1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2//
3//                      The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SampleProfileLoader transformation. This pass
11// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13// profile information in the given profile.
14//
15// This pass generates branch weight annotations on the IR:
16//
17// - prof: Represents branch weights. This annotation is added to branches
18//      to indicate the weights of each edge coming out of the branch.
19//      The weight of each edge is the weight of the target block for
20//      that edge. The weight of a block B is computed as the maximum
21//      number of samples found in B.
22//
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/Analysis/PostDominators.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DebugInfo.h"
34#include "llvm/IR/DiagnosticInfo.h"
35#include "llvm/IR/Dominators.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InstIterator.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/MDBuilder.h"
41#include "llvm/IR/Metadata.h"
42#include "llvm/IR/Module.h"
43#include "llvm/Pass.h"
44#include "llvm/ProfileData/SampleProfReader.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cctype>
49
50using namespace llvm;
51using namespace sampleprof;
52
53#define DEBUG_TYPE "sample-profile"
54
55// Command line option to specify the file to read samples from. This is
56// mainly used for debugging.
57static cl::opt<std::string> SampleProfileFile(
58    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
59    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
60static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
61    "sample-profile-max-propagate-iterations", cl::init(100),
62    cl::desc("Maximum number of iterations to go through when propagating "
63             "sample block/edge weights through the CFG."));
64
65namespace {
66typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
67typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
68typedef std::pair<BasicBlock *, BasicBlock *> Edge;
69typedef DenseMap<Edge, unsigned> EdgeWeightMap;
70typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
71
72/// \brief Sample profile pass.
73///
74/// This pass reads profile data from the file specified by
75/// -sample-profile-file and annotates every affected function with the
76/// profile information found in that file.
77class SampleProfileLoader : public FunctionPass {
78public:
79  // Class identification, replacement for typeinfo
80  static char ID;
81
82  SampleProfileLoader(StringRef Name = SampleProfileFile)
83      : FunctionPass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Ctx(nullptr),
84        Reader(), Samples(nullptr), Filename(Name), ProfileIsValid(false) {
85    initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
86  }
87
88  bool doInitialization(Module &M) override;
89
90  void dump() { Reader->dump(); }
91
92  const char *getPassName() const override { return "Sample profile pass"; }
93
94  bool runOnFunction(Function &F) override;
95
96  void getAnalysisUsage(AnalysisUsage &AU) const override {
97    AU.setPreservesCFG();
98    AU.addRequired<LoopInfoWrapperPass>();
99    AU.addRequired<DominatorTreeWrapperPass>();
100    AU.addRequired<PostDominatorTree>();
101  }
102
103protected:
104  unsigned getFunctionLoc(Function &F);
105  bool emitAnnotations(Function &F);
106  unsigned getInstWeight(Instruction &I);
107  unsigned getBlockWeight(BasicBlock *BB);
108  void printEdgeWeight(raw_ostream &OS, Edge E);
109  void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
110  void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
111  bool computeBlockWeights(Function &F);
112  void findEquivalenceClasses(Function &F);
113  void findEquivalencesFor(BasicBlock *BB1,
114                           SmallVector<BasicBlock *, 8> Descendants,
115                           DominatorTreeBase<BasicBlock> *DomTree);
116  void propagateWeights(Function &F);
117  unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
118  void buildEdges(Function &F);
119  bool propagateThroughEdges(Function &F);
120
121  /// \brief Line number for the function header. Used to compute absolute
122  /// line numbers from the relative line numbers found in the profile.
123  unsigned HeaderLineno;
124
125  /// \brief Map basic blocks to their computed weights.
126  ///
127  /// The weight of a basic block is defined to be the maximum
128  /// of all the instruction weights in that block.
129  BlockWeightMap BlockWeights;
130
131  /// \brief Map edges to their computed weights.
132  ///
133  /// Edge weights are computed by propagating basic block weights in
134  /// SampleProfile::propagateWeights.
135  EdgeWeightMap EdgeWeights;
136
137  /// \brief Set of visited blocks during propagation.
138  SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
139
140  /// \brief Set of visited edges during propagation.
141  SmallSet<Edge, 128> VisitedEdges;
142
143  /// \brief Equivalence classes for block weights.
144  ///
145  /// Two blocks BB1 and BB2 are in the same equivalence class if they
146  /// dominate and post-dominate each other, and they are in the same loop
147  /// nest. When this happens, the two blocks are guaranteed to execute
148  /// the same number of times.
149  EquivalenceClassMap EquivalenceClass;
150
151  /// \brief Dominance, post-dominance and loop information.
152  DominatorTree *DT;
153  PostDominatorTree *PDT;
154  LoopInfo *LI;
155
156  /// \brief Predecessors for each basic block in the CFG.
157  BlockEdgeMap Predecessors;
158
159  /// \brief Successors for each basic block in the CFG.
160  BlockEdgeMap Successors;
161
162  /// \brief LLVM context holding the debug data we need.
163  LLVMContext *Ctx;
164
165  /// \brief Profile reader object.
166  std::unique_ptr<SampleProfileReader> Reader;
167
168  /// \brief Samples collected for the body of this function.
169  FunctionSamples *Samples;
170
171  /// \brief Name of the profile file to load.
172  StringRef Filename;
173
174  /// \brief Flag indicating whether the profile input loaded successfully.
175  bool ProfileIsValid;
176};
177}
178
179/// \brief Print the weight of edge \p E on stream \p OS.
180///
181/// \param OS  Stream to emit the output to.
182/// \param E  Edge to print.
183void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
184  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
185     << "]: " << EdgeWeights[E] << "\n";
186}
187
188/// \brief Print the equivalence class of block \p BB on stream \p OS.
189///
190/// \param OS  Stream to emit the output to.
191/// \param BB  Block to print.
192void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
193                                                BasicBlock *BB) {
194  BasicBlock *Equiv = EquivalenceClass[BB];
195  OS << "equivalence[" << BB->getName()
196     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
197}
198
199/// \brief Print the weight of block \p BB on stream \p OS.
200///
201/// \param OS  Stream to emit the output to.
202/// \param BB  Block to print.
203void SampleProfileLoader::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
204  OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
205}
206
207/// \brief Get the weight for an instruction.
208///
209/// The "weight" of an instruction \p Inst is the number of samples
210/// collected on that instruction at runtime. To retrieve it, we
211/// need to compute the line number of \p Inst relative to the start of its
212/// function. We use HeaderLineno to compute the offset. We then
213/// look up the samples collected for \p Inst using BodySamples.
214///
215/// \param Inst Instruction to query.
216///
217/// \returns The profiled weight of I.
218unsigned SampleProfileLoader::getInstWeight(Instruction &Inst) {
219  DebugLoc DLoc = Inst.getDebugLoc();
220  if (!DLoc)
221    return 0;
222
223  unsigned Lineno = DLoc.getLine();
224  if (Lineno < HeaderLineno)
225    return 0;
226
227  DILocation DIL = DLoc.get();
228  int LOffset = Lineno - HeaderLineno;
229  unsigned Discriminator = DIL->getDiscriminator();
230  unsigned Weight = Samples->samplesAt(LOffset, Discriminator);
231  DEBUG(dbgs() << "    " << Lineno << "." << Discriminator << ":" << Inst
232               << " (line offset: " << LOffset << "." << Discriminator
233               << " - weight: " << Weight << ")\n");
234  return Weight;
235}
236
237/// \brief Compute the weight of a basic block.
238///
239/// The weight of basic block \p BB is the maximum weight of all the
240/// instructions in BB. The weight of \p BB is computed and cached in
241/// the BlockWeights map.
242///
243/// \param BB The basic block to query.
244///
245/// \returns The computed weight of BB.
246unsigned SampleProfileLoader::getBlockWeight(BasicBlock *BB) {
247  // If we've computed BB's weight before, return it.
248  std::pair<BlockWeightMap::iterator, bool> Entry =
249      BlockWeights.insert(std::make_pair(BB, 0));
250  if (!Entry.second)
251    return Entry.first->second;
252
253  // Otherwise, compute and cache BB's weight.
254  unsigned Weight = 0;
255  for (auto &I : BB->getInstList()) {
256    unsigned InstWeight = getInstWeight(I);
257    if (InstWeight > Weight)
258      Weight = InstWeight;
259  }
260  Entry.first->second = Weight;
261  return Weight;
262}
263
264/// \brief Compute and store the weights of every basic block.
265///
266/// This populates the BlockWeights map by computing
267/// the weights of every basic block in the CFG.
268///
269/// \param F The function to query.
270bool SampleProfileLoader::computeBlockWeights(Function &F) {
271  bool Changed = false;
272  DEBUG(dbgs() << "Block weights\n");
273  for (auto &BB : F) {
274    unsigned Weight = getBlockWeight(&BB);
275    Changed |= (Weight > 0);
276    DEBUG(printBlockWeight(dbgs(), &BB));
277  }
278
279  return Changed;
280}
281
282/// \brief Find equivalence classes for the given block.
283///
284/// This finds all the blocks that are guaranteed to execute the same
285/// number of times as \p BB1. To do this, it traverses all the the
286/// descendants of \p BB1 in the dominator or post-dominator tree.
287///
288/// A block BB2 will be in the same equivalence class as \p BB1 if
289/// the following holds:
290///
291/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
292///    is a descendant of \p BB1 in the dominator tree, then BB2 should
293///    dominate BB1 in the post-dominator tree.
294///
295/// 2- Both BB2 and \p BB1 must be in the same loop.
296///
297/// For every block BB2 that meets those two requirements, we set BB2's
298/// equivalence class to \p BB1.
299///
300/// \param BB1  Block to check.
301/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
302/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
303///                 with blocks from \p BB1's dominator tree, then
304///                 this is the post-dominator tree, and vice versa.
305void SampleProfileLoader::findEquivalencesFor(
306    BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
307    DominatorTreeBase<BasicBlock> *DomTree) {
308  for (auto *BB2 : Descendants) {
309    bool IsDomParent = DomTree->dominates(BB2, BB1);
310    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
311    if (BB1 != BB2 && VisitedBlocks.insert(BB2).second && IsDomParent &&
312        IsInSameLoop) {
313      EquivalenceClass[BB2] = BB1;
314
315      // If BB2 is heavier than BB1, make BB2 have the same weight
316      // as BB1.
317      //
318      // Note that we don't worry about the opposite situation here
319      // (when BB2 is lighter than BB1). We will deal with this
320      // during the propagation phase. Right now, we just want to
321      // make sure that BB1 has the largest weight of all the
322      // members of its equivalence set.
323      unsigned &BB1Weight = BlockWeights[BB1];
324      unsigned &BB2Weight = BlockWeights[BB2];
325      BB1Weight = std::max(BB1Weight, BB2Weight);
326    }
327  }
328}
329
330/// \brief Find equivalence classes.
331///
332/// Since samples may be missing from blocks, we can fill in the gaps by setting
333/// the weights of all the blocks in the same equivalence class to the same
334/// weight. To compute the concept of equivalence, we use dominance and loop
335/// information. Two blocks B1 and B2 are in the same equivalence class if B1
336/// dominates B2, B2 post-dominates B1 and both are in the same loop.
337///
338/// \param F The function to query.
339void SampleProfileLoader::findEquivalenceClasses(Function &F) {
340  SmallVector<BasicBlock *, 8> DominatedBBs;
341  DEBUG(dbgs() << "\nBlock equivalence classes\n");
342  // Find equivalence sets based on dominance and post-dominance information.
343  for (auto &BB : F) {
344    BasicBlock *BB1 = &BB;
345
346    // Compute BB1's equivalence class once.
347    if (EquivalenceClass.count(BB1)) {
348      DEBUG(printBlockEquivalence(dbgs(), BB1));
349      continue;
350    }
351
352    // By default, blocks are in their own equivalence class.
353    EquivalenceClass[BB1] = BB1;
354
355    // Traverse all the blocks dominated by BB1. We are looking for
356    // every basic block BB2 such that:
357    //
358    // 1- BB1 dominates BB2.
359    // 2- BB2 post-dominates BB1.
360    // 3- BB1 and BB2 are in the same loop nest.
361    //
362    // If all those conditions hold, it means that BB2 is executed
363    // as many times as BB1, so they are placed in the same equivalence
364    // class by making BB2's equivalence class be BB1.
365    DominatedBBs.clear();
366    DT->getDescendants(BB1, DominatedBBs);
367    findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
368
369    // Repeat the same logic for all the blocks post-dominated by BB1.
370    // We are looking for every basic block BB2 such that:
371    //
372    // 1- BB1 post-dominates BB2.
373    // 2- BB2 dominates BB1.
374    // 3- BB1 and BB2 are in the same loop nest.
375    //
376    // If all those conditions hold, BB2's equivalence class is BB1.
377    DominatedBBs.clear();
378    PDT->getDescendants(BB1, DominatedBBs);
379    findEquivalencesFor(BB1, DominatedBBs, DT);
380
381    DEBUG(printBlockEquivalence(dbgs(), BB1));
382  }
383
384  // Assign weights to equivalence classes.
385  //
386  // All the basic blocks in the same equivalence class will execute
387  // the same number of times. Since we know that the head block in
388  // each equivalence class has the largest weight, assign that weight
389  // to all the blocks in that equivalence class.
390  DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
391  for (auto &BI : F) {
392    BasicBlock *BB = &BI;
393    BasicBlock *EquivBB = EquivalenceClass[BB];
394    if (BB != EquivBB)
395      BlockWeights[BB] = BlockWeights[EquivBB];
396    DEBUG(printBlockWeight(dbgs(), BB));
397  }
398}
399
400/// \brief Visit the given edge to decide if it has a valid weight.
401///
402/// If \p E has not been visited before, we copy to \p UnknownEdge
403/// and increment the count of unknown edges.
404///
405/// \param E  Edge to visit.
406/// \param NumUnknownEdges  Current number of unknown edges.
407/// \param UnknownEdge  Set if E has not been visited before.
408///
409/// \returns E's weight, if known. Otherwise, return 0.
410unsigned SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
411                                        Edge *UnknownEdge) {
412  if (!VisitedEdges.count(E)) {
413    (*NumUnknownEdges)++;
414    *UnknownEdge = E;
415    return 0;
416  }
417
418  return EdgeWeights[E];
419}
420
421/// \brief Propagate weights through incoming/outgoing edges.
422///
423/// If the weight of a basic block is known, and there is only one edge
424/// with an unknown weight, we can calculate the weight of that edge.
425///
426/// Similarly, if all the edges have a known count, we can calculate the
427/// count of the basic block, if needed.
428///
429/// \param F  Function to process.
430///
431/// \returns  True if new weights were assigned to edges or blocks.
432bool SampleProfileLoader::propagateThroughEdges(Function &F) {
433  bool Changed = false;
434  DEBUG(dbgs() << "\nPropagation through edges\n");
435  for (auto &BI : F) {
436    BasicBlock *BB = &BI;
437
438    // Visit all the predecessor and successor edges to determine
439    // which ones have a weight assigned already. Note that it doesn't
440    // matter that we only keep track of a single unknown edge. The
441    // only case we are interested in handling is when only a single
442    // edge is unknown (see setEdgeOrBlockWeight).
443    for (unsigned i = 0; i < 2; i++) {
444      unsigned TotalWeight = 0;
445      unsigned NumUnknownEdges = 0;
446      Edge UnknownEdge, SelfReferentialEdge;
447
448      if (i == 0) {
449        // First, visit all predecessor edges.
450        for (auto *Pred : Predecessors[BB]) {
451          Edge E = std::make_pair(Pred, BB);
452          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
453          if (E.first == E.second)
454            SelfReferentialEdge = E;
455        }
456      } else {
457        // On the second round, visit all successor edges.
458        for (auto *Succ : Successors[BB]) {
459          Edge E = std::make_pair(BB, Succ);
460          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
461        }
462      }
463
464      // After visiting all the edges, there are three cases that we
465      // can handle immediately:
466      //
467      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
468      //   In this case, we simply check that the sum of all the edges
469      //   is the same as BB's weight. If not, we change BB's weight
470      //   to match. Additionally, if BB had not been visited before,
471      //   we mark it visited.
472      //
473      // - Only one edge is unknown and BB has already been visited.
474      //   In this case, we can compute the weight of the edge by
475      //   subtracting the total block weight from all the known
476      //   edge weights. If the edges weight more than BB, then the
477      //   edge of the last remaining edge is set to zero.
478      //
479      // - There exists a self-referential edge and the weight of BB is
480      //   known. In this case, this edge can be based on BB's weight.
481      //   We add up all the other known edges and set the weight on
482      //   the self-referential edge as we did in the previous case.
483      //
484      // In any other case, we must continue iterating. Eventually,
485      // all edges will get a weight, or iteration will stop when
486      // it reaches SampleProfileMaxPropagateIterations.
487      if (NumUnknownEdges <= 1) {
488        unsigned &BBWeight = BlockWeights[BB];
489        if (NumUnknownEdges == 0) {
490          // If we already know the weight of all edges, the weight of the
491          // basic block can be computed. It should be no larger than the sum
492          // of all edge weights.
493          if (TotalWeight > BBWeight) {
494            BBWeight = TotalWeight;
495            Changed = true;
496            DEBUG(dbgs() << "All edge weights for " << BB->getName()
497                         << " known. Set weight for block: ";
498                  printBlockWeight(dbgs(), BB););
499          }
500          if (VisitedBlocks.insert(BB).second)
501            Changed = true;
502        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
503          // If there is a single unknown edge and the block has been
504          // visited, then we can compute E's weight.
505          if (BBWeight >= TotalWeight)
506            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
507          else
508            EdgeWeights[UnknownEdge] = 0;
509          VisitedEdges.insert(UnknownEdge);
510          Changed = true;
511          DEBUG(dbgs() << "Set weight for edge: ";
512                printEdgeWeight(dbgs(), UnknownEdge));
513        }
514      } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
515        unsigned &BBWeight = BlockWeights[BB];
516        // We have a self-referential edge and the weight of BB is known.
517        if (BBWeight >= TotalWeight)
518          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
519        else
520          EdgeWeights[SelfReferentialEdge] = 0;
521        VisitedEdges.insert(SelfReferentialEdge);
522        Changed = true;
523        DEBUG(dbgs() << "Set self-referential edge weight to: ";
524              printEdgeWeight(dbgs(), SelfReferentialEdge));
525      }
526    }
527  }
528
529  return Changed;
530}
531
532/// \brief Build in/out edge lists for each basic block in the CFG.
533///
534/// We are interested in unique edges. If a block B1 has multiple
535/// edges to another block B2, we only add a single B1->B2 edge.
536void SampleProfileLoader::buildEdges(Function &F) {
537  for (auto &BI : F) {
538    BasicBlock *B1 = &BI;
539
540    // Add predecessors for B1.
541    SmallPtrSet<BasicBlock *, 16> Visited;
542    if (!Predecessors[B1].empty())
543      llvm_unreachable("Found a stale predecessors list in a basic block.");
544    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
545      BasicBlock *B2 = *PI;
546      if (Visited.insert(B2).second)
547        Predecessors[B1].push_back(B2);
548    }
549
550    // Add successors for B1.
551    Visited.clear();
552    if (!Successors[B1].empty())
553      llvm_unreachable("Found a stale successors list in a basic block.");
554    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
555      BasicBlock *B2 = *SI;
556      if (Visited.insert(B2).second)
557        Successors[B1].push_back(B2);
558    }
559  }
560}
561
562/// \brief Propagate weights into edges
563///
564/// The following rules are applied to every block BB in the CFG:
565///
566/// - If BB has a single predecessor/successor, then the weight
567///   of that edge is the weight of the block.
568///
569/// - If all incoming or outgoing edges are known except one, and the
570///   weight of the block is already known, the weight of the unknown
571///   edge will be the weight of the block minus the sum of all the known
572///   edges. If the sum of all the known edges is larger than BB's weight,
573///   we set the unknown edge weight to zero.
574///
575/// - If there is a self-referential edge, and the weight of the block is
576///   known, the weight for that edge is set to the weight of the block
577///   minus the weight of the other incoming edges to that block (if
578///   known).
579void SampleProfileLoader::propagateWeights(Function &F) {
580  bool Changed = true;
581  unsigned i = 0;
582
583  // Before propagation starts, build, for each block, a list of
584  // unique predecessors and successors. This is necessary to handle
585  // identical edges in multiway branches. Since we visit all blocks and all
586  // edges of the CFG, it is cleaner to build these lists once at the start
587  // of the pass.
588  buildEdges(F);
589
590  // Propagate until we converge or we go past the iteration limit.
591  while (Changed && i++ < SampleProfileMaxPropagateIterations) {
592    Changed = propagateThroughEdges(F);
593  }
594
595  // Generate MD_prof metadata for every branch instruction using the
596  // edge weights computed during propagation.
597  DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
598  MDBuilder MDB(F.getContext());
599  for (auto &BI : F) {
600    BasicBlock *BB = &BI;
601    TerminatorInst *TI = BB->getTerminator();
602    if (TI->getNumSuccessors() == 1)
603      continue;
604    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
605      continue;
606
607    DEBUG(dbgs() << "\nGetting weights for branch at line "
608                 << TI->getDebugLoc().getLine() << ".\n");
609    SmallVector<unsigned, 4> Weights;
610    bool AllWeightsZero = true;
611    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
612      BasicBlock *Succ = TI->getSuccessor(I);
613      Edge E = std::make_pair(BB, Succ);
614      unsigned Weight = EdgeWeights[E];
615      DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
616      Weights.push_back(Weight);
617      if (Weight != 0)
618        AllWeightsZero = false;
619    }
620
621    // Only set weights if there is at least one non-zero weight.
622    // In any other case, let the analyzer set weights.
623    if (!AllWeightsZero) {
624      DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
625      TI->setMetadata(llvm::LLVMContext::MD_prof,
626                      MDB.createBranchWeights(Weights));
627    } else {
628      DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
629    }
630  }
631}
632
633/// \brief Get the line number for the function header.
634///
635/// This looks up function \p F in the current compilation unit and
636/// retrieves the line number where the function is defined. This is
637/// line 0 for all the samples read from the profile file. Every line
638/// number is relative to this line.
639///
640/// \param F  Function object to query.
641///
642/// \returns the line number where \p F is defined. If it returns 0,
643///          it means that there is no debug information available for \p F.
644unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
645  if (MDSubprogram *S = getDISubprogram(&F))
646    return S->getLine();
647
648  // If could not find the start of \p F, emit a diagnostic to inform the user
649  // about the missed opportunity.
650  F.getContext().diagnose(DiagnosticInfoSampleProfile(
651      "No debug information found in function " + F.getName() +
652          ": Function profile not used",
653      DS_Warning));
654  return 0;
655}
656
657/// \brief Generate branch weight metadata for all branches in \p F.
658///
659/// Branch weights are computed out of instruction samples using a
660/// propagation heuristic. Propagation proceeds in 3 phases:
661///
662/// 1- Assignment of block weights. All the basic blocks in the function
663///    are initial assigned the same weight as their most frequently
664///    executed instruction.
665///
666/// 2- Creation of equivalence classes. Since samples may be missing from
667///    blocks, we can fill in the gaps by setting the weights of all the
668///    blocks in the same equivalence class to the same weight. To compute
669///    the concept of equivalence, we use dominance and loop information.
670///    Two blocks B1 and B2 are in the same equivalence class if B1
671///    dominates B2, B2 post-dominates B1 and both are in the same loop.
672///
673/// 3- Propagation of block weights into edges. This uses a simple
674///    propagation heuristic. The following rules are applied to every
675///    block BB in the CFG:
676///
677///    - If BB has a single predecessor/successor, then the weight
678///      of that edge is the weight of the block.
679///
680///    - If all the edges are known except one, and the weight of the
681///      block is already known, the weight of the unknown edge will
682///      be the weight of the block minus the sum of all the known
683///      edges. If the sum of all the known edges is larger than BB's weight,
684///      we set the unknown edge weight to zero.
685///
686///    - If there is a self-referential edge, and the weight of the block is
687///      known, the weight for that edge is set to the weight of the block
688///      minus the weight of the other incoming edges to that block (if
689///      known).
690///
691/// Since this propagation is not guaranteed to finalize for every CFG, we
692/// only allow it to proceed for a limited number of iterations (controlled
693/// by -sample-profile-max-propagate-iterations).
694///
695/// FIXME: Try to replace this propagation heuristic with a scheme
696/// that is guaranteed to finalize. A work-list approach similar to
697/// the standard value propagation algorithm used by SSA-CCP might
698/// work here.
699///
700/// Once all the branch weights are computed, we emit the MD_prof
701/// metadata on BB using the computed values for each of its branches.
702///
703/// \param F The function to query.
704///
705/// \returns true if \p F was modified. Returns false, otherwise.
706bool SampleProfileLoader::emitAnnotations(Function &F) {
707  bool Changed = false;
708
709  // Initialize invariants used during computation and propagation.
710  HeaderLineno = getFunctionLoc(F);
711  if (HeaderLineno == 0)
712    return false;
713
714  DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
715               << ": " << HeaderLineno << "\n");
716
717  // Compute basic block weights.
718  Changed |= computeBlockWeights(F);
719
720  if (Changed) {
721    // Find equivalence classes.
722    findEquivalenceClasses(F);
723
724    // Propagate weights to all edges.
725    propagateWeights(F);
726  }
727
728  return Changed;
729}
730
731char SampleProfileLoader::ID = 0;
732INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
733                      "Sample Profile loader", false, false)
734INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
735INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
736INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
737INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
738INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
739                    "Sample Profile loader", false, false)
740
741bool SampleProfileLoader::doInitialization(Module &M) {
742  auto ReaderOrErr = SampleProfileReader::create(Filename, M.getContext());
743  if (std::error_code EC = ReaderOrErr.getError()) {
744    std::string Msg = "Could not open profile: " + EC.message();
745    M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
746    return false;
747  }
748  Reader = std::move(ReaderOrErr.get());
749  ProfileIsValid = (Reader->read() == sampleprof_error::success);
750  return true;
751}
752
753FunctionPass *llvm::createSampleProfileLoaderPass() {
754  return new SampleProfileLoader(SampleProfileFile);
755}
756
757FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
758  return new SampleProfileLoader(Name);
759}
760
761bool SampleProfileLoader::runOnFunction(Function &F) {
762  if (!ProfileIsValid)
763    return false;
764
765  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
766  PDT = &getAnalysis<PostDominatorTree>();
767  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
768  Ctx = &F.getParent()->getContext();
769  Samples = Reader->getSamplesFor(F);
770  if (!Samples->empty())
771    return emitAnnotations(F);
772  return false;
773}
774