasAnalysis>();
151      AU.addRequired<LoopInfoWrapperPass>();
152      AU.addPreserved<LoopInfoWrapperPass>();
153      AU.addRequired<DominatorTreeWrapperPass>();
154      AU.addPreserved<DominatorTreeWrapperPass>();
155      AU.addRequired<ScalarEvolution>();
156      AU.addRequired<TargetLibraryInfoWrapperPass>();
157    }
158
159  protected:
160    AliasAnalysis *AA;
161    LoopInfo *LI;
162    ScalarEvolution *SE;
163    TargetLibraryInfo *TLI;
164    DominatorTree *DT;
165
166    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
167    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
168
169    // A chain of isomorphic instructions, indentified by a single-use PHI,
170    // representing a reduction. Only the last value may be used outside the
171    // loop.
172    struct SimpleLoopReduction {
173      SimpleLoopReduction(Instruction *P, Loop *L)
174        : Valid(false), Instructions(1, P) {
175        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
176        add(L);
177      }
178
179      bool valid() const {
180        return Valid;
181      }
182
183      Instruction *getPHI() const {
184        assert(Valid && "Using invalid reduction");
185        return Instructions.front();
186      }
187
188      Instruction *getReducedValue() const {
189        assert(Valid && "Using invalid reduction");
190        return Instructions.back();
191      }
192
193      Instruction *get(size_t i) const {
194        assert(Valid && "Using invalid reduction");
195        return Instructions[i+1];
196      }
197
198      Instruction *operator [] (size_t i) const { return get(i); }
199
200      // The size, ignoring the initial PHI.
201      size_t size() const {
202        assert(Valid && "Using invalid reduction");
203        return Instructions.size()-1;
204      }
205
206      typedef SmallInstructionVector::iterator iterator;
207      typedef SmallInstructionVector::const_iterator const_iterator;
208
209      iterator begin() {
210        assert(Valid && "Using invalid reduction");
211        return std::next(Instructions.begin());
212      }
213
214      const_iterator begin() const {
215        assert(Valid && "Using invalid reduction");
216        return std::next(Instructions.begin());
217      }
218
219      iterator end() { return Instructions.end(); }
220      const_iterator end() const { return Instructions.end(); }
221
222    protected:
223      bool Valid;
224      SmallInstructionVector Instructions;
225
226      void add(Loop *L);
227    };
228
229    // The set of all reductions, and state tracking of possible reductions
230    // during loop instruction processing.
231    struct ReductionTracker {
232      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
233
234      // Add a new possible reduction.
235      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
236
237      // Setup to track possible reductions corresponding to the provided
238      // rerolling scale. Only reductions with a number of non-PHI instructions
239      // that is divisible by the scale are considered. Three instructions sets
240      // are filled in:
241      //   - A set of all possible instructions in eligible reductions.
242      //   - A set of all PHIs in eligible reductions
243      //   - A set of all reduced values (last instructions) in eligible
244      //     reductions.
245      void restrictToScale(uint64_t Scale,
246                           SmallInstructionSet &PossibleRedSet,
247                           SmallInstructionSet &PossibleRedPHISet,
248                           SmallInstructionSet &PossibleRedLastSet) {
249        PossibleRedIdx.clear();
250        PossibleRedIter.clear();
251        Reds.clear();
252
253        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
254          if (PossibleReds[i].size() % Scale == 0) {
255            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
256            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
257
258            PossibleRedSet.insert(PossibleReds[i].getPHI());
259            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
260            for (Instruction *J : PossibleReds[i]) {
261              PossibleRedSet.insert(J);
262              PossibleRedIdx[J] = i;
263            }
264          }
265      }
266
267      // The functions below are used while processing the loop instructions.
268
269      // Are the two instructions both from reductions, and furthermore, from
270      // the same reduction?
271      bool isPairInSame(Instruction *J1, Instruction *J2) {
272        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
273        if (J1I != PossibleRedIdx.end()) {
274          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
275          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
276            return true;
277        }
278
279        return false;
280      }
281
282      // The two provided instructions, the first from the base iteration, and
283      // the second from iteration i, form a matched pair. If these are part of
284      // a reduction, record that fact.
285      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
286        if (PossibleRedIdx.count(J1)) {
287          assert(PossibleRedIdx.count(J2) &&
288                 "Recording reduction vs. non-reduction instruction?");
289
290          PossibleRedIter[J1] = 0;
291          PossibleRedIter[J2] = i;
292
293          int Idx = PossibleRedIdx[J1];
294          assert(Idx == PossibleRedIdx[J2] &&
295                 "Recording pair from different reductions?");
296          Reds.insert(Idx);
297        }
298      }
299
300      // The functions below can be called after we've finished processing all
301      // instructions in the loop, and we know which reductions were selected.
302
303      // Is the provided instruction the PHI of a reduction selected for
304      // rerolling?
305      bool isSelectedPHI(Instruction *J) {
306        if (!isa<PHINode>(J))
307          return false;
308
309        for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
310             RI != RIE; ++RI) {
311          int i = *RI;
312          if (cast<Instruction>(J) == PossibleReds[i].getPHI())
313            return true;
314        }
315
316        return false;
317      }
318
319      bool validateSelected();
320      void replaceSelected();
321
322    protected:
323      // The vector of all possible reductions (for any scale).
324      SmallReductionVector PossibleReds;
325
326      DenseMap<Instruction *, int> PossibleRedIdx;
327      DenseMap<Instruction *, int> PossibleRedIter;
328      DenseSet<int> Reds;
329    };
330
331    // A DAGRootSet models an induction variable being used in a rerollable
332    // loop. For example,
333    //
334    //   x[i*3+0] = y1
335    //   x[i*3+1] = y2
336    //   x[i*3+2] = y3
337    //
338    //   Base instruction -> i*3
339    //                    +---+----+
340    //                   /    |     \
341    //               ST[y1]  +1     +2  <-- Roots
342    //                        |      |
343    //                      ST[y2] ST[y3]
344    //
345    // There may be multiple DAGRoots, for example:
346    //
347    //   x[i*2+0] = ...   (1)
348    //   x[i*2+1] = ...   (1)
349    //   x[i*2+4] = ...   (2)
350    //   x[i*2+5] = ...   (2)
351    //   x[(i+1234)*2+5678] = ... (3)
352    //   x[(i+1234)*2+5679] = ... (3)
353    //
354    // The loop will be rerolled by adding a new loop induction variable,
355    // one for the Base instruction in each DAGRootSet.
356    //
357    struct DAGRootSet {
358      Instruction *BaseInst;
359      SmallInstructionVector Roots;
360      // The instructions between IV and BaseInst (but not including BaseInst).
361      SmallInstructionSet SubsumedInsts;
362    };
363
364    // The set of all DAG roots, and state tracking of all roots
365    // for a particular induction variable.
366    struct DAGRootTracker {
367      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
368                     ScalarEvolution *SE, AliasAnalysis *AA,
369                     TargetLibraryInfo *TLI)
370          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
371
372      /// Stage 1: Find all the DAG roots for the induction variable.
373      bool findRoots();
374      /// Stage 2: Validate if the found roots are valid.
375      bool validate(ReductionTracker &Reductions);
376      /// Stage 3: Assuming validate() returned true, perform the
377      /// replacement.
378      /// @param IterCount The maximum iteration count of L.
379      void replace(const SCEV *IterCount);
380
381    protected:
382      typedef MapVector<Instruction*, SmallBitVector> UsesTy;
383
384      bool findRootsRecursive(Instruction *IVU,
385                              SmallInstructionSet SubsumedInsts);
386      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
387      bool collectPossibleRoots(Instruction *Base,
388                                std::map<int64_t,Instruction*> &Roots);
389
390      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
391      void collectInLoopUserSet(const SmallInstructionVector &Roots,
392                                const SmallInstructionSet &Exclude,
393                                const SmallInstructionSet &Final,
394                                DenseSet<Instruction *> &Users);
395      void collectInLoopUserSet(Instruction *Root,
396                                const SmallInstructionSet &Exclude,
397                                const SmallInstructionSet &Final,
398                                DenseSet<Instruction *> &Users);
399
400      UsesTy::iterator nextInstr(int Val, UsesTy &In,
401                                 const SmallInstructionSet &Exclude,
402                                 UsesTy::iterator *StartI=nullptr);
403      bool isBaseInst(Instruction *I);
404      bool isRootInst(Instruction *I);
405      bool instrDependsOn(Instruction *I,
406                          UsesTy::iterator Start,
407                          UsesTy::iterator End);
408
409      LoopReroll *Parent;
410
411      // Members of Parent, replicated here for brevity.
412      Loop *L;
413      ScalarEvolution *SE;
414      AliasAnalysis *AA;
415      TargetLibraryInfo *TLI;
416
417      // The loop induction variable.
418      Instruction *IV;
419      // Loop step amount.
420      uint64_t Inc;
421      // Loop reroll count; if Inc == 1, this records the scaling applied
422      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
423      // If Inc is not 1, Scale = Inc.
424      uint64_t Scale;
425      // The roots themselves.
426      SmallVector<DAGRootSet,16> RootSets;
427      // All increment instructions for IV.
428      SmallInstructionVector LoopIncs;
429      // Map of all instructions in the loop (in order) to the iterations
430      // they are used in (or specially, IL_All for instructions
431      // used in the loop increment mechanism).
432      UsesTy Uses;
433    };
434
435    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
436    void collectPossibleReductions(Loop *L,
437           ReductionTracker &Reductions);
438    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
439                ReductionTracker &Reductions);
440  };
441}
442
443char LoopReroll::ID = 0;
444INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
445INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
446INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
447INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
448INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
449INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
450INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
451
452Pass *llvm::createLoopRerollPass() {
453  return new LoopReroll;
454}
455
456// Returns true if the provided instruction is used outside the given loop.
457// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
458// non-loop blocks to be outside the loop.
459static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
460  for (User *U : I->users()) {
461    if (!L->contains(cast<Instruction>(U)))
462      return true;
463  }
464  return false;
465}
466
467// Collect the list of loop induction variables with respect to which it might
468// be possible to reroll the loop.
469void LoopReroll::collectPossibleIVs(Loop *L,
470                                    SmallInstructionVector &PossibleIVs) {
471  BasicBlock *Header = L->getHeader();
472  for (BasicBlock::iterator I = Header->begin(),
473       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
474    if (!isa<PHINode>(I))
475      continue;
476    if (!I->getType()->isIntegerTy())
477      continue;
478
479    if (const SCEVAddRecExpr *PHISCEV =
480        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
481      if (PHISCEV->getLoop() != L)
482        continue;
483      if (!PHISCEV->isAffine())
484        continue;
485      if (const SCEVConstant *IncSCEV =
486          dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
487        if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
488          continue;
489        if (IncSCEV->getValue()->uge(MaxInc))
490          continue;
491
492        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
493              *PHISCEV << "\n");
494        PossibleIVs.push_back(I);
495      }
496    }
497  }
498}
499
500// Add the remainder of the reduction-variable chain to the instruction vector
501// (the initial PHINode has already been added). If successful, the object is
502// marked as valid.
503void LoopReroll::SimpleLoopReduction::add(Loop *L) {
504  assert(!Valid && "Cannot add to an already-valid chain");
505
506  // The reduction variable must be a chain of single-use instructions
507  // (including the PHI), except for the last value (which is used by the PHI
508  // and also outside the loop).
509  Instruction *C = Instructions.front();
510  if (C->user_empty())
511    return;
512
513  do {
514    C = cast<Instruction>(*C->user_begin());
515    if (C->hasOneUse()) {
516      if (!C->isBinaryOp())
517        return;
518
519      if (!(isa<PHINode>(Instructions.back()) ||
520            C->isSameOperationAs(Instructions.back())))
521        return;
522
523      Instructions.push_back(C);
524    }
525  } while (C->hasOneUse());
526
527  if (Instructions.size() < 2 ||
528      !C->isSameOperationAs(Instructions.back()) ||
529      C->use_empty())
530    return;
531
532  // C is now the (potential) last instruction in the reduction chain.
533  for (User *U : C->users()) {
534    // The only in-loop user can be the initial PHI.
535    if (L->contains(cast<Instruction>(U)))
536      if (cast<Instruction>(U) != Instructions.front())
537        return;
538  }
539
540  Instructions.push_back(C);
541  Valid = true;
542}
543
544// Collect the vector of possible reduction variables.
545void LoopReroll::collectPossibleReductions(Loop *L,
546  ReductionTracker &Reductions) {
547  BasicBlock *Header = L->getHeader();
548  for (BasicBlock::iterator I = Header->begin(),
549       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
550    if (!isa<PHINode>(I))
551      continue;
552    if (!I->getType()->isSingleValueType())
553      continue;
554
555    SimpleLoopReduction SLR(I, L);
556    if (!SLR.valid())
557      continue;
558
559    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
560          SLR.size() << " chained instructions)\n");
561    Reductions.addSLR(SLR);
562  }
563}
564
565// Collect the set of all users of the provided root instruction. This set of
566// users contains not only the direct users of the root instruction, but also
567// all users of those users, and so on. There are two exceptions:
568//
569//   1. Instructions in the set of excluded instructions are never added to the
570//   use set (even if they are users). This is used, for example, to exclude
571//   including root increments in the use set of the primary IV.
572//
573//   2. Instructions in the set of final instructions are added to the use set
574//   if they are users, but their users are not added. This is used, for
575//   example, to prevent a reduction update from forcing all later reduction
576//   updates into the use set.
577void LoopReroll::DAGRootTracker::collectInLoopUserSet(
578  Instruction *Root, const SmallInstructionSet &Exclude,
579  const SmallInstructionSet &Final,
580  DenseSet<Instruction *> &Users) {
581  SmallInstructionVector Queue(1, Root);
582  while (!Queue.empty()) {
583    Instruction *I = Queue.pop_back_val();
584    if (!Users.insert(I).second)
585      continue;
586
587    if (!Final.count(I))
588      for (Use &U : I->uses()) {
589        Instruction *User = cast<Instruction>(U.getUser());
590        if (PHINode *PN = dyn_cast<PHINode>(User)) {
591          // Ignore "wrap-around" uses to PHIs of this loop's header.
592          if (PN->getIncomingBlock(U) == L->getHeader())
593            continue;
594        }
595
596        if (L->contains(User) && !Exclude.count(User)) {
597          Queue.push_back(User);
598        }
599      }
600
601    // We also want to collect single-user "feeder" values.
602    for (User::op_iterator OI = I->op_begin(),
603         OIE = I->op_end(); OI != OIE; ++OI) {
604      if (Instruction *Op = dyn_cast<Instruction>(*OI))
605        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
606            !Final.count(Op))
607          Queue.push_back(Op);
608    }
609  }
610}
611
612// Collect all of the users of all of the provided root instructions (combined
613// into a single set).
614void LoopReroll::DAGRootTracker::collectInLoopUserSet(
615  const SmallInstructionVector &Roots,
616  const SmallInstructionSet &Exclude,
617  const SmallInstructionSet &Final,
618  DenseSet<Instruction *> &Users) {
619  for (SmallInstructionVector::const_iterator I = Roots.begin(),
620       IE = Roots.end(); I != IE; ++I)
621    collectInLoopUserSet(*I, Exclude, Final, Users);
622}
623
624static bool isSimpleLoadStore(Instruction *I) {
625  if (LoadInst *LI = dyn_cast<LoadInst>(I))
626    return LI->isSimple();
627  if (StoreInst *SI = dyn_cast<StoreInst>(I))
628    return SI->isSimple();
629  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
630    return !MI->isVolatile();
631  return false;
632}
633
634/// Return true if IVU is a "simple" arithmetic operation.
635/// This is used for narrowing the search space for DAGRoots; only arithmetic
636/// and GEPs can be part of a DAGRoot.
637static bool isSimpleArithmeticOp(User *IVU) {
638  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
639    switch (I->getOpcode()) {
640    default: return false;
641    case Instruction::Add:
642    case Instruction::Sub:
643    case Instruction::Mul:
644    case Instruction::Shl:
645    case Instruction::AShr:
646    case Instruction::LShr:
647    case Instruction::GetElementPtr:
648    case Instruction::Trunc:
649    case Instruction::ZExt:
650    case Instruction::SExt:
651      return true;
652    }
653  }
654  return false;
655}
656
657static bool isLoopIncrement(User *U, Instruction *IV) {
658  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
659  if (!BO || BO->getOpcode() != Instruction::Add)
660    return false;
661
662  for (auto *UU : BO->users()) {
663    PHINode *PN = dyn_cast<PHINode>(UU);
664    if (PN && PN == IV)
665      return true;
666  }
667  return false;
668}
669
670bool LoopReroll::DAGRootTracker::
671collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
672  SmallInstructionVector BaseUsers;
673
674  for (auto *I : Base->users()) {
675    ConstantInt *CI = nullptr;
676
677    if (isLoopIncrement(I, IV)) {
678      LoopIncs.push_back(cast<Instruction>(I));
679      continue;
680    }
681
682    // The root nodes must be either GEPs, ORs or ADDs.
683    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
684      if (BO->getOpcode() == Instruction::Add ||
685          BO->getOpcode() == Instruction::Or)
686        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
687    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
688      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
689      CI = dyn_cast<ConstantInt>(LastOperand);
690    }
691
692    if (!CI) {
693      if (Instruction *II = dyn_cast<Instruction>(I)) {
694        BaseUsers.push_back(II);
695        continue;
696      } else {
697        DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
698        return false;
699      }
700    }
701
702    int64_t V = CI->getValue().getSExtValue();
703    if (Roots.find(V) != Roots.end())
704      // No duplicates, please.
705      return false;
706
707    // FIXME: Add support for negative values.
708    if (V < 0) {
709      DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n");
710      return false;
711    }
712
713    Roots[V] = cast<Instruction>(I);
714  }
715
716  if (Roots.empty())
717    return false;
718
719  // If we found non-loop-inc, non-root users of Base, assume they are
720  // for the zeroth root index. This is because "add %a, 0" gets optimized
721  // away.
722  if (BaseUsers.size()) {
723    if (Roots.find(0) != Roots.end()) {
724      DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
725      return false;
726    }
727    Roots[0] = Base;
728  }
729
730  // Calculate the number of users of the base, or lowest indexed, iteration.
731  unsigned NumBaseUses = BaseUsers.size();
732  if (NumBaseUses == 0)
733    NumBaseUses = Roots.begin()->second->getNumUses();
734
735  // Check that every node has the same number of users.
736  for (auto &KV : Roots) {
737    if (KV.first == 0)
738      continue;
739    if (KV.second->getNumUses() != NumBaseUses) {
740      DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
741            << "#Base=" << NumBaseUses << ", #Root=" <<
742            KV.second->getNumUses() << "\n");
743      return false;
744    }
745  }
746
747  return true;
748}
749
750bool LoopReroll::DAGRootTracker::
751findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
752  // Does the user look like it could be part of a root set?
753  // All its users must be simple arithmetic ops.
754  if (I->getNumUses() > IL_MaxRerollIterations)
755    return false;
756
757  if ((I->getOpcode() == Instruction::Mul ||
758       I->getOpcode() == Instruction::PHI) &&
759      I != IV &&
760      findRootsBase(I, SubsumedInsts))
761    return true;
762
763  SubsumedInsts.insert(I);
764
765  for (User *V : I->users()) {
766    Instruction *I = dyn_cast<Instruction>(V);
767    if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
768      continue;
769
770    if (!I || !isSimpleArithmeticOp(I) ||
771        !findRootsRecursive(I, SubsumedInsts))
772      return false;
773  }
774  return true;
775}
776
777bool LoopReroll::DAGRootTracker::
778findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
779
780  // The base instruction needs to be a multiply so
781  // that we can erase it.
782  if (IVU->getOpcode() != Instruction::Mul &&
783      IVU->getOpcode() != Instruction::PHI)
784    return false;
785
786  std::map<int64_t, Instruction*> V;
787  if (!collectPossibleRoots(IVU, V))
788    return false;
789
790  // If we didn't get a root for index zero, then IVU must be
791  // subsumed.
792  if (V.find(0) == V.end())
793    SubsumedInsts.insert(IVU);
794
795  // Partition the vector into monotonically increasing indexes.
796  DAGRootSet DRS;
797  DRS.BaseInst = nullptr;
798
799  for (auto &KV : V) {
800    if (!DRS.BaseInst) {
801      DRS.BaseInst = KV.second;
802      DRS.SubsumedInsts = SubsumedInsts;
803    } else if (DRS.Roots.empty()) {
804      DRS.Roots.push_back(KV.second);
805    } else if (V.find(KV.first - 1) != V.end()) {
806      DRS.Roots.push_back(KV.second);
807    } else {
808      // Linear sequence terminated.
809      RootSets.push_back(DRS);
810      DRS.BaseInst = KV.second;
811      DRS.SubsumedInsts = SubsumedInsts;
812      DRS.Roots.clear();
813    }
814  }
815  RootSets.push_back(DRS);
816
817  return true;
818}
819
820bool LoopReroll::DAGRootTracker::findRoots() {
821
822  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
823  Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
824    getValue()->getZExtValue();
825
826  assert(RootSets.empty() && "Unclean state!");
827  if (Inc == 1) {
828    for (auto *IVU : IV->users()) {
829      if (isLoopIncrement(IVU, IV))
830        LoopIncs.push_back(cast<Instruction>(IVU));
831    }
832    if (!findRootsRecursive(IV, SmallInstructionSet()))
833      return false;
834    LoopIncs.push_back(IV);
835  } else {
836    if (!findRootsBase(IV, SmallInstructionSet()))
837      return false;
838  }
839
840  // Ensure all sets have the same size.
841  if (RootSets.empty()) {
842    DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
843    return false;
844  }
845  for (auto &V : RootSets) {
846    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
847      DEBUG(dbgs()
848            << "LRR: Aborting because not all root sets have the same size\n");
849      return false;
850    }
851  }
852
853  // And ensure all loop iterations are consecutive. We rely on std::map
854  // providing ordered traversal.
855  for (auto &V : RootSets) {
856    const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
857    if (!ADR)
858      return false;
859
860    // Consider a DAGRootSet with N-1 roots (so N different values including
861    //   BaseInst).
862    // Define d = Roots[0] - BaseInst, which should be the same as
863    //   Roots[I] - Roots[I-1] for all I in [1..N).
864    // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
865    //   loop iteration J.
866    //
867    // Now, For the loop iterations to be consecutive:
868    //   D = d * N
869
870    unsigned N = V.Roots.size() + 1;
871    const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
872    const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
873    if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
874      DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
875      return false;
876    }
877  }
878  Scale = RootSets[0].Roots.size() + 1;
879
880  if (Scale > IL_MaxRerollIterations) {
881    DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
882          << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
883          << "\n");
884    return false;
885  }
886
887  DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
888
889  return true;
890}
891
892bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
893  // Populate the MapVector with all instructions in the block, in order first,
894  // so we can iterate over the contents later in perfect order.
895  for (auto &I : *L->getHeader()) {
896    Uses[&I].resize(IL_End);
897  }
898
899  SmallInstructionSet Exclude;
900  for (auto &DRS : RootSets) {
901    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
902    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
903    Exclude.insert(DRS.BaseInst);
904  }
905  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
906
907  for (auto &DRS : RootSets) {
908    DenseSet<Instruction*> VBase;
909    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
910    for (auto *I : VBase) {
911      Uses[I].set(0);
912    }
913
914    unsigned Idx = 1;
915    for (auto *Root : DRS.Roots) {
916      DenseSet<Instruction*> V;
917      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
918
919      // While we're here, check the use sets are the same size.
920      if (V.size() != VBase.size()) {
921        DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
922        return false;
923      }
924
925      for (auto *I : V) {
926        Uses[I].set(Idx);
927      }
928      ++Idx;
929    }
930
931    // Make sure our subsumed instructions are remembered too.
932    for (auto *I : DRS.SubsumedInsts) {
933      Uses[I].set(IL_All);
934    }
935  }
936
937  // Make sure the loop increments are also accounted for.
938
939  Exclude.clear();
940  for (auto &DRS : RootSets) {
941    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
942    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
943    Exclude.insert(DRS.BaseInst);
944  }
945
946  DenseSet<Instruction*> V;
947  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
948  for (auto *I : V) {
949    Uses[I].set(IL_All);
950  }
951
952  return true;
953
954}
955
956/// Get the next instruction in "In" that is a member of set Val.
957/// Start searching from StartI, and do not return anything in Exclude.
958/// If StartI is not given, start from In.begin().
959LoopReroll::DAGRootTracker::UsesTy::iterator
960LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
961                                      const SmallInstructionSet &Exclude,
962                                      UsesTy::iterator *StartI) {
963  UsesTy::iterator I = StartI ? *StartI : In.begin();
964  while (I != In.end() && (I->second.test(Val) == 0 ||
965                           Exclude.count(I->first) != 0))
966    ++I;
967  return I;
968}
969
970bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
971  for (auto &DRS : RootSets) {
972    if (DRS.BaseInst == I)
973      return true;
974  }
975  return false;
976}
977
978bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
979  for (auto &DRS : RootSets) {
980    if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
981      return true;
982  }
983  return false;
984}
985
986/// Return true if instruction I depends on any instruction between
987/// Start and End.
988bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
989                                                UsesTy::iterator Start,
990                                                UsesTy::iterator End) {
991  for (auto *U : I->users()) {
992    for (auto It = Start; It != End; ++It)
993      if (U == It->first)
994        return true;
995  }
996  return false;
997}
998
999bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1000  // We now need to check for equivalence of the use graph of each root with
1001  // that of the primary induction variable (excluding the roots). Our goal
1002  // here is not to solve the full graph isomorphism problem, but rather to
1003  // catch common cases without a lot of work. As a result, we will assume
1004  // that the relative order of the instructions in each unrolled iteration
1005  // is the same (although we will not make an assumption about how the
1006  // different iterations are intermixed). Note that while the order must be
1007  // the same, the instructions may not be in the same basic block.
1008
1009  // An array of just the possible reductions for this scale factor. When we
1010  // collect the set of all users of some root instructions, these reduction
1011  // instructions are treated as 'final' (their uses are not considered).
1012  // This is important because we don't want the root use set to search down
1013  // the reduction chain.
1014  SmallInstructionSet PossibleRedSet;
1015  SmallInstructionSet PossibleRedLastSet;
1016  SmallInstructionSet PossibleRedPHISet;
1017  Reductions.restrictToScale(Scale, PossibleRedSet,
1018                             PossibleRedPHISet, PossibleRedLastSet);
1019
1020  // Populate "Uses" with where each instruction is used.
1021  if (!collectUsedInstructions(PossibleRedSet))
1022    return false;
1023
1024  // Make sure we mark the reduction PHIs as used in all iterations.
1025  for (auto *I : PossibleRedPHISet) {
1026    Uses[I].set(IL_All);
1027  }
1028
1029  // Make sure all instructions in the loop are in one and only one
1030  // set.
1031  for (auto &KV : Uses) {
1032    if (KV.second.count() != 1) {
1033      DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1034            << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1035      return false;
1036    }
1037  }
1038
1039  DEBUG(
1040    for (auto &KV : Uses) {
1041      dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1042    }
1043    );
1044
1045  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1046    // In addition to regular aliasing information, we need to look for
1047    // instructions from later (future) iterations that have side effects
1048    // preventing us from reordering them past other instructions with side
1049    // effects.
1050    bool FutureSideEffects = false;
1051    AliasSetTracker AST(*AA);
1052    // The map between instructions in f(%iv.(i+1)) and f(%iv).
1053    DenseMap<Value *, Value *> BaseMap;
1054
1055    // Compare iteration Iter to the base.
1056    SmallInstructionSet Visited;
1057    auto BaseIt = nextInstr(0, Uses, Visited);
1058    auto RootIt = nextInstr(Iter, Uses, Visited);
1059    auto LastRootIt = Uses.begin();
1060
1061    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1062      Instruction *BaseInst = BaseIt->first;
1063      Instruction *RootInst = RootIt->first;
1064
1065      // Skip over the IV or root instructions; only match their users.
1066      bool Continue = false;
1067      if (isBaseInst(BaseInst)) {
1068        Visited.insert(BaseInst);
1069        BaseIt = nextInstr(0, Uses, Visited);
1070        Continue = true;
1071      }
1072      if (isRootInst(RootInst)) {
1073        LastRootIt = RootIt;
1074        Visited.insert(RootInst);
1075        RootIt = nextInstr(Iter, Uses, Visited);
1076        Continue = true;
1077      }
1078      if (Continue) continue;
1079
1080      if (!BaseInst->isSameOperationAs(RootInst)) {
1081        // Last chance saloon. We don't try and solve the full isomorphism
1082        // problem, but try and at least catch the case where two instructions
1083        // *of different types* are round the wrong way. We won't be able to
1084        // efficiently tell, given two ADD instructions, which way around we
1085        // should match them, but given an ADD and a SUB, we can at least infer
1086        // which one is which.
1087        //
1088        // This should allow us to deal with a greater subset of the isomorphism
1089        // problem. It does however change a linear algorithm into a quadratic
1090        // one, so limit the number of probes we do.
1091        auto TryIt = RootIt;
1092        unsigned N = NumToleratedFailedMatches;
1093        while (TryIt != Uses.end() &&
1094               !BaseInst->isSameOperationAs(TryIt->first) &&
1095               N--) {
1096          ++TryIt;
1097          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1098        }
1099
1100        if (TryIt == Uses.end() || TryIt == RootIt ||
1101            instrDependsOn(TryIt->first, RootIt, TryIt)) {
1102          DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1103                " vs. " << *RootInst << "\n");
1104          return false;
1105        }
1106
1107        RootIt = TryIt;
1108        RootInst = TryIt->first;
1109      }
1110
1111      // All instructions between the last root and this root
1112      // may belong to some other iteration. If they belong to a
1113      // future iteration, then they're dangerous to alias with.
1114      //
1115      // Note that because we allow a limited amount of flexibility in the order
1116      // that we visit nodes, LastRootIt might be *before* RootIt, in which
1117      // case we've already checked this set of instructions so we shouldn't
1118      // do anything.
1119      for (; LastRootIt < RootIt; ++LastRootIt) {
1120        Instruction *I = LastRootIt->first;
1121        if (LastRootIt->second.find_first() < (int)Iter)
1122          continue;
1123        if (I->mayWriteToMemory())
1124          AST.add(I);
1125        // Note: This is specifically guarded by a check on isa<PHINode>,
1126        // which while a valid (somewhat arbitrary) micro-optimization, is
1127        // needed because otherwise isSafeToSpeculativelyExecute returns
1128        // false on PHI nodes.
1129        if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
1130            !isSafeToSpeculativelyExecute(I))
1131          // Intervening instructions cause side effects.
1132          FutureSideEffects = true;
1133      }
1134
1135      // Make sure that this instruction, which is in the use set of this
1136      // root instruction, does not also belong to the base set or the set of
1137      // some other root instruction.
1138      if (RootIt->second.count() > 1) {
1139        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1140                        " vs. " << *RootInst << " (prev. case overlap)\n");
1141        return false;
1142      }
1143
1144      // Make sure that we don't alias with any instruction in the alias set
1145      // tracker. If we do, then we depend on a future iteration, and we
1146      // can't reroll.
1147      if (RootInst->mayReadFromMemory())
1148        for (auto &K : AST) {
1149          if (K.aliasesUnknownInst(RootInst, *AA)) {
1150            DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1151                            " vs. " << *RootInst << " (depends on future store)\n");
1152            return false;
1153          }
1154        }
1155
1156      // If we've past an instruction from a future iteration that may have
1157      // side effects, and this instruction might also, then we can't reorder
1158      // them, and this matching fails. As an exception, we allow the alias
1159      // set tracker to handle regular (simple) load/store dependencies.
1160      if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
1161                                 !isSafeToSpeculativelyExecute(BaseInst)) ||
1162                                (!isSimpleLoadStore(RootInst) &&
1163                                 !isSafeToSpeculativelyExecute(RootInst)))) {
1164        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1165                        " vs. " << *RootInst <<
1166                        " (side effects prevent reordering)\n");
1167        return false;
1168      }
1169
1170      // For instructions that are part of a reduction, if the operation is
1171      // associative, then don't bother matching the operands (because we
1172      // already know that the instructions are isomorphic, and the order
1173      // within the iteration does not matter). For non-associative reductions,
1174      // we do need to match the operands, because we need to reject
1175      // out-of-order instructions within an iteration!
1176      // For example (assume floating-point addition), we need to reject this:
1177      //   x += a[i]; x += b[i];
1178      //   x += a[i+1]; x += b[i+1];
1179      //   x += b[i+2]; x += a[i+2];
1180      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1181
1182      if (!(InReduction && BaseInst->isAssociative())) {
1183        bool Swapped = false, SomeOpMatched = false;
1184        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1185          Value *Op2 = RootInst->getOperand(j);
1186
1187          // If this is part of a reduction (and the operation is not
1188          // associatve), then we match all operands, but not those that are
1189          // part of the reduction.
1190          if (InReduction)
1191            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1192              if (Reductions.isPairInSame(RootInst, Op2I))
1193                continue;
1194
1195          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1196          if (BMI != BaseMap.end()) {
1197            Op2 = BMI->second;
1198          } else {
1199            for (auto &DRS : RootSets) {
1200              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1201                Op2 = DRS.BaseInst;
1202                break;
1203              }
1204            }
1205          }
1206
1207          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1208            // If we've not already decided to swap the matched operands, and
1209            // we've not already matched our first operand (note that we could
1210            // have skipped matching the first operand because it is part of a
1211            // reduction above), and the instruction is commutative, then try
1212            // the swapped match.
1213            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1214                BaseInst->getOperand(!j) == Op2) {
1215              Swapped = true;
1216            } else {
1217              DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1218                    << " vs. " << *RootInst << " (operand " << j << ")\n");
1219              return false;
1220            }
1221          }
1222
1223          SomeOpMatched = true;
1224        }
1225      }
1226
1227      if ((!PossibleRedLastSet.count(BaseInst) &&
1228           hasUsesOutsideLoop(BaseInst, L)) ||
1229          (!PossibleRedLastSet.count(RootInst) &&
1230           hasUsesOutsideLoop(RootInst, L))) {
1231        DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
1232                        " vs. " << *RootInst << " (uses outside loop)\n");
1233        return false;
1234      }
1235
1236      Reductions.recordPair(BaseInst, RootInst, Iter);
1237      BaseMap.insert(std::make_pair(RootInst, BaseInst));
1238
1239      LastRootIt = RootIt;
1240      Visited.insert(BaseInst);
1241      Visited.insert(RootInst);
1242      BaseIt = nextInstr(0, Uses, Visited);
1243      RootIt = nextInstr(Iter, Uses, Visited);
1244    }
1245    assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
1246            "Mismatched set sizes!");
1247  }
1248
1249  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
1250                  *IV << "\n");
1251
1252  return true;
1253}
1254
1255void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
1256  BasicBlock *Header = L->getHeader();
1257  // Remove instructions associated with non-base iterations.
1258  for (BasicBlock::reverse_iterator J = Header->rbegin();
1259       J != Header->rend();) {
1260    unsigned I = Uses[&*J].find_first();
1261    if (I > 0 && I < IL_All) {
1262      Instruction *D = &*J;
1263      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1264      D->eraseFromParent();
1265      continue;
1266    }
1267
1268    ++J;
1269  }
1270  const DataLayout &DL = Header->getModule()->getDataLayout();
1271
1272  // We need to create a new induction variable for each different BaseInst.
1273  for (auto &DRS : RootSets) {
1274    // Insert the new induction variable.
1275    const SCEVAddRecExpr *RealIVSCEV =
1276      cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1277    const SCEV *Start = RealIVSCEV->getStart();
1278    const SCEVAddRecExpr *H = cast<SCEVAddRecExpr>
1279      (SE->getAddRecExpr(Start,
1280                         SE->getConstant(RealIVSCEV->getType(), 1),
1281                         L, SCEV::FlagAnyWrap));
1282    { // Limit the lifetime of SCEVExpander.
1283      SCEVExpander Expander(*SE, DL, "reroll");
1284      Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
1285
1286      for (auto &KV : Uses) {
1287        if (KV.second.find_first() == 0)
1288          KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV);
1289      }
1290
1291      if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1292        // FIXME: Why do we need this check?
1293        if (Uses[BI].find_first() == IL_All) {
1294          const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1295
1296          // Iteration count SCEV minus 1
1297          const SCEV *ICMinus1SCEV =
1298            SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
1299
1300          Value *ICMinus1; // Iteration count minus 1
1301          if (isa<SCEVConstant>(ICMinus1SCEV)) {
1302            ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
1303          } else {
1304            BasicBlock *Preheader = L->getLoopPreheader();
1305            if (!Preheader)
1306              Preheader = InsertPreheaderForLoop(L, Parent);
1307
1308            ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
1309                                              Preheader->getTerminator());
1310          }
1311
1312          Value *Cond =
1313            new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
1314          BI->setCondition(Cond);
1315
1316          if (BI->getSuccessor(1) != Header)
1317            BI->swapSuccessors();
1318        }
1319      }
1320    }
1321  }
1322
1323  SimplifyInstructionsInBlock(Header, TLI);
1324  DeleteDeadPHIs(Header, TLI);
1325}
1326
1327// Validate the selected reductions. All iterations must have an isomorphic
1328// part of the reduction chain and, for non-associative reductions, the chain
1329// entries must appear in order.
1330bool LoopReroll::ReductionTracker::validateSelected() {
1331  // For a non-associative reduction, the chain entries must appear in order.
1332  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
1333       RI != RIE; ++RI) {
1334    int i = *RI;
1335    int PrevIter = 0, BaseCount = 0, Count = 0;
1336    for (Instruction *J : PossibleReds[i]) {
1337      // Note that all instructions in the chain must have been found because
1338      // all instructions in the function must have been assigned to some
1339      // iteration.
1340      int Iter = PossibleRedIter[J];
1341      if (Iter != PrevIter && Iter != PrevIter + 1 &&
1342          !PossibleReds[i].getReducedValue()->isAssociative()) {
1343        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
1344                        J << "\n");
1345        return false;
1346      }
1347
1348      if (Iter != PrevIter) {
1349        if (Count != BaseCount) {
1350          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
1351                " reduction use count " << Count <<
1352                " is not equal to the base use count " <<
1353                BaseCount << "\n");
1354          return false;
1355        }
1356
1357        Count = 0;
1358      }
1359
1360      ++Count;
1361      if (Iter == 0)
1362        ++BaseCount;
1363
1364      PrevIter = Iter;
1365    }
1366  }
1367
1368  return true;
1369}
1370
1371// For all selected reductions, remove all parts except those in the first
1372// iteration (and the PHI). Replace outside uses of the reduced value with uses
1373// of the first-iteration reduced value (in other words, reroll the selected
1374// reductions).
1375void LoopReroll::ReductionTracker::replaceSelected() {
1376  // Fixup reductions to refer to the last instruction associated with the
1377  // first iteration (not the last).
1378  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
1379       RI != RIE; ++RI) {
1380    int i = *RI;
1381    int j = 0;
1382    for (int e = PossibleReds[i].size(); j != e; ++j)
1383      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1384        --j;
1385        break;
1386      }
1387
1388    // Replace users with the new end-of-chain value.
1389    SmallInstructionVector Users;
1390    for (User *U : PossibleReds[i].getReducedValue()->users()) {
1391      Users.push_back(cast<Instruction>(U));
1392    }
1393
1394    for (SmallInstructionVector::iterator J = Users.begin(),
1395         JE = Users.end(); J != JE; ++J)
1396      (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1397                              PossibleReds[i][j]);
1398  }
1399}
1400
1401// Reroll the provided loop with respect to the provided induction variable.
1402// Generally, we're looking for a loop like this:
1403//
1404// %iv = phi [ (preheader, ...), (body, %iv.next) ]
1405// f(%iv)
1406// %iv.1 = add %iv, 1                <-- a root increment
1407// f(%iv.1)
1408// %iv.2 = add %iv, 2                <-- a root increment
1409// f(%iv.2)
1410// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1411// f(%iv.scale_m_1)
1412// ...
1413// %iv.next = add %iv, scale
1414// %cmp = icmp(%iv, ...)
1415// br %cmp, header, exit
1416//
1417// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1418// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1419// be intermixed with eachother. The restriction imposed by this algorithm is
1420// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1421// etc. be the same.
1422//
1423// First, we collect the use set of %iv, excluding the other increment roots.
1424// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1425// times, having collected the use set of f(%iv.(i+1)), during which we:
1426//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1427//     the next unmatched instruction in f(%iv.(i+1)).
1428//   - Ensure that both matched instructions don't have any external users
1429//     (with the exception of last-in-chain reduction instructions).
1430//   - Track the (aliasing) write set, and other side effects, of all
1431//     instructions that belong to future iterations that come before the matched
1432//     instructions. If the matched instructions read from that write set, then
1433//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1434//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1435//     if any of these future instructions had side effects (could not be
1436//     speculatively executed), and so do the matched instructions, when we
1437//     cannot reorder those side-effect-producing instructions, and rerolling
1438//     fails.
1439//
1440// Finally, we make sure that all loop instructions are either loop increment
1441// roots, belong to simple latch code, parts of validated reductions, part of
1442// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1443// have been validated), then we reroll the loop.
1444bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1445                        const SCEV *IterCount,
1446                        ReductionTracker &Reductions) {
1447  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
1448
1449  if (!DAGRoots.findRoots())
1450    return false;
1451  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
1452                  *IV << "\n");
1453
1454  if (!DAGRoots.validate(Reductions))
1455    return false;
1456  if (!Reductions.validateSelected())
1457    return false;
1458  // At this point, we've validated the rerolling, and we're committed to
1459  // making changes!
1460
1461  Reductions.replaceSelected();
1462  DAGRoots.replace(IterCount);
1463
1464  ++NumRerolledLoops;
1465  return true;
1466}
1467
1468bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1469  if (skipOptnoneFunction(L))
1470    return false;
1471
1472  AA = &getAnalysis<AliasAnalysis>();
1473  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1474  SE = &getAnalysis<ScalarEvolution>();
1475  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1476  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1477
1478  BasicBlock *Header = L->getHeader();
1479  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1480        "] Loop %" << Header->getName() << " (" <<
1481        L->getNumBlocks() << " block(s))\n");
1482
1483  bool Changed = false;
1484
1485  // For now, we'll handle only single BB loops.
1486  if (L->getNumBlocks() > 1)
1487    return Changed;
1488
1489  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1490    return Changed;
1491
1492  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
1493  const SCEV *IterCount =
1494    SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
1495  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1496
1497  // First, we need to find the induction variable with respect to which we can
1498  // reroll (there may be several possible options).
1499  SmallInstructionVector PossibleIVs;
1500  collectPossibleIVs(L, PossibleIVs);
1501
1502  if (PossibleIVs.empty()) {
1503    DEBUG(dbgs() << "LRR: No possible IVs found\n");
1504    return Changed;
1505  }
1506
1507  ReductionTracker Reductions;
1508  collectPossibleReductions(L, Reductions);
1509
1510  // For each possible IV, collect the associated possible set of 'root' nodes
1511  // (i+1, i+2, etc.).
1512  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
1513       IE = PossibleIVs.end(); I != IE; ++I)
1514    if (reroll(*I, L, Header, IterCount, Reductions)) {
1515      Changed = true;
1516      break;
1517    }
1518
1519  return Changed;
1520}
1521